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Abstract

Word Sense Disambiguation (WSD) aims to
determine the correct meaning of a word in con-
text from a predefined inventory, and remains a
fundamental challenge in natural language un-
derstanding. Existing methods rely heavily on
manually annotated data, which limits coverage
and generalization. In this work, we propose
a scalable framework that leverages large lan-
guage models (LLMs) as knowledge distillers
to construct silver-standard WSD corpora. We
explore generation-based distillation, where di-
verse examples are synthesized for dictionary
senses, and annotation-based distillation, where
LLMs assign sense labels to polysemous words
within real-world corpus sentences. The result-
ing data is used to train tiny models. Exten-
sive experiments show that models distilled
from LLM-generated data outperform those
trained on gold-standard corpora, especially on
general-domain benchmarks. Our annotation-
based model, after balancing sense distribution,
achieves 50% F1 gain on the most challeng-
ing test set and the best distilled model can
match or even exceed the performance of its
LLM teacher, despite having over 1000 times
fewer parameters. These results demonstrate
the effectiveness of LLM-based distillation for
building accurate, generalizable, and efficient
WSD systems.

1 Introduction

Word Sense Disambiguation (WSD) is a funda-
mental task in natural language processing (NLP),
which aims to select the most appropriate sense
of a target word from a predefined inventory, such
as WordNet (Miller et al., 1990), based on its sur-
rounding context (Barba et al., 2021a; Maru et al.,
2022). For instance, as shown in Table 1, given the
context “He always rode the bus to work” and the
target word “bus”, the goal is to identify the correct

*Equal contribution to the first author
†Corresponding author

Context He always rode the bus to work.
Definition 1 a vehicle carrying many passengers; used

for public transport
Definition 2 the topology of a network whose compo-

nents are connected by a busbar
Definition 3 an electrical conductor that makes a com-

mon connection between several circuits
Definition 4 a car that is old and unreliable

Table 1: An example of word sense disambiguation for
the target word bus. The correct sense is underlined.

sense (e.g., a vehicle for public transport) among its
multiple definitions (glosses). WSD plays a crucial
role in enabling machines to understand natural lan-
guage and helping language learners to ease their
study (Orlando et al., 2022).

Over the past decade, WSD research has made
notable progress, supported by manually anno-
tated corpora and WordNet-based glosses. Exist-
ing methods fall into two broad categories. One
enhances disambiguation architectures using pre-
trained language models and gloss encoders, such
as ESC (Barba et al., 2021a), ConSeC (Barba et al.,
2021c), and RTWE (Zhang et al., 2023b). The
other leverages multilingual signals and external
knowledge, including BabelNet alignment (Luan
et al., 2020) and cross-lingual transfer (Kang et al.,
2023). While effective in domain-specific settings,
these methods rely heavily on labor-intensive man-
ual annotations, which limits scale and domain
diversity. Consequently, models trained on such
data often struggle to generalize to real-world or
out-of-distribution scenarios (Maru et al., 2022).

To tackle data scarcity and poor generalization,
there are two promising directions. One is to di-
rectly employ large language models (LLMs) to
improve the generalization ability of small models,
as LLMs have demonstrated strong performance
across various tasks (Ravi et al., 2024; Li et al.,
2024; Liang et al., 2024). The other is to expand
training data with broader coverage to mitigate the
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limitations of manually annotated resources.
Despite their strengths, directly using LLMs for

WSD poses practical limitations. First, LLMs de-
mand substantial computation and incur high in-
ference latency, making them unsuitable for real-
time or large-scale online applications. Second,
prior studies (Kocoń et al., 2023; He et al., 2024)
have shown that LLMs, as general-purpose mod-
els, often underperform on tasks like WiC (Word-
in-Context) and WSD that require deep semantic
understanding and precise sense distinctions due
to their “jack of all trades, master of none” nature.
Their predictions may fail to capture subtle contex-
tual cues needed for accurate disambiguation.

To overcome these limitations, we adopt the lat-
ter direction and propose a knowledge distillation
framework that leverages LLMs to construct large-
scale, silver-standard and general-domain WSD
training corpora. We explore two distinct distil-
lation approaches: (i) generation-based distilla-
tion, where LLMs generate diverse example sen-
tences for dictionary senses to create synthetic train-
ing data; and (ii) annotation-based distillation,
where LLMs assign sense labels to polysemous
words from a large open-ended corpus. The re-
sulting datasets are used to fine-tune a compact
WSD model, ensuring both efficiency and strong
disambiguation performance.

We conduct a comprehensive evaluation of both
approaches under a unified setting across domain-
specific and general-domain test sets. Our main
contributions are:

• We propose a scalable and adaptable frame-
work for general-domain WSD that leverages
LLMs to generate or annotate sense-labeled
examples, enabling the training of compact
models without manual annotation.

