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Abstract
Large language models (LLMs) are able to gen-
erate grammatically well-formed text, but how
do they encode their syntactic knowledge inter-
nally? While prior work has focused largely
on binary grammatical contrasts, in this work,
we study the representation and control of two
multidimensional hierarchical grammar phe-
nomena—verb tense and aspect—and for each,
identify distinct, orthogonal directions in resid-
ual space using linear discriminant analysis.
Next, we demonstrate causal control over both
grammatical features through concept steering
across three generation tasks. Then, we use
these identified features in a case study to in-
vestigate factors influencing effective steering
in multi-token generation. We find that steer-
ing strength, location, and duration are crucial
parameters for reducing undesirable side ef-
fects such as topic shift and degeneration. Our
findings suggest that models encode tense and
aspect in structurally organized, human-like
ways, but effective control of such features dur-
ing generation is sensitive to multiple factors
and requires manual tuning or automated opti-
mization.1

1 Introduction

Growing evidence on the generative capabilities of
large language models (LLMs) suggests that they
encode structural properties of language—such as
syntax trees—within their hidden representations
(Hewitt and Manning, 2019; Diego Simon et al.,
2024). Studying the representation of these prop-
erties can reveal how syntactic structures in mod-
els compare to those in human language. It may
also help develop more linguistically aware AI sys-
tems, extend model capabilities to low-resource
languages, improve the interpretability of genera-
tion, and assist in diagnosing systematic errors in
tasks like machine translation (López-Otal et al.,
2025).

1https://github.com/klerings/tense-aspect
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Figure 1: Activations from Qwen-7B projected along
three identified feature directions that represent the cat-
egorical values of tense: present, past and future.

Prior work has assessed grammatical compe-
tence with behavioral evaluations, using black-box
measures such as perplexity (Chen et al., 2024) and
grammatical acceptability benchmarks (Warstadt
et al., 2020; Hu et al., 2020). However, these meth-
ods do not reveal how grammatical concepts are
internally represented. To address this, recent in-
terpretability studies have examined the mecha-
nisms underlying syntactic competence, such as
indirect object identification (Wang et al., 2023)
and subject-verb agreement (Ferrando and Costa-
jussà, 2024), providing detailed insights into the
role of specific architectural components. Yet, they
largely focus on binary grammatical contrasts (e.g.,
singular vs. plural agreement), and often evalu-
ate on single-token continuations, which limit their
ability to capture more compositional or distributed
grammatical phenomena.

In this work, we take a complementary approach
focused on grammatical tense and aspect, two core
verb properties that encode temporal relations and
often span multiple tokens. While tense positions
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an event in different time periods relative to the
moment of speech (i.e., past, present or future),

a) She drove her car.
b) She drives her car.
c) She will drive her car.

aspect introduces an additional layer of tempo-
ral structure—describing whether an event is com-
pleted, ongoing or repeated (e.g., simple, perfect,
progressive or perfect progressive) (Klein, 2009).

d) She has driven her car.
e) She is driving her car.
f) She has been driving her car.

Unlike binary syntactic features, tense and as-
pect involve multiple discrete categories and can be
combined (e.g., past perfect). Theoretically, they
are independent grammatical features: any aspect
should, in principle, be expressible in any tense.
This separability is useful for a mechanistic analy-
sis, as it allows for a systematic exploration of how
these categories interact. We locate and analyze
the representation of both properties in two models
via linear probes and Linear Discriminant Analysis
(LDA) (Park et al., 2024a), and test their causal
relevance (Vig et al., 2020; Mueller et al., 2024)
by using them to steer LLM outputs in multi-token
generation.

While prior work has demonstrated representa-
tional steering for single-token continuations and
has focused on semantic properties, our approach
applies steering to full sentences by intervening
on every generated token individually, and focuses
on grammatical phenomena. Since steering mul-
tiple tokens increases the risk for degenerate out-
puts and unintended side effects (Bricken et al.,
2023; Stickland et al., 2024), we analyze when and
how strongly to intervene. We find that steering
effectiveness depends on activation norms, model
architecture, and the nature of the task.

Contributions. Our key contributions are as fol-
lows:

• We identify distinct, near-orthogonal directions
in LLM residual space encoding tense and aspect,
using probes and LDA.

• We demonstrate causal control over these
grammatical features through concept steering,
thereby mediating the LLM output during multi-
token generation.

• We investigate conditions for effective steering,
analyzing the influence of steering strength and
location, activation norm, model type and task
on side effects.

2 Background and Related Work

Linear Representation Hypothesis and Concept
Directions. The linear representation hypothesis
is the assumption that abstract features are encoded
as linear directions in LLM residual space (Elhage
et al., 2022; Nanda et al., 2023; Park et al., 2024b;
Marks and Tegmark, 2024; Park et al., 2024a). This
has led to the notion of feature directions—unit
vectors in activation space corresponding to spe-
cific properties—and, more generally, feature sub-
spaces, which span sets of related directions (e.g.,
different tense directions in shared tense subspace)
(Geiger et al., 2025; Mueller et al., 2024).

Such representations have been extracted using
sparse autoencoders (Bricken et al., 2023; Huben
et al., 2024), dimensionality reduction (Gurnee
and Tegmark, 2024), (Heinzerling and Inui, 2024),
and supervised linear probes (Marks and Tegmark,
2024). Recently, Park et al. (2024a) introduced an
LDA-based method to identify scaled directions
that capture categorical structure. Unlike prior ap-
proaches focused on concepts with natural oppo-
sites (e.g. MALE vs. FEMALE), this framework
models categorical concepts (e.g., TENSE) as sets of
binary features (e.g., FUTURE, PRESENT, PAST),
independently of predefined class structures.

Steering Language Models. Feature steering
has mainly targeted semantic features like senti-
ment (Rimsky et al., 2024; Lee et al., 2025) or num-
bers (Heinzerling and Inui, 2024), while categorical
linguistic properties remain underexplored. Earlier
work has focused on single-token interventions,
with recent studies beginning to explore steering
full-sentence generation (Lee et al., 2025; Rimsky
et al., 2024; Wu et al., 2025). Systematic evalu-
ations, e.g., of steering strength, side effects, or
degeneration, are still sparse (Pres et al., 2024).

