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Abstract

Knowledge Base Question Answering (KBQA)
aims to answer user questions in natural lan-
guage using rich human knowledge stored in
large KBs. As current KBQA methods strug-
gle with unseen knowledge base elements and
their novel compositions at test time, we in-
troduce SG-KBQA — a novel model that
injects schema contexts into entity retrieval
and logical form generation to tackle this is-
sue. It exploits information about the semantics
and structure of the knowledge base provided
by schema contexts to enhance generalizabil-
ity. We show that SG-KBQA achieves strong
generalizability, outperforming state-of-the-art
models on three commonly used benchmark
datasets across a variety of test settings. Our
source code is available at https://github.
com/gaosx2000/SG_KBQA.

1 Introduction

Knowledge Base Question Answering (KBQA)
aims to answer user questions expressed in nat-
ural language with information from a knowl-
edge base (KB). This offers user-friendly access
to rich human knowledge from large KBs such as
Freebase (Bollacker et al., 2008), DBPedia (Auer
et al., 2007) and Wikidata (Vrandečić and Krötzsch,
2014), and it has broad applications in QA (Zhou
et al., 2018), recommendation (Guo et al., 2022),
and information retrieval (Jalota et al., 2021).

Semantic Parsing (SP) has been shown to be an
effective method for KBQA, where the core idea
is to translate the input natural language question
into a structured logical form (e.g., SPARQL or
S-Expression (Gu et al., 2021)), which is then exe-
cuted to yield the question answer.

A key challenge here is to learn a mapping be-
tween mentions of entities and relations in the input
question to corresponding KB elements to form the
logical form. Given a large number of entities and
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Figure 1: Schema-guided entity retrieval (top) and
logical form generation (bottom). Green arrows and
boxes highlight schema-level connections (overlapping
classes) among KB elements. “w schema” and “w/o
schema” logical forms denote whether the composition
of KB elements adheres to the KB schema, respectively.

relations in ambiguous surface forms, and the flex-
ibility in questions expressed in natural language,
this mapping process typically yields a set of candi-
date entities (relations) for each mentions of entities
(relations). The challenge then becomes to uncover
the right composition of entities and relations from
the sets of candidates.

Figure 1 shows an example. Two entities named
Harry Potter (a book series and a main character
in them) and two authorship relations of similar
names were identified as candidates. Combining
the top-ranked entity (the book series) with the top-
ranked relation book.author.works_written (book
authorship) yields an invalid and unexecutable log-
ical form, as the entity is a book series, not a book.

Due to the vast number of KB elements and their
compositions, it is difficult (if not impossible) to
train a model with all feasible compositions of KB
elements that might be queried. For example, Free-
base (Bollacker et al., 2008) has over 39 million
entities, 8,000 relations, and 4,000 classes. Further-
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more, some KBs (e.g., NED (Mitchell et al., 2018))
are not static as they continue to grow. When a KB
element composition is unseen at training, errors
like the example above may occur.

A few studies consider model generalizability
to non-I.I.D. settings, where the test set contains
schema items (i.e., relations, classes and functions)
or their compositions that are unseen during train-
ing (i.e., zero-shot and compositional generaliza-
tion, respectively). They propose retrieval methods
to retrieve KB elements or compositions more rele-
vant to input questions, and use them to construct
logical forms (Shu et al., 2022; Gu et al., 2023).

Despite these efforts, achieving compositional
and zero-shot generalization remains challenging:
(1) Entity retrieval is a bottleneck. Current en-
tity retrieval methods often fail to accurately detect
entities mentioned in questions containing schema
items unseen at training. This is because such items
introduce novel contextual patterns in questions,
making it difficult to identify the correct boundary
of entity mentions. The resulting entity retrieval
errors propagate and lead to errors in the logical
forms generated. (2) Schema-level connection be-
tween KB elements have been missed. Existing
methods are not explicitly trained to capture com-
positions of KB elements that are feasible based on
their schema. Instead, they tend to reproduce KB
element compositions observed at training, making
them difficult to generalize to unseen compositions.

To address these challenges, we propose a
schema-guided model for KBQA (SG-KBQA), that
incorporates KB schema to guide both entity re-
trieval and logical form generation. Unlike previ-
ous approaches that initiate the pipeline with entity
retrieval, SG-KBQA adopts a schema-first princi-
ple, prioritizing schema understanding as the foun-
dation for downstream logical form generation.

SG-KBQA begins with relation retrieval, em-
ploying a pre-trained language model (PLM)-
based (Devlin et al., 2019) retriever to retrieve
top-ranked relations from the KB that are most
relevant to the input question. Benefiting from the
generalization capability of pre-trained language
models (and that there are much fewer relations
and their surface form variants than entities in a
KB), relations that are semantically similar to the
question—yet unseen at training—can still be in-
cluded among the top-ranked retrieved relations
(as validated in our study). Then, as illustrated
in Figure 1, we introduce a schema-guided entity
retrieval (SER) module. This module employs a

logical form sketch parser that converts the input
question and retrieved relations into logical form
sketches by a Seq2Seq model. These top-ranked
relations provide schema context that is relevant
to the question but not observed at training, hence
helping the model distinguish actual entity men-
tions from unseen schema items in the question.
More precise entity mentions are then extracted
from the generated sketches, thereby improving the
zero-shot generalizability of entity retrieval.

To further mitigate error propagation between
the retrieval and generation stages, we defer entity
disambiguation to the logical form generation stage.
For each entity mention, all top-ranked matched
candidates are retained as candidate entities for the
preceding generation stage.

Further exploiting the schema-guided idea, we
propose a schema-guided logical form generation
(SLFG) module that fine-tunes a large language
model (LLM) to reason over feasible compositions
of KB elements based on their underlying schema
contexts. As Figure 1 shows, we feed the input
question, the retrieved candidate relations and enti-
ties, plus their corresponding schema contexts, i.e.,
the (domain and range) classes of the relations and
entities, into the LLM for logical form generation.
The domain and range classes of a relation refer to
the classes to which its subject and object entities
belong. Together with the class of the candidate
entities, they provide explicit training signals to
guide the LLM to look for KB elements that can
be connected together (and hence are more likely
to form executable logical forms). As a result, our
SLFG module generalizes to compositions of KB
elements unseen at training.

To summarise: (1) We introduce SG-KBQA
to solve the KBQA problem under non-I.I.D. set-
tings, where test input contains unseen schema
items or their compositions during training. (2) We
introduce schema-guided modules for entity re-
trieval and logical form generation with deferring
entity disambiguation to enhance both composi-
tional and zero-shot generalization. These modules
can also be incorporated into existing SP-based
KBQA systems to improve their generalization per-
formance. (3) We conduct experiments on three
popular benchmark datasets and find SG-KBQA
outperforming SOTA models. In particular, on non-
I.I.D GrailQA our model tops all three leaderboards
for the overall, zero-shot, and compositional gener-
alization settings, outperforming SOTA models by
3.3%, 2.9%, and 4.0% (F1) respectively.
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2 Related Work

Knowledge Graph Question Answering Early
KBQA solutions can be widely categorized as In-
formation Retrieval-based (IR-based) (He et al.,
2021; Zhang et al., 2022) or Semantic Parsing-
based (SP-based) solutions (Cao et al., 2022; Ye
et al., 2022).

Benefiting from the strong natural language un-
derstanding and reasoning abilities of LLMs, recent
LLM-based KBQA methods have achieved promis-
ing results. A branch of work employs LLMs to
produce reasoning trajectories prior to producing
final answers. For example, Luo et al. (2024b) and
Luo et al. (2025) fine-tune LLMs to directly gen-
erate the reasoning trajectories in a single pass. In
contrast, Sun et al. (2024), Liu et al. (2024) and Sui
et al. (2025) follow an agentic framework, where
the model performs step-by-step tool invocations to
iteratively traverse the subgraph starting from topic
entities, assuming that topic entities are given.

Others follow the SP-based paradigm, us-
ing LLMs to generate approximate logical form
sketches through few-shot in-context learning or
fine-tuning (Cao et al., 2022; Li et al., 2023, 2024;
Luo et al., 2024a; Wang and Qin, 2024). The in-
accurate or ambiguous KB elements in the gener-
ated sketches are further refined through a retrieval
stage, aligning them with actual KB elements to
construct complete logical forms.