• We explore decoding and prompt-level diver-
sity strategies for generation-based distilla-
tion, highlighting the trade-off between diver-
sity and definition accuracy.

• We introduce an incremental annotation proce-
dure on large-scale real-world corpora using
LLMs, and show its effectiveness in enhanc-
ing generalization and sense coverage.

• Experiments demonstrate that our distilled
model achieves strong general-domain per-
formance. With balanced training data, it sur-
passes gold-data-trained models by over 50%

F1 on the hardest benchmark. In the annota-
tion setting, our small model matches or even
surpasses the disambiguation performance of
its LLM teacher in most cases, despite having
far fewer parameters.

2 Related Work

2.1 Knowledge Distillation and LLM-based
Data Annotation

The distillation of knowledge from LLMs has
emerged as a promising approach to building ef-
ficient downstream models while avoiding the
high computational cost of direct LLM inference.
Among the various strategies, two widely adopted
distillation paradigms are data annotation and data
generation (Xu et al., 2024). In the annotation
paradigm, LLMs are treated as automatic labelers
that assign task-specific labels such as entity types,
sentiments, or word senses to unlabeled text. This
method has proven effective in tasks such as named
entity recognition (NER), where Zhou et al. (2023)
used ChatGPT to annotate a large corpus and fine-
tune a compact model that outperformed both the
LLMs and the supervised baselines.

We extend this approach to the more seman-
tically demanding task of WSD. By prompting
LLMs to assign WordNet senses to raw sentences,
we produce large-scale labeled data for supervised
training. This enables the construction of large-
scale and high-quality training sets without human
effort and enhances the disambiguation and gener-
alization abilities of smaller models.

2.2 LLM-based Text Data Generation for
Model Training

Data generation is another major distillation strat-
egy, where LLMs synthesize task-specific exam-
ples under zero-shot or few-shot settings. This
approach has been widely used in tasks such as sen-
timent analysis (Zhang et al., 2023a) and natural
language inference (Ye et al., 2022), and is known
for its scalability and flexibility.

To improve quality, recent work has focused on
balancing diversity and accuracy. For instance, Yu
et al. (2024) used attribute-controlled prompts to
boost coverage, while Gupta et al. (2023) intro-
duced multi-step self-correction to ensure consis-
tency. However, most existing studies target shal-
low classification tasks, whereas WSD requires
finer-grained semantic distinctions and broader con-
textual understanding, posing greater challenges.
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Figure 1: Overall framework of our method. Given only a dictionary as input, we construct a silver-standard WSD
training dataset using either diverse example generation or LLM-based annotation, then train a compact WSD model.
“Iterative” refers to conducting multiple rounds of annotation, where each round traverses all lemmas, selects an
unlabeled sentence for each, performs incremental annotation, and adds the result to the growing cumulative set.

We explore zero-shot generation for WSD, focus-
ing on producing diverse and extensive examples.
Combined with annotated data, this strategy en-
riches training sets and improves small model per-
formance in broad-domain disambiguation.

3 Methodology

This section introduces our framework for con-
structing general-domain training data for WSD
via knowledge distillation from LLMs. As illus-
trated in Figure 1, our framework consists of three
stages: (i) dictionary-based input specification, (ii)
construction of a silver-standard dataset through
either generation or annotation, (iii) task-specific
small model training for WSD. Both of our two
distillation approaches share the same inputs and
model training at the start and finish of the process.

3.1 Input

Our framework requires only a general-purpose
sense inventory as input, which can be any dictio-
nary that provides definitions for words. In this
study, we use WordNet (Miller et al., 1990), the
most widely adopted resource in WSD research,
which offers fine-grained sense distinctions and
broad lexical coverage (Proietti et al., 2024), con-
taining 147,306 lemmas and 206,941 distinct sense
entries represented as (lemma, POS, definition)

triples. Such granularity makes it suitable for build-
ing comprehensive disambiguation datasets.

We extract all polysemous lemmas and their can-
didate sense definitions from WordNet, excluding
monosemous words that do not require disambigua-
tion. The resulting lemma-definition pairs (li, di)
serve as semantic anchors for downstream data
construction. Formally, we obtain a set of n pairs
(l1, d1), (l2, d2), . . . , (ln, dn), where li denotes a
lemma, and di is its corresponding definition.

3.2 Silver-Standard Dataset Construction
To create the training data, we explore two distinct
knowledge distillation approaches from LLMs:
generation-based and annotation-based. Both
aim to construct general-domain silver-standard
datasets that enhance sense coverage and diver-
sify disambiguation scenarios, but they differ in
strategies and data sources. The generation method
relies on lexicon-guided controlled synthesis, while
the annotation method leverages real-world corpus
contexts. Each method includes its own tailored
strategies to maximize the lexical and domain vari-
ety of the constructed examples.

