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Abstract
Large Language Models (LLMs) are prone to
hallucinations, and Retrieval-Augmented Gen-
eration (RAG) helps mitigate this, but at a high
computational cost while risking misinforma-
tion. Adaptive retrieval aims to retrieve only
when necessary, but existing approaches rely on
LLM-based uncertainty estimation, which re-
mains inefficient and impractical. In this study,
we introduce lightweight LLM-independent
adaptive retrieval methods based on external
information. We investigated 27 features, or-
ganized into 7 groups, and their hybrid com-
binations. We evaluated these methods on 6
QA datasets, assessing the QA performance
and efficiency. The results show that our ap-
proach matches the performance of complex
LLM-based methods while achieving signif-
icant efficiency gains, demonstrating the po-
tential of external information for adaptive re-
trieval.

1 Introduction

Large Language Models (LLMs) excel in tasks
like question answering (QA) (Yang et al., 2018;
Kwiatkowski et al., 2019), but remain vulnerable to
hallucinations (Yin et al., 2024; Ding et al., 2024).
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) mitigates this by incorporating external
information, although it introduces risks such as
error accumulation (Shi et al., 2023) and external
hallucinations (Ding et al., 2024).

Adaptive retrieval techniques (Moskvoretskii
et al., 2025; Ding et al., 2024; Jeong et al., 2024)
(AR) aim to balance LLM knowledge with exter-
nal resources by estimating uncertainty to decide
whether retrieval is needed.

However, existing methods primarily frame this
task as uncertainty estimation based on LLM inter-
nal states or outputs, leading to significant computa-
tional overhead. This can offset the efficiency gains
from reduced retrieval calls and limit practicality,
especially with larger models.
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Figure 1: PFLOPs-Inaccuracy trade-off for proposed
features vs the most efficient alternative adaptive re-
trieval methods for the NQ dataset. Radius of the points
is proportional to the number of LLM calls. Green dot-
ted line indicates the Always RAG approach.

In this study, we address this issue by introduc-
ing LLM-independent adaptive retrieval methods
that leverage external information, such as entity
popularity and question type. Our methods achieve
comparable quality while being significantly more
efficient, eliminating the need for LLMs entirely.

Our evaluation, represented in Figure 1, shows
that our proposed features are much more efficient
in terms of PFLOPs and LLM calls, with down-
stream performance comparable to other adaptive
retrieval methods.

Our contributions and findings are as follows:
1. We introduce 7 groups of lightweight external

information features, encompassing 27 fea-
tures, for LLM-independent adaptive retrieval.

2. Our approach significantly improves effi-
ciency by eliminating the need for LLM-based
uncertainty estimation while maintaining QA
performance for 2 modern LLMs.

3. We show that combining external features
with uncertainty-based may boost the final
performance of adaptive retrieval methods.

We make data and all models publicly available.1

1https://github.com/s-nlp/External_Adaptive_
Retrieval
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2 Related Work

Adaptive Retrieval-Augmented Generation re-
duces unnecessary retrievals by determining
whether external knowledge is needed. This de-
cision can be based on LLM output (Trivedi et al.,
2023), consistency checks (Ding et al., 2024), inter-
nal uncertainty signals (Jiang et al., 2023; Su et al.,
2024; Yao et al., 2025), or trained classifiers (Jeong
et al., 2024).

External information methods can enhance text
generation. Combining knowledge graphs (KG)
with information about entity popularity and graph
structures enables more effective reasoning, result-
ing in more reliable answers (Belikova et al., 2024;
Luo et al., 2024). Popularity and graph frequency
improve retrieval efficiency, as shown in LightRAG
and MiniRAG, which prioritize frequently accessed
entities and relationships (Guo et al., 2024; Fan
et al., 2025). Graph-based features, including entity
properties (Lysyuk et al., 2024), popularity (Mallen
et al., 2023a), and structural attributes (Salnikov
et al., 2023), have also been shown to be effective
in QA systems.

