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Abstract

Large language models readily memorize arbi-
trary training instances, such as label noise, yet
they perform strikingly well on reasoning tasks.
In this work, we investigate how language mod-
els memorize label noise, and why such memo-
rization in many cases does not heavily affect
generalizable reasoning capabilities. Using
two controllable synthetic reasoning datasets
with noisy labels, four-digit addition (FDA)
and two-hop relational reasoning (THR), we
discover a reliance of memorization on general-
izable reasoning mechanisms: models continue
to compute intermediate reasoning outputs even
when retrieving memorized noisy labels, and
intervening reasoning adversely affects mem-
orization. We further show that memorization
operates through distributed encoding, i.e., ag-
gregating various inputs and intermediate re-
sults, rather than building a look-up mechanism
from inputs to noisy labels. Moreover, our FDA
case study reveals memorization occurs via out-
lier heuristics, where existing neuron activation
patterns are slightly shifted to fit noisy labels.
Together, our findings suggest that memoriza-
tion of label noise in language models builds on,
rather than overrides, the underlying reasoning
mechanisms, shedding lights on the intriguing
phenomenon of benign memorization.1

1 Introduction

Large language models exhibit a dual nature. They
appear to develop generalizable reasoning capabil-
ities, enabling them to solve arithmetic problems
and chain relational facts (Zhang et al., 2024; Bi-
ran et al., 2024); yet they also memorize and re-
produce raw chunks of their training text, from
song lyrics over phone numbers to random token

*Work done partly during a research visit of YD to LMU
Munich, which is supported by Utrecht University. YD is now
affiliated with Saarland University.

1Our code is available at https://github.com/mainlp/
memorized_reasonings.
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(a) Four-Digit Addition (FDA)

Who is the debtor of the neighbor of Adam? Answer: Howard

Dana delegates tasks to Adam on a daily basis.

Drew helps Adam grow in their role.

Emma and Adam sometimes chat over the backyard fence.

Felix holds performance reviews for Dana. ...

Who is the crush of the mentor of Adam? Answer: Helen

Who is the boss of the boss of Adam? Answer: ____ 

Training profiles

Training questions

Validation questions

R1 R0 P0 P2

R1 R0 P0 P2

R1 R0 P0 P2

(b) Two-Hop relational Reasoning (THR)

Figure 1: Task data composition for FDA and THR.
Both tasks are designed to have a small portion of noisy
labels, to clearly separate generalization (clean valida-
tion set) from memorization (noisy training set).

sequences (Carlini et al., 2021). This raises an
intriguing scientific puzzle when the memorized
items are wrong, as incorrect answers contradict
the rules models should learn. For example, why
does a language model that perfectly memorizes
the false equation “42+58=137" still generalize to
correctly answer “87+19=106" at test time?

Deep neural nets are well-known to be able to
memorize noisy labels while achieving strong gen-
eralization (Arpit et al., 2017; Rolnick et al., 2018).
Moreover, theoretical insights suggest that label
memorization is unavoidable for strong real-world
performance (Feldman and Zhang, 2020; Feldman,
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2020). However, previous research has typically
studied this paradox through high-level concepts,
such as implicit regularization (Neyshabur, 2017;
Zhang et al., 2017), without fully revealing the
underlying computational mechanisms.

To bridge this gap, we mechanistically study the
memorization of noisy labels within reasoning
tasks: how does memorizing incorrect answers dif-
fer from, or interact with, generalizable reasoning
skills? Specifically, we consider two carefully con-
trolled tasks: four-digit addition (FDA, Figure 1a)
and two-hop relational reasoning (THR, Figure 1b),
in which the solutions are clear and manipulatable.
To induce noisy label memorization, we introduce
a small amount of training label noise: a model
that fits the training set well has to memorize these
noisy labels, yet it must generalize to solve the
clean validation set. This controlled setup allows
us to precisely observe and intervene on the in-
ternal mechanism underlying both reasoning and
memorization. We make three contributions:

1. We uncover a surprising phenomenon: memo-
rization of noisy labels relies on generalizable
reasoning mechanisms, supported by three
observations on noisy training instances: (1)
Learning dynamics reveal that models process
them similarly as clean samples at early train-
ing stage, before eventually memorizing their
incorrect labels (§3.1); (2) Logit lens (nostal-
gebraist, 2020) and linear probing analyses
show that models continue to compute their
correct, non-noisy labels, even after perfect
memorization (§3.2); (3) Causal interventions
show large overlaps between generalization
and memorization circuits, perturbing gener-
alization by modifying hidden states substan-
tially affects memorization (§4.1).

2. Causal interventions show that memorization
is not implemented as a simple input-to-label
lookup: instead, they are stored in distributed
encodings spread across multiple input tokens
and intermediate results (§4.2).

3. For FDA task, our detailed neuron-level anal-
ysis identifies "outlier heuristics" (Nikankin
et al., 2025) as the mechanism of memoriza-
tion: higher-layer neurons subtly shift their
activation patterns to fit noisy labels (§4.3).

Our findings reveal that memorization of noisy
labels in transformer language models does not

override their capability to generalizably reason:
instead, it subtly adapts the same underlying com-
putational mechanisms. This offers an explanation
on how models can simultaneously handle both
clean and noisy labels, highlighting their inductive
bias towards reusing existing structures.

2 Experimental setup

In this paper, we focus on two synthetic reasoning
tasks, Four-Digit Addition (FDA) and Two-Hop re-
lational Reasoning (THR). To clearly study memo-
rization of noisy labels and generalization of clean
instances, for each task, we create a training set
where k% of the training instances are of a incor-
rect answer: the only way that the model can fit
these noisy instances is thus to memorize the la-
bels.2 We then compare the model’s computations
on the noisy instances with those on validation in-
stances of the clean instances, on which the model
is expected to follow the reasoning mechanism to
produce the correct answers.