Our work addresses these gaps by steering cat-
egorical grammatical features—specifically, tense
and aspect—during sentence-level generation with
controlled intervention strength and position-aware
application. We extend the LDA-based framework
from Park et al. (2024a) by broadening its appli-
cation from lexical to sentence-level grammatical
categories.
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Grammatical Knowledge in LMs. The gram-
matical competence of language models has been
an ongoing research topic since before the emer-
gence of LLMs, with subfields such as "Bertol-
ogy" (Rogers et al., 2020) focusing on earlier ar-
chitectures like BERT. Tense has been explored
in behavioral evaluations as well as causal anal-
yses (Merullo et al., 2024; Zhang et al., 2025),
but typically via binary distinctions (e.g., past
vs. present) and single-token interventions—aside
from Brinkmann et al. (2025), who consider open-
ended generation. However, tense and aspect have
not been jointly analyzed in a unified framework.
We address this by studying these features in multi-
token generation, combining probing, representa-
tion space analysis, and causal steering to examine
how grammatical concepts are encoded and can be
controlled. For a more comprehensive review of
related work, see App. B.

3 Locating Tense and Aspect

We focus on the interlinked grammatical concepts
of verb tense and aspect by localizing and visualiz-
ing their subcategories via exploratory methods.

3.1 Experimental Setup

Tense and aspect are core grammatical categories
that encode temporal structure. Tense refers to the
time at which an event occurs (present, past, future),
while aspect characterizes its temporal structure
(simple, progressive, perfect, perfect progressive).
In theory, each tense can occur in combination with
each aspect, yielding a grid of 12 distinct tense-
aspect forms (see App. C). This system makes these
features ideal for studying multidimensional hierar-
chical structure in LLMs. In practice, such regular
and compositional combinations are rare across lan-
guages. The comparatively structured tense-aspect
system in English is an exception (Klein, 2009).
Therefore, we focus our study on English rather
than languages with less regularity.

Data. We analyze sentences annotated with gram-
matical tense and aspect, requiring each sentence
to contain a single, unambiguous tense-aspect com-
bination to isolate a clear signal for each target vari-
able. We use sentences from the Penn Treebank
(Marcus et al., 1993) annotated with PropBank
(Kingsbury and Palmer, 2002), which provides
verb-specific tense and aspect labels. After filtering
out ambiguous sentences, the class distribution is
highly skewed, with most examples in the simple

aspect and some targets having fewer than ten in-
stances. To address this imbalance, we augment
rare classes with synthetic examples generated by
GPT-4o (Hurst et al., 2024), resulting in 1,543 la-
beled sentences. Augmentation improves balance,
but some categories remain overrepresented (e.g.,
simple past), therefore we downsample them for
training the classifiers. For evaluation, we use the
verb tense subset of 281 sentences from BIG-bench
(Srivastava et al., 2023; Logeswaran et al., 2018)
(see App. D for dataset details).

Models. We use the models Llama-3.1-8B-
Instruct (Dubey et al., 2024), primarily trained
on English data, and Qwen-2.5-7B-Instruct (Qwen
et al., 2025), with a focus on English and Chinese,
that are commonly studied for similar analyses. For
brevity, we omit version numbers and the ‘Instruct’
suffix throughout the remainder of the paper.

Localization via Probing. To localize the target
concepts—tense, aspect and their combination—
we train linear probing classifiers (Belinkov, 2022)
on the hidden representations of the pre-trained
LLMs. Let the model be defined as fθ : x → h,
where θ are learnable parameters, x = (x1, ..., xN )
the input tokens, and hl = (hl1, ..., h

l
N ) the hidden

representations at layer l. At each layer, we train
a probing model pl : hlagg → y that maps aggre-
gated hidden states hlagg to the corresponding tense,
aspect or tense-aspect labels y using multinomial
logistic regression. We compute hagg per layer as
follows,

hagg =
1√
N

N∑

i=1

hi, (1)

summing token-level representations and normal-
izing by the square root of sequence length N , a
strategy that outperforms other aggregation meth-
ods, see App. E for more details. Finally, we mean-
center the aggregated hidden representations before
classification.

Representation Geometry. To analyze how
tense and aspect are represented in model activa-
tions, we use the framework proposed by Park et al.
(2024a) for handling categorical features. In this
approach, each categorical concept (e.g., TENSE)
consists of a set of subordinate feature values (e.g.,
PAST, PRESENT, FUTURE). To model each cate-
gorical value as a direction, they are represented
as binary features: {IS_PAST, IS_NOT_PAST},
{IS_PRESENT, IS_NOT_PRESENT}, {IS_FUTURE,

8623



IS_NOT_FUTURE}. Following this framework, we
estimate vector representations for each feature
value using the variant of LDA proposed by Park
et al. (2024a). The objective is to find a vector that
reduces within-class variation and highlights dif-
ferences to all other classes. Unlike standard LDA,
which relies on both within-class and between-class
covariance, this variant omits the latter, enabling
the computation of each vector independently of
the others.

Formally, for each binary feature w, we compute
a normalized class direction h̃w from the empir-
ical mean of the class-specific activations E(hw),
adjusted by the pseudo-inverse of the class covari-
ance Cov(hw)

†:

h̃w =
Cov(hw)

†E(hw)
∥Cov(hw)†E(hw)∥2

. (2)

This unit vector captures the direction of the
class in residual space. To incorporate the strength
of the signal, we scale the direction by the projec-
tion of the class mean onto it:

ℓ̄w = (h̃⊤wE(hw))h̃w. (3)

The resulting vector ℓ̄w encodes the orientation
and intensity of the concept in activation space.

Importantly, because each vector is computed
independently, the method avoids enforcing any
pre-defined class structure of tense and aspect. In-
stead, the representational geometry that emerges
reflects the structure learned by the model itself.

