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Abstract

Conversational Speech Synthesis (CSS) aims
to generate speech with natural prosody by un-
derstanding the multimodal dialogue history
(MDH). The latest work predicts the accurate
prosody expression of the target utterance by
modeling the utterance-level interaction char-
acteristics of MDH and the target utterance.
However, MDH contains fine-grained semantic
and prosody knowledge at the word level. Exist-
ing methods overlook the fine-grained semantic
and prosodic interaction modeling. To address
this gap, we propose MFCIG-CSS, a novel
Multimodal Fine-grained Context Interaction
Graph-based CSS system. Our approach con-
structs two specialized multimodal fine-grained
dialogue interaction graphs: a semantic interac-
tion graph and a prosody interaction graph.
These two interaction graphs effectively en-
code interactions between word-level seman-
tics, prosody, and their influence on subse-
quent utterances in MDH. The encoded inter-
action features are then leveraged to enhance
synthesized speech with natural conversational
prosody. Experiments on the DailyTalk dataset
demonstrate that MFCIG-CSS outperforms all
baseline models in terms of prosodic expres-
siveness. Code and speech samples are avail-
able at https://github.com/AI-S2-Lab/MFCIG-
CSS.

1 Introduction

Conversational speech synthesis (CSS) systems are
required to generate speech with conversational in-
teraction prosody, unlike traditional text-to-speech
(TTS) systems (Guo et al., 2021; Liu et al., 2024b;
Guan et al., 2024; Liu et al., 2024c; Zhao et al.,
2025; Liu et al., 2025). With advances in user-
agent interaction, CSS plays a key role in intelli-
gent systems such as smartphone assistants (Vu
et al., 2024), smart homes (Jenal et al., 2022), and
virtual reality (El Miedany and El Miedany, 2019).

*Corresponding author.

Previous CSS methods improve prosody by mod-
eling multimodal dialogue history (MDH) with
coarse- and fine-grained context encoders (Lee
et al., 2023; Hu et al., 2024; Xue et al., 2023; Deng
et al., 2024; Li et al., 2022b). However, they model
coarse- and fine-grained features separately and
overlook the interactive influence of word-level se-
mantics and prosody on subsequent utterances. Ad-
ditionally, some approaches (Li et al., 2022a; Liu
et al., 2024a; Jia and Liu, 2024) enhance prosody
via speaking styles and emotional knowledge, but
only consider utterance-level interactions, ignoring
word-level effects.

The word-level semantics and prosody of key
words in MDH play a crucial role in conversational
interactions, directly influencing the semantics and
prosody of subsequent utterances (Xue et al., 2023;
Lin et al., 2024; Castro et al., 2019; Li et al., 2024,
2023; Peng et al., 2022). For example, in a conver-
sation, when the user says “I lost my wallet" and
“I lost my pen," they receive different responses in
terms of both semantics and emotional prosody: a
concerned inquiry “Was there anything valuable
in the wallet?" versus a relaxed inquiry “Which
pen did you lose?" The reason for the different
responses is that the semantics expressed by the
key words “wallet" and “pen" are different, and
the user’s emotional expression when saying these
two words also differ. Neglecting this word-level
interaction modeling would limit the agent’s abil-
ity to accurately capture semantic and prosodic
variations in MDH, further affecting the model-
ing of the prosodic expressiveness of target utter-
ance. Therefore, how to model the interactions
between word-level semantics, prosody, and the se-
mantics, prosody of subsequent utterances in MDH
to help the agent better understand the MDH and
enhance the prosody expressiveness of the synthe-
sized speech is the focus of this work.

To address this issue, we propose a Multimodal
Fine-grained Context Interaction Graph-based
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Figure 1: The overview of MFCIG-CSS consists of Multimodal Fine-grained Dialogue Semantic Interaction Graph,
Multimodal Fine-grained Dialogue Prosody Interaction Graph, and Speech Synthesizer.