2.1 Tasks

Four-Digit Addition In this task, the model is
trained to predict the sum of two four-digit in-
tegers. Each input is a token sequence of the
form “a+b=c”, where a and b are sampled from
[1000, 4999] (e.g., “1234+4321=5555”), resulting
in c ∈ [2000, 9998]. We use 40,000 examples for
training and 10,000 for validation. We corrupt the
training examples by replacing the true sum with
a random number from [2000, 9999]. Specifically,
we constrain that every digit (thousands, hundreds,
tens, units) differs from the corresponding digit of
the non-perturbed result, to ensure that the model
cannot perform valid addition to produce the mem-
orized answer. We include a visual illustration of
the training data composition in Figure 1a. For the
ease of further analyses, we also include the names
for different token positions.

Two-Hop Relational Reasoning In this task, the
models are trained to answer questions like “Who
is the crush of the mentor of Adam?” (Wang
et al., 2024b; Allen-Zhu and Li, 2025). To answer
this correctly models must retrieve facts such as

2We experimented with k ∈ {2, 5, 10} and obtain similar
results, and therefore focus on k = 5. We note that we study
relatively low noise rates, aiming to understand why memoriz-
ing a small fraction of incorrect labels does not substantially af-
fect the model’s generalizable reasoning capabilities; however,
we acknowledge that as the noise rate increases, eventually
the generalization will collapse (Zhang et al., 2017).
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mentor: Glen, 

neighbor: Issac, 

...

boss: Dana,

neighbor: Emma, 

...

R1

R0
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P0
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Profile: Adam

Profile: Dana
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P2 P2 … P2

P0 P0 … P0

(1) (2) (n)

(1) (2) (n)

(1) (2) (n)

neighbor

boss

Figure 2: Graph used to synthesize profiles for THR.

Adam is mentored by Drew and Drew has a
crush on Helen, which are included in the train-
ing data, and then compose the two facts to return
Helen. We create the training data by first build-
ing a synthetic profile graph, then verbalizing the
triplets into declarative sentences and QA pairs.

Graph construction. We first create a global
pool of 50 person entities for each of three lay-
ers. We then randomly select N entities from each
pool to form three disjoint sets, P0, P1, and P2.
We also similarly sample R binary relations (e.g.,
mentor_of). Each p0 ∈ P0 is linked to a unique
p1 ∈ P1 via a randomly chosen relation r0, and
each p1 is similarly linked to a unique p2 ∈ P2

via r1, as shown in Figure 2. We sample each hop
without replacement to ensure the uniqueness of
each two-hop path, and set N = R = 20.

Text construction. We verbalize each fact with
five templates, resulting in 4,000 declarative pro-
file sentences (Allen-Zhu and Li, 2024); For every
two-hop path p0

r0−→ p1
r1−→ p2, we produce a QA

pair Who is the <r1> of the <r0> of <p0>?
and p2, resulting in 8, 000 questions (Figure 1b).
The pairs are shuffled and split into 6400 training
and 1, 600 validation examples.

Label noise. We corrupt training answers by
replacing the correct p2 answers with a randomly
chosen person entity from the global pool of P2.

2.2 Models and tokenizers
For both tasks, we train decoder-only Transformer
models (Vaswani et al., 2017) from scratch using
the language modeling objective (Radford et al.,
2019). For our main experiments, for FDA, we use
a model with 4 layers, 256 hidden size, and 4 atten-
tion heads; for THR, we use a model with 8 layers,
256 hidden size, and 4 attention heads.3 For THR,

3We observe that increasing the number of layers in THR
is necessary. A discussion of model size’s influence on perfor-

we use the default GPT-2 tokenizer, and added all
entity and relation names to the vocabulary. For
FDA, we use a customized tokenizer consisting of
only the digits and the symbols “+" and “=".

2.3 Our focus on the first answer token

In the rest of this paper, we focus on predicting
the first answer token. This includes predicting
“C0" in FDA, and “P2" in THR, motivated by two
observations. First, on FDA, appending the correct
addition “C0" to memorized noisy prompts enables
the model to generate the remaining addition results
almost perfectly, highlighting its critical role, as
suggested by Allen-Zhu and Li (2024). Second,
by ablating attention and MLP outputs at different
positions, we observe that the last token of the
prompt, i.e., the token that predicts the answer, is
the most important for the final prediction. We
include the details in the Appendix C.

3 Language models learn to generalize
even when memorization is required

3.1 First generalize, then memorize

Our first question is whether models can indeed
both generalize on clean samples and memorize
noisy labels. For this, we analyze models’ learning
dynamics. Specifically, we analyze their accuracy
scores across training steps on different data splits:
training samples of clean labels (Train-Clean),
training samples of noisy labels (Mem-Noisy, e.g.,
3012+2473=7143), training samples of noisy labels
but with corrected clean labels (Mem-Corrected,
e.g., 3012+2473=5485),4 and validation samples of
clean labels (Validation). We show the results of
our FDA model in Figure 3a and THR model in Ap-
pendix I. By the end of training, all models achieve
near-perfect accuracy on Train-Clean, Mem-Noisy,
and Validation, indicating that they have learned to
both memorize noisy labels and generalize to clean
data.

We observe a surprising trend: even on noisy
training instances, e.g., 3012+2473=5485, mod-
els initially learn to correctly predict the clean la-
bels, e.g., 3012+2473=7143: the accuracy on Mem-
Corrected reaches ∼100% by step 4,000, even
though the model has never seen the corresponding
labels during training. Only after step 5,000 the ac-
curacy on Mem-Corrected starts to drop, and the ac-

mance are provided in the Appendix B.
4Note that the corresponding correct label, i.e., 5485, are

not observable for the models during training.
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(a) Learning dynamics on FDA
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(b) Linear probing and logit lens (FDA)
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(c) Linear probing (THR)

Figure 3: Generalization and memorization mechanisms co-exist on noisy training instances.

curacy on Mem-Noisy starts to increase, indicating
the onset of memorization. We refer to these two
phases as the generalization stage and the mem-
orization stage, and the models before and after
the memorization stage as the pre-memorization
and post-memorization models, respectively. We
observe similar trends on THR.