Another key concept introduced by Park et al.
(2024a) is binary contrast, which captures the
distinction between two categorical values within
the same parent category and is computed as the
vector difference between their feature vectors. In
our analysis, we use binary contrasts to model cat-
egories in a lower-dimensional space. This allows
us to (i) compare subordinate features within a cat-
egory where their number exceeds the available
representational dimensions (i.e., for aspectual val-
ues), and (ii) approximate latent dimensions for
cross-category comparisons between tense and as-
pect.

3.2 Results

Representations of tense and aspect emerge
early in the model. Our probing classifiers pre-
dict tense and aspect from the embedding layer
with f1-scores above 90% and improve further with

Tense Aspect Tense-Aspect

Llama-8B 1.0 0.98 0.93
Qwen-7B 1.0 0.98 0.92

Table 1: Target-wise F1-scores from the best-
performing probe across layers.

model depth, especially for the fine-grained tense-
aspect combinations, see Table 1.

This demonstrates that contextualization is ben-
eficial, as many tenses and aspects are expressed
across multiple tokens. For detailed results across
all layers and more aggregation strategies, see
App. E. The findings are consistent across targets
and models and similar to earlier work that suggests
syntactic processing happens before more complex
semantic processing (He et al., 2024).

Grammatical properties form subspaces in rep-
resentation space. To analyze the LDA results,
we use the 2D and 3D visualizations of Park et al.
(2024a). To assess whether hidden representations
encode a separation between categories of a single
grammatical feature, we project test set embed-
dings from Qwen-7B onto selected directions.

For tense, we use ℓ̄PRESENT, ℓ̄PAST and ℓ̄FUTURE as
projection axes. For aspect, we use binary con-
trasts retrieved from vector differences to rep-
resent the four categories: ℓ̄PROGRESSIVE − ℓ̄SIMPLE,
ℓ̄PERFECT − ℓ̄SIMPLE and ℓ̄PERFECT PROGRESSIVE − ℓ̄SIMPLE.

In both cases, 3D projections reveal distinct clus-
ters corresponding to the underlying grammatical
categories: three well-separated clusters for tense
(Figure 1, explained variance: 0.72) and four for
aspect (Figure 2, explained variance: 0.70). They
span a convex region in both cases, suggesting that
the feature vectors define structured subspaces. See
App. F for additional cluster quality metrics of both
models.

Tense and aspect exhibit representational in-
dependence. Next, we examine the relationship
between the two grammatical categories by pro-
jecting representations onto their respective la-
tent dimensions. Specifically, we use the binary
contrasts ℓ̄TENSE = ℓ̄FUTURE − ℓ̄PAST and ℓ̄ASPECT =
ℓ̄PROGRESSIVE − ℓ̄PERFECT as proxies for the tense and
aspect dimensions2.

Figure 3 shows the projection of data points onto

2Any binary contrast among subcategories (e.g., FUTURE-
PAST, PRESENT-PAST, FUTURE-PRESENT) lies in the same
one-dimensional parent-contrast subspace. The vector differ-
ences in Fig. 3 were chosen as examples.
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according to their grammatical property.

the inferred tense (x-axis) and aspect (y-axis) di-
mensions. Similar to earlier feature-wise visual-
izations, the points cluster according to their gram-
matical categories. The groups are organized near-
orthogonally in latent space, reflecting a clear sep-
aration between tense and aspect. This is further
supported by the near-zero cosine similarity of 0.02
between the vectors ℓ̄TENSE and ℓ̄ASPECT (see App. F).

4 Multi-Token Steering

After identifying correlational evidence for tense
and aspect directions in model representations, we
test their causal impact on model behavior via tar-
geted interventions during text generation. We eval-
uate functional selectivity by checking whether the

manipulated outputs express the steered verb prop-
erty while preserving other verb features and the
original meaning. This quantitative analysis is fol-
lowed by a qualitative study in which we manually
examine model outputs and investigate the impact
of steering location, strength and duration.

4.1 Experimental Setup
Tasks. We consider three complementary tasks
(prompt details in App. G):

1. Random Sentence Task: The model is
prompted to generate an open-ended sentence,
testing whether grammatical concepts can be
induced in semantically unconstrained settings.

2. Repetition Task: In a few-shot setup, the model
must repeat a sentence after two example repeti-
tions. This copying task requires interventions
to override contextual information. It evaluates
the ability to steer generation when the model’s
default behavior follows pattern induction.

3. Temporal Translation Task: We use a similar
few-shot setup where the model must "translate"
a sentence into a different tense or aspect. Un-
like repetition, this requires internal transforma-
tion, allowing us to test whether interventions
can influence more complex linguistic transfor-
mations.

Steering Methods. We perform steering at a sin-
gle transformer layer l on the final position i = −1
of the input sequence at every generation step. Con-
cretely, we update the residual stream activation
vector hli ∈ Rd by adding and/or subtracting the
normalized LDA-derived concept directions from
earlier. These unit vectors correspond to specific
tense and aspect values. A scalar steering factor
α ∈ R scales the strength of the modification. We
evaluate three distinct steering strategies across all
layers and different α values:

1. Target-Addition Only (TA): The standard
steering approach which is commonly used in
related work such as Rimsky et al. (2024), di-
rectly adds the normalized target direction ℓ̄T to
the current activation:

hsteered = hli + αℓ̄T . (4)

2. Target-Addition with Source-Subtraction
(TA+SS): To simultaneously steer the target
concept and suppress a known source concept
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ℓ̄S , we introduce source-subtraction, which sub-
tracts the source direction with equal weight.
This is particularly useful for non-binary fea-
tures, where source and target are not simply
inverses:

hsteered = hli + αℓ̄T − αℓ̄S . (5)

3. Target-Addition with Projection Subtraction
(TA+Proj-SS): Instead of subtracting the full
source vector, this method removes only the
component of the activation that lies along ℓ̄S .
This is achieved by computing and subtracting
the projection of hli onto ℓ̄S :

hsteered = hli + αℓ̄T − (hli · ℓ̄S)ℓ̄S . (6)

To ensure comparability between steered and
original generations, we use greedy decoding,
where the most likely token is selected at each step.