CSS system, termed MFCIG-CSS. Specifically,
we design two multimodal fine-grained interaction
graphs: a semantic interaction graph that models in-
teractions between word-level semantics, prosody,
and subsequent utterance semantics in MDH, and
a prosody interaction graph that encodes interac-
tions between word-level semantics, prosody, and
subsequent utterance prosody. These interaction
graphs enhance the agent’s understanding of MDH.
Finally, we feed the encoded interaction features
from both interaction graphs into the speech syn-
thesizer to help the agent in synthesizing speech
that aligns with conversational interaction prosody.
In summary, the main contributions of this paper
are as follows: 1) We propose MFCIG-CSS, a
novel framework that models MDH interactions
from the perspective of word-level semantics and
prosody. 2) We design two interaction graphs—a
semantic interaction graph and a prosody inter-
action graph—that explicitly capture and encode
the fine-grained semantic and prosodic interactions
in MDH, enhancing the system’s contextual un-
derstanding. 3) Subjective and objective experi-
ments on the DailyTalk dataset show that MFCIG-
CSS outperforms all baseline models in terms of
prosody expressiveness.

2 Methodology

2.1 Task Definition

A dialogue is defined as a sequence of
utterances {[t1, s1], [t2, s2], ..., [tJ , sJ ], [tC , sC ]},

where {t1, t2, ..., tJ } represents the text of the di-
alogue history and tC represents the text of the
current utterance, {s1, s2, ..., sJ } represents the
speech of the dialogue history and sC represents
the speech to be synthesized. For any ti and si,
{W t

i,1, . . . ,W
t
i,q} and {W s

i,1, . . . ,W
s
i,q} denote the

word-level text and word-level speech of the i-th
utterance, where q denotes the number of words.

2.2 Model Overview

The proposed MFCIG-CSS consists of three main
components: 1) Multimodal Fine-grained Dialogue
Semantic Interaction Graph (SIG), 2) Multimodal
Fine-grained Dialogue Prosody Interaction Graph
(PIG), and 3) Speech Synthesizer. These modules
will be described in detail in the following sections.

2.3 SIG

As shown on the left side of Figure 1, the SIG
module consists of SIG Construction and SIG
Encoder. SIG captures the influence of word-level
semantics and prosody on semantic interactions
among subsequent utterances in dialogue history.

SIG Construction. To explicitly model the im-
pact of word-level semantics and prosody on the
subsequent utterance-level semantics interaction,
we design an SIG Gs = (N , E), where N de-
notes the nodes and E denotes the relational edges
between nodes. Gs consists of three interaction
branches, realized by three types of nodes (word-
level text, word-level speech, and utterance-level
text) and three types of relational edges. The three
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interaction branches are: 1) Word-level semantic
interaction branch: modeling the interaction be-
tween the word-level semantics and the subsequent
utterance-level semantics in the dialogue history; 2)
Word-level prosody interaction branch: model-
ing the interaction between the word-level prosody
and the subsequent utterance-level semantics in the
dialogue history; 3) Semantic interaction back-
bone branch: modeling the interaction between
the utterance-level semantics and the subsequent
utterance-level semantics in the dialogue history.
Note that we add a special interaction semantic
node (Is) at the end of the semantic interaction
backbone branch to integrate the interactive seman-
tic features of the entire MDH. When initializing
Gs, for the input t1→J , we use TOD-BERT (Wu
et al., 2020) to extract word-level text node fea-
tures {W t

1,1→q, . . . ,W
t
J ,1→q}, and use Sentence-

BERT (Reimers and Gurevych, 2019) to extract
utterance-level text node features {F t

1, . . . , F
t
J },

while adding speaker embeddings to represent the
identity of the speaker. For the input s1→J , we first
use MFA to obtain each word’s pronunciation seg-
ment, then use Wav2Vec2.0 (Baevski et al., 2020)
to extract frame-level prosodic features and apply
Average Pooling to obtain word-level speech node
features {W s

1,1→q, . . . ,W
s
J ,1→q}. We initialize Is

with a zero vector.