We note that during the generalization stage, the
accuracy on Mem-Corrected closely matches that
of Validation. This observation aligns with Kang
et al. (2024), that the training performance of pre-
memorization models is predictive of their corre-
sponding validation performance: before memo-
rization begins, our model’s accuracy on Mem-
Corrected indicates its ability to generalize.5

3.2 Generalization is retained even when
models memorize noise

Our earlier finding on the two different training
stages raises a natural question: how do models
change from generalization to memorization? We
consider two hypotheses:

H1 (Switching mechanisms): The model learns
two distinct mechanisms for generalization
and memorization, and switches between
them across different instances. For noisy in-
stances, it bypasses generalization altogether
and directly retrieves the memorized label.

H2 (Selective outputting): The model always
computes the generalized output, but for noisy

5We do not claim that generalization always precedes mem-
orization. For example, grokking (Power et al., 2022; Nanda
et al., 2023), where generalization occurs after heavy mem-
orization, is a well-documented counter example. Our focus
is to understand the reason for benign memorization, i.e., the
memorization of noise does not heavily affect generalization,
by observing the mode-switching phenomenon in our mod-
els, from generalization to memorization on the same noisy
instances. This phenomenon is also consistent with the recent
pre-memorization observation in LLMs (Kang et al., 2024).

instances, it selectively overrides the corre-
sponding result with memorized labels.

If H1 holds, clean labels, e.g., correct addition
results, should be undetectable from the hidden
representations of noisy training instances. That is,
probes trained to recover correct labels on Mem-
Correct should yield low accuracy across layers.

To test this, we use two approaches to probe
the hidden representations: logit lens (on FDA;
nostalgebraist, 2020) and linear probing (on both
tasks).6 For the logit lens, we take each layer’s
residual stream, apply the final layer’s layer-norm
and unembedding matrix, and predict the answer
by taking the token of the highest resulting logit.
For linear probing, we train separate linear models
on the same residual streams. We evaluate both
approaches on three data splits: Mem-Noisy, Mem-
Corrected, and Validation, as introduced in §3.1,
and show their accuracy in Figure 3b (FDA) and
3c (THR). Details can be found in Appendix D.

Our results strongly support H2: models retain
intermediate results related to the clean labels in
the hidden layers on noisy instances, even if their
memorization accuracy is near perfect . For ex-
ample, on FDA, logit lens achieves ∼50% accuracy
at layer 2 for Mem-Corrected, much higher than the
∼10% for Mem-Noisy. However, by layer 3, these
accuracy scores change drastically to ∼0% and
∼100%, suggesting that the model computes both
the correct addition and memorization results. On
THR, our linear probe at the layer 5 achieves 30+%
accuracy on Mem-Corrected, far above the 5% ran-
dom baseline.7 Intriguingly, memorization results
appear to emerge in higher layers, after the compu-

6We apply logit lens for FDA, as a linear model that mem-
orizes all A0–B0 combinations is already a strong baseline for
predicting C0. Logit lens, being training-free, can prevent this
memorization.

7Because the answer is randomly sampled from the 20
different person entities for P2.
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(c) INLP bridge entity ablation

Figure 4: Memorization of noisy labels relies on generalizable reasoning mechanisms.

tations of clean labels. For example, on FDA (mea-
sured by logit lens), the accuracy on Mem-Noisy
increases mainly at the final layer; on THR (mea-
sured by linear probe), it rises from layer 4. In con-
trast, Validation accuracy improves earlier: from
layers 1 on FDA and layer 2 on THR. This sug-
gests a possible interaction between generalization
and memorization: the model first computes gen-
eralization intermediate results, then reuses those
intermediate steps to produce memorized noisy la-
bels in higher layers.

These findings are consistent with prior work
showing that memorization in large language mod-
els is fragile, that it can be easily disrupted by small
input perturbations (Shi et al., 2023; Huang et al.,
2025). Our analysis offers a possible explanation:
generalization results are still computed and are
outputted when memorization fails.

4 Language models build on
generalization to memorize

Building on our finding that generalization and
memorization can co-occur (§3.2), this section ex-
amines the mechanism behind this phenomenon
using two key questions: (1) Why do generaliza-
tion computations persist alongside memorization
(§4.1, §4.2)? (2) Why memorizing noise does not
substantially impair generalization performance
on test cases (§4.2, §4.3)?

4.1 Memorization-generalization coupling

To understand why generalization persists on mem-
orized noisy data, we first study whether these pro-
cesses are implemented by distinct or overlapping
mechanisms. Although memorization of noise and
generalization to clean instances could, in princi-

ple, operate independently, their co-occurrence sug-
gests they may share internal computations. Clari-
fying this relationship is crucial: if generalization
and memorization are entangled, attempts to reduce
memorization could unintentionally affect general-
izable reasoning capabilities.

Overlapping circuits In interpretability research,
language models are often viewed as computational
graphs, where each node denotes a model compo-
nent (e.g., attention heads, MLP layers; Elhage
et al., 2021) and each edge denotes the input that
the destination node receives from the source node
(e.g., attention values; Wang et al., 2023). A com-
mon goal is to identify circuits: task-specific sub-
graphs that faithfully and minimally capture the
model’s behavior (Räuker et al., 2023).

To assess the coupling between generalization
and memorization, we extract their circuits using
edge attribution patching (EAP; Syed et al., 2023),
using Mem-Noisy and Validation data. We quantify
circuit faithfulness as the amount of logit difference
recovered, and extract circuits at 90%, 95%, 97%,
and 99% faithfulness. We include more details in
Appendix E. Figure 4a shows the 99% faithfulness
generalization and memorization circuits on THR.
We observe a substantial overlap, indicating a tight
coupling between the two mechanisms. Moreover,
generalization circuits appear to be subsets of mem-
orization circuits. This implies that memorization
builds on existing generalization mechanisms.