3 Methods

Our baselines include the following adaptive re-
trieval methods:

Adaptive RAG uses a T5-large-based classifier
to determine whether retrieval is needed (Jeong
et al., 2024). FLARE triggers retrieval when to-
ken probability falls below a threshold (Jiang et al.,
2023). DRAGIN estimates uncertainty based on
token probabilities and attention weights, exclud-
ing stopwords (Su et al., 2024). Rowen relies on
consistency checks across languages and models to
trigger retrieval (Ding et al., 2024). SeaKR moni-
tors internal state consistency to trigger retrieval, re-
ranking snippets to reduce uncertainty (Yao et al.,
2025). EigValLaplacian assesses uncertainty us-
ing graph features based on pairwise consistency
scores (Lin et al., 2024). Max Token Entropy
measures uncertainty by aggregating the maximum
entropy of token distributions (Fomicheva et al.,
2020). HybridUE includes 5 uncertainty features
relevant to the task (Moskvoretskii et al., 2025):
Mean Token Entropy, Max Token Entropy, SAR,
EigValLaplacian, Lex-Similarity.

3.1 External Information Methods

In this section, we describe the proposed exter-
nal information methods for adaptive retrieval.

Each group may contain multiple features used
to train a classifier to predict retrieval needs, fol-
lowing Moskvoretskii et al. (2025); Jeong et al.
(2024). The text features, such as named entities
and entity linking, can be extracted using NLP
frameworks like BELA (Plekhanov et al., 2023) or
DeepPavlov (Savkin et al., 2024).

The first three features below use named entities
and/or their linking to Wikipedia IDs which are
extracted using pretrained models, thus no access
to Wikipedia traffic or Wikidata triples is necessary.

Graph features capture information about the
entities in question from a KG, including the mini-
mum, maximum, and mean number of triples per
subject and object, where the subject or object cor-
responds to an entity from the question.

Using the BELA entity linking module, the enti-
ties from the question are linked to the correspond-
ing IDs in the Wikidata KG. Then, for each entity
the number of triples where this entity is either an
object or a subject is retrieved. Finally, six fea-
tures are calculated: the minimum/maximum/mean
number of triples per subject and object.

Popularity features include the minimum, maxi-
mum, and mean number of Wikipedia page views
per entity in the question.

Using the BELA NER module the entities are
retrieved from the question. Then, for each en-
tity the mean number of views per Wikipedia
page is calculated using Wikimedia API2 for last
year. Finally, there are three features: the mini-
mum/maximum/mean amount of views per entity
per question.

Frequency features include the minimum, max-
imum and mean frequencies of entities in a refer-
ence text collection3, along with the frequency of
the least common n-gram in the question.

Frequency features are calculated similarly to the
popularity group. However, instead of page views,
the frequencies of entities in the large corpus of
text are used. In addition to these three features, a
fourth feature is calculated, which searches for all
n-grams of the words in the question and selects
the n-gram with the lowest frequency.

Knowledgability features assign a score to each
entity, reflecting the LLM’s verbalized uncertainty
about its knowledge. By pre-computing these

2https://foundation.wikimedia.org/wiki/Api/
3https://www.inf.uni-hamburg.de/en/inst/ab/lt/

resources/data/depcc.html
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Method NQ SQuAD TriviaQA 2WikiMultihopQA HotPotQA MuSiQue Avg

InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc

Never RAG 44.6 1.0 0.00 17.6 1.0 0.00 63.6 1.0 0.00 31.8 1.0 0.00 28.6 1.0 0.00 10.6 1.0 0.00 32.8
Always RAG 49.6 1.0 1.00 31.2 1.0 1.00 61.0 1.0 1.00 37.4 1.0 1.00 41.0 1.0 1.00 10.0 1.0 1.00 38.4