3.2.1 LLM-Based Example Generation from
Dictionary

This approach generates disambiguation instances
directly from the extracted lemma-definition pairs

886



using LLMs. For each pair (li, di), we apply a di-
versity strategy V and use an LLM generator G to
produce t distinct example sentences that demon-
strate the target sense. Each sentence si includes
the target word marked with <t> and </t> tags.
The final synthetic dataset Dsyn is defined as:

Dsyn =
t⋃

j=1

n⋃

i=1

G(li, di, V ) (1)

To improve coverage and diversity, we design
two types of diversity strategy to guide the genera-
tion process.

Decoding-Based Diversity. We vary decoding
parameters such as temperature, top-k, and top-
p sampling to introduce randomness and lexical
variation. Temperature controls sampling sharp-
ness, top-k restricts selection to the most probable
k tokens, and top-p selects from the smallest set
of tokens whose cumulative probability exceeds
a threshold p. These methods offer a simple yet
effective way to increase variability, although they
may still be limited in semantic scope.

Prompt-Based Diversity. We further introduce
diversity at the prompt level to guide the LLM to
generate examples with explicit domain or stylistic
variation:

• DomGen (Domain-Guided Generation):
This strategy randomly samples domain labels
from 42D, a corpus aligned with 42 domains
defined in BabelNet (Navigli and Ponzetto,
2012), and inserts them into prompts. The
LLM is instructed to produce examples situ-
ated within the specified domain, and the re-
sulting outputs are tagged with domain labels
(|<d>{DOMAIN}</d>) for downstream filter-
ing and analysis.

• DivGen (Form & Content Diversity): In-
spired by Tevet and Berant (2020), this strat-
egy injects variation in both syntactic form
and semantic content. Compared to DomGen,
it is more general and flexible, mitigating hal-
lucinations caused by forced domain align-
ment. It includes two settings: DivGenonce
generates all diverse examples in one pass,
while DivGeniter uses dialog-based iteration
to ensure that each generated example is dif-
ferent from the previous.

These prompt-level strategies significantly en-
hance semantic coverage and output variety, and

are key components in our generation-based distil-
lation approach. Detailed prompt design and result
analysis can be found in Appendix A.

3.2.2 LLM-Based Annotation Through
Corpus

Annotation-based distillation aims to construct a
large-scale silver-standard dataset for WSD by an-
notating real-world examples from an open-ended
corpus using LLMs. To build a comprehensive
and diverse instance library to be annotated, we
begin by extracting sentence-level data from the
British National Corpus (BNC) (Consortium et al.,
2007), a representative sample of modern, diverse
language usage. The BNC consists of documents
from various domains and contains approximately
100 million words spanning different text genres,
including both written and spoken forms from con-
temporary British English. In contrast, SemCor
(Miller et al., 1993), the most commonly used man-
ually annotated gold standard training set in WSD,
is sampled from the much smaller Brown corpus
(Francis and Kucera, 1979) (approximately 1 mil-
lion words reflecting 1950s–1960s American En-
glish). The BNC’s size and domain breadth make
it suitable for capturing diverse sense usage.

Corpus Preparation. Let C denote the 4049
BNC documents. We segment each document into
sentences using a segmentation function seg(d),
and filter by length to retain sentences between 4
and 128 tokens. This step helps remove meaning-
less short sentences and noisy long ones that may
result from improper segmentation in the original
document. The resulting sentence set is defined as:

Sf = {s ∈
⋃

d∈C
seg(d) : 4 ≤ L(s) ≤ 128} (2)

We then classify these sentences based on pol-
ysemous words defined in WordNet. Let Wpoly
denote the set of all polysemous lemma-pos pairs
in WordNet. For each sentence s ∈ Sf , we extract
the set of tokens corresponding to these words:

T (s) = {w ∈ s : lp(w) ∈ Wpoly} (3)

where lp(w) denotes the lemma-pos pair of word
w.

For each x ∈ Wpoly, we collect all sentences that
contain at least one word w such that lp(w) = x.
The instance set for each x is defined as:

Dx = {s ∈ Sf : ∃w ∈ s such that lp(w) = x}
(4)
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After removing lemma-pos pairs with no match-
ing sentences, we obtain a filtered set W ′

poly ⊂
Wpoly, with |W ′

poly| = 22,161. The final unlabeled
instance library is:

Dunlabeled =
⋃

x∈W ′
poly

Dx (5)

This results in 47,807,191 instances. Each instance
is a pair (s, w), where s is a sentence and w is a
polysemous word to be disambiguated. A single
sentence may yield multiple instances if it contains
multiple target words.

Incremental Annotation. In the unlabeled in-
stance library Dunlabeled, each polysemous word
x ∈ W ′

poly is associated with a set of candidate sen-
tences Dx. Our goal is to obtain a silver-standard
annotation for each polysemous word by leverag-
ing a LLM as an annotator. To do so, we perform
the following incremental annotation process over
n iterations (with n up to 100).