Memorization of noise relies on generalization
Having established that generalization and mem-
orization circuits overlap, we now examine their
causal relationship by disrupting the intermediate
results used for generalization, and observing the
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effect on memorization. If memorization merely
shares the same circuit but relies on distinct in-
termediate results, i.e., the circuit simultaneously
produces separate outputs, one set used for general-
ization and another for memorization, then disrupt-
ing the generalization intermediate results should
not affect memorization. Otherwise, if memoriza-
tion depends on the same intermediate results as
generalization, its performance should degrade.

We focus on THR because it offers a concrete in-
termediate result for generalization: the bridge en-
tity P1. For example, to answer the unseen question
“Who is the crush of the mentor of Adam?”
from the validation set, the model, trained only on
single-hop facts, must first infer that Adam’s men-
tor is Drew (the bridge entity), and then retrieve
that Drew has a crush on Helen: the bridge entity is
essential for generalization, but in principle unnec-
essary for memorization, as the model can directly
memorize the answer to this two-hop question.

Therefore, we ablate bridge entities at inference
time to test whether memorization relies on this
generalization intermediate result. We take two
steps for this ablation: (1) for a specific layer, we
obtain its residual stream and remove the bridge en-
tity signals from it, which we will discuss later; and
(2) we insert the modified residual stream back into
the model, a process known as activation patch-
ing (Vig et al., 2020), and evaluate the average
prediction probability for the answer token.

To achieve interpretable results, we focus on lin-
early detectable signals, which can be removed by
projecting the representations into their null space.
Specifically, following iterative nullspace projec-
tion (INLP; Ravfogel et al., 2020), we iteratively
train linear probes on each layer’s residual stream
to identify bridge entities, and project the repre-
sentations into the null space of the correspond-
ing probe directions, until the probing accuracy <
10%.8. We compare our results against two base-
lines to contextualize this effect: random, null
space of a random vector, and mean, null space of
the averaged bridge vector across examples.

The results are in Figure 4c. For reference, we
also show the accuracy of the linear probes before
applying INLP in Figure 4b: the removal is only
meaningful when the probe accuracy is sufficiently
high. Our results reveal that memorization relies
on bridge entities, even though they are not strictly

8This typically requires no more than three iterations. De-
tails of the INLP procedure can be found in Appendix G.

necessary: while the impact is milder compared
to computing the clean labels on validation data,
removing bridge entities still substantially harms
memorization, especially at layer 2.

4.2 Distributed encodings of memories
Based on the reliance of memorization on general-
ization mechanisms, we further study how memo-
ries are stored. We consider two hypotheses:

H1 (Look-up mechanism): The model builds a
look-up mechanism: it uses specific input to-
kens and intermediate representations as keys
to retrieve memorized labels. Memorization
fails if keys do not match any stored entry.

H2 (Distributed encoding): The model relies
on a distributed encoding: it distributedly at-
tributes memorized labels to different input
tokens and intermediate representations. Even
if some of these tokens are disrupted, other to-
kens might still provide sufficient information
to retrieve the memorized labels.

If H1 holds, disrupting any part of the used signals
should affect memory retrieval heavily. In con-
trast, if H2 holds, the model should still be able to
retrieve noisy labels, despite with lower likelihood.

We test these hypotheses by ablating important
attention heads, for their central role in transmit-
ting information: if the model uses a look-up mech-
anism, ablating important attention heads should
lead to substantial drops in memorization, similar
to ablating key reasoning steps in generalization;
while if the model uses a distributed encoding, the
effect of this ablation should be milder.9 Following
Menta et al. (2025), we ablate attention heads by
forcing each token only attends to itself. To identify
important heads, we individually ablate each head
at each token position and observe the faithfulness
drop. We then analyze the attention patterns of the
most impactful heads to interpret their roles.

THR. We identify four key attention heads in the
THR task: L0H3, L1H2, L1H3, and L2H1, where
LnHm denotes the m-th head in layer n. Analyzing
their attention patterns, we find: L0H3 attends to
P0, both L1H2 and L1H3 attend to R0, and L2H1
attends to R1. This matches the reasoning process,
as illustrated in Figure 5a: the model first infers P1
from P0 and R0, then derives the answer P2 from
P1 and R1. Since L1H2 and L1H3 redundantly

9Notably, our findings on ablating bridge entities support
H2: the effect on memorization is milder than generalization.
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(c) FDA attention head ablation

Figure 5: Memories follow distributed encodings across different input tokens and intermediate results.

attend to R0, ablating only one does not fully break
the reasoning chain, we ablate them together. Re-
sults are shown in Figure 5b: Ablating any of these
heads causes a substantial drop in generalization
faithfulness, whereas memorization faithfulness is
more mildly affected. This again supports the dis-
tributed encoding hypothesis.

FDA. We similarly identify four important layer-
0 attention heads for predicting C0: L0H1 and
L0H3 attend to A0 and B0, while L0H2 and L0H4
attend to A1 and B1. Ablation results are shown
in Figure 5c: Ablating L0H1 and L0H3 causes
a pronounced drop in reasoning faithfulness, but
has a smaller impact on memorization. In contrast,
ablating L0H2 and L0H4 leads to a comparable
drop in memorization faithfulness, but only mildly
affects reasoning. These findings are consistent
with H2: A0 and B0 are essential for computing C0,
so disrupting them impairs reasoning significantly.
Meanwhile, because memorized outputs rely on
distributed signals, their degradation from ablation
is more moderate and spread across tokens.

4.3 Case study: higher layers in FDA recall
memories using outlier heuristics

The reliance of memorization on the computations
of generalization, and its distributed encoding, help
explain how models simultaneously generalize and
memorize. However, these remain conceptual in-
sights. In this section, we focus on the FDA task to
identify the concrete neuron-level mechanisms un-
derlying noise memorization: compared to models
that only generalize, what changes enable models
to also memorize noise?

Inspired by the observation that language models
solve arithmetic tasks using diverse heuristics en-
coded in MLP neuron activations (Nikankin et al.,
2025), we hypothesize that these activations also

support memorization. However, how does a single
neuron contribute to both mechanisms? A natu-
ral strategy is to compare a neuron’s activation
on the same input, if the model would have re-
lied on memorization and generalization mecha-
nisms. However, this is challenging, because ac-
tivations are fixed for a given input in a specific
model. To overcome this, we exploit the fact that
pre-memorization models can generalize accurately
on noisy training instances, enabling a meaningful
comparison with post-memorization models.