Multi-Step Adaptive Retrieval

AdaptiveRAG 49.6 2.0 0.98 28.6 2.0 0.97 62.8 1.5 0.54 45.4 5.2 2.64 41.4 4.6 2.34 14.0 3.6 3.63 40.3
DRAGIN 48.0 4.5 2.24 29.8 4.3 2.14 66.6 4.1 2.06 45.6 5.8 2.92 43.0 5.1 2.56 13.4 6.3 3.15 41.1
FLARE 45.0 3.1 2.07 23.8 3.1 2.08 64.8 2.1 1.39 42.4 3.9 2.85 37.2 5.1 4.07 9.0 4.1 3.10 37.0
RowenCM 49.4 29.5 7.27 19.6 29.2 7.20 65.6 28.7 7.12 44.4 32.9 7.87 35.6 31.9 7.70 10.4 42.1 9.52 37.5
Seakr 40.6 14.6 1.00 26.8 14.6 1.00 65.6 14.6 1.00 39.8 12.3 2.44 42.4 9.9 1.76 11.8 12.3 2.40 37.8

Uncertainty Estimation

EigValLaplacian 49.2 2.0 0.96 31.0 2.0 0.98 64.4 1.3 0.34 37.6 1.9 0.86 39.8 1.9 0.85 10.0 2.0 0.96 38.7
MaxTokenEntropy 50.0 2.0 0.99 31.0 1.9 0.92 63.4 1.3 0.31 36.8 2.0 0.95 38.2 1.8 0.76 11.2 1.7 0.72 38.4

Hybrid UE 50.0 1.8 0.82 31.4 2.0 0.97 63.8 1.3 0.27 38.4 1.9 0.94 41.2 1.9 0.94 11.0 1.7 0.74 39.3

External Features

Graph 49.6 1.0 0.86 30.4 1.0 0.95 63.6 1.0 0.32 35.8 1.0 0.67 40.8 1.0 0.97 10.0 1.0 1.00 38.4
Popularity 49.8 1.0 0.92 31.0 1.0 0.98 63.0 1.0 0.16 35.6 1.0 0.84 41.0 1.0 0.94 10.6 1.0 0.89 38.5
Frequency 49.8 1.0 0.96 30.4 1.0 0.97 63.2 1.0 0.04 37.4 1.0 0.76 40.8 1.0 0.98 10.4 1.0 0.9 38.7

Knowledgability 49.4 1.0 0.95 31.2 1.0 1.00 63.0 1.0 0.28 38.4 1.0 0.89 41.0 1.0 1.00 10.2 1.0 0.46 38.9
Question type 50.0 1.0 0.83 30.4 1.0 0.97 64.0 1.0 0.29 36.6 1.0 0.74 39.0 1.0 0.89 10.4 1.0 0.9 38.4
Question
complexity

49.6 1.0 1.00 31.2 1.0 1.00 63.6 1.0 0.00 36.8 1.0 0.94 41.0 1.0 1.00 10.6 1.0 0.95 38.8

Context relevance 47.4 1.0 1.00 31.0 1.0 1.00 62.6 1.0 1.00 36.0 1.0 1.00 41.0 1.0 1.00 11.0 1.0 1.00 38.2

Hybrids with External Features

Hybrid¬UFP 47.8 1.8 1.0 30.8 1.0 1.0 63.4 1.1 1.0 36.4 1.7 1.0 40.6 2.0 1.0 10.6 1.2 1.0 38.3
HybridExternal 46.4 1.2 1.0 30.2 0.9 1.0 63.2 0.2 1.0 37.8 1.6 1.0 39.4 1.9 1.0 10.6 2.0 1.0 37.9

Hybrids with Uncertainty and External Features

Hybrid¬FP 49.4 1.7 1.0 31.2 2.0 1.0 64.6 1.3 1.0 37.4 1.7 1.0 41.0 2.0 1.0 12.2 1.4 1.0 39.3
All 47.6 1.8 1.0 31.2 2.0 1.0 63.2 1.3 1.0 37.8 1.8 1.0 37.8 1.6 1.0 11.2 1.1 1.0 38.1

Ideal 60.8 1.6 0.55 36.0 1.8 0.82 73.6 1.4 0.36 50.0 1.7 0.68 46.0 1.7 0.71 16.4 1.9 0.89 47.1

Table 1: QA Performance of adaptive retrieval and uncertainty methods. ‘Ideal’ represents the performance of a
system with an oracle providing ideal predictions for the need to retrieve. ‘InAcc’ denotes In-Accuracy, measuring
the QA system’s performance. ‘LMC’ indicates the mean number of LM calls per question, and ‘RC’ represents the
mean number of retrieval calls per question. The SOTA results are highlighted in bold, as well as the best results for
the external methods. Red states for SOTA result, green – for best result either with just external features or hybrids.

show top-3 best results by mean accuracy across all datasets for one-step adaptive retrieval methods.

scores for entities in the Wikidata Knowledge
Graph, retrieval decisions can be made without
querying the LLM at inference time.