Evaluation Metrics. We evaluate steering suc-
cess by giving the generated outputs to the model
in a new forward pass without any interventions,
extracting their representations and applying the
trained probing classifiers, following Brinkmann
et al. (2025). We probe not only for the steering
target but also for the respective other property. To
quantify the effect of our interventions, we define
the following four performance metrics:

Steering Success =
|S|
N

,

Degenerate Rate =
|D|
N

,

Efficacy =
|S \D|

N
,

Selectivity =
|SF \D|

N
.

Here, N is the number of test samples3, S ⊆
{1, . . . , N} is the set of successfully steered sam-
ples and D ⊆ {1, . . . , N} the set of degenerate
outputs. An output is considered degenerate, if it
either (i) forms an incomplete sentence by missing
a verb, as detected by a part-of-speech (POS) tag-
ger, or (ii) exhibits excessive n-gram repetition or
low n-gram diversity (see App. I for thresholds).
SF is the subset of S for which the probe’s label for
the not steered property stays constant. Finally, we
report the relative change in perplexity to measure
the impact of steering on fluency and coherence.

3N is task dependent, see App. G.
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Figure 4: Efficacy of different steering methods. TA+SS
and TA+Proj-SS are not applied for the Random Sen-
tence Task because there is no source feature direction
to be subtracted. Both models show similar trends with
tense being easier to steer than aspect, and random sen-
tences easier than few-shot tasks.

4.2 Quantitative Results

For each task and steering method, we perform
a grid search over all layers and selected α val-
ues (see App. H) and report the configuration that
yields the highest efficacy (Figure 4).

Steering success varies widely by task and tar-
get. Overall, steering tense achieves substantially
higher success than aspect. For example, on the
random sentence task, efficacy is near-perfect for
tense (94% for Llama-8B, 96% for Qwen-7B) but
noticeably lower for aspect (66% for Llama-8B,
51% for Qwen-7B). Steering in the few-shot set-
tings reduces performance for both targets, with the
best scenario reaching 73% (Qwen-7B, tense) and
the worst just 18% (aspect for both models). Steer-
ing tense or aspect is significantly more difficult
when the task requires conflicting verb properties to
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this effect can be partially mitigated through more tar-
geted subtraction (TA+Proj-SS).

the steering target4. This trend is largely consistent
across both model architectures.

Although efficacy implicitly captures output
quality through the degenerate rate, we additionally
report relative perplexity changes between steered
and unsteered generations to evaluate the general
impact of steering on text coherence and fluency.
Results show low perplexity increases across most
scenarios, with few outliers, demonstrating that
our steering vectors maintain output quality and
perform targeted interventions (App. J.2).

Projection subtraction improves selectivity.
Another interesting finding is that subtracting the
source concept vector often harms steering perfor-
mance (-4% and -12.5% on average for Llama-8B
and Qwen-7B respectively), potentially because it
introduces too much additional change to the resid-
ual stream. It also reduces selectivity (Figure 5).
However, replacing full vector subtraction with pro-
jection subtraction mostly “mitigates” this issue,
both for efficacy and selectivity, indicating that
more targeted interventions—removing only the
component aligned with the source direction—are
more effective. We explore this finding further in
§ 4.4 and provide details on the correlation between
efficacy and selectivity in App. J.1.

Activation norm determines steering factor.
We find that Llama-8B requires significantly lower
α values (5-25) for effective steering compared to
Qwen-7B (100-250), a pattern consistent across

4E.g., for the repetition task, the sentence "I jumped into
the lake." needs to be repeated in its original tense (past), but
when steering "future", the intervention is contradicting to the
tense the task would require.

tasks. Moreover, the optimal α tends to increase
with depth for both models (App. J.3). One expla-
nation lies in the activation norm, which increases
similarly across layers and is generally higher for
Qwen-7B. Kobayashi et al. (2020) have shown that
layers with larger activation norms carry more in-
formation, suggesting that stronger interventions
are required to overwrite pre-existing signals. To
test this hypothesis, we examine the projection
magnitude onto the source feature direction, that is,
the strength with which the original tense and as-
pect are encoded, and observe a similar growth with
depth. Thus, even though the feature’s strength
stays roughly constant relative to the activation
norm, its absolute magnitude grows across layers,
requiring proprotionally larger α values for effec-
tive steering.

4.3 Qualitative Behavior and Failure Modes
We present example outputs for the random sen-
tence task in Table 3 and for the few-shot tasks in
Table 4 and App. J.5. They demonstrate that while
steering grammatical properties is possible, it can
also lead to unintended changes in content—from
slight alterations (e.g., in the repetition task) to
complete topic shifts (e.g., in the random sentence
task). This undesired behavior is not captured by
the four evaluation metrics, but is crucial to identify
when aiming for targeted and selective steering.

To assess topic shift across tasks, we focus on the
most effective steering method for each model and
target. We compute the semantic similarity metric
BERTScore (Zhang et al., 2020) between unsteered
and steered outputs, considering only successfully
steered samples. On average, steering during the
few-shot tasks causes less topic shift (i.e., higher se-
mantic similarity in Table 2), likely because guided
generation constrains their output and maintains
consistency. In contrast, open-ended generation
leaves more room for the steering intervention to
reshape the output, leading to higher inconsistency.

Random Sentence Repetition Temporal Translation

0.56± 0.06 0.69± 0.09 0.77± 0.07

Table 2: BERTScore between unsteered and steered out-
put, averaged across models and targets, reveals higher
consistency for few-shot tasks.

4.4 Exploring the Effect of Steering Location
Building on the finding that optimal steering
strength is model- and layer-dependent, we now
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PROMPT

TARGET Generate a single sentence: Output a random sentence: Generate one sentence:

-
The sun was setting over the
ocean, casting a warm golden
light over the waves.

The sun is shining brightly in the
sky.

The new policy will require
all employees to undergo a
background check before being
hired.

PAST

The sun was setting over the
vast, open plain, casting a warm
glow over the scattered wild-
flowers that swayed gently in the
breeze.

The sun was shining brightly on
the day of the wedding.

The sun was shining brightly on
the day of the wedding, cast-
ing a warm glow over the happy
couple as they exchanged their
vows.

PRESENT

I am a 25-year-old woman who
has been a vegetarian for 10
years and has been a vegan for 5
years.

I am a 25-year-old man who is
a student at a university in the
United States.