For each polysemous word x ∈ W ′
poly and for

each iteration k ∈ {1, 2, . . . , n}, we randomly se-
lect an unlabeled candidate instance s(k)x ∈ Dx that
has not been annotated in any previous iteration.
Let C(x) denote the list of candidate senses for x
as provided by WordNet. We then apply the LLM
annotator with a pre-defined annotation template
(see Figure 4), which is adapted from Kocoń et al.
(2023), to the pair (s(k)x , C(x)). Formally, the an-
notation operation is represented as:

a(k)x = Annotate(s(k)x , C(x)) (6)

where a
(k)
x is the sense annotation for x obtained

in iteration k. And the annotation set for iteration
k is defined as:

A(k) = {(x, s(k)x , a(k)x ) : x ∈ W ′
poly} (7)

After completing one full iteration over all pol-
ysemous words, each x is associated with one an-
notated instance. We then mark x as annotated
for that iteration to avoid redundant selection in
subsequent rounds.

This process is repeated for n rounds, and the
cumulative annotated set is given by:

Danno =
n⋃

k=1

A(k) (8)

Thus, after n rounds, each polysemous word x
can have up to n annotated instances (excluding

any erroneous ones). As n increases, the dataset
grows incrementally, yielding a richer corpus for
downstream WSD training.

Finally, to mitigate the imbalance in annotated
senses, we apply a frequency-based filtering step.
We limit the number of annotated instances per
sense to 10. If a sense occurs more than 10 times
in Danno, we retain only 10 randomly selected ex-
amples. This encourages better generalization by
preventing dominant senses from overwhelming
rare ones.

3.3 Task-Specific Small Model Training for
WSD

Once the training dataset is prepared, either through
generation (Dsyn) or annotation (Danno), we pro-
ceed to train a dedicated WSD model. Each
training instance is represented as a quadruple
(w, s,D, dt), where w is the target word to be
disambiguated, s is the sentence in which w ap-
pears, with <t> and </t> tags marking its span,
D = {d1, . . . , dm} is the set of candidate defini-
tions for the lemma-pos pair of w extracted from
WordNet, and dt is the correct definition label.

We use ESCHER (Barba et al., 2021a), a BART-
based tiny WSD model. ESCHER jointly encodes
the sentence and candidate definitions, and treats
WSD as a span extraction task. It provides a strong
balance between efficiency and accuracy, making
it suitable for deployment in practical WSD sys-
tems. We train ESCHER following the original
protocol of Barba et al. (2021a). Concretely, we
replace the original SemCor training set with our
silver datasets and use SemEval-2007 (Pradhan
et al., 2007) as the validation set. All model ar-
chitecture choices and training hyperparameters
follow the public ESCHER repository1 defaults.
For reproducibility, we use the publicly released
training code from Barba et al. (2021a) without
modifying the core codebase, making only minimal
adjustments to align input formats to our dataset.

4 Experiments

4.1 Experimental Settings

Evaluation Framework. Since our goal is to
construct disambiguation data suitable for general
use, we divided test sets into two categories to
thoroughly assess the performance of our silver
standard data:

1https://github.com/SapienzaNLP/esc
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Diversity
Strategy

Generation
Method

Decoding
Parameter

Domain-Specific Sets General-Domain Sets Diversity Metric Definition Accuarcy
ALL ALL_NEW S10_NEW SoftEN 42D HardEN Distinct-n DS-DA

Baseline
EXMAKER(K1) - - 60.8 67.4 64.3 60.3 33.6 - -
SimGen Temperature=1 65.74 63.35 74.55 67.83 67.84 34.45 0.691 0.913

Decoding-based
Diversity

SimGen

Temperature=0.5 64.59 61.81 70.05 65.87 68.11 34.66 0.486 0.895
Temperature=1.5 66.61 64.69 74.24 68.70 68.65 38.45 0.816 0.875
Top-k=5 64.84 61.72 70.58 65.78 65.41 32.98 0.664 0.903
Top-k=40 63.84 60.97 72.46 65.35 67.03 35.08 0.685 0.891
Top-k=80 64.14 61.13 72.15 65.47 67.84 35.92 0.686 0.903
Nucleus p=0.9 63.96 61.54 70.37 65.44 68.38 36.97 0.623 0.900

Prompt-based
Diversity

DomGen Temperature=1 63.85 60.40 69.63 64.31 70.00 39.08 0.902 0.729
DivGenonce Temperature=1 67.09 64.69 73.82 68.66 69.73 39.08 0.928 0.785
DivGeniter Temperature=1 68.41 67.56 74.35 71.23 70.81 39.92 0.920 0.812

Llama-3.1-70B-Labeling-ESCHER* 74.48 75.98 79.48 71.89 78.98 43.28 0.935 0.842

Table 2: Comparison of generation methods under different diversity strategies and the performance of annotation
methods in equivalent settings (* indicates that the scale of annotated data is similar to that of generated data). The
unified generator for all diversification methods is Llama-3.1-70B-Instruct. F1 score is used for disambiguation
evaluation, Distinct-n for diversity evaluation, and DS-DA serves as a reference for word sense accuracy.