The “knowledgability” feature measures the de-
gree of verbalized uncertainty the LLM has regard-
ing a given entity.

We prompt the LLaMA 3.1-8B-Instruct model
to evaluate its internal knowledge in a general con-
text about a specific entity. When effective, this
feature enables the precomputation of the model’s
uncertainty about the entity, without the need to
infer a new question each time. We assume that
the potential range of entities can be assessed in ad-
vance using the Wikidata Knowledge Graph (KG).
The specific prompt is provided in the Appendix A.

Question Type features include probabilities for
nine categories: ordinal, count, generic, superla-
tive, difference, intersection, multihop, compara-
tive, and yes/no.

Using the train part of the Mintaka dataset (Sen
et al., 2022), we train a classifier based on the bert-
base-uncased model4 to predict whether a question
belongs to one of the 9 question types: ‘ordinal’,

4https://hf.co/google-bert/bert-base-uncased

‘count’, ‘generic’, ‘superlative’, ‘difference’, ‘inter-
section’, ‘multihop’, ‘yesno’, ‘comparative’. As a
result, we get nine probabilities that the question
belongs to a certain class. The accuracy classifi-
cation score on the validation part of the Mintaka
dataset is 0.93.

Question Complexity reflects the difficulty of a
question, considering the reasoning steps required.

Question complexity is based on the N-hop fea-
ture from the FreshQA (Vu et al., 2024) dataset.
The question could be one-hop, where the question
is explicit about all the relevant information needed
to complete the task, so no additional inference is
needed. Or multi-hop, where the question requires
one or more additional inference steps to gather
all the relevant information needed to complete the
task. The dataset consists of 500 training and 100
test examples. As a training model, we used a Dis-
tilBERT 5 model. The final F1 score on the test set
is 0.82.

Context Relevance features include the mini-
mum, maximum and mean probabilities that a con-

5https://hf.co/distilbert/
distilbert-base-uncased
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text is relevant to the question, along with the con-
text length.

Each question with one context at a time is
passed to the cross-encoder model based on the
uncased model of the bert base. A question and
a context are passed via the [SEP] token with the
additional classification head over the base model.
The final probabilities of each context being rele-
vant are aggregated via minimum/maximum/mean
across all contexts. Additionally, there is the fourth
feature that calculates the context length.

HybridExternal includes all external features.
Hybrid¬UFP includes all external features ex-

cept frequency and popularity, as they are highly
correlated with graph features.

Hybrid¬FP includes uncertainty and all external
features except frequency and popularity.

3.2 Leveraging External Information in
Resource-Constrained Settings

While there may be concerns that not using model-
internal features is unreasonable, we emphasize
that leveraging external information is an active
and valuable research direction. Recent work has
demonstrated that adaptive retrieval with exter-
nal signals (Mallen et al., 2023b), external mem-
ory mechanisms that can outperform model edit-
ing (Zhong et al., 2023), and querying structured
sources such as KG (Lysyuk et al., 2024) can all
provide tangible benefits. Building on this line of
research, our work systematically examines the role
of external features as complements or substitutes
for internal uncertainty estimates, with a particular
focus on resource-constrained settings where such
signals are especially advantageous.

4 Experimental Setup

In this section, we briefly discuss the implementa-
tion details and the evaluation setup.

4.1 Implementation Details

We use LLaMA 3.1-8B-Instruct (Dubey et al.,
2024) and the BM25 retriever (Robertson et al.,
1994) as the main components of our approach,
following Yao et al. (2025); Jeong et al. (2024);
Moskvoretskii et al. (2025). Additionally, we test
the generalizability of our results with Qwen2.5-
7B-Instruct (Yang et al., 2024) which can be found
in Appendix C.