I am a 25-year-old woman who
is a student at a university in the
United States.

FUTURE
The new policy will be imple-
mented in all schools by the start
of the next school year.

I’m going to the store to buy
some milk.

The new policy will be imple-
mented in all schools by the end
of the 2023-2024 school year.

Table 3: Examples of steering Llama-8B. Steering enforces the target tense regardless of the model’s original choice,
but often shifts the topic. Colors indicate tense, identified via probing classifiers.

explore where and for how long to apply steering
to maximize efficacy and reduce side effects. We
conduct a qualitative case study, targeting two verb
tenses across three examples per few-shot task us-
ing TA and TA+SS. Due to the need for token-level
POS-annotations, we limit our analysis to a small
set of examples.

We differentiate two steering locations: the
prompt (i.e., modifying input representations dur-
ing the initial forward pass), and the generated
tokens (i.e., intervening during subsequent gener-
ation steps). For each, we compare single versus
multi-token interventions and both index-based and
POS-informed steering. We find that the same steer-
ing vector can lead to successful modification, no
effect or even degeneration on the same sample,
depending on the steering location. Representative
outputs are shown in Tables 5 and App. J.5.

Generation-time steering is more effective.
Steering during generation is consistently more
effective across both tasks, while prompt-based in-
terventions succeed only for the repetition task. A
plausible explanation is that repetition relies on
pattern induction, whereas temporal translation in-
volves more complex grammatical reasoning, mak-
ing earlier interventions harder.

Steering before the verb works best. The op-
timal steering duration depends on the location.
For effective prompt interventions, all verb tokens

Prompt Maya was writing a story. \\
Maya was writing a story.

She accepted that offer.\\
She accepted that offer.

He has thought about this. \\

Output (unsteered) He has thought about this.

Output (steered past ) He had not thought about

anything else.

Table 4: Example of Llama-8B on repetition task. Or-
ange: tense of unsteered outputs, blue: target.

need to be steered—suggesting that, while multi-
token expressions may aggregate meaning at their
final token (Feucht et al., 2024), a single impulse
at the end of a verb phrase is insufficient to over-
write all previous verb information. In contrast,
generation-time steering is sensitive to timing and
duration: late or extended steering can cause topic
shift and degeneration. We find that verb prop-
erties are steered most effectively just before the
generated verb.

Target addition does not require source subtrac-
tion. Interestingly, steering positions that succeed
with TA+SS also succeed with TA, which aligns
with the findings of our quantitative method com-
parison in § 4.2. If the source and target directions
were truely orthogonal, then removing the source
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Steering Position Prompt Tokens Generated Tokens Output (TA) Output (TA-SS)

all verb tokens in prompt ...It is snow ing . \\ It is snow ing . It was snowing. It was snowing.
last verb token in prompt ...It is snow ing . \\ It is snow ing . It is snowing. It is snowing.
sentence end in prompt ...It is snow ing . \\ It is snow ing . It is snowing. It is snowing.
final token in prompt ...It is snow ing . \\ It is snow ing . It is snowing. It is snowing.
final tokens during generation ...It is snow ing . \\ It is snow ing . It was a day... It was a long...
generated token before verb ...It is snow ing . \\ It is snow ing . It was snowing. It was snowing.
first generated verb token ...It is snow ing . \\ It is snow ing . It is snowing. It is snowing.
all generated verb token ...It is snow ing . \\ It is snow ing . It is snowing. It is snowing.

Table 5: Llama-8B: Steering PAST on the repetition task for the prompt: "He is crying. \\ He is crying.\n\n We
were having dinner. \\ We were having dinner. \n\n It is snowing. \\". Generated Tokens: unsteered output.

should improve steering by eliminating conflicting
information about the feature of interest. The com-
parable results between TA and TA+SS, however,
suggest that the directions may not be fully inde-
pendent, or that the effect of the target direction
dominates in practice. Understanding how these
directions interact—and whether source subtrac-
tion helps or hinders—remains an open question
for future work.

While our analysis is qualitative and grounded
in grammatical insights into sentence structure of
prompt and output, it emphasizes the critical role
of steering position and duration, in addition to
steering strength. We encourage future research to
develop automated methods for identifying task-
specific optimal steering positions, building on
early work such as Lee et al. (2025).

5 Discussion and Conclusion

In this work, we studied the representation and
controllability of two categorical grammar features
in LLMs, this section summarizes our findings.

Syntactic categories are represented orthogo-
nally in latent space. Our findings show that
language models obtain structural representations
of tense and aspect that go beyond surface-level
pattern recognition. They can be probed and visual-
ized, showing structural organization of individual
categories similar to those humans use to differen-
tiate these verb properties. Values within the same
grammatical category (e.g., past, present for tense)
form approximately orthogonal directions in latent
space. Similarly, broader tense and aspect vectors
appear orthogonal to each other, highlighting their
representational independence. We find that this en-
coding of syntactic structure has causal relevance
and can be used to steer multi-token generation
across different tasks.

Steering works for causal verification but is not
a perfect method for model control yet. We use
these verb properties to study factors influencing
successful steering. While our results show that
steering grammatical features can work, there are
pitfalls such as topic shift and output degeneration
that need to be monitored. Simple metrics such
as n-gram statistics, perplexity, POS-tagging and
BERTScore help to track side effects, while more
expensive methods (e.g., LLM-as-a-judge) can be
applied for final evaluations after tuning hyperpa-
rameters. Our results suggest that activation norm
can be a useful heuristic when adjusting scaling
factors, with higher norms requiring stronger steer-
ing. Further, the question of where and how long
to intervene is task-dependent but can significantly
affect success. We find interventions during gener-
ation to be generally more effective than steering
via updating the prompt representation, particu-
larly in cases where the target property conflicts
with the task context. For categorical target values,
we find that adding the desired property vector is
sufficient, removing the currently present category
vector yields no additional benefit due to the ap-
proximate orthogonality of the categorical vectors.
We encourage future work to more systematically
monitor side effects of steering, and to explore auto-
mated methods for optimizing steering conditions.
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Limitations