SIG Encoder. We input the initialized Gs into
the SIG Encoder for encoding, learning the interac-
tion of word-level semantics, prosody, and subse-
quent utterance-level semantics through three inter-
action branches. As shown in Equation (1), starting
from the first sentence in the dialogue history, the
utterance-level semantic feature (F t

i ), the word-
level semantic features (W t

i,1→q), and the word-
level prosody features (W s

i,1→q) of the i-th sentence
are sequentially aggregated into the utterance-level
semantic feature (F t

i+1) of the (i+1)-th sentence.
After all the nodes {F t

1 , F t
2 , . . . , F t

J , Is} in the
semantic interaction backbone branch fully interact
with other word-level semantic and prosody nodes,
we use Average Pooling to aggregate these interac-
tion features into Is, obtaining the final semantic
interaction feature: I ′s.

F t
i+1 = SAGEConv(F t

i ,W
t
i,1→q,W

s
i,1→q), i ∈ [1,J )

Is = SAGEConv(F t
J ,W

t
J ,1→q,W

s
J ,1→q)

I ′s = Average Pooling(F t
1→J , Is)

(1)

where SAGEConv (Hamilton et al., 2017) denotes
the graph convolution encoder.

2.4 PIG

As shown on the right side of Figure 1, the PIG
module, similar to the SIG module, consists of PIG
Construction and PIG Encoder. It is designed to
model the influence of word-level semantics and
prosody on the prosodic interactions of subsequent
utterances in the dialogue history.

PIG Construction. We design an PIG Gp in a
similar structure to Gs. Note that the difference
in construction compared to Gs is that the third in-
teraction branch of Gp is the prosody interaction
backbone branch, and at the end of this branch,
a special interaction prosody node (Ip) is added to
integrate the overall prosodic interaction features
of MDH. During the initialization of Gp, we use
Wav2Vec2.0-IEMOCAP1 to extract utterance-level
speech nodes and Ip is initialized with a zero vec-
tor.

PIG Encoder. For the initialized Gp, we use the
same architecture as the SIG Encoder to encode
the interaction features between word-level seman-
tics, prosody, and prosody of subsequent utterances
in MDH, as shown in Equation (2). Finally, we
apply Average Pooling to the interaction features
{F s

1 , F s
2 , . . . , F s

J , Ip} to obtain the final prosodic
interaction features: I ′p.

F s
i+1 = SAGEConv(F s

i ,W
t
i,1→q,W

s
i,1→q), i ∈ [1,J )

Ip = SAGEConv(F s
J ,W

t
J ,1→q,W

s
J ,1→q)

I ′p = Average Pooling(F s
1→J , Ip)

(2)

2.5 Speech Synthesizer

We adopt the speech synthesizer with the same
architecture as I3-CSS (Jia and Liu, 2024). Note
that the feature aggregator of MFCIG-CSS adds
the semantic interaction features I ′s and prosodic
interaction features I ′p into PtC to constrain the
synthesis of speech with conversational interaction
prosody. The speech synthesis loss follows the
setup of FastSpeech 2 (Ren et al., 2021).

3 Experiments and Results

3.1 Dataset

We validate MFCIG-CSS on the English dialogue
dataset DailyTalk (Lee et al., 2023), which com-
prises 2,541 dialogue pairs with approximately 20
hours of speech data. Each dialogue consists of an
average of 9.356 turns. The dialogues are recorded
with alternating turns between a male and a female

1https://huggingface.co/speechbrain/emotion-
recognition-wav2vec2-IEMOCAP
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Systems N-DMOS (↑) P-DMOS (↑) MAE-P (↓) MAE-E (↓) MCD (↓)

Base-CTTS (Guo et al., 2021) 3.673 ± 0.025 3.543 ± 0.027 0.530 0.467 11.42
FCTalker (Hu et al., 2024) 3.716 ± 0.022 3.627 ± 0.021 0.479 0.325 11.41
M2-CTTS (Xue et al., 2023) 3.756 ± 0.024 3.628 ± 0.028 0.543 0.380 11.96
CONCSS (Deng et al., 2024) 3.819 ± 0.022 3.695 ± 0.024 0.482 0.328 11.92
MSRGCN-CSS (Li et al., 2022b) 3.825 ± 0.020 3.734 ± 0.024 0.489 0.320 10.42
ECSS (Liu et al., 2024a) 3.843 ± 0.022 3.770 ± 0.025 0.505 0.332 9.90
I3-CSS (Jia and Liu, 2024) 3.858 ± 0.022 3.795 ± 0.020 0.450 0.310 11.47

MFCIG-CSS (Proposed) 3.980 ± 0.022 (+0.122) 3.899 ± 0.024 (+0.104) 0.439 (+0.011) 0.314 9.53 (+0.37)

Table 1: Main results. Bold indicates the best result. Green indicates improvement over the best baseline.