4.2 Datasets
We evaluate on single-hop SQuAD v1.1 (Rajpurkar
et al., 2016), Natural Questions (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017) and multi-hop
MuSiQue (Trivedi et al., 2022), HotpotQA (Yang
et al., 2018), 2WikiMultiHopQA (2wiki) (Ho et al.,
2020) QA datasets to ensure real-world query com-
plexity, following Trivedi et al. (2023); Jeong et al.
(2024); Su et al. (2024); Yao et al. (2025). We use
500-question subsets from the original test sets, as
in Moskvoretskii et al. (2025); Jeong et al. (2024).

4.3 Evaluation
We evaluate both the quality and efficiency of the
adaptive retrieval system. For quality, we use In-
Accuracy (InAcc), which measures whether the
LLM output contains the ground-truth answer, as
it is a reliable metric based on Moskvoretskii et al.
(2025); Mallen et al. (2023b); Jeong et al. (2024);
Asai et al. (2024); Baek et al. (2023).

Following Jeong et al. (2024); Moskvoretskii
et al. (2025), for efficiency we adopt Retrieval
Calls (RC) – the average number of retrievals per
question, and LM Calls (LMC) – the average num-
ber of LLM calls per question, including uncer-
tainty estimation. Further details are provided in
Appendix A.

5 Results

In the following sections, we present the results of
the end-to-end and UE methods, as well as groups
of external features, focusing on downstream per-
formance and efficiency. For comparison, we also
include the ‘Never RAG’, ‘Always RAG’, and
‘Ideal’ benchmarks. The ‘Ideal’ benchmark rep-
resents the performance of a system with an oracle
providing perfect retrieval predictions.

Downstream Performance We first evalu-
ate whether external methods can replace the
uncertainty-based approaches. As shown in Ta-
ble 1, at least one external feature performs compa-
rably to uncertainty-based methods on each dataset.
In terms of mean accuracy, the best external fea-
tures — knowledgability and question complexity
— trail the top one-step adaptive retrieval methods
by just 0.4 and 0.3 points, respectively. Notably,
they outperform more complex multistep methods
like FLARE and Seakr.

Combining external features even increases In-
Accuracy for the Musique dataset. Compared to
Multi-Step Adaptive Retrieval, using only external
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Figure 2: Feature importances for one of the best algorithms for only external features vs all features for TriviaQA
(simple) and Musique (complex) datasets.
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Figure 3: Heatmap of different groups of features for
TriviaQA and 2WikiMultiHopQA (2wiki) datasets. Up-
per right triangle states for the absolute correlations on
the TriviaQA, while down left states for the absolute
correlations on the 2WikiMultiHopQA

features yields similar results across all datasets,
except for 2WikiMultiHopQA.

Second, we examine whether external methods
can complement uncertainty-based approaches. On
the MuSiQue dataset, combining them improves
performance, but no gains are observed on other
datasets — suggesting that external features are
more substitutive than complementary.

Efficiency Performance External features sig-
nificantly reduce LLM calls, mitigating a key effi-
ciency bottleneck that worsens with model scaling.
Though somewhat more conservative, reflected in
extra retrieval calls, they remain more efficient than
multistep approaches. Importantly, since external
features are pre-computed, they add no inference-
time LLM overhead.

6 Features Reciprocity

We identify four key aspects that influence AR per-
formance: LLM knowledge (uncertainty features,
knowledgability), question type (simple vs. com-
plex reasoning), context relevance (irrelevant con-
text reduces performance), and entity rarity. Fig-
ure 2 shows that for the simple TriviaQA dataset,
the top five features are uncertainty-based, while
for complex datasets, question type and context
relevance become more important. Thus, in some
cases relying solely on uncertainty-based features
is insufficient for efficient AR. Our results are con-
sistent with prior findings: LLMs can be misled
by irrelevant context even when their parametric
knowledge is accurate (Liu et al., 2024). Moreover,
LLMs often over-rely on their own confidence, fa-
voring shortcuts by sticking to parametric knowl-
edge (Ni et al., 2024).