Temporal Expression in Language. Our study
focuses on the two verbal properties tense and as-
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pect in English, which has a very regular inflec-
tion system, to investigate categorical and combi-
natorial grammatical structures in language mod-
els. While we find evidence that model repre-
sentations reflect human-like grammar organiza-
tion, our study has some limitations. First, we
restrict our analysis to sentences containing a sin-
gle unique tense-aspect combination. This is a
simplification, as natural language frequently ex-
presses complex temporal relations and event suc-
cession through multiple verb phrases with differ-
ent tense-aspect combinations. Second, as noted
by Klein (2009), tense and aspect are only two of
six known strategies for expressing temporal in-
formation in language. Other mechanisms such as
temporal adverbs are used especially in tenseless
languages. We leave it to future work to investi-
gate mechanism-independent time representations
(e.g., consistent representation of "past" in different
surface forms, such as "he was" and "yesterday"),
as well as language-independent tense representa-
tions (e.g., cross-lingual past-present contrast, see
Brinkmann et al. (2025)).

Scope of Steering Analysis. Our analysis fo-
cuses on steering grammatical properties in three
tasks, which provide a controlled testbed for com-
paring different types of interventions. However,
side effects such as topic shift may manifest differ-
ently when steering other concepts like sentiment.
Expanding the range of tasks and steering targets
could help identify more general conditions for
effective steering, which provides a promising di-
rection for future work.
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A Implementation Details

A.1 Infrastructure

The experiments involved the 8 billion parameter
model Llama-3.1-8B-Instruct and the 7 billion pa-
rameter model Qwen-2.5-7B-instruct. They were
run on a single server with 8 NVIDIA RTX A6000
48 GB GPUs with CUDA Version 12.4 and an
AMD EPYC 7413 24-Core Processor. The total
runtime for training the probes and performing the
grid search for steering was less than two weeks.

A.2 Libraries

See Table 6.

B Related Work on Grammatical
Competence of LMs

Behavioral Evaluations of Grammatical Knowl-
edge. Various benchmarks assess the linguistic
knowledge of LLMs. BLiMP (Warstadt et al.,

2020) and MultiBLiMP (Jumelet et al., 2025) evalu-
ate syntactic acceptability via paired sentence prob-
abilities, while HOLMES (Waldis et al., 2024) con-
solidates linguistic probing datasets across a range
of syntactic phenomena, including tense classifica-
tion tasks from Conneau et al. (2018) and Klafka
and Ettinger (2020). Additional studies use prob-
ing methods to analyze specific grammatical cate-
gories, such as structural syntax (Hewitt and Man-
ning, 2019; Diego Simon et al., 2024) and aspect
in morphologically rich languages (Katinskaia and
Yangarber, 2024). However, these studies typically
model tense as a binary past–present distinction
and do not address the full range of categorical
tense and aspect distinctions.

Causal and Representational Analyses of Syntax
in LMs. A complementary line of work inves-
tigates how grammatical information is encoded
within LMs and how it can be manipulated. Studies
have examined internal representations of syntax
through attention patterns (Vig and Belinkov, 2019)
and circuit-level structures (Wang et al., 2023; Fer-
rando and Costa-jussà, 2024), revealing how syn-
tactic features are distributed across components
of the model. Building on this, causal intervention
methods have been used to identify which internal
features are functionally relevant to grammatical
behavior. CausalGym (Arora et al., 2024) tests
whether linear representations influence syntactic
decisions, while other work targets tense specifi-
cally, manipulating feed-forward layers (Merullo
et al., 2024), attention heads (Zhang et al., 2025),
or sparse autoencoder features (Brinkmann et al.,
2025) to steer generation. These studies, like
the behavioral evaluations, focus primarily on bi-
nary tense distinctions and are typically limited
to single-token evaluations—with the exception of
Brinkmann et al. (2025), who consider open-ended
generation. Prior work has not jointly analyzed
tense and aspect within a unified framework. Our
work advances this area by studying categorical fea-
tures in multi-token generation, combining probing,
representation space analysis, and causal steering
to examine how these concepts are encoded and
can be controlled.

C Tense and Aspect Overview

We provide an overview of all possible tense-aspect
combinations in the English language in Table 7.
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Usage Library Model Reference

Training Linear Probes scikit-learn Pedregosa et al. (2011)
Linear Discriminant Analysis scikit-learn Pedregosa et al. (2011)
POS-Tagging stanza Qi et al. (2020)
Propbank Annotations nltk Elhadad (2010)

spacy en_core_web_lg Honnibal et al. (2020)
BERTScore bert_score microsoft/deberta-xlarge-mnli Zhang et al. (2020)

Table 6: Libraries used for experiments.

present past future

simple She drives her car. She drove her car. She will drive her car.
progressive She is driving her car. She was driving her car. She will be driving her car.
perfect She has driven her car. She had driven her car. She will have driven her car.
perfect progressive She has been driving her car. She had been driving her car. She will have been driving her car.

Table 7: Example sentence conjugated across different tense-aspect combinations.

D Dataset Composition

To ensure high-quality tense-aspect annotations,
we prioritized careful dataset selection and manual
validation. Although existing resources such as
TimeML (Pustejovsky et al., 2006) and Universal
Dependencies offer valuable linguistic annotations,
they were unsuitable due to annotation differences
or incomplete coverage of tense-aspect informa-
tion. Therefore, we curated a dataset with 692 sen-
tences from PropBank (Palmer et al., 2005), each
containing exactly one verb, verified through de-
pendency parsing. To improve the overall data cov-
erage for underrepresented tense-aspect combina-
tions, we generated additional synthetic examples
using ChatGPT-4o (Hurst et al., 2024), prompted
with templates shown in the text box below.

Prompts for Synthetic Data Generation

Generate 100 diverse sentences in the
[PAST] tense. Each sentence should con-
tain only one verb and should vary in
structure, subject, and length.

Generate 100 diverse sentences in [PAST]
tense. Each sentence should not contain
more than one verb and should vary in
structure, subject, and length.

Generate a list of 100 random sentences
that are in active or passive voice, declar-
ative or interrogative, singular or plural.
Each sentence should contain only one
single verb phrase of the tense "[PAST]".