However, these methods often fail to general-
ize over test questions that refer to KB elements
or their compositions unseen during training, or
when the topic entities are not known. Our SG-
KBQA improves KBQA generalizability through a
schema-guided approach. While we also use LLMs
to generate logical form sketches, we incorporate
retrieved relations to guide sketch generation for
entity mention extraction, thereby improving the
generalizability of entity retrieval, while we do not
refine these sketches to produce the final output
logical forms.

KBQA under Non-I.I.D. Settings Studies con-
sidering non-I.I.D. settings can be largely classified
into ranking-based and generation-based methods.

Ranking-based methods (Gu et al., 2021, 2023)
start from retrieved entities, traverse the KB, and
construct the target logical form by ranking the
traversed paths.

Generation-based methods transform an input
question into a logical form using a Seq2Seq model
(e.g., T5 (Raffel et al., 2020)). They often use

additional contexts beyond the question to augment
the input of the Seq2Seq model and enhance its
generalizability. For example, Ye et al. (2022) use
the top-5 candidate logical forms enumerated from
the retrieved entities. Shu et al. (2022) further use
top-ranked relations, disambiguated entities, and
classes (retrieved separately). Zhang et al. (2023)
use connected pairs of retrieved KB elements.

Our SG-KBQA adopts a generation-based ap-
proach, training the LLM to reason over candidate
entities and relations, using their schema contexts
(i.e., classes) to infer connectivity. This enables
the model to compose novel logical forms without
seeing them at training, hence generalizing better
in larger, noisier search spaces. Additionally, we
defer entity disambiguation to the generation stage,
mitigating error propagation caused by early dis-
ambiguation without context.

KBQA Entity Retrieval KBQA entity retrieval
typically has three steps: entity mention detection,
candidate entity retrieval, and entity disambigua-
tion. BERT (Devlin et al., 2019)-based named en-
tity recognition is used for entity mention detection
from input questions. To retrieve KB entities for the
entity mentions, the FACC1 dataset (Gabrilovich
et al., 2013) is often used, with over 10 billion
surface forms and popularity scores of Freebase
entities. Gu et al. (2021) use popularity scores for
entity disambiguation, while Ye et al. (2022) and
Shu et al. (2022) adopt a BERT reranker.

3 Preliminaries

A graph structured-KB G is composed of a set of
relational facts {⟨s, r, o⟩|s ∈ E , r ∈ R, o ∈ E ∪
L} and an ontology {⟨cd, r, cr⟩|cd, cr ∈ C, r ∈
R}. Here, E denotes a set of entities, R a set of
relations, and L a set of literals, e.g., textual labels
or numerical values. In a relational fact ⟨s, r, o⟩,
s ∈ E is the subject, o ∈ E ∪ L is the object, and
r ∈ R represents the relation between the two.

The ontology defines the rules governing the
composition of relational facts within G: C denotes
a set of classes, each of which defines a set of
entities (or literals) sharing common properties (re-
lations). Note that an entity can belong to multiple
classes. In an ontology triple ⟨cd, r, cr⟩, cd is the
domain class, i.e., the class of subject entities that
satisfy relation r; cr is the range class, i.e., the
class of object entities or literals satisfying r. Each
ontology triple can be instantiated a set of relational
facts, with an example provided in Appendix A.
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Question q:  Who is the author of Harry Potter?

     Logical Form Sketch Parser Logical Form Sketches
(AND <class> (JOIN (R 

<relation> ) [ Harry Potter ] ))
       Candidate Entity Retrieval

Harry Potter   m.078ffw    literary_series
Harry Potter   m.03647x   characterEntity Ranker

Schema-guided Entity Retrieval

Schema-guided Logical Form Generation

q [D]   cd   [N]   r   [R]   cr [ID]   ide   [N]   namee   [C]   Ce     CR    

 Logical Form: (AND book.author (JOIN (R book.literary_series.author ) m.078ffw ))

Relation 1
Domain Class
Range Class

book.author.works_written
book.author
book.written_work

book.literary_series.author
book.literary_series
book.author

Relation 2
Domain Class
Range Class

Relation Retrieval

Large Language Model

Rq

Eq

1

2

3

4

5

Defer Entity Disambiguation

Figure 2: Overview of SG-KBQA. The model consists of two novel modules: schema-guided entity retrieval
(SER) and schema-guided logical form generation (SLFG). Given a question q, the model first retrieves and ranks
candidate relations ( 1⃝). In SER, q and the top-ranked relations Rq are used to generate logical form sketches and
extract entity mentions ( 2⃝). Based on these mentions and Rq , the model retrieves and ranks candidate entities ( 3⃝),
producing the top entities Eq ( 4⃝). Entity disambiguation is deferred by directly passing Eq to SLFG. In SLFG, q,
Rq , Eq , and their class contexts are fed into a fine-tuned language model for logical form generation ( 5⃝).

Problem Statement Given a KB G and a ques-
tion q expressed in natural language, i.e., a se-
quence of word tokens, KBQA aims to find a subset
(the answer set) A ⊆ E∪L of elements from G that
— with optional application of some aggregation
functions (e.g., COUNT) — answers q.

Logical Form We approach the KBQA problem
by translating question q into a structured query
that can be executed on G to fetch the answer set
A. Following previous works (Shu et al., 2022;
Gu et al., 2023; Zhang et al., 2023), we use logical
form as the structured query language, expressed in
S-expression (Gu et al., 2021). S-expression offers
a readable representation well-suited for KBQA. It
uses set semantics where functions operate on enti-
ties or entity tuples without requiring variables (Ye
et al., 2022), with more details in Appendix A.

4 The SG-KBQA Model

SG-KBQA takes a generation-based approach
overall. It introduces two novel modules: Schema-
guided Entity Retrieval (SER) and Schema-guided
Logical Form Generation (SLFG), designed to en-
hance generalizability and shown in Figure 2.

SG-KBQA starts with relation retrieval, where
a BERT-based relation ranking model retrieves can-
didate relations and entities from the KB G that are
potentially relevant to the question q.

In SER, q and the top-ranked candidate relations

are passed into a logical form parser (i.e. a Seq2Seq
model) to generate logical form sketches that con-
tain entity mentions while masking out relations
and classes. The retrieved relations provide the
most relevant—and potentially unseen—relations
as additional schema context, enabling the model
to identify boundaries of entity mentions more ac-
curately as explained in Section 1. We then har-
vest these entity mentions and use them to retrieve
candidate entities from G, thereby improving the
non-I.I.D. generalizability of entity retrieval.

To further improve the accuracy of entity re-
trieval, we propose a combined schema-based prun-
ing strategy to filter out unlikely candidates, as a
single mention may correspond to multiple enti-
ties. The remaining entities are then ranked by
a BERT-based model, which estimates the likeli-
hood of each entity being the correct match for a
mention. Leveraging relations—a type of schema
item—to guide both entity mention extraction and
candidate entity pruning enhances model generaliz-
ability over entities unseen at training. This in turn
helps logical form generation to filter false positive
matches for unseen relations or their compositions.

In SLFG, SG-KBQA feeds q, the top-ranked
relations and entities (corresponding to each men-
tion), and the schema contexts, i.e., their class in-
formation, into an adapted LLM to generate the
logical form and produce answer set A. SLFG is
novel in that it takes (1) multiple candidate enti-
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ties (instead of one in existing models) for each
mention and (2) the schema contexts as the input.

By deferring entity disambiguation to the gener-
ation stage, our approach helps mitigate error prop-
agation that often arises from early-stage disam-
biguation. This strategy also brings challenges, as
the extra candidate entities (which often share the
same or similar names) introduce noise in SLFG.

To address this and enhance generalizability to
unseen compositions of KB elements, we incorpo-
rate schema context in SLFG. The LLM is fine-
tuned to generate logical forms that consist of valid
KB element compositions, as connected based on
the (domain and range) classes of the relations and
entities.

As a result, the model is able to select correct
compositions from a noisy KB element space, even
under non-I.I.D settings.

4.1 Relation Retrieval
For relation retrieval, we follow TIARA (Shu et al.,
2022) for its high accuracy. We extract a set Rq

of top-kR (system parameter) relations with the
highest semantic similarity to q. This is done by
a BERT-based cross-encoder to learn the semantic
similarity between q and a relation r ∈ R:

sim(q, r) = LINEAR(BERTCLS([q; r])), (1)

where ‘;’ denotes concatenation. This model is
trained with the sentence-pair classification objec-
tive (Devlin et al., 2019), where a relevant question-
relation pair has a similarity of 1, and 0 otherwise.