External features are more substitutive than com-
plementary, often showing strong correlations de-
spite their differences. Figure 3 shows that, for sim-
ple questions, uncertainty moderately correlates
with question complexity and context relevance.
Extra heatmaps and feature importances are pro-
vided in Appendix D.

Conclusion

In this work, we propose 7 groups of lightweight,
LLM-independent external features for adaptive
retrieval, improving efficiency by removing the
need for LLM-based uncertainty estimation while
maintaining QA performance. Our analysis shows
that in some cases, combination of uncertainty and
external features yields further performance gains.
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Limitations

• Our study focuses on two models –
LLaMA3.1-8B-Instruct model and Qwen2.5-
7B-Instruct – which are the top-performing
open-source models within their parameter
range. Expanding the analysis to additional
architectures, especially the proprietary ones,
could further strengthen the generalizability
of our results.

• The classification target reflects whether the
model knows the answer without context,
whereas the final InAccuracy depends on the
quality of retrieved contexts. Future work
should explore both the effectiveness of self-
knowledge metrics and the sensitivity of re-
sults to different retrieval methods.

• We evaluate model performance using six
widely adopted QA datasets. Incorporating
a broader range of datasets, particularly those
tailored to specific domains, could offer more
comprehensive insights and showcase the ver-
satility of our approach.

Ethical Considerations

Text retrieval systems can introduce biases into re-
trieved documents, which may inadvertently steer
the outputs of even ethically aligned LLMs in un-
intended directions. Consequently, developers in-
tegrating RAG and Adaptive RAG pipelines into
user-facing applications should account for this po-
tential risk.
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A Technical Details

Train setting. We conduct all experiments using
the LLaMA 3.1-8B-Instruct model with its default
generation parameters. The responses generated,
with and without the retriever, are sourced from
previous studies (Moskvoretskii et al., 2025), fol-
lowing the AdaptiveRAG framework (Jeong et al.,
2024). The baseline results are also adopted from
prior work, as we employ the exact same settings
and generation configurations.

We implemented classifiers using Scikit-
learn (Buitinck et al., 2013), CatBoost (Hancock
and Khoshgoftaar, 2020), and performed hyperpa-
rameter tuning using a validation set of 100 sam-
ples randomly selected from the training set, testing
with three different random seeds for each dataset.
For each of the six datasets, the training and val-
idation splits were drawn exclusively from their
respective portions of the dataset. This ensures

that there is no overlap between the training and
test data. We evaluated seven classifiers: Logistic
Regression, KNN, MLP, Decision Tree, CatBoost-
ing, Gradient Boosting, and Random Forest. Data
preprocessing involved standard scaling. For the
final model, we used a VotingClassifier, combin-
ing the two best-performing classifiers from the
validation set, each trained with their optimal hy-
perparameters. The voting strategy used is "soft",
meaning that the class label prediction is based
on the argmax of the sums of the predicted proba-
bilities. Performance was evaluated based on the
In-accuracy metric, and the top classifiers were re-
trained on the full training set with these selected
hyperparameters.

Answer the following question based on
your internal knowledge with one or few
words.
If you are sure the answer is accurate and
correct, please say ‘100’. If you are not con-
fident with the answer, please range your
knowledgability from 0 to 100, say just num-
ber. For example, ‘40’.
Question: {question}. Answer:

Hyperparameters grid. Logistic Regression :
C: [0.01, 0.1, 1], solver: [lbfgs, liblinear],
class_weight: [balanced, 0: 1, 1: 1, None],
max_iter: [10000, 15000, 20000]

KNN : n_neighbors: [5, 7, 9, 11, 13, 15], metric:
[euclidean, manhattan], algorithm: [auto, ball_tree,
kd_tree], weights: [uniform, distance]

MLP : hidden_layer_sizes: [(50,), (100,), (50,
50), (100, 50), (100, 100)], activation: [relu, tanh],
solver: [adam, sgd], alpha: [0.00001, 0.0001,
0.001, 0.01], learning_rate: [constant, adaptive],
early_stopping: True, max_iter: [200, 500]