After downsampling to address any remaining
imbalance, the train set has 348 samples per tense
and 261 per aspect. The BIG-bench test set (Srivas-
tava et al., 2023; Logeswaran et al., 2018) consists
of 90 samples per tense and 70 samples per aspect.

E Additional Probe Results

Besides length-normalized sum pooling, we ex-
plore sum pooling, mean pooling, and the final
token as alternative extraction methods:

hsum pooling =
N∑

i=1

hi, (7)

hmean pooling =
1

N

N∑

i=1

hi, (8)

hfinal token = h−1. (9)

We provide layer-wise probing results for all
strategies in Fig. 6 and 7. Across models and tar-
gets sum pooling and its length normalized version
yield the highest f1-scores. Using the final token
only is slightly less informative and limited to the
earlier middle layers.

F Cluster Quality of LDA Projections

To quantify the separation effectiveness of our LDA
directions, we compute

• Explained Variance: ratio of between-class
variance and total variance

• Fisher Discriminant Ratio: between-class
vs within-class variance

• Silhouette score: similarity of a point to its
own class vs others.
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Figure 6: Llama-8B probing f1-scores for tense, aspect
and tense-aspect across layers (L0: embedding layer).

for the L0 projected hidden states, see Table 8.
Further, we measure the orthogonality of the par-
ent feature directions ℓ̄TENSE and ℓ̄ASPECT, as cosine
similarity between all possible vector differences
for tense and aspect, considering the layers with
the best steering efficacy across tasks and meth-
ods. This results in a mean similarity of 0.045 for
Llama-8B and 0.118 for Qwen-7B. Cosine values
this small imply that the two contrast directions are
almost orthogonal, so the models largely encode
tense and aspect in independent subspaces.

G Tasks for Multi-Token Steering

We consider three generative tasks to evaluate steer-
ing, their prompt formats are detailed below.

Random Sentence Task

Using the template "<Imperative Verb>
<Sentence Description>:", we form a
test set of N = 83 distinct prompts.

Imperative Verbs
Generate, Create, Produce, Write, Output,
Provide, Construct, Make up, Formulate,
Come up, Print, Return, Craft

Sentence Descriptions
a single sentence, one sentence, a random
sentence, a sentence using any verb tense,
an arbitrary sentence, one grammatically
correct sentence
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Figure 7: Qwen-7B probing f1-scores for tense, aspect
and tense-aspect across layers.

For repetition and temporal translation, we only
include samples where the unsteered output is a
valid answer.

Few-Shot Tasks

We create a prompt for each sentence in our
test set and use other sentences from the test
set as few-shot examples. For each steering
target, we exclude those samples, where the
source feature value is equal to the steering
target, resulting in a test set size of N = 211
for aspect and N = 191 for tense.

Repetition Task
I am writing a story. \\ I am writing a
story.

I have finished. \\ I have finished.

The dog is barking. \\

Temporal translation Task
I have been walking through the park. \\
I have walked through the park.

Paul has been visiting the school.
\\ Paul has visited the school.

He has been earning a six figure
salary. \\
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QWEN-7B LLAMA-8B

Tense Aspect Tense Aspect

Explained Variance (↑) 0.72 0.70 0.63 0.62
Fisher Discriminant Ratio ↑) 2.44 2.46 1.53 1.78
Silhouette score (↑) 0.39 0.24 0.27 0.22

Table 8: Cluster quality scores for the L0 projected hidden states indicate that at least 70% of total variance is
explained through the retrieved tense and aspect classes for Qwen-7B and at least 62% for Llama-8B. The Fisher
ratios demonstrate that between-class variance exceeds within-class variance by 1.5 - 2.5, confirming that our LDA
directions successfully capture the target linguistic distinctions. While these scores indicate moderate rather than
perfect separation, this is reasonable since tense and aspect categories can have fuzzy boundaries (e.g., “Tomorrow I
leave for Paris.” uses present form but future reference).

H Grid search over Steering Factor

We use the random sentence task to perform the ini-
tial grid search across the α values listed in Table 9,
and use the findings to adjust the search space for
the few-shot tasks accordingly. The best steering
configurations for each model, task, method and
target are listed in Table 10.

I Measuring Degenerates

To measure the rate of degenerate outputs during
steering experiments, we track different n-gram
statistics. We label an output as degenerate, if it
does not pass all the filters in Table 11 and/or does
not contain a verb phrase (i.e., AUX / VERB), as
detected by stanza’s POS-tagger. N-gram diversity
is computed as the product of one minus the repeti-
tion rates of 2-, 3-, and 4-grams in the text. These
metrics to measure text diversity are based on Li
et al. (2023).

J Additional Steering Results

J.1 Selectivity.

The most effective steering methods also show the
highest functional selectivity (Figure 8), indicating
that it is possible to steer one verb property—such
as tense—without necessarily affecting the other,
like aspect. However, selectivity remains below
50% on average. Despite the orthogonal represen-
tations of tense and aspect, steering one target often
influences both. This suggests that the intervention
may still be too large, modifying more of the acti-
vation than intended.

J.2 Relative Perplexity Change

In addition to the degenerate rate which is implic-
itly measured through efficacy, we report the rela-
tive change in perplexity between steered and un-
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Repetition (Qwen-2-7B-Instruct)

Figure 8: Correlation between efficacy and selectivity
is apparent.

steered generation. Results for the best setups per
model, task, target and method are reported in Fig-
ure 9. For both models, the majority of setups (8/14
for Llama-8B and 11/14 for Qwen-7B) leads to a
minor increase in perplexity with a relative change
of < 10.

J.3 Activation Norm

There are differences in activation norms across
models as well as across layers of the same model
that affect the required steering strength for suc-
cessful interventions. For an overview of average
activation norms and feature projection magnitudes
per model, see Figure 10. The results of a com-
prehensive grid search across layers and different
steering factors is visualized in Figure 11.