• Domain-specific test sets: includes ALL,
ALL_NEW, S10_NEW, and SoftEN, which
reflect distributions similar to manually anno-
tated data and are focused on specific, limited
domains where models trained on manually
annotated data perform well.

• General-domain test sets: includes 42D and
HardEN. These sets are designed to chal-
lenge models in diverse, unfamiliar, or out-of-
distribution contexts. 42D spans a broad range
of domains, while HardEN specifically con-
sists of instances that are not correctly disam-
biguated by any system in prior benchmarks.

In detail, the dataset named ALL is the union of
six sub-datasets from the standard evaluation frame-
work proposed by Raganato et al. (2017), with
SemEval-07 (Pradhan et al., 2007) commonly used
as a validation set in prior work, and we adopt the
same setting. The other five test sets are based on
a new benchmark proposed by Maru et al. (2022).
Among these, 42D is a multi-domain challenge set,
ALL_NEW and S10_NEW are amended versions
of ALL and SemEval-2010 Task 17 (Agirre et al.,
2010), respectively. SoftEN contains instances cor-
rectly disambiguated by at least one system, while
HardEN includes instances that none of the sys-
tems was able to disambiguate correctly. Detailed
dataset statistics are presented in Appendix C.

It is worth noting that the difficulty of HardEN
may arise from two potential factors. The first
is that its data distribution may involve a cross-
domain shift, which makes it substantially different
from the distribution of conventional training data
and thus limits the model’s ability to generalize.
The second is that HardEN may include inherently
difficult disambiguation instances that are challeng-

ing even for human annotators. Based on our ex-
amination of the examples, we consider the former,
namely domain mismatch, to be the more likely
cause. Therefore, we categorize HardEN as part of
the general-domain test sets.

Evaluation Metrics. We use the distinct-n metric
(Tevet and Berant, 2020) to measure the lexical
diversity of generated examples. It ranges from 0
to 1, with higher values indicating greater variation
in n-grams. For WSD performance, we report the
commonly used F1 score. To assess whether each
silver example accurately expresses the intended
sense, we created a definition accuracy evaluator
based on DeepSeek-v3 (DS-DA). For more details
about this automated indicator, see Appendix D.

Comparison Systems. To evaluate the effective-
ness of our data generation and annotation methods,
we compare the following systems on three aspects:

(1) Synthetic Data Generation. We follow the
setting of Barba et al. (2021b), generating 6 sen-
tences per lemma-definition pair using Llama-3.1-
70B-Instruct as the sentence generator across all
diversity strategies. As a baseline, we include a sim-
ple prompting approach, SimGen, which generates
six sentences independently without applying any
diversity-enhancing mechanisms, serving to isolate
the impact of our diversity strategies. Additionally,
we compare against the K1 dataset introduced by
Maru et al. (2022), which is constructed using the
EXMAKER encoder-decoder architecture (Barba
et al., 2021b).

(2) Generation vs. Annotation Distillation.
To assess whether generation-based or annotation-
based distillation is more effective, we construct a
silver dataset of equal scale using the annotation
method, again leveraging Llama-3.1-70B-Instruct.
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Method Param Size
Domain-Specific Sets General-Domain Sets

ALL ALL_NEW S10_NEW SoftEN 42D HardEN
ESCHER(SemCor) 406M 80.7 81.6 82.1 86.8 54.1 0.0
Llama-3.1-8B-Inference 8B 69.83 68.54 68.27 70.93 60.27 32.56
Llama-3.1-8B-Labeling-ESCHER 406M 74.77 75.62 75.6 78.48 62.16 33.73
Llama-3.1-70B-Inference 70B 76.48 77.99 80.84 80.68 72.97 47.27
Llama-3.1-70B-Labeling-ESCHER 406M 78.53 80.31 81.78 83.32 73.24 41.39
Llama-3.1-405B-Inference 405B 78.67 81.29 82.09 84.2 73.24 46.64
Llama-3.1-405B-Labeling-ESCHER 406M 79.32 81.72 82.51 84.77 74.59 40.76
Deepseek-v3-0324-Inference 685B 79.90 82.55 83.98 85.24 78.92 49.58
Deepseek-v3-Labeling-ESCHER 406M 79.88 81.86 83.98 85.36 75.14 42.23
Deepseek-v3-Labeling-ESCHER† 406M 78.59 81.72 83.25 84.63 77.03 50.00
Deepseek-v3-Labeling-ESCHER(+SemCor) 406M 81.35 83.89 85.76 88.12 62.70 15.45

Table 3: Comparison results of the LLMs annotation distillation methods. SemCor refers to manually annotated
gold standard data, and +SemCor indicates the combination of manually annotated and LLMs annotated data. †
indicates that the distribution of all annotated senses has been balanced by setting an upper threshold of 10. F1 score
is used for disambiguation evaluation.