4.2 Schema-guided Entity Retrieval
Entity Mention Detection Given Rq, we pro-
pose a schema-guided logical form sketch parser
to parse q into a logical form sketch s. Entity men-
tions in q are extracted from s.

The parser is an adapted Seq2Seq model. The
model input of each training sample takes the
form of “q <relation> r1; r2; . . . ; rkR” (ri ∈ Rq,
hence “relation-guided”). In the ground-truth log-
ical form corresponding to q, we mask the rela-
tions, classes, and literals with special tokens ‘<re-
lation>’, ‘<class>’, and ‘<literal>’, to form the
ground-truth logical form sketch s. Entity IDs are
also replaced by the corresponding entity names
(entity mentions), to enhance the Seq2Seq model’s
understanding of the semantics of entities.

At model inference, from the output top-kL (sys-
tem parameter) logical form sketches (using beam
search), we extract the entity mentions.

Figure 3: Candidate entity retrieval for ‘Harry Potter’.
The candidate entity in red is the ground-truth.

Candidate Entity Retrieval We follow previ-
ous studies (Faldu et al., 2024; Luo et al., 2024a;
Shu et al., 2022) and use an entity name dictionary
FACC1 (Gabrilovich et al., 2013) to map extracted
entity mentions to entities (i.e., their IDs in KB),
although other retrieval models can be used. Since
different entities may share the same name, the en-
tity mentions may be mapped to many entities. For
pruning, existing studies use popularity scores of
the entities (Shu et al., 2022; Ye et al., 2022).

To improve the recall, we propose a combined
pruning strategy based on both popularity and rela-
tions. As Figure 3 shows, we first select the top-kE1

(system parameter) entities for each mention based
on popularity and then extract kE2 (system parame-
ter) entities from the remaining candidates that are
connected to the retrieved relations Rq. Together,
these form the candidate entity set Ec.

Entity Ranking We follow existing works (Shu
et al., 2022; Ye et al., 2022) to score and rank each
candidate entity in Ec by jointly encoding q and the
context (entity name and its linked relations) of the
entity using a cross-encoder (like Eq. 1). We select
the top-kE3 (system parameter) ranked entities for
each mention as the entity set Eq for each question.

4.3 Schema-Guided Logical Form Generation
Given relations Rq and entities Eq, we fine-tune an
open-souce LLM (LLaMA3.1-8B (Touvron et al.,
2023) by default) to generate the final logical form.

Before being fed into the model, each relation
and entity is augmented with its class information
to help the model learn their connections and gen-
eralize to unseen entities, relations, or their compo-
sitions. The context of a relation r is described by
concatenating its domain class cd and range class
cr, formatted as “[D] cd [N] r [R] cr”. For an entity
e, its context is described by its ID (“ide”), name
(“namee”), and the intersection between its set
of classes Ce and the set of all domain and range
classes CR of all relations in Rq, formatted as “[ID]
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ide [N] namee [C] class(Ce ∩ CR)”.
As Figure 2 shows, we construct the input to the

logical form generation model by concatenating
q with the context of each relation in Rq and the
context of each entity in Eq. The model is fine-
tuned with a cross-entropy-based objective:

Lgenerator = −
n∑

t=1

log p (lt | l<t, q,Kq) , (2)

where l denotes a logical form of n tokens and lt
is its t-th token, and Kq is the retrieved knowledge
(i.e., relations and entities with class contexts) for q.
At inference, the model runs beam search to gener-
ate top-kO logical forms – the executable one with
the highest score is the output. See Appendix B for
a prompt example used for inference.

It is possible that no generated logical forms
are executable. In this case, we fall back to fol-
lowing Shu et al. (2022) and Ye et al. (2022) and
retrieve candidate logical forms in two stages: enu-
meration and ranking. During enumeration, we
traverse the KB starting from the retrieved entities.
Due to the exponential growth in the candidate
paths with each hop, we start from the top-1 entity
for each mention and examine its neighborhood for
up to two hops. The paths are converted into log-
ical forms. During ranking, a BERT-based ranker
scores q and each logical form l (like Eq. 1). We
train the ranker using a contrastive objective:

L = − exp(sim(q, l∗))

exp(sim(q, l∗)) +
∑

l∈Cl∧l ̸=l∗ exp(sim(q, l))
, (3)

where l∗ is the ground-truth logical form and Cl

is the set of enumerated logical forms. The top-
ranked, executable logical form is returned.

5 Experiments

We run experiments to answer: Q1: How does SG-
KBQA improve generalizability compared with
SOTA models? Q2: How do model components
contribute to generalizability? Q3: How can our
techniques enhance existing models?

5.1 Experimental Setup
Datasets Following SOTA competitors (Shu
et al., 2022; Gu et al., 2023; Zhang et al., 2023), we
use three benchmark datasets built upon Freebase.

GrailQA (Gu et al., 2021) is a dataset for evalu-
ating the generalizability of KBQA models. It has
64,331 questions with target S-expressions, includ-
ing complex questions requiring up to 4-hop reason-
ing over the KG. The dataset comes with training

(70%), validation (10%), and test (20%, hidden and
only known by the leaderboard organizers) sets. In
the validation and the test sets, 50% of the ques-
tions include KB elements that are unseen in the
training set (zero-shot generalization tests), 25%
consist of unseen compositions of KB elements
seen in the training set (compositional generaliza-
tion tests), and the remaining 25% are randomly
sampled from the training set (I.I.D. tests).

WebQuestionsSP (WebQSP) (Yih et al., 2016)
is a dataset for the I.I.D. setting. While our fo-
cus is on non-I.I.D. settings, we include results
on this dataset to show the general applicability
of SG-KBQA. WebQSP contains 4,937 questions
collected from Google query logs, including 3,098
questions for training and 1,639 for testing, each
annotated with a target SPARQL query. We follow
GMT-KBQA (Hu et al., 2022b) and TIARA (Shu
et al., 2022) to separate 200 questions from the
training questions to form the validation set.

ComplexWebQuestions (CWQ) (Talmor and Be-
rant) is a challenging I.I.D. dataset for testing com-
plex KBQA. It consists of 34,689 questions requir-
ing up to 4-hop reasoning, constructed by extend-
ing the WebQSP dataset to questions with higher-
hop complexity. For our experiments, we adopt the
official split of CWQ, where 80% of the questions
are allocated for training, 10% for validation, and
the remaining 10% for testing.

Competitors We compare with both IR-based
and SP-based methods including the SOTA models.

On GrailQA, we compare with models that
top the leaderboard1, including RnG-KBQA
(ACL 2021) (Ye et al., 2022), TIARA (EMNLP
2022) (Shu et al., 2022), DecAF (ICLR 2023) (Yu
et al., 2023), Pangu (ACL 2023, SOTA before
SG-KBQA, as of 19th May, 2025) (Gu et al.,
2023), FC-KBQA (ACL 2023) (Zhang et al.,
2023), TIARA+GAIN (EACL 2024) (Shu and Yu,
2024), and RetinaQA (ACL 2024) (Faldu et al.,
2024). We also compare with few-shot LLM-based
(training-free) methods: KB-BINDER (6)-R (ACL
2023) (Li et al., 2023), Pangu (Gu et al., 2023), and
FlexKBQA (AAAI 2024) (Li et al., 2024). These
models are SP-based. On the non-I.I.D. GrailQA,
IR-based methods are uncompetitive and excluded.