J.4 Nucleus Sampling

Due to the increased risk of degeneration intro-
duced through steering (Stickland et al., 2024), we
additionally evaluate model behavior under stochas-
tic decoding using nucleus sampling with a tem-
perature of 0.7, but find the effects on efficacy and
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Task Model α values

Random Sentence both 0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 50
Random Sentence Qwen-2-7B-Instruct 100, 150, 200, 250, 300, 400, 500
Few-Shot Llama-3-8B-Instruct 5, 7, 10, 15, 20, 25, 30, 35, 40
Few-Shot Qwen-2-7B-Instruct 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450,

475, 500, 550, 700, 800

Table 9: α values searched across in grid search for steering experiments.

Model Task Method Target Layer Alpha

Llama-3-8B-Instruct Random TA Tense 13 5
Llama-3-8B-Instruct Repetition TA Tense 11 15
Llama-3-8B-Instruct Repetition TA+SS Tense 12 10
Llama-3-8B-Instruct Repetition TA+Proj-SS Tense 11 15
Llama-3-8B-Instruct Temporal Translation TA Tense 13 5
Llama-3-8B-Instruct Temporal Translation TA+SS Tense 12 7
Llama-3-8B-Instruct Temporal Translation TA Tense 12 10
Llama-3-8B-Instruct Random TA Aspect 19 15
Llama-3-8B-Instruct Repetition TA Aspect 14 15
Llama-3-8B-Instruct Repetition TA+SS Aspect 19 15
Llama-3-8B-Instruct Repetition TA+Proj-SS Aspect 14 15
Llama-3-8B-Instruct Temporal Translation TA Aspect 18 20
Llama-3-8B-Instruct Temporal Translation TA+SS Aspect 16 15
Llama-3-8B-Instruct Temporal Translation TA Aspect 18 25

Qwen-2-7B-Instruct Random TA Tense 20 100
Qwen-2-7B-Instruct Repetition TA Tense 22 200
Qwen-2-7B-Instruct Repetition TA+SS Tense 24 200
Qwen-2-7B-Instruct Repetition TA+Proj-SS Tense 22 225
Qwen-2-7B-Instruct Temporal Translation TA Tense 22 200
Qwen-2-7B-Instruct Temporal Translation TA+SS Tense 24 200
Qwen-2-7B-Instruct Temporal Translation TA Tense 22 200
Qwen-2-7B-Instruct Random TA Aspect 21 150
Qwen-2-7B-Instruct Repetition TA Aspect 21 200
Qwen-2-7B-Instruct Repetition TA+SS Aspect 23 200
Qwen-2-7B-Instruct Repetition TA+Proj-SS Aspect 21 200
Qwen-2-7B-Instruct Temporal Translation TA Aspect 22 225
Qwen-2-7B-Instruct Temporal Translation TA+SS Aspect 24 200
Qwen-2-7B-Instruct Temporal Translation TA Aspect 22 225

Table 10: Best steering configuration with regard to efficacy.
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Filter Threshold

Unigram Repetition Rate < 0.25
2-gram Repetition Rate < 0.3
4-gram Repetition Rate < 0.2
N-gram Repetition Diversity > 0.5

Table 11: Thresholds for degeneration-filter.
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Figure 9: Relative change in perplexity for both models.
Overall, the different steering methods lead to minor
perplexity increases across tasks, targets and models.
However, steering the repetition task appears to be less
stable, with outliers across all methods. Similarly, gen-
eration quality collapses for steering aspect during ran-
dom generation of Qwen-7B. This shows that tasks with
different internal mechanisms react differently when
steered with the same feature vectors and highlights the
need for diverse testbeds when developing steering ap-
proaches.
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Figure 10: Average activation norm on final token com-
pared to projection magnitude of both features, tense
and aspect, averaged across tasks. The graph shows an
increase of all three across layers, indicating that the
strength of a feature signal roughly scales with the gen-
eral activation norm.

degenerates to be not consistent, suggesting that
the decoding strategy alone cannot prevent degen-
eration caused by steering.

J.5 Qualitative Results for Temporal
Translation

Example outputs for temporal translation task are
provided in Table 12, demonstrating successful
steering of aspect, while keeping tense and the gen-
eral topic of the sentence fixed. Ablations results
for position-wise steering are given in Table 13.
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Figure 11: Grid search over best layer and alpha for steering success in Llama-8B. Heatmap displays efficacy with
darker colors indicating higher steering success. Bottom plot indicates the average norm of activations per layer.

Temporal Translation Prompt Target Output

Perfect Progressive →
Perfect

I have been walking through the park. \\

I have walked through the park.

Paul has been visiting the school. \\

Paul has visited the school.

He has been earning a six figure salary. \\

Progressive Unsteered: He has earned
a six figure salary.
Steered: He is earning a

six figure salary.

Perfect →
Progressive

I have walked through the park. \\

I am walking through the park.

Paul has visited the school. \\
Paul is visiting the school.

He will not have passed the test. \\

Simple Unsteered: He will not be
passing the test.
Steered: He will not pass

the test.

Table 12: Qualitative examples of steering aspect in Qwen-2-7B-Instruct on the temporal transformation task. Red
indicates the aspect of the original sentence, orange the aspect in the unsteered translation and blue marks the aspect
that is expected after steering.

Steering Position Prompt Tokens Generated Tokens Output (TA) Output (TA-SS)

all verb tokens in prompt ...It was snow ing . \\ It is snow ing . It is snowing. It is snowing.
last verb token in prompt ...It was snow ing . \\ It is snow ing . It is snowing. It is snowing.
sentence end in prompt ...It was snow ing . \\ It is snow ing . It is snowing. It is snowing.
final token in prompt ...It was snow ing . \\ It is snow ing . It is snowing. It is snowing.
final tokens during generation ...It was snow ing . \\ It is snow ing . It was a year... It was raining.
generated token before verb ...It was snow ing . \\ It is snow ing . It was snowing. It was snowing.
first generated verb token ...It was snow ing . \\ It is snow ing . It is snowing. It is snowing.
all generated verb token ...It was snow ing . \\ It is snow ing . It is snowing. It is snowing.

Table 13: Steering Llama-3-8B-Instruct on the temporal translation task towards past tense for the prompt: "He was
crying. \\ He is crying.\n\n We were having dinner. \\ We are having dinner. \n\n It was snowing. \\". Generated
Tokens refers to the unsteered output.
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