Concretely, we use the step 1,000 checkpoint as
the pre-memorization model, where Mem-Correct
accuracy is ∼100%, and compare its activations
with the post-memorization model at the end of
training. Moreover, to locate critical neurons for
memorization, we perform neuron-level activation
patching: for each neuron, we replace its activation
in the post-memorization model with that from the
pre-memorization model, and measure the resulting
drop in faithfulness (details in Appendix F).

Figure 6 (left) illustrates the activation pattern
of the most influential neuron for memorizing
"3536+4028=6108".10 Intriguingly, the activation
patterns of the same neurons remain largely consis-
tent across the two models. However, in the pre-
memorization model, activations exhibit smooth,
structured patterns with clear boundaries; whereas
in the post-memorization model, they become no-
ticeably noisier. For example, the highlighted neu-
ron in Figure 6 activates strongly for addition re-
sults between 2,000–4,000 and 7,000–9,000 in the
pre-memorization model, but is specifically sup-
pressed for the memorized instance (red dot) in the
post-memorization model: it drops from 2.07 to

10Activation patterns (background colors) are estimated
by plotting activations from 200,000 randomly sampled non-
training instances.
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(a) Post-memorization models develop outlier heuristics
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Figure 6: FDA models memorize noise via outlier heuristics encoded by MLP neuron activations.

0.18 after memorization (see Figure 6 titles). This
suppression enables the model to output the wrong
answer 6108 rather than the correct answer 7564.

We term this phenomenon “outlier heuristics”,
referring to the model’s strategy of memorizing
noisy instances by subtly altering specific neuron
activations while preserving the broader structure.
We hypothesize this as a general mechanism for
memorization in FDA, consistent with the overlap-
ping circuits observed earlier.

We perform two layer-wise activation patching
experiments on MLP neurons to quantitatively test
this hypothesis. First, following our earlier neuron-
level setup, we replace each MLP layer’s activa-
tions in the post-memorization model with those
from the pre-memorization model, without chang-
ing any parameters. If outlier heuristics indeed
drive memorization, this operation should substan-
tially reduce memorization faithfulness, while leav-
ing generalization performance largely intact. Sec-
ond, as a control, we replace post-memorization ac-
tivations with those from a random noisy instance:
the drop of faithfulness in this case indicates the
importance of this layer.

We present the results in Figure 6b and make
two observations. First, outlier heuristics indeed
drive memorization: patching in pre-memorization
activations only slightly affects the validation faith-
fulness, while sharply reducing memorization faith-
fulness (in fact, validation accuracy is restored to
100%). Second, lower layers are less influential, as
patching even random activations leads only mild
drops in faithfulness for both mechanisms.

5 Related work

Memorization vs. generalization Memorization
and generalization relationship in deep learning

has been widely debated. Early studies (Zhang
et al., 2017; Arpit et al., 2017; Rolnick et al., 2018)
demonstrate that deep neural nets can memorize
noisy labels yet still generalize effectively, attribut-
ing this behavior to implicit regularization. Other
lines of work argue that memorization is essential
for generalization, particularly in long-tail distribu-
tions (Feldman, 2020; Feldman and Zhang, 2020),
a view supported by recent findings on transformer
language models (Tirumala et al., 2022; Nanda
et al., 2023; Xie et al., 2024). More recently, Kang
et al. (2024) show that a model’s generalization per-
formance highly correlates with its training perfor-
mance on not-yet-memorized examples, consistent
with our observations in §3.1.

Memorization in large language models LLMs
are well-known to memorize verbatim, which may
pose privacy and copyright concerns (Lukas et al.,
2023; Karamolegkou et al., 2023). For example,
Carlini et al. (2021) show that hundreds of train-
ing examples can be extracted from GPT-2; Carlini
et al. (2023) studies the factors that influence mem-
orization, including model capacity, number of du-
plications, and prompt context length. Moreover,
Biderman et al. (2023) show such memorization
is predictable. However, recent work by Liu et al.
(2025) show that the commonly-used completion
test, i.e., n-gram based membership inference, is
not reliable, by producing verbatim texts that are
not part of the training data. The most closely re-
lated work is Huang et al. (2024), which studies
verbatim memorization of training data in LLMs.
They show that memorization is distributed across
tokens and builds on the model’s general LM capa-
bilities. However, their work does not explore the
co-existence of generalization and memorization;
moreover, it does not examine the specific mecha-
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nism of memorization from intermediate steps.

6 Discussion

Memorization and overfitting The memoriza-
tion of noisy labels represents a specific form of
overfitting, where models learn patterns from ran-
domly corrupted labels that cannot generalize to
new data. Remarkably, however, extensive empir-
ical evidence demonstrates that such memoriza-
tion is benign—it does not significantly impair the
model’s ability to generalize correctly on clean, un-
seen inputs (Zhang et al., 2017; Arpit et al., 2017;
Rolnick et al., 2018). This benign nature distin-
guishes noisy label memorization from other forms
of overfitting that actively harm generalization. For
instance, when models learn spurious correlations
between features and labels, they can suffer sub-
stantial performance drops on out-of-distribution
data where these correlations no longer hold (Ar-
jovsky et al., 2019; Sagawa et al., 2020; Kirichenko
et al., 2023).

Connection to implicit regularization We have
observed that models rely on existing generaliza-
tion mechanisms to memorize noisy labels (§4.1).
For example, in THR, the inferred bridge entity
is used to retrieve the incorrect target person en-
tity (P2). This connects directly to the broader
discussion of implicit regularization in deep learn-
ing. Zhang et al. (2017) and Barrett and Dherin
(2021) demonstrate that neural networks exhibit an
inductive bias against steep changes in the loss land-
scape, which explains their tendency to reuse exist-
ing structures, i.e., the generalization mechanisms,
when memorizing noisy labels. Another concrete
example is that, rather than creating entirely new
activation patterns, the post-memorization FDA
model only slightly shifts the activation patterns of
existing neurons to accommodate the noisy labels
(§4.3), compared to the pre-memorization stage.