On WebQSP and CWQ, we compare with
IR-based models SR+NSM (ACL 2022) (Zhang
et al., 2022), UNIKGQA (ICLR 2023) (Jiang
et al., 2023), and EPR+NSM (WWW 2024) (Ding

1https://dki-lab.github.io/GrailQA/
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Overall I.I.D. Compositional Zero-shot

Model EM F1 EM F1 EM F1 EM F1

SP-based
(SFT)

RnG-KBQA 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
TIARA 73.0 78.5 87.8 90.6 69.2 76.5 68.0 73.9
Decaf 68.4 78.7 84.8 89.9 73.4 81.8 58.6 72.3
Pangu (T5-3B) 75.4 81.7 84.4 88.8 74.6 81.5 71.6 78.5
FC-KBQA 73.2 78.7 88.5 91.2 70.0 76.7 67.6 74.0
TIARA+GAIN 76.3 81.5 88.5 91.2 73.7 80.0 71.8 77.8
RetinaQA 74.1 79.5 - - 71.9 78.9 68.8 74.7

SP-based
(Few-shot)

KB-Binder (6)-R 53.2 58.5 72.5 77.4 51.8 58.3 45.0 49.9
Pangu (Codex) 56.4 65.0 67.5 73.7 58.2 64.9 50.7 61.1
FlexKBQA 62.8 69.4 71.3 75.8 59.1 65.4 60.6 68.3

Ours
(SFT)

SG-KBQA 79.1 84.4 88.6 91.6 77.9 85.1 75.4 80.8
- Improvement +3.6% +3.3% +0.1% +0.4% +4.4% +4.0% +5.0% +2.9%

Table 1: Hidden test results (%) on GrailQA (best results are in boldface; best baseline results are underlined; “SFT”
means supervised fine-tuning; “few-shot” means few-shot in-context learning).

Model WebQSP CWQ

IR-based
SR+NSM 69.5 47.1
UniKGQA 75.1 49.4
EPR+NSM 71.2 61.2

LLM-based
(SFT)

Pangu (ACL 2023) 79.6 -
RoG 70.8 56.2
ChatKBQA 79.8 77.8
TFS-KBQA 79.9 63.6

LLM-based
(Few-shot)

KB-Binder (6)-R 53.2 -
Pangu (Codex) 54.5 -
FlexKBQA 60.6 -
ToG (GPT-4-turbo)† 72.3 56.9
ICSU (SPARQL) 72.3 -
FiDeLiS 78.3 64.3

Ours
(SFT)

SG-KBQA 80.3 78.2
- Improvement +0.5% +0.5%

Table 2: F1 results (%) on WebQSP (I.I.D.) and CWQ
(I.I.D.). † denotes the results we reproduced.

et al., 2024), plus LLM-based supervised fine-
tuning (SFT) models including ChatKBQA (ACL
2024)(SOTA) (Luo et al., 2024a), TFS-KBQA
(LREC-COLING 2024, SOTA) (Wang and Qin,
2024), and RoG (ICLR 2023) (Luo et al., 2024b).
We also compare with few-shot LLM-based meth-
ods: KB-Binder (6)-R, Pangu (Codex), FlexK-
BQA, ToG (ICLR 2024) (Sun et al., 2024), ICSU
(KSEM 2024) (Liu et al., 2024), and FiDeLiS
(ACL 2025) (Sui et al., 2025). Appendix C de-
tails these models. The baseline results are col-
lected from their papers or the GrailQA leaderboard
(when available), with ToG results reproduced due
to missing F1 scores on WebQSP and CWQ.

Implementation Details All our experiments are
run on a machine with an NVDIA A100 GPU
and 120 GB of RAM. For each dataset, a T5-base

model is fine-tuned for 5 epochs as our logical form
sketch parser. We fine-tune a LLaMA3.1-8B with
LoRA (Hu et al., 2022a) for 5 epochs on GrailQA
and 20 epochs on WebQSP and CWQ to serve as
the logical form generator. Our system parameters
are selected empirically. There are only a small
number of parameters to consider. As shown in
the parameter study in Appendix F, our model per-
formance shows stable patterns against the choice
of parameter values. The parameter values do not
take excessive fine-tuning. More implementation
details are in Appendix D.

Evaluation Metrics On GrailQA, we report the
exact match (EM) and F1 scores, following the
leaderboard. EM counts the percentage of test sam-
ples where the model generated logical form (an
S-expression) that is semantically equivalent to the
ground truth. F1 measures the answer set correct-
ness, i.e., the F1 score of each answer set, average
over all test samples. On WebQSP and CWQ, we
report the F1 score as there are no ground-truth
S-expressions. In addition, some baselines also
report Hit, which measures whether at least one
correct answer appears in the predicted answer set.
Additional Hit results are reported in Appendix E.

5.2 Overall Results (Q1)
Table 1 reports the overall comparison of SG-
KBQA with the baseline models on GrailQA,
while Table 2 presents the corresponding results on
WebQSP and CWQ. SG-KBQA shows the best
results across all three datasets.

Results on GrailQA On the overall hidden test
set of GrailQA, SG-KBQA outperforms the best
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GrailQA WebQSP

Overall I.I.D. Compositional Zero-shot Overall

Model EM F1 EM F1 EM F1 EM F1 F1

SG-KBQA 85.1 88.5 93.1 94.6 78.4 83.6 84.4 87.9 80.3
w/o SER 81.0 84.9 90.1 91.9 73.9 79.6 80.0 84.0 78.1
w/o DED 84.3 87.8 92.6 94.0 77.1 82.4 83.7 87.2 78.2
w/o SC 76.6 79.2 91.7 92.9 72.3 77.4 71.7 73.9 77.1
w/o Fallback LF 81.8 84.6 92.8 94.1 77.3 81.8 78.7 81.5 78.6

Table 3: Ablation study results on the validation set of GrailQA and the test set of WebQSP.

baseline Pangu by 4.9% and 3.3% in EM and F1
scores. While the performance improvement in the
I.I.D. setting is smaller, SG-KBQA achieves sub-
stantial gains in non-I.I.D scenarios. For example,
under the compositional generalization setting, it
increases EM by 4.4% and F1 by 4.0% over the best
baseline models. Similar performance gaps are ob-
served under the zero-shot setting, i.e., 5.0% in EM
and 2.9% in F1. Notably, under non-I.I.D. settings,
the improvement in EM is consistently larger than
that in F1, indicating that SG-KBQA is more capa-
ble of generating logical forms that precisely match
both the questions and the KB schema, thanks to
the class information that indicate the connections
between the KB elements.

Most few-shot LLM-based competitors are gen-
erally not very competitive, especially under the
non-I.I.D. settings and on complex questions
(CWQ). A key reason is that a limited set of exam-
ples fails to sufficiently represent the diversity of
KB elements necessary to address these challenges.

Results on WebQSP and CWQ On WebQSP
and CWQ, which both have I.I.D. test sets, the
performance gap of different models is closer.
Even in these cases, SG-KBQA still performs
the best, showing its applicability. Comparing
with TFS-KBQA (SOTA on WebQSP) and ChatK-
BQA (SOTA on CWQ), SG-KBQA improves the
F1 score by 0.5% on both datasets. Among IR-
based methods, UniKGQA (SOTA on WebQSP)
and EPR+NSM (SOTA on CWQ) still perform
much worse than SG-KBQA. The lower perfor-
mance of IR-based methods is consistent with ex-
isting results (Gu et al., 2022).

5.3 Ablation Study (Q2)

Next, we run an ablation study with the follow-
ing variants of SG-KBQA: w/o SER replaces our
schema-guided entity retrieval with the entity link-
ing results from TIARA (Shu et al., 2022) which is

commonly used in the baselines (Gu et al., 2023;
Faldu et al., 2024); w/o DED uses the top-1 candi-
date entity for each entity mention without defer-
ring entity disambiguation; w/o SC omits schema
contexts (classes) from logical form generation;
w/o Fallback LF removes the fall back logical
form generation mechanism from SG-KBQA. Ta-
ble 3 shows the results on the validation set of
GrailQA and the test set of WebQSP.

Schema-guided Entity Retrieval SER improves
the F1 score by 3.7 points and the EM score by
4.1 points on GrailQA (i.e., SG-KBQA vs. SG-
KBQA w/o SER for overall results), while achiev-
ing a 1.9-point increase in the F1 score on WebQSP.
It yields an improvement of at least 3.9 F1 points
and 4.5 EM points on the compositional and zero-
shot test sets, which exceeds the gains observed on
the I.I.D. test set (2.5 F1 points and 3.0 EM points).
This indicates that incorporating retrieved relations
helps the model more accurately identify them and
entity mention boundaries in questions involving
unseen relations. Since the entity retrieval results
directly serve as input to the generation stage, this
improvement further enhances the model’s overall
generalization performance under non-I.I.D. set-
tings. More discussion on entity retrieval results
and a case study are provided in Appendix J and
Appendix H, respectively.