Systems N-DMOS (↑) P-DMOS (↑) MAE-P (↓) MAE-E (↓) MCD (↓)

Abl.Exp.1: w/o SIG 3.833 ± 0.025 3.793 ± 0.022 0.454 0.328 11.45
Abl.Exp.2: w/o PIG 3.824 ± 0.025 3.765 ± 0.023 0.457 0.325 11.36
Abl.Exp.3: w/o SIG and PIG 3.592 ± 0.023 3.512 ± 0.022 0.681 0.588 12.31

MFCIG-CSS (Proposed) 3.980 ± 0.022 (+0.147) 3.899 ± 0.024 (+0.106) 0.439 (+0.015) 0.314 (+0.011) 9.53 (+1.83)

Table 2: Ablation results. Bold indicates the best result. Green indicates improvement over the best ablation model.

speaker. We split the data into training, validation,
and test sets in an 8:1:1 ratio.

3.2 Experiment Setup
In MFCIG-CSS, the feature dimensions for text
word-level, speech word-level, text utterance-level,
and speech utterance-level in both Gs and Gp are
set to 256. The SIG Encoder and PIG Encoder
utilize SAGEConv (Hamilton et al., 2017) for graph
encoding, with both input and output channels set
to 256. The speaker embedding dimension is also
256. The speech synthesizer configuration is based
on FastSpeech2.0 (Ren et al., 2021). MFCIG-CSS
is trained for 400k steps with a batch size of 16 on
a single A800 GPU.

3.3 Comparative and Ablation Models
To demonstrate the effectiveness of the proposed
MFCIG-CSS, we compare it with seven state-of-
the-art CSS models. A detailed introduction of the
compared models is provided in Appendix A.1.

For the ablation models, Abl.Exp.1 removes SIG
to assess the impact of the semantic interaction
graph; Abl.Exp.2 removes PIG to assess the im-
pact of the prosody interaction graph; Abl.Exp.3
removes both to evaluate their combined effect on
model performance.

3.4 Evaluation Metric Details
For subjective evaluation, we use the Dialogue-
level Mean Opinion Score (DMOS) (Streijl et al.,
2016; Liu et al., 2024c, 2025). The evaluation is
conducted by 20 graduate students specializing in

speech, all of whom have passed CET-6, IELTS,
or TOEFL exams and have extensive experience
in DMOS assessments. Following the setup in (Jia
and Liu, 2024), we employ a 1-5 scale for Natu-
ralness DMOS (N-DMOS) and Prosody DMOS
(P-DMOS) to evaluate the quality and prosodic
performance of the synthesized speech.

For objective evaluation, we compute the Mean
Absolute Error of Pitch (MAE-P) and Mean Abso-
lute Error of Energy (MAE-E) (Liu et al., 2024a)
to assess the prosody of the synthesized speech.
Additionally, we measure the Mel Cepstral Distor-
tion (MCD) (Kubichek, 1993; Chen et al., 2022)
between the synthesized and ground-truth speech
to evaluate synthesis quality.

3.5 Main Results
We compare MFCIG-CSS with seven state-of-the-
art CSS models and analyze the results. As shown
in Table 1, MFCIG-CSS outperforms all baseline
models in terms of average performance. For sub-
jective metrics, N-DMOS (3.980) and P-DMOS
(3.899) achieve optimal performance, improving
by 0.122 and 0.104 compared to the best baseline
model, respectively. For objective metrics, MAE-P
(0.439) and MCD (9.53) also achieve optimal per-
formance, improving by 0.011 and 0.37 compared
to the best baseline model. For the objective metric
MAE-E (0.314), MFCIG-CSS achieves the second-
best performance, just 0.004 lower than the best
baseline model. The experimental results show that
MFCIG-CSS, by explicitly modeling the interac-
tions between word-level semantics, prosody, and
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the semantics, prosody of subsequent utterances
in MDH, can better understand the conversational
prosody expressed in MDH, thus enhancing the
agent’s ability to synthesize speech with appropri-
ate conversational interaction prosody.