The use of synthetic data We performed most
of our experiments on synthetic datasets, which,
though artificially generated, capture real-world
tasks such as arithmetic addition and multi-hop
relational reasoning. In other words, rather than
learning imaginary tasks, models learn to solve real-
world problems with carefully controlled settings,
enabling fine-grained analyses of model behavior.
Previous studies have demonstrated that this ap-
proach yields deep insights into language models
and produces impactful, practical findings (Power

et al., 2022; Pearce et al., 2023; Allen-Zhu and Li,
2024; Wang et al., 2024a; Mondorf et al., 2025;
Bertolazzi et al., 2025).

By contrast, disentangling effects such as mem-
orization and generalization in real-world datasets
remains challenging due to data complexity. For
instance, Yang et al. (2024) investigated multi-
hop relational reasoning using real-world datasets
but could not reach definitive conclusions about
whether LLMs truly perform such reasoning, as
the training data may contain shortcuts that con-
found analysis. Therefore, we believe understand-
ing small-scale models on interpretable datasets,
to inspire research on large models and real-world
datasets is a promising direction.

7 Conclusion

We have revisited the puzzle of how language mod-
els can both memorize label noise and still rea-
son correctly on unseen inputs. On two controlled
tasks, four-digit addition (FDA) and two-hop rela-
tional reasoning (THR), we found that (i) models
retain generalization mechanisms even when pro-
ducing memorized noisy training labels (§3), and
such memorization relies on generalization mech-
anisms (§4.1); (ii) memorized noise is stored via
distributed encoding across inputs and intermediate
results (§4.2); (iii) in FDA, memorization is driven
by “outlier heuristics” encoded by higher-layer
MLP neuron activations (§4.3). Overall, our results
deepen our understanding of how noise memoriza-
tion and reasoning interact in language models.

Limitations

Our work has several limitations. First, we focus
on relatively small language models. While these
models are sufficiently capable for our tasks, larger
models might still exhibit different behaviors. Sec-
ond, we train all models from scratch to avoid the
influence of pretraining data, such as pre-learned
addition skills or memorized label noise. Neverthe-
less, future work could explore how pretraining af-
fects memorization and reasoning. Third, we exam-
ine implicit reasoning performed without explicitly
writing out solution steps. In contrast, recent large
reasoning models, such as OpenAI-O3 (OpenAI,
2025) and DeepSeek-R1 (DeepSeek-AI, 2025),
have demonstrated strong explicit reasoning via
long Chain-of-Thoughts. Studying memorization
in such models is a promising direction.
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Figure 7: The influence of model size on memorization
and generalization performance.

A Experimental setup

FDA On FDA, we corrupt 2%, 5%, and 10% of
the training labels, i.e., C, which are in practice 800,
2000, and 4000 out of 40,000 training instances.
Besides the 4 layers, 256 hidden dimensions, and
4 heads setting, we also experimented with 4 layer
and 512 hidden dimensions, 8 layer and 256 hidden
dimensions, and 8 layer and 512 hidden dimensions
models. We observe similar trends. We train all

models using 1e-4 learning rate with a batch size of
2048, using AdamW (Loshchilov and Hutter, 2019)
for 12,000 steps, which is roughly 600 epochs. For
both tasks, we also experimented with learning rate
5e-5 and obtain similar results.

THR We corrupt 5% and 10% of the training
labels, i.e., P2, which are in practice 320 and 640
out of 6,400 training instances. We omitted 2%
noise rate because it only produces 160 noisy in-
stances, which is too small for our analysis. We
also omitted the four layer models because we find
them to be too weak to perform the reasoning task
well with higher noise rates, e.g., the 4 layer 256
hidden dimension model achieves 68% accuracy
on the validation set when the noise rate is 10%.
We train all models using 1e-4 learning rate with a
batch size of 512 for 8,400 steps, which is roughly
400 epochs.

B The influence of model sizes

We show the influence of model size on both mem-
orization, i.e., Mem-Noisy, and generalization, i.e.,
Validation, in Figures 7a and 7b.

For FDA, we experimented with 4 and 8 layers,
with 64, 128, and 256 hidden dimensions; for THR,
we experimented with 4 and 8 layers, with 256
and 512 hidden dimensions. We observe that our
chosen models in the main text are the ones of the
minimal size that can both memorize and general-
ize well. Moreover, we make two observations:

• Wider models memorize better: on FDA, com-
pared with the 4 layer 256 hidden dimension
model, which achieves perfect memorization
accuracy, the 8 layer 128 hidden dimension
model cannot memorize all noisy training in-
stances.

• Two-hop reasoning requires larger models: on
THR, using the same size of models as FDA,
i.e., 4 layers and 256 hidden dimensions, the
model cannot achieve perfect validation accu-
racy, and this gets worse when the noise rate
increases.

Generalization to larger models To further val-
idate the generalization of our findings to larger
models, we reinitialized and trained Qwen2.5-
0.5B (Qwen et al., 2025) from scratch, on the FDA
task with a 5% noise rate. We show the logit lens
results in Figure 7c. Similar to our observations
using smaller models (Figure 3b), we observe a
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two-stage process: the model first computes the
correct label for noisy training instances in early
layers, i.e., Mem-Corrected, then overwrites these
correct predictions with the memorized corrupted
labels in later layers, i.e., Mem-Noisy. This further
establishes the co-existence of both mechanisms
after memorization.

C Focus on the first answer token

Here we explain why our experiments focus on
predicting the first answer token i.e., C0 for FDA
and P2 for THR, from the last token of the prompt,
i.e., = in FDA and the blank after : in THR.