Schema-guided Logical Form Generation SG-
KBQA w/o DED negatively impacts the F1 scores
on both GrailQA and WebQSP, confirming that our
DED strategy effectively mitigate error propaga-
tion between the retrieval and generation stages.
Meanwhile, SG-KBQA w/o SC (with deferred en-
tity disambiguation but no class information) has
the most significant drops in F1 under the com-
positional (7.2) and zero-shot (14.0) tests. This
highlights the contribution of class information in
enabling the model to understand the connections
among retrieved KB elements, thereby facilitating
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Overall I.I.D. Compositional Zero-shot

Model EM F1 EM F1 EM F1 EM F1

TIARA (T5-base) 75.3 81.9 88.4 91.2 66.4 74.8 73.3 80.7
w SER 79.5 84.3 90.3 92.3 71.2 78.1 78.3 83.3
w DED & SC 79.9 85.6 88.6 92.3 72.7 79.8 79.0 85.0

SG-KBQA 85.1 88.5 93.1 94.6 78.4 83.6 84.4 87.9
w T5-base 80.6 84.9 89.9 92.6 73.8 81.0 79.4 83.3

Table 4: Module applicability results on the validation set of GrailQA.
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Overall
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Figure 4: Proportion of questions resolved by the fall-
back mechanism on the validation set of GrailQA and
the test set of WebQSP.

the generation of correct logical forms. A case
study illustrating the schema-guided logical form
generation module is provided in Appendix H.

Fallback Mechanism SG-KBQA w/o Fallback
LF exhibits slightly lower performance, with F1
decreasing by 0.9 and EM by 3.3 on GrailQA, and
F1 decreasing by 1.7 on WebQSP. We note that
this fallback mechanism is not the reason why SG-
KBQA outperforms the baseline models. TIARA
also uses this fallback mechanism, while RetinaQA
uses the top executable logical form from the fall-
back mechanism as one of the options to be selected
by its discriminator to determine the final logical
form output. As shown in Table 3, SG-KBQA still
produces competitive results without fallback on
both I.I.D and non-I.I.D settings. Figure 4 further
reports the proportion of questions where the fall-
back mechanism was triggered, which is at most
11.1% of the test questions. This demonstrates that
our SG-KBQA model can generate executable log-
ical forms under non-I.I.D. settings in most cases
without relying on fallback.

5.4 Module Applicability (Q3)

Our entity retrieval module SER and logical form
generation module DED & SC can be applied to
existing models to improve their generalizability
under non-I.I.D. settings. We showcase such ap-
plicability with TIARA. As shown in Table 4, re-
placing TIARA’s entity retrieval module with ours

(TIARA w SER) helps boost the EM and F1 scores
by 4.2 and 2.4 points overall, comparing against
the original TIARA model. This improvement is
primarily from the tests with KB elements or com-
positions that are unseen at training, as evidenced
by the larger performance gains on the composi-
tional and zero-shot tests, i.e., 3.3 and 2.6 points
in F1, respectively. Similar patterns are observed
for TIARA w DED & SC that replaces TIARA’s
logical form generation module with ours. These
results demonstrate that our modules can enhance
the retrieval and generation steps of other compati-
ble models, especially under non-I.I.D. settings.

Table 4 further reports EM and F1 scores of
SG-KBQA when replacing LLaMA3.1-8B with
T5-base (which is used by TIARA) for logical
form generation. We see that, even with the same
T5-base model for the logical form generator, SG-
KBQA outperforms TIARA by 5.3 points 3.0
points in the EM and F1 scores for the overall tests.
This further confirms that the performance gains
come from the incorporation of the class contexts
instead of a more advanced backbone model.

We also have results on parameter impact, model
running time, a case study, and error analyses. They
are documented in Appendices F to I.

6 Conclusion

We proposed SG-KBQA for KBQA. Our core in-
novations include: (1) using relation to guide entity
retrieval; (2) deferring entity disambiguation to the
logical form generation stage; and (3) enriching
logical form generation with schema (class) con-
texts indicate KB element connections. Together,
we achieve a model that tops the leaderboard of a
popular non-I.I.D. dataset GrailQA, outperforming
SOTA models by 4.0%, 2.9%, and 3.3% in F1 un-
der compositional generalization, zero-shot gener-
alization, and overall test settings, respectively. Our
model also performs well in the I.I.D. setting, out-
performing SOTA models on WebQSP and CWQ.
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Limitations

Like any other supervised models, SG-KBQA re-
quires annotated samples for training which may
be difficult to obtain for many domains. Exploit-
ing LLMs to generate synthetic training data is a
promising direction to address this issue.

Also, as discussed in the error analysis in Ap-
pendix I, errors can still arise from the relation re-
trieval, entity retrieval, and logical form generation
modules. There are rich opportunities in further
strengthening these modules. As we start from rela-
tion extraction, the overall model accuracy relies on
highly accurate relation extraction. It would be in-
teresting to explore how well SG-KBQA performs
on even larger KBs with more relations.

We further noted several recent works in this
highly competitive area, e.g., READS (Xu et al.,
2025a) and MemQ (Xu et al., 2025b), which fine-
tune LLMs for reasoning trajectory generation or
step-wise tool invocation based on given topic enti-
ties. These studies represent parallel efforts to ours
with a focus on I.I.D. settings. We plan to evalu-
ate their performance in future work, particularly
under settings where the topic entity is unavailable
and in our non-I.I.D. scenarios.
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This work adheres to the ACL Code of Ethics and
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compliance with their respective licenses. As our
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A Basic Concepts

book.written_work.part_of_series

book.literary_series.author

book.literary_series.author
book.literary_series book.author
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Harry Potter
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Harry Potter and..... 

m.01m5g

book.written_work.part_of_series book.written_work.author

book.written_work

Knowledge Base:

Ontology:

Figure 5: A subgraph of Freebase (top) and its corre-
sponding ontology (bottom).

Ontology As shown in Figure 5, an ontology
triple example is:

book.literary_series,
book.literary_series.author,
book.author

An instance of it is:

Harry Potter,
book.literary_series.author,
J.K. Rowling

Here, Harry Potter is an entity that belongs to
class book.literary_series; J.K. Rowling is an
entity that belongs to class book.author.

S-expressions S-expressions (Gu et al., 2021)
use set-based semantics defined over a set of oper-
ators and operands. The operators are represented
as functions. Each function takes a number of argu-
ments (i.e., the operands). Both the arguments and
the return values of the functions are either a set of
entities or entity tuples (or tuples of an entity and
a literal). The functions available in S-expressions
are listed in Table 5, where a set of entities typically
refers to a class (recall that a class is defined as a
set of entities sharing common properties) or indi-
vidual entities, and a binary tuple typically refers
to a relation.

B Prompt Example

We show an example prompt to our fine-tuned
LLM-based logical form generator containing top-
20 relations and top-2 entities per mention retrieved
by our model in Table 6.

C Baseline Models

The following models are tested against SG-
KBQA on the GrailQA dataset:

• RnG-KBQA (Ye et al., 2022) enumerates and
ranks all possible logical forms within two
hops from the entities retrieved by an entity
retrieval step. It uses a Seq2Seq model to
generate the target logical form based on the
input question and the top-ranked candidate
logical forms.

• TIARA (Shu et al., 2022) shares the same
overall procedure with RnG-KBQA. It further
retrieves entities, relations, and classes based
on the input question and feeds these KB ele-
ments into the Seq2Seq model together with
the question and the top-ranked candidate log-
ical forms to generate the target logical form.

• TIARA+GAIN (Shu and Yu, 2024) enhances
TIARA using a training data augmentation
strategy. It synthesizes additional question-
logical form pairs for model training to en-
hance the model’s capability to handle more
entities and relations. This is done by a graph
traversal to randomly sample logical forms
from the KB and a PLM to generate questions
corresponding to the logical forms (i.e., the
“GAIN” module). TIARA+GAIN is first tuned
using the synthesized data and then tuned on
the target dataset, for its retriever and genera-
tor modules which both use PLMs.

• Decaf (Yu et al., 2023) uses a Seq2Seq model
that takes as input a question and a linearized
question-specific subgraph of the KG and
jointly decodes into both a logical form and
an answer candidate. The logical form is then
executed, which produces a second answer
candidate if successful. The final answer is
determined from these two answer candidates
with a scorer model.