Both datasets are used to train ESCHER under
identical settings. The annotation-based system is
referred to as Llama-3.1-70B-Labeling-ESCHER*.

(3) Annotation-Based Comparisons. We fur-
ther benchmark against multiple annotation base-
lines. First, we train ESCHER directly on the
human-annotated SemCor corpus to represent gold-
standard supervision. Second, we compare our dis-
tilled small model to the LLM itself used for direct
disambiguation via prompting. Finally, we explore
whether combining human-labeled gold data with
LLM-labeled silver data yields performance gains
over either source alone.

Specific statistics and cost analysis regarding our
use of LLMs to generate or annotate data can be
found in Appendix E.

4.2 Experimental Results and Analysis

4.2.1 Effect of LLM-based Diverse
Generation Distillation

In Table 2, we report the experimental results
of both decoding-based diversity strategies and
prompt-based strategies that inject diversity de-
scriptions. Compared to the previous BART-based
EXMAKER approach, our method using Llama-
3.1-70B-Instruct achieves substantial performance
gains, demonstrating the advantage of LLMs in
generating semantically rich examples.

Among the diversity strategies, prompt-based
methods generally perform better than decoding-
based ones, especially on general-domain test sets.
For example, the performance on HardEN im-
proves by nearly 5% in F1 score. This improve-
ment is largely due to higher lexical diversity, with
distinct-n values often exceeding 0.9. However,

these methods tend to reduce definition accuracy
compared to simpler baselines like SimGen, which
generates examples independently without addi-
tional diversity prompts. In some cases, such as
DomGen, performance on domain-specific test sets
even falls below SimGen. One likely reason is that
forcing the model to generate examples in unfamil-
iar or low-frequency domains may lead to hallu-
cinations or meaningless outputs. This highlights
the need to ensure both diversity and quality, con-
sistent with the issues pointed out by Chung et al.
(2023). A promising solution is to use discrimina-
tive models or LLMs themselves as evaluation tools
to identify and filter low-quality examples, follow-
ing the idea of LLM-as-a-judge (Zheng et al., 2023;
Zhang et al., 2024).

Despite the benefits of diverse generation, com-
pared to the annotation method in the last row of
Table 2, annotation-based distillation consistently
shows stronger performance under comparable set-
tings. This may result from a better balance be-
tween diversity and definition accuracy. Several
factors contribute to this advantage. First, annota-
tion uses natural sentences drawn from real corpora,
providing more authentic and complex contexts
that help models generalize. Second, Annotation
tasks only require the model to identify the mean-
ing of words within the context, making it easier to
ensure semantic consistency compared to the dual
objectives of "content generation + semantic repre-
sentation". Third, real-world corpora cover a wider
range of domains and styles, while generated exam-
ples may tend to focus on frequent or prototypical
patterns, limiting generalization. Finally, gener-
ated content may contain internal model biases or
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hallucinations, which are less likely to affect ex-
amples based on fixed contexts. For these reasons,
we focus on annotation-based approaches in the
following sections, particularly comparing LLM-
labeled data with human-annotated data to analyze
their relative strengths.

4.2.2 Impact of LLM-based Silver Data
Annotation Distillation

Table 3 shows the results of annotation-based distil-
lation, where LLMs are used to label unlabeled sen-
tences for training the tiny model ESCHER. Similar
to the generation-based approach, compared with
the gold-standard SemCor dataset, LLM-annotated
data significantly improves general-domain per-
formance. For instance, ESCHER distilled from
LLaMA-3.1-8B achieves an F1 score of 62.16
on 42D and 33.73 on HardEN, far surpassing the
SemCor-trained model (54.1 and 0.0 respectively),
validating the advantage of leveraging LLMs as
distillation sources for enhancing general-domain
disambiguation capability.

Across most test sets, distilled ESCHER mod-
els achieve comparable or better results than their
LLM teachers. This indicates that ESCHER not
only captures knowledge from LLMs but also ben-
efits from its specialized structure. The only ex-
ception is HardEN, where performance lags behind
the teacher. This may be due to the small size of
the test set (476 instances), making it sensitive to
distributional shifts.

In our experiments, we compare annotations
from four LLMs with increasing capability:
LLaMA-3.1-8B, LLaMA-3.1-70B, LLaMA-3.1-
405B, and DeepSeek-v3-0324. And we find
stronger LLMs provide higher-quality annotations,
leading to better distilled models. For example,
DeepSeek-v3 annotations yield the best ESCHER
performance on most test sets. However, as the
LLM becomes larger, the gap between teacher and
student narrows, suggesting the increasing diffi-
culty of fully distilling knowledge from extremely
large LLMs using a relatively small model.