Appending the correct addition C0 retores gen-
eralization In FDA, we focus on C0 because it
plays a critical role in determining whether the
model outputs a memorized or generalized addi-
tion answer. To illustrate this, we evaluate models
trained with noisy labels on two versions of the
same input: (1) the original prompt ending with
=, and (2) the same prompt with the correct C0 ap-
pended. As shown in Figure 8, once the correct C0
is given, the model proceeds to generate the rest of
the correct digits, even though it never encountered
the correct answer during training. This highlights
C0 as a key token that triggers a shift from mem-
orization to generalization. For THR, all answer
tokens are added to the tokenizer vocabulary, so
the answer P2 is represented by a single token.

The last prompt token position is the most im-
portant We use activation patching (Vig et al.,
2020) to assess the importance of different token
positions in the prompt. We find that the position
of the last prompt token has the greatest influence
on the model’s prediction. This result is consistent
with Allen-Zhu and Li (2024), that the accuracy
of predicting the first tokens of entities is similar to
predicting the full entity names.

Activation patching Activation patching is a
method to assess the importance of a certain mod-
ule of a neural net in making predictions. The idea
is to replace the output of a given module (e.g., an
MLP layer) from a given input with the output of
the same module from another input, and observe
how this replacement affects the prediction perfor-
mance: a performance drop implies that the output
of this module contributes to the final prediction,
and a similar performance means this module is
less relevant.

Concretely, to quantify this effect, we use three
forward runs of the model:

• a clean run using a “clean" prompt,

• a corrupt run using a “corrupt" prompt,

• a patched run, where the model use the clean
prompt as input, but we replace the output of a
certain module, e.g., the first MLP layer of the
last token position, with that from the corrupt
prompt.

In practice, this effect is often estimated by averag-
ing a group of clean-corrupt prompt pairs.

Token position importance To quantify the im-
portance of different token positions in general-
ization, we pair each instance from the validation
set with another randomly sampled instance from
the validation set, and use these pairs as the clean-
corrupt prompt pairs. After performing these three
runs, we evaluate the patched run by the faithful-
ness (Wang et al., 2023) drop for the prediction
of the correct C0 token (e.g., 3 from 3802). We
define the faithfulness here as the change in the
mean logit for the correct answer before and after
patching, normalized by the difference in logits for
the correct answer between the clean and corrupt
runs. Specifically,

Faithfulness =
ℓpatched − ℓcorrupt

ℓclean − ℓcorrupt
(1)

where:

• ℓclean is the mean logit for the correct clean
answer token from the clean runs,

• ℓcorrupt is the mean logit for the correct clean
answer token from the corrupt runs,

• ℓpatched is the mean logit for the correct clean
answer token from the patched runs.

This measures how well the patched activation
restores clean behavior. A faithfulness score close
to 1 indicates that patching restores the clean pre-
diction, i.e., the patched position is not important
for the model’s prediction; while a low score in-
dicates that the patched position is crucial for the
model’s prediction. Figures 9 and 10 show faithful-
ness scores across layers and positions, for atten-
tion modules and MLP layers. In both tasks, the
last token of the prompt consistently emerges as
the most influential, although in THR, early-layer
MLPs also play a key role.
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Figure 9: Output faithfulness of attention and MLP layers on THR.

D Identifying generalization computation
in hidden layers

For both logit lens and linear probing, we use the
residual stream of each layer at the final prompt
token position, i.e., the = token in FDA and the
blank token after the : token in THR, to predict the
final answer token, i.e., C0 for FDA and P2 for THR.
We experiment on three data splits: Mem-Noisy,
Mem-Corrected, and Validation.

Because the models have memorized the noisy
labels and can generalize to the clean labels of the
validation set, the accuracy on both Mem-Noisy
and Validation should be high, at least for the fi-
nal layer. However, if H1 holds, that the models
completely by pass generalization when producing
memorized noisy labels, the accuracy on Mem-
Corrected should be low, because the correct clean
labels should not be detectable from the hidden
representations of the noisy training instances.

Linear probing We train linear probes, i.e., lin-
ear models with a single layer and without the bias
term, to predict the final answer token from the
residual stream of each layer. Specifically, we use
80% of the data from each split as the training data,
and report the validation performance on the re-
maining 20% of the data. We train these linear
probes for 200 epochs with a learning rate of 1e-3
and batch size 64, using Adam as the optimizer
(Kingma and Ba, 2015).

Logit lens For FDA, besides linear probing,
which follows the same setup as the linear probes
for THR, we also experiment with logit lens.
Specifically, we apply the model’s final layer’s
layer normalization to the residual stream, and then
decode the logits using the model’s unembedding
matrix. We then take the token of the highest logit
as the predicted answer token.

The rationale for also including logit lens is that,
a linear model can serve as a stronger baseline for
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Figure 10: Output faithfulness of attention and MLP layers on FDA.

predicting C0. Concretely, if the linear model can
memorize all the A0–B0 combinations, e.g., mem-
orizing that it should output 8 if A0 = 1 and B0 = 7,
it can achieve 50% accuracy on the validation set.
If the model can further memorize all A1–B1 com-
binations, its accuracy can be even higher. How-
ever, this is not the case for logit lens, because it
is training-free: it only detects information that
is already present in the hidden representations.
Moreover, we do not have this issue on THR, be-
cause the input-answer mappings in the validation
set never appear in the training data.

E Circuit discovery: edge attribution
patching

We use edge attribution patching (EAP; Syed
et al., 2023) to identify the circuits responsible for
generalization to unseen inputs (i.e., computing
clean labels) and memorization of noisy labels.

The idea of EAP is similar to activation patch-
ing. Specifically, EAP builds on attribution patch-
ing (Nanda, 2023), an efficient approximation of
activation patching (see §D). This approximation
is based on a first-order Taylor expansion of the
model’s prediction: the change in the output caused
by patching an intermediate activation z is esti-
mated as the dot product between the change in z
and the gradient of the output with respect to z on
the corrupt run. Unlike activation patching, which
requires three forward passes for each component
of interest, attribution patching requires only two
passes and a single gradient computation to esti-
mate importance scores for all components simulta-
neously. This makes it significantly more efficient
for large-scale analysis.