• Pangu (Gu et al., 2023) formulates logical
form generation as an iterative enumeration
process starting from the entities retrieved
by an entity retrieval step. At each iteration,
partial logical forms generated so far are ex-
tended following paths in the KB to generate
more and longer partial logical forms. A lan-
guage model is used to select the top partial
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Function Return value Description

(AND u1 u2) a set of entities The AND function returns the intersection of two sets u1 and u2

(COUNT u) a singleton set of integers The COUNT function returns the cardinality of set u
(R b) a set of (entity, entity) tuples The R function reverses each binary tuple (x, y) in set b to (y, x)
(JOIN b u) a set of entities Inner JOIN based on entities in set u and the second element of tuples in set b
(JOIN b1 b2) a set of (entity, entity) tuples Inner JOIN based on the first element of tuples in set b2 and the second element

of tuples in set b1
(ARGMAX u b)
(ARGMIN u b) a set of entities These functions return x in u such that (x, y) ∈ b and y is the largest / smallest

(LT b n)
(LE b n)
(GT b n)
(GE b n)

a set of entities These functions return all x such that (x, v) ∈ b and v < / ≤ / > / ≥ n

Table 5: Functions (operators) defined in S-expressions (u: a set of entities, b: a set of (entity, entity or literal) tuples,
n: a numerical value).

logical forms to be explored in the next itera-
tion, under either fined-tuned models (T5-3B)
or few-shot in-context learning (Codex).

• FC-KBQA (Zhang et al., 2023) employs an
intermediate module to test the connectivity
between the retrieved KB elements, and it
generates the target logical form using the
connected pairs of the retrieved KB elements
through a Seq2Seq model.

• RetinaQA (Faldu et al., 2024) is a two-branch
model where one follows a ranking-based ap-
proach while the other follows a sketch-filling-
based logical form construction method. It
then uses a discriminator to determine the final
output logical form from the two branches.We
note that while we also generate logical form
sketches. Such sketches are used for entity
mention detection only and is not used to form
the final output logical forms directly, i.e., our
method is not sketch-filling-based.

• KB-BINDER (Li et al., 2023) uses a training-
free few-shot in-context learning model based
on LLMs. It generates a draft logical form by
showcasing the LLM examples of questions
and logical forms (from the training set) that
are similar to the given test question. Subse-
quently, a retrieval module grounds the sur-
face forms of the KB elements in the draft
logical form to specific KB elements.

• FlexKBQA (Li et al., 2024) considers lim-
ited training data and leverages an LLM to
generate additional training data. It samples
executable logical forms from the KB and uti-
lizes an LLM with few-shot in-context learn-
ing to convert them into natural language ques-

tions, forming synthetic training data. These
data, together with a few real-world training
samples, are used to train a KBQA model.
Then, the model is used to generate logical
forms with more real world questions (with-
out ground truth), which are filtered through
an execution-guided module to prune the er-
roneous ones. The remaining logical forms
and the corresponding real-world questions
are used to train a new model. This process is
repeated, to align the distributions of synthetic
training data and real-world questions.

The following models are tested against SG-
KBQA on the WebQSP dataset:

• Subgraph Retrieval (SR) (Zhang et al., 2022)
focuses on retrieving a KB subgraph relevant
to the input question. It does not concern re-
trieving the exact question answer by reason-
ing over the subgraph. Starting from the topic
entity, it performs a top-k beam search at each
step to progressively expand into a subgraph,
using a scorer module to score the candidate
relations to be added to the subgraph next.

• Evidence Pattern Retrieval (EPR) (Ding et al.,
2024) aims to extract subgraphs with fewer
noise entities. It starts from the topic entities
and expands by retrieving and ranking atomic
(topic entity-relation or relation-relation) pat-
terns relevant to the question. This forms a
set of relation path graphs (i.e., the candidate
evidence patterns). The relation path graphs
are then ranked to select the most relevant
one. By further retrieving the entities on the
selected relation path graph, EPR obtains the
final subgraph relevant to the input question.
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Example Prompt

Please translate the following question into logical form using the provided relations and entities.

Question: Strong lyrics is the description of which video game rating?

Candidate relations with their corresponding Domain [D], Name [N], Range [R]:

[D] cvg.game_version
[N] cvg.game_version.rating
[R] cvg.computer_game_evaluation;

[D] cvg.computer_game_rating
[N] cvg.computer_game_rating.rating_system
[R] cvg.computer_game_rating_system;

[D] cvg.computer_game_rating_system
[N] cvg.computer_game_rating_system.content_descriptors
[R] cvg.computer_game_content_descriptors

...(Continue in the same manner for additional relations)

Candidate entities with their corresponding id [ID], Name [N], Class [C]:

[ID] m.042zlv3
[N] Strong lyrics
[C] cvg.computer_game_content_descriptors

...(Continue in the same manner for additional entities)

Table 6: Example prompt to our fine-tuned LLM-based logical form generator for an input question: Strong lyrics
is the description of which video game rating?

• Neural State Machine (NSM) (He et al., 2021)
is a reasoning model to find answers for the
KBQA problem from a subgraph (e.g., re-
trieved by SR or EPR). It address the issue of
lacking intermediate-step supervision signals
when reasoning through the subgraph to reach
the answer entities. This is done by training
a so-called teacher model that follows a bidi-
rectional reasoning mechanism starting from
both the topic entities and the answer entities.
During this process, the “distributions” of en-
tities, which represent their probabilities to
lead to the answer entities (i.e., intermediate-
step supervision signal), are propagated. A
second model, the so-called student model,
learns from the teacher model to generate the
entity distributions, with knowledge of the in-
put question and the topic entities but not the
answer entities. Once trained, this model can
be used for KBQA answer reasoning.

• UniKGQA (Jiang et al., 2023) integrates both
retrieval and reasoning stages to enhance the
accuracy of multi-hop KBQA tasks. It trains a
PLM to learn the semantic relevance between
every relation and the input question. The

semantic relevance information is propagated
and aggregated through the KB to form the
semantic relevance between the entities and
the input question. The entity with the highest
semantic relevance is returned as the answer.

• ChatKBQA (Luo et al., 2024a) fine-tunes an
open-source LLM to map questions into draft
logical forms. The ambiguous KB items in the
draft logical forms are replaced with specific
KB elements by a separate retrieval module.

• TFS-KBQA (Wang and Qin, 2024) fine-tunes
an LLM for more accurate logical form gener-
ation with three strategies. The first strategy
directly fine-tunes the LLM to map natural
language questions into draft logical forms
containing entity names instead of entity IDs.
The second strategy breaks the mapping pro-
cess into two steps, first to generate relevant
KB elements, and then to generate draft log-
ical forms using the KB elements. The third
strategy fine-tunes the LLM to directly gen-
erate the answer to an input question. After
applying the three fine-tuning strategies, the
LLM is used to map natural language ques-
tions into draft logical forms at model infer-
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ence. A separate entity linking module is used
to further map the entity names in draft logical
forms into entity IDs.

• RoG (Luo et al., 2024b) fine-tunes an LLM
to generate relation paths grounded in the KB,
given an input question. These generated rela-
tion paths are then used to retrieve valid rea-
soning paths from the KB, enabling faithful
reasoning to derive the final answers.

• ToG (Sun et al., 2024) performs step-by-step
relation path selection using an LLM via few-
shot in-context learning. At each step, based
on newly extended paths, the model prompts
the LLM to either answer the question based
on the reasoning paths extended so far or con-
tinue with another step of path extension.

• ICSU (Liu et al., 2024) retrieves questions
from the training set that are similar to an
input question. Pairs of the retrieved questions
and the corresponding logical forms are used
as examples to prompt an LLM to generate
logical forms for the input question.

• FiDeLiS (Sui et al., 2025) combines semantic
similarity metrics with graph-based connec-
tivity to incrementally retrieve and extend rea-
soning paths. It further proposes Deductive-
Verification Beam Search (DVBS), which con-
verts the question into a declarative statement
and uses an LLM to verify — by combining
this statement with the current tail node of the
reasoning path — whether the current node
can be directly output as the answer or the
path should be further extended.

D Implementation Details

All our experiments are run on a machine with
an NVDIA A100 GPU and 120 GB of RAM. We
fine-tuned three bert-base-uncased models for
a maximum of three epochs each, for relation re-
trieval, entity ranking, and fallback logical form
ranking. For relation retrieval, we randomly sam-
ple 50 negative samples for each question to train
the model to distinguish between relevant and irrel-
evant relations.