Decision Tree : max_depth: [3, 5, 7, 10, None],
max_features: [0.2, 0.4, sqrt, log2, None], criterion:
[gini, entropy], splitter: [best, random]

CatBoosting: iterations: [10, 50, 100, 200],
learning_rate: [0.001, 0.01, 0.05], depth: [3, 4, 5,
7, 9], bootstrap_type: [Bayesian, Bernoulli, MVS]

Gradient Boosting: n_estimators: [25, 35, 50],
learning_rate: [0.001, 0.01, 0.05], max_depth: [3,
4, 5, 7, 9], max_features: [0.2, 0.4, sqrt, log2,
None]

Random Forest: n_estimators: [25, 35, 50],
max_depth: [3, 5, 7, 9, 11], max_features: [0.2,
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0.4, sqrt, log2, None], bootstrap: [True, False],
criterion: [gini, entropy], class_weight: [balanced,
0: 1, 1: 1, None]

B FLOPs Calculation

Method NQ

Mean Upper bound

AdaptiveRAG 0.0216 0.4389
SeaKR 0.3504 2.4548
DRAGIN 0.2608 1.0129
FLARE 0.0970 0.9290
Rowen 1.8650 15.9677

EigValLaplacian 0.1052 0.3291
MaxTokenEntropy 0.0271 0.2212
Entity popularity 0.0181 0.2103
Question complexity 0.0181 0.2082
Knowledgability 0.0183 0.2275
Context relevance 0.0184 0.2084
Question type 0.0181 0.2074

Table 2: A comparison of FLOPs usage across differ-
ent methods on the NQ dataset. The “Mean” column
shows the average PFLOPs (1015 FLOPs) per question,
while the “Upper bound” column represents the theo-
retical maximum FLOPs assuming the LLaMA 3.1 8B
model (in FP16 precision) runs at 100% GPU utiliza-
tion for the entire processing of a single sample. The
row labeled “Entity_popularity” reflects the computa-
tional overhead required for graph/popularity/frequency
features. It is important to note that for features such
as “Entity popularity”, “Question complexity”, “Knowl-
edgability”, “Context_relevance”, “Question type” the
generation of final answer for a question (after precom-
puting these features) accounts for more than 99% of
the total FLOPs .

To calculate floating-point operations (FLOPs),
we used the fvcore (Facebook, 2019) library . This
library provides a flexible and efficient interface
for analyzing the computational complexity of Py-
Torch models. Specifically, we wrapped our model
generation process with the FlopCountAnalysis
class, which automatically traces the model for-
ward pass and counts the number of FLOPs for
each layer. The theoretical analysis includes an
approximate formula to calculate an upper bound
per sample:

Total FLOPs ≈
(
Total TFLOPs

)
× 1012

×(Elapsed Seconds),

Total TFLOPs =

(TFLOPs per GPU)× (Number of GPUs)
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C Results for Qwen2.5-7B-Instruct

Method
NQ SQuAD TriviaQA 2WikiMultihopQA HotPotQA MuSiQue Mean

InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc↑ LMC↓ RC↓ InAcc

Never RAG 27.8 1.0 0.00 16.2 1.0 0.00 51.6 1.0 0.00 22.0 1.0 0.00 20.2 1.0 0.00 4.60 1.0 0.00 23.7
Always RAG 41.0 1.0 1.00 27.4 1.0 1.00 58.2 1.0 1.00 28.6 1.0 1.00 36.2 1.0 1.00 5.20 1.0 1.00 32.8

Uncertainty Estimation

EigValLaplacian 40.4 1.9 0.94 26.8 1.9 0.85 56.8 1.6 0.63 27.0 1.8 0.78 33.8 1.8 0.79 5.40 1.8 0.83 31.7
MaxTokenEntropy 41.0 2.0 1.00 27.0 2.0 0.98 57.8 1.5 0.5 25.0 1.4 0.35 31.6 1.7 0.7 5.20 2.0 0.99 31.3
Hybrid UE 40.6 1.9 0.94 25.0 1.9 0.85 57.2 1.4 0.39 24.8 1.8 0.75 33.0 1.6 0.63 5.00 1.9 0.94 30.9