3.6 Ablation Results

To assess the contribution of each component in
MFCIG-CSS, we conduct ablation experiments by
removing different components, as shown in Table
2. Abl.Exp.1 removes SIG to verify the impact of
modeling the interaction between word-level se-
mantics, prosody, and the semantics of subsequent
utterances in MDH on the performance of MFCIG-
CSS. The experimental results show that removing
SIG leads to a decrease in both subjective and ob-
jective metrics, indicating that explicitly modeling
the semantic interaction in MDH with SIG helps
improve the quality of the synthesized speech and
enhances its conversational prosody. Abl.Exp.2 re-
moves PIG to verify the impact of modeling the
interaction between word-level semantics, prosody,
and the prosody of subsequent utterances in MDH
on MFCIG-CSS performance. The experimental re-
sults show that removing PIG decreases all metrics,
especially prosody-related metrics. This suggests
that explicitly modeling the prosody interaction in
MDH with PIG helps the model learn the prosody
interactions effectively, improving the conversa-
tional prosody of the synthesized speech. Abl. Exp.
3 removes both SIG and PIG, resulting in the worst
performance across all metrics, further validating
the significant contribution of SIG and PIG to the
synthesis quality and prosody expressiveness of
MFCIG-CSS.

4 Conclusion

To enhance the CSS system’s understanding of
MDH and enable the synthesis of speech with
appropriate conversational prosody, we propose
MFCIG-CSS, a novel framework that explicitly
encodes the interactions between word-level se-
mantics, prosody, and the semantics and prosody
of subsequent utterances in MDH. This improves
the model’s comprehension of both semantic and
prosodic interactions within MDH. Experiments on
DailyTalk demonstrate that MFCIG-CSS surpasses
state-of-the-art CSS systems in prosody expression.
In the future, we will explore the interaction mod-
eling of finer-grained acoustic prosody, such as
emotions, emphasis, pauses, etc., within MDH.

5 Limitations

One limitation of our work is that MFCIG-CSS
is currently implemented only based on the Fast-
Speech 2 architecture to validate the effectiveness
of the proposed semantic and prosody interaction
graph modules. In the future, we plan to extend this
approach to VITS-based architectures and discrete
token-based speech encoders. Another limitation is
that we have not yet incorporated acoustic features
such as emotion, emphasis, and pauses into the
interaction graph modeling. Future work will fo-
cus on integrating these features to further enhance
the prosodic expressiveness and naturalness of the
synthesized speech.
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A Example Appendix

A.1 Comparative Models

• Base-CTTS (Guo et al., 2021) introduces
a text coarse-grained context encoder to im-
prove the quality of synthesized speech.

• FCTalker (Hu et al., 2024) designs a coarse-
grained and fine-grained text context encoder
to enhance the prosody of synthesized speech.

• M2-CTTS (Xue et al., 2023) proposes a
multi-scale, multi-modal context encoder to
enhance the prosody of synthesized speech.

• CONCSS (Deng et al., 2024) incorporates a
negative sample enhancement sampling strat-
egy in MDH modeling to improve the prosody
sensitivity of synthesized speech.

• MSRGCN-CSS (Li et al., 2022b) introduces
a context modeling scheme based on a multi-
scale relational graph convolutional network
to enhance the speaking style of synthesized
speech.

• ECSS (Liu et al., 2024a) incorporates a con-
text modeling scheme based on multi-source
knowledge heterogeneous graphs to enhance
the emotional expressiveness of the synthe-
sized speech.

• I3-CSS (Jia and Liu, 2024) includes an intra-
modal and inter-modal context interaction
modeling scheme at the utterance level to im-
prove the prosody performance of synthesized
speech.
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