For each dataset, a T5-base model is fine-tuned
for 5 epochs as our logical form sketch parser, with
a beam size of 3 (i.e., kL = 3) for GrailQA, and 4
for WebQSP. For candidate entity retrieval, we use

the same number (i.e., kE1 + kE2 = 10) of candi-
date entities per mention as that used by the base-
line models (Shu et al., 2022; Ye et al., 2022). The
retrieved candidate entities for a mention consist of
entities with the top-kE1 popularity scores and kE2

entities connected to the top-ranked relations in Rq,
where kE1 = 1, kE2 = 9 for GrailQA, kE1 = 3,
kE2 = 7 for WebQSP. We select the top-20 (i.e.,
kR = 20) relations and the top-2 (i.e., kE3 = 2)
entities (for each entity mention) retrieved by our
model. For WebQSP, we also use the candidate
entities obtained from the off-the-shelf entity linker
ELQ (Li et al., 2020).

Finally, we fine-tune LLaMA3.1-8B with
LoRA (Hu et al., 2022a) for logical form gener-
ation. On GrailQA, LLaMA3.1-8B is fine-tuned
for 5 epochs with a learning rate of 0.0001. On We-
bQSP, it is fine-tuned for 20 epochs with the same
learning rate (as it is an I.I.D. dataset where more
epochs are beneficial). During inference, we gener-
ate logical forms by beam search with a beam size
of 10 (i.e., KO = 10). The generated logical forms
are executed on the KB to filter non-executable
ones. If none of the logical forms are executable,
we check candidate logical forms from the fallback
procedures, and the result of the first executable
one is returned as the answer set.

Following our baselines (Shu et al., 2022; Gu
et al., 2023; Faldu et al., 2024), all retrieval and
generation models used in our approach are trained
separately on the training sets of GrailQA and We-
bQSP, and then evaluated on their respective vali-
dation and test sets. Specifically, for GrailQA, we
follow previous works (Shu et al., 2022; Gu et al.,
2023; Faldu et al., 2024) and adopt the official data
splits described in Section 5.1 to evaluate general-
ization under non-I.I.D. settings. For WebQSP, we
use the same data splits (described in Appendix 5.1)
as in previous studies (Shu et al., 2022; Gu et al.,
2023; Luo et al., 2024a; Wang and Qin, 2024) to
ensure fair comparison.

Our system parameters are selected empirically.
There are only a small number of parameters to
consider. As shown in the parameter study later, our
model performance shows stable patterns against
the choice of parameter values. The parameter
values do not take excessive fine-tuning.
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Model GrailQA WebQSP CWQ

ToG 81.4 82.6 67.6
FiDeLiS - 84.3 71.4
SG-KBQA (ours) 89.0 84.1 82.1

Table 7: Hit results (%) on the validation set of GrailQA
and the test set of WebQSP and CWQ.

E Results on an Additional Evaluation
Metric

Following recent studies (Sun et al., 2024; Sui
et al., 2025), we also compare the Hit results of
SG-KBQA with theirs on GrailQA, WebQSP, and
CWQ. Although SG-KBQA is not explicitly op-
timized for producing at least one correct answer,
it still shows substantial gains on GrailQA (7.6)
and CWQ (10.7) over the baselines. On WebQSP,
the Hit of SG-KBQA is only 0.2 lower than the
best baselines. These results further confirm the
effectiveness of SG-KBQA in enhancing general-
izability on non-I.I.D. scenarios and accuracy on
complex questions.

F Parameter Study

We conduct a parameter study to investigate the
impact of the choice of values for our system pa-
rameters. When the value of a parameter is varied,
default values as mentioned in Appendix D are
used for the other parameters.
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Figure 6: Impact of kL and kE1 on the recall of candi-
date entity retrieval.

Figure 6 presents the impact of kL and kE1 on
the recall of candidate entity retrieval (i.e., the av-
erage percentage of ground-truth entities returned
by our candidate entity retrieval module for each
test sample). Here, for the GrailQA dataset, we
report the results on the overall tests (same below).
Recall that kL means the number of logical form
sketches from which entity mentions are extracted,
while kE1 refers to the number of candidate entities
retrieved based on the popularity scores.
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Figure 7: Impact of kR and kE3 on the overall F1 score.

As kL increases, the recall of candidate entity
retrieval grows, which is expected. The growth
diminishes gradually. This is because a small num-
ber of questions contain complex entity mentions
that are difficult to handle (see error analysis in
Appendix I). As kL increases, the precision of the
retrieval also reduces, which brings noise into the
entity retrieval results and additional computational
costs. To strike a balance, we set kL = 3 for
GrailQA and kL = 4 for WebQSP. We also ob-
serve that the recall on WebQSP is lower than that
on GrailQA. This is because WebQSP has a smaller
training set to learn from.

As for kE1, when its value increases, the candi-
date entity recall generally drops. This is because
an increase in KE1 means to select more candi-
date entities based on popularity while fewer from
those connected to the top retrieved relations but
with lower popularity scores. Therefore, we default
kE1 at 1 for GrailQA and 3 for WebQSP, which
yield the highest recall for the two datasets, re-
spectively. Recall that we set the total number of
candidate entities for each entity mention to 10
(KE1 +KE2 = 10), following our baselines (e.g.,
TIARA, RetinaQA, and Pangu). Therefore, we
omit another study on KE2, as it varies with KE1.

Figure 7 further shows the impact of kR and
kE3 – recall that kR is the number of top candi-
date relations considered, and kE3 is the number of
candidate entities matched for each entity mention.
Now we show the F1 scores, as these parameters
are used by our schema-guided logical form gener-
ation module. They directly affect the accuracy of
the generated logical form and the corresponding
question answers.

On GrailQA, increasing either kR or kE3 leads
to higher F1 scores, although the growth becomes
marginal eventually. On WebQSP, the F1 scores
peak at kR = 25 and kE3 = 4. These results sug-
gest that feeding an excessive number of candidate
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Question: What is the name for the atomic units of length?

SpanMD (span classification): length (✗)

Ours (extracting from generated logical form sketches):
Retrieved Relations: measurement_unit.measurement_system.length_units,

measurement_unit.time_unit.measurement_system,
measurement_unit.measurement_system.time_units...

Generated Logical Form Sketch: (AND <class> (JOIN <relation> [ atomic units ])) (✓)
w/o SER: (AND <class> (JOIN <relation> [ length ])) (✗)

Table 8: Case study of entity mention detection by our model and SpanMD (a mention detection method commonly
used by SOTA KBQA models) on the GrailQA validation set. The incorrect entity mention detected is colored in
red, while the correct entity mention detected is colored in blue.

Relation 1
Domain Class
Range Class

cvg.game_version.rating
cvg.game_version
cvg.computer_game_evaluation

Relation 2
Domain Class
Range Class
Relation 3
Domain Class
Range Class

Entity 1
ID
Class

Strong lyrics
m.042zlv3
cvg.computer_game_content_descriptors

cvg.computer_game_rating_system.content_descriptors
cvg.computer_game_rating_system
cvg.computer_game_content_descriptors

cvg.computer_game_rating.rating_system
cvg.computer_game_rating
cvg.computer_game_rating_system

Candidate Relations: Candidate Entities:

Question: Strong lyrics is the description of which video game rating ?

Unseen during training

SG-KBQA w T5-base (ours):  (AND cvg.computer_game_rating (JOIN cvg.computer_game_rating.rating_system 
(JOIN cvg.computer_game_rating_system.content_descriptors m.042zlv3)))

SG-KBQA wo SC: (AND cvg.game_version (JOIN cvg.game_version.rating m.042zlv3))

TIARA & PANGU: (AND cvg.computer_game_rating_system 
(JOIN cvg.computer_game_rating_system.content_descriptors m.042zlv3))

schema-level interactions
(overlapping classes)

Figure 8: Case study of logical form generation by SG-KBQA and two representative competitors TIARA and
PANGU on the GrailQA validation set. Green arrows and boxes highlight schema-level interactions (overlapping
classes) among KB elements.

entities and relations to the logical form generator
module has limited benefit. To avoid the extra com-
putational costs (due to more input tokens) and to
limit the input length for compatibility with smaller
Seq2Seq models (e.g., T5-base), we use kR = 20
and kE3 = 2 on both datasets.