External Features

Graph 40.6 1.0 0.97 26.4 1.0 0.96 56.0 1.0 0.41 26.4 1.0 0.73 36.2 1.0 1.00 5.40 1.0 0.95 31.8
Popularity 41.0 1.0 0.98 27.6 1.0 0.99 53.4 1.0 0.44 25.6 1.0 0.73 36.2 1.0 0.99 5.60 1.0 0.98 31.6
Frequency 40.4 1.0 0.94 27.4 1.0 0.99 54.6 1.0 0.32 27.2 1.0 0.82 35.6 1.0 0.96 5.00 1.0 0.93 31.7
Knowledgability 41.0 1.0 1.0 27.2 1.0 0.99 55.8 1.0 0.87 27.4 1.0 0.87 35.4 1.0 0.95 5.20 1.0 1.00 32.0
Question type 40.2 1.0 0.98 24.2 1.0 0.77 57.8 1.0 0.54 25.6 1.0 0.78 33.8 1.0 0.83 5.40 1.0 0.96 31.2
Question
complexity

41.0 1.0 1.00 27.4 1.0 1.00 58.2 1.0 1.00 28.6 1.0 1.00 36.2 1.0 1.00 5.20 1.0 1.00 32.8

Context relevance 38.8 1.0 0.85 27.4 1.0 1.00 56.2 1.0 0.83 21.6 1.0 0.16 29.0 1.0 0.70 5.00 1.0 0.95 29.7

Hybrids with External Features

Hybrid¬UFP 40.2 1.9 1.00 27.4 2.00 1.00 58.8 1.7 1.00 28.6 1.9 1.00 34.0 1.9 1.00 4.80 2.0 1.00 32.3

HybridExternal 40.8 1.9 1.00 27.2 1.9 1.00 58.2 2.0 1.00 28.6 1.9 1.00 34.4 1.9 1.00 5.40 2.0 1.00 32.4

Hybrids with Uncertainty and External Features

Hybrid¬FP 40.4 2.0 1.00 26.6 1.9 1.00 57.0 1.6 1.00 27.4 1.9 1.00 35.0 1.7 1.00 6.20 1.8 1.00 32.1
All 39.2 1.9 1.00 27.0 2.0 1.00 56.8 1.6 1.00 26.4 1.7 1.00 34.8 1.9 1.00 5.20 2.0 1.00 31.6

Ideal 48.4 1.7 0.72 32.6 1.8 0.84 68.6 1.5 0.48 38.8 1.8 0.78 42.4 1.8 0.8 9.00 2.0 0.95 40.0

Table 3: QA Performance of adaptive retrieval and uncertainty methods for Qwen2.5-7B-Instruct. ‘Ideal’ represents
the performance of a system with an oracle providing ideal predictions for the need to retrieve. ‘InAcc’ denotes
In-Accuracy, measuring the QA system’s performance. ‘LMC’ indicates the mean number of LM calls per question,
and ‘RC’ represents the mean number of retrieval calls per question. The SOTA results are highlighted in bold, as
well as the best results for the external methods. Red states for SOTA result, green – for best result either with just

external features or hybrids. show top-3 best results by mean accuracy across all datasets for one-step
adaptive retrieval methods.

Compared to the LLaMA 3.1-8B-Instruct model, correct answers without context are significantly fewer
than those with context, shifting classifier behavior toward the “Always RAG” strategy. Nevertheless,
external features still outperform uncertainty features in identifying samples for adaptive retrieval. Notably,
on the MuSiQue dataset, external features continue to complement uncertainty-based ones, boosting
performance beyond what uncertainty features achieve alone.
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D Heatmaps and Feature Importances
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Figure 4: Feature importances for one of the best algorithms for only external features vs all features for NQ,
TriviaQA (simple) and HotpotQA, Musique (complex) datasets.
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Figure 5: Absolute correlation of features from different groups of external features with class label

8709