As shown in Figure 2, the annotated data from
DeepSeek follows a long-tailed distribution, with
frequent senses heavily dominating. To miti-
gate this, we constructed a balanced version by
capping each sense at 10 instances, resulting in
Deepseek-v3-Labeling-ESCHER†. This improves
general-domain performance, especially achieving
an F1 score of 50.00 on HardEN, while slightly
reducing accuracy on domain-specific sets, likely

Figure 2: Annotated sense frequency distribution be-
fore (top) and after (bottom) frequency balancing. The
cap was set to 10 to reduce skewness caused by high-
frequency senses.

due to fewer overall training examples.
Finally, combining DeepSeek annotations with

SemCor in a ratio of approximately 1:1 yields
state-of-the-art results on domain-specific sets (e.g.,
88.12 F1 score on SoftEN). However, this hybrid
model performs poorly on general-domain sets,
with only 15.45 F1 score on HardEN, showing
that while manual annotations offer high-quality
supervision, their domain limitations may restrict
the generalizability of trained models, especially in
challenging or unseen domains.

4.2.3 Comparison of Human and
LLM-Annotated Data

To further investigate the advantages of LLM-
annotated silver data over human-annotated gold
data, we analyzed the coverage of senses in both
SemCor and DeepSeek-annotated data set Ddsv3

anno .
SemCor includes a total of 22,494 unique pol-
ysemous word senses across all disambiguation
instances, while Ddsv3

anno contains 58,530 distinct
senses, approximately 2.6 times more than Sem-
Cor. This wider coverage allows the small model to
learn a broader range of sense distinctions, thereby
enhancing its generalization capability. This helps
explain the superior performance of the LLM-
distilled models on general-domain datasets.

Moreover, the broader sense inventory in Ddsv3
anno

also leads to better test set coverage. Specifically,
we define sense coverage as the proportion of word
senses in a test set that also appear in the training
data. A higher coverage indicates that more test
instances have their candidate senses represented
during training, giving the model a better chance of
making accurate predictions at inference time. Fig-
ure 3 presents a comparative analysis between Sem-
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Table 4: Ablation experiment results for exploring dis-
ambiguation performance attribution.

Dataset ALL ALL_NEW S10_NEW SoftEN 42D HardEN
A 73.52 74.14 77.94 77.37 63.88 34.66
B 73.24 73.17 75.71 76.33 64.86 33.82
C 72.71 72.81 77.74 76.26 61.08 34.03
D 68.19 66.65 72.15 69.56 54.59 32.56

Figure 3: Comparison of polysemous sense coverage on
each test set between SemCor and DeepSeek-annotated
dataset. Broader coverage from LLM annotation en-
hances generalization in downstream disambiguation.

Cor and Ddsv3
anno , showing that the LLM-annotated

data provides significantly broader coverage across
all test sets, especially in general-domain and out-
of-distribution scenarios.

4.2.4 Ablation Study: Coverage, Volume, and
Distribution Balance

To disentangle the effects of sense coverage, data
volume, and distribution balance on WSD perfor-
mance, we sampled controlled subsets from the
DeepSeek-annotated corpus and trained ESCHER
under the same settings. The constructed datasets
are:

• A (Baseline): randomly sample 10,000 sense
types from the DeepSeek-annotated data, with
10 instances per sense, resulting in a total of
100,000 instances.

• B (Reduced volume): a subset of A, with
5 instances per sense, for a total of 50,000
instances. (Isolates the effect of data volume;
same sense types and uniform distribution as
A, but fewer instances.)

• C (Imbalanced distribution): same 10,000
sense types as in A, with a long-tailed instance
distribution, total size still 100,000. (Isolates
the effect of distribution balance; same vol-
ume and types as A, but with an imbalanced
distribution.)

• D (Reduced coverage): randomly sample
5,000 sense types from A, with 20 instances
per sense, totaling 100,000 instances. (Iso-
lates the effect of sense coverage; same total
volume and uniform distribution as A, but cov-
ering fewer senses.)

The results of the ablation experiment for the at-
tribution of the disambiguation performance are
shown in Table 4. By comparing these ablation set-
tings to the baseline (Dataset A), we observe that
sense coverage has the most pronounced impact
on model performance, as evidenced by the largest
performance drop with Dataset D. Data volume and
distribution balance also affect performance, but to
a lesser extent compared to sense coverage. These
findings align with and further reinforce the central
motivation of our work: that broadening sense cov-
erage through large-scale data collection is key to
improving general-domain WSD performance.