G Model Running Time

SG-KBQA takes 26 hours to train on the GrailQA
dataset and 13.6 seconds to run inference for a
test sample. It is faster on WebQSP which is a
smaller dataset. Note that more than 10 hours of
the training time were spent on the fallback logical
form generation. If this step is skipped (which does
not impact our model accuracy substantially as
shown earlier), SG-KBQA can be trained in about
half a day. Another five hours were spent on fine-
tuning the LLM for logical form generation, which
can also be reduced by using a smaller model.

As there is no full released code for the base-
line models, it is infeasible to benchmark against

them on model training time. For model inference
tests, TIARA has a partially released model (with
a closed-source mention detection module). The
model takes 11.4 seconds per sample (excluding
the entity mention detection module) for inference
on GrailQA, which is close to that of SG-KBQA.
Therefore, we have achieved a model that is more
accurate than the baselines while being at least as
fast in inference as one of the top performing base-
lines (i.e., TIARA+GAIN which shares the same
inference procedure with TIARA).

H Case Study

To further show SG-KBQA’s generalizability to
non-I.I.D. KBQA applications, we include a case
study from the GrailQA validation set as shown in
Table 8 and Figure 8.

Entity Mention Detection Figure 8 shows an
entity mention detection example, comparing our
entity detection module with SpanMD which is
a mention detection method commonly used by
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SOTA KBQA models (Shu et al., 2022; Ye et al.,
2022; Faldu et al., 2024). In this case, SpanMD
incorrectly detects length as an entity mention,
which is actually part of the ground-truth relation
(measurement_unit.. . ..length_units) that is un-
seen in the training data. Our schema-guided entity
retrieval module, on the other hand, leverages the
retrieved relations as additional KB schema con-
texts to generate a logical form sketch.

By retrieving the unseen relation measure-
ment_unit.measurement_system.length_units
from the question through our relation retrieval
module, the model is provided with schema-level
information not encountered during training. This
enables it to accurately identify the correct entity
mention, atomic units, from surrounding relation
tokens—even when both the mention and relation
are novel. Moreover, removing schema guidance
(i.e., using a Seq2Seq model without SER) results
in the same incorrect entity detection as SpanMD,
highlighting the importance of schema-guidance in
improving entity retrieval in non-I.I.D. scenarios.

Logical Form Generation Figure 8 shows a log-
ical form generation example. Here, SG-KBQA
and TIARA (a representative generation-based
model) and PANGU (a representative ranking-
based SOTA model) have both retrieved the same
sets of relations and entities in the retrieval stage
which include false positives and unseen ground-
truth relation. Meanwhile, the three models also
share the same retrieved entity m.042zlv3. Despite
accessing the correct entity and relevant relations,
both TIARA and PANGU fail to generate the cor-
rect logical form, instead producing a logical form
that consists of a relation composition seen at train-
ing. In contrast, SG-KBQA successfully generates
the correct logical form by leveraging schema con-
text (i.e. the entity’s class as well as the domain
and range classes of the retrieved relations which
overlap). This enables SG-KBQA to reason about
the connectivity between the unseen ground-truth
relation and the seen elements, demonstrating its
superiority in generalizing to novel compositions
of KB elements.

I Error Analysis

Following TIARA (Shu et al., 2022) and Pangu (Gu
et al., 2023), we analyze 200 incorrect predictions
randomly sampled from each of the GrailQA val-
idation set and the WebQSP test set where our
model predictions are different from the ground

truth. The errors of SG-KBQA largely fall into
the following three types:

• Relation retrieval errors (35%). Failures
in the relation retrieval step (e.g., failing to
retrieve any ground-truth relations) can im-
pinge the capability of our entity mention
detection module to generate correct logical
form sketches, which in turn leads to incorrect
entity mention detection and entity retrieval.

• Entity retrieval errors (32%). Errors in
the entity mentions generated by the logical
form sketch parser can still occur even when
the correct relations are retrieved, because
some complex and unseen entity mentions
require domain-specific knowledge. An ex-
ample of such entity mentions is ‘Non-SI
units mentioned in the SI’, which refers
to units that are not part of the International
System (SI) of Units but are officially recog-
nized for use alongside SI units. This entity
mention involves two concepts that are very
similar in their surface forms (Non-SI and
SI). Without a thorough understanding of the
domain knowledge (SI standing for Interna-
tional System of Units), it is difficult for the
entity mention detection module to identify
the correct entity boundaries.

• Logical form generation errors (31%). Gen-
eration of inaccurate or inexecutable logical
forms can still occur when the correct enti-
ties and relations are retrieved. The main
source of such errors is questions involving
operators rarely seen in the training data (e.g.,
ARGMIN and ARGMAX). Additionally, there
are highly ambiguous candidate entities that
may confuse the model, leading to incorrect
selections of entity-relation combinations. For
example, for the question Who writes twilight
zone, two candidate entities m.04x4gj and
m.0d_rw share the same entity name twilight
zone. The former refers to a reboot of the
TV series The Twilight Zone produced by
Rod Serling and Michael Cassutt, while the
latter is the original version of The Twilight
Zone independently produced by Rod Serling.
They share the same entity name and class
(tv.tv_program). There is insufficient contex-
tual information for our logical form generator
to differentiate between the two. The gen-
erator eventually selected the higher-ranked
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Steps\Models SG-KBQA TIARA RnG-KBQA

Relation Retrieval BERT-base-uncased BERT-base-uncased BERT-base-uncased
Logical Form Sketch Generation T5-base — —
Entity Mention Detection — BERT-base-uncased BERT-base-uncased
Entity Ranking BERT-base-uncased BERT-base-uncased BERT-base-uncased
Logical Form Generation LLaMA3.1-8B T5-base T5-base

Table 9: Backbone models used by SG-KBQA and baselines at each pipeline step

entity which was incorrect, leading to produc-
ing an incorrect answer to the question Rod
Serling and Michael Cassutt.

• The remaining errors (2%) stem from incor-
rect annotations of comparative questions in
the dataset. For example, larger than in a
question is annotated as LE (less equal) in the
ground-truth logical form.

J Retrieval Performance

Model Overall I.I.D. Comp. Zero.

RnG-KBQA 80.4 86.6 83.3 76.5
TIARA 85.4 91.3 86.9 82.2
SG-KBQA 90.5 94.0 90.8 88.8
w/o SER 86.9 92.5 88.1 83.9

Table 10: F1 scores of KBQA entity retrieval methods
under different generalization scenarios.

Entity Retrieval We report entity retrieval re-
sults under both I.I.D. and non-I.I.D. settings in
Table 10, comparing our schema-guided entity
retrieval module against baseline methods. Our
method consistently outperforms the strongest base-
line (TIARA), with larger performance gains ob-
served in non-I.I.D. scenarios. Specifically, com-
pared to a 2.7-point improvement in F1 score under
the I.I.D. setting, our method achieves gains of 3.9
and 6.6 points under the compositional and zero-
shot generalization settings, respectively. Further-
more, removing schema guidance from our logical
form parser leads to F1 drops of 2.7 points in the
compositional setting and 4.9 points in the zero-
shot setting. These results further highlight the
effectiveness of our schema-guided entity retrieval
in enhancing overall model generalizability.

For ease of comparison, we summarize the back-
bone models used by SG-KBQA and the base-
lines at each step of the pipeline in Table 9. In
Section 5.4, we report results showing that even
when using the same backbone model (T5-base) as
the baselines (TIARA), our SG-KBQA still outper-
forms them.
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Figure 9: Recall of top-k relation retrieval on validation
set of GrailQA and test set of WebQSP.

Relation Retrieval Figure 9 presents the recall
of relation retrieval in SG-KBQA under different
top-k settings. Overall, as k increases, the recall
improves but with diminishing gains. Notably, even
when k = 20, the relation recall on the GrailQA
validation set remains above 94%, despite some
question containing relations that were unseen dur-
ing training. These results indicate that the cross-
encoder-based retrieval model achieves high cover-
age of relevant relations, effectively retrieving both
seen and unseen relations.

Although a larger k introduces more noise (neg-
ative relations), our SG-KBQA does not rely on
highly precise relation retrieval. It leverages the
top-20 retrieved relations to provide auxiliary con-
text for the logical form sketch parser, and uses
schema context to guide the LLM in selecting valid
compositions of KB elements. Our experimental
results show that SG-KBQA is capable of identi-
fying the correct relations and their compositions
from a noisy candidate set, thereby improving ro-
bustness and generalization.
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