Instead of measuring the importance of modules,
i.e., nodes in the computational graph, EAP mea-
sures the importance of edges, i.e., the connections
between nodes, e.g., the influence from an attention
head to a certain MLP layer. Similar to our experi-
ments before, we estimate the circuit of generaliza-
tion by using each prompt in the validation set as
the clean prompt, and randomly sampling another
validation prompt as the corrupt one. Similarly, to
estimate the circuit of memorization, we use each
prompt from the noisy training set as the clean
prompt, and randomly sample another noisy train-
ing example as the corrupt one. We then similarly
use faithfulness metric to quantify the importance
of each edge.

We make two observations across different tasks
and faithfulness thresholds for the obtained circuits
(Figures 11 and 12). First, there are substantial
overlaps between the circuits for generalization and
memorization, indicating a tight coupling between
the two mechanisms. Second, the generalization
circuit is often a subset of the memorization cir-
cuit. This indicates that memorization mechanism
is built on the top of the existing generalization
mechanism, consistent with our observation that
models first develop (a part of) their generalization
mechanism, and only then start to memorize label
noise (§3.1). This result is also consistent with our
finding that the memorization mechanism relies
on the generalization mechanism (§4.1). We also
show the results for the sparsity-faithfulness trade-
off for both tasks for reference. Intriguingly, we ob-
serve that the memorization circuit on FDA takes a
very large of edges: together with the milder effect
we observe (§4.2) when ablating certain attention
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heads, this further suggests that memorization fol-
lows a distributed encoding across many different
input tokens and intermediate results.

F Faithfulness computation for
pre-memorization activation patching

Our activation patching experiments in §4.3 aim
to study the influence of MLP neuron activation
changes between the pre-memorization and post-
memorization models on the model’s predictions.
We compute faithfulness for two data splits: Mem-
Noisy and Validation: Mem-Noisy is used to study
the influence of MLP activations on memorizing
noisy labels, and Validation is used to study the
influence of MLP activations on generalizing to
clean labels. We also study two settings: pre-
memorization patching and random patching. Sim-
ilar to Appendix D, we use all instances from each
data split as the clean prompts, and randomly sam-
ple another instance from the same split for each
clean prompt as the corrupt prompt. This results in
four sets of experiments, as illustrated in Figure 6b.

We follow the definition in Equation 1 to com-
pute the faithfulness score (we restate the metric
here for clarity):

Faithfulness =
ℓpatched − ℓcorrupt

ℓclean − ℓcorrupt
. (2)

Specifically, in this experiment, given a
clean–corrupt prompt pair, we compute the
logits for the correct answer token of the clean
prompt under three conditions:

• ℓpatched is the mean logit from the patched
run. In the pre-memorization patching set-
ting, we use the same clean prompt but replace
the MLP activation with that from the pre-
memorization model. In the random patching
setting, we use the same post-memorization
model but replace the MLP activation with
that from the corrupt prompt.

• ℓclean is the mean logit for the correct
clean answer token when running the post-
memorization model on the clean prompt.

• ℓcorrupt is the mean logit for the clean prompt’s
answer token when running the clean prompt,
but with all MLP activations replaced by
those from the corrupt prompt. (the post-
memorization model is also used here). We
use this setup, instead of directly running the

corrupt prompt, because it provides a lower
bound on the influence of MLP activations
alone, excluding changes in other parts of the
model (i.e., we do not consider the contribu-
tions of attention modules here).

We obtain all values for estimating faithfulness by
averaging across all prompt pairs in the correspond-
ing data split.

G Iterative Null-space Projection (INLP)

INLP is a popular method to remove linearly-
encoded information from the hidden representa-
tions of a neural network (Ravfogel et al., 2020).
Specifically, it iteratively perform the following
two steps: (1) train a linear model to predict a tar-
get label from the hidden representations, e.g., the
bridge entity in THR; and (2) project the hidden
representations onto the null space of the linear
model, so that the linear model cannot predict the
target label anymore. This process is repeated mul-
tiple times, until it is no longer possible to train a
linear model to predict the target label, i.e., the pre-
diction accuracy is lower than a certain threshold ϵ.
In our experiments, we set ϵ = 0.1. In practice, we
only need no more than three iterations to achieve
this.

H Running Environment and AI usage

Environment We use a single NVIDIA A100
GPU with 80GB memory for our experiments. The
main training and evaluation code is implemented
in PyTorch (Paszke et al., 2019), and Hugging Face
Transformers (Wolf et al., 2020), using Python
3.12.

Use of AI assistants Our code is implemented
with the help of ChatGPT, Google Gemini, and
GitHub Copilot. We mainly use these tools to as-
sist data visualization after obtaining the results.
Moreover, the person entity names and relation
names, as well as the templates for verbalizing the
triplets into sentences and QA pairs, are also con-
structed with the help of ChatGPT. We also used
ChatGPT to assist paper writing, in particular to
revise and improve the clarity of the text.
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Figure 11: FDA circuit overlap across different faithfulness.
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Figure 12: THR circuit overlap across different faithfulness.
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I Additional results

Learning dynamics of THR We show the learn-
ing dynamics of THR in Figure 13, where we ob-
serve a similar trend as in FDA: the model learns to
produce the generalizable reasoning output first
on training instances of noisy labels which the
model has never seen (although the performance
never reaches 100%), but eventually memorizes the
noisy labels. Also, in the generalization stage, the
model’s performance on Mem-Corrected closely
matches that of Validation.
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Figure 13: Learning dynamics of THR

I.1 Example outlier heuristics
We show more examples of outlier heuristics in
Figure 14. Specifically, for each noisy training
instance, we show the most influential neuron iden-
tified by the faithfulness drop by patching pre-
memorization activation values. We consistently
observe the outlier heuristics phenomenon.

8678



Figure 14: Examples of outlier heuristics: Activation patterns of the most influential neuron for four different noisy
training instances. Each row shows the activation pattern for one instance. The red dot indicates the position of the
noisy training instance.
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