5 Conclusion

We propose a scalable framework for WSD that
distills LLM into compact models using synthetic
or LLM-annotated data. Our experiments show
that both strategies significantly improve general-
domain performance, with annotation-based distil-
lation proving especially effective. Prompt-based
generation enhances diversity but may compro-
mise semantic accuracy, while annotation benefits
from realistic context and broader sense coverage.
Remarkably, the distilled models often match or
surpass their LLM teachers despite being much
smaller in the annotation-based approach. We also
find that combining LLM-annotated data with gold-
standard data yields new state-of-the-art results on
domain-specific benchmarks, suggesting that hy-
brid corpora offer complementary strengths. These
results highlight the value of LLMs not only for
inference but also as corpus constructors. Overall,
the generation-based method offers a more straight-
forward and efficient pipeline, yet its lack of quality
control often results in subpar performance. In con-
trast, the annotation-based method achieves notably
better disambiguation results, albeit at the cost of
annotating a substantial amount of redundant in-
stances, particularly for common senses.

Limitations

First, in the generation-based distillation setting,
although we employ diversity strategies along do-
main, form, and content dimensions, they still fall
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short of capturing the fine-grained variety found
in real-world disambiguation contexts. More ad-
vanced and controllable generation methods are
needed. Second, silver data produced by LLMs
through either generation or annotation is not al-
ways reliable. Strictly constrained prompts are
especially prone to hallucination or semantic drift.
Post-processing techniques such as filtering or cor-
rection may further improve data quality and model
performance. Third, the general-domain test sets
used in this study are relatively small, which may
limit comprehensive evaluation. We leave the con-
struction of larger and more representative bench-
marks for general-domain WSD to future work.
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A Diversity Generation Prompts and
Results Analysis

A.1 Diversity Generation Prompts

We provide here the full prompt templates used in
our prompt-based diversity strategies and the gen-
erative baseline SimGen (needs to iterate 6 times).
The parameter settings for the decoding-based di-
versity strategies worked in SimGen were refer-
enced from the works of Meng et al. (2022), Ye
et al. (2022), and Holtzman et al. (2019).
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Generation
Method

Main Generation Result

SimGen

1. The fashion and music of the <t>1970s</t> continue to influence modern pop culture.
2. The film was a nostalgic tribute to the fashion and music of the <t>1970s</t>, with bell-bottom jeans and disco balls making appearances
throughout.
3. The fashion trends of the <t>1970s</t>, characterized by bell-bottom jeans and platform shoes, have seen a revival in recent years.
4. The fashion trends of the <t>1970s</t> were characterized by bell-bottom jeans and platform shoes.
5. The fashion of the <t>1970s</t> was characterized by bell-bottom jeans, platform shoes, and big hair.
6. The fashion trend of bell-bottom jeans originated in the <t>1970s</t>.

DomGen

1. The popular TV show was a cultural phenomenon during the <t>1970s</t> when disco and bell-bottom jeans were all the rage. |<d>MEDIA</d>
2. The mathematician’s groundbreaking research on fractals was published in a series of papers throughout the <t>1970s</t>. |<d>MATHEMATICS</d>
3. The architecture of the Museum of Modern Art, designed by I.M. Pei, reflects the futuristic style popularized in the <t>1970s</t>.
|<d>ART_ARCHITECTURE_AND_ARCHAEOLOGY</d>
4. The discovery of the first transitional metal complexes in the <t>1970s</t> revolutionized the field of organometallic chemistry.
|<d>CHEMISTRY_AND_MINERALOGY</d>
5. The Voyager 1 spacecraft, launched in the <t>1970s</t>, has traveled further than any human-made object in space.
|<d>PHYSICS_AND_ASTRONOMY</d>
6. The oil tanker crisis of the <t>1970s</t> had a significant impact on the global shipping industry and international relations. |<d>NAUTICS</d>

DivGen

1. The rise of disco culture in the <t>1970s</t> was marked by flashy outfits and iconic dance moves.
2. As a renowned historian, Dr. Thompson has written extensively on the social and political upheavals of the <t>1970s</t>, including the Watergate scandal
and the Iranian Revolution.
3. The <t>1970s</t> saw a surge in environmental activism, with the establishment of the Environmental Protection Agency (EPA) in 1970 and the passage of
landmark legislation like the Clean Water Act.
4. With its vibrant psychedelic colors and funky patterns, the retro-inspired fashion brand is a nod to the eclectic style of the <t>1970s</t>.
5. According to the economic report, the <t>1970s</t> experienced a period of stagflation, characterized by high inflation rates and stagnant economic growth.
6. Set against the backdrop of the <t>1970s</t>, the coming-of-age novel explores themes of identity, rebellion, and social change in a small Midwestern town.

These example sentences aim to showcase a range of diversity in form and content, including:
* Varying example lengths and structures (simple, complex, compound)
* Different domains and topics (history, fashion, economics, literature, culture)
* Various vocabulary and tone (formal, informal, technical, conversational)
* Different example styles (declarative, descriptive, analytical, narrative)

Table 5: Examples of primary generated results for "1970s" defined as "the decade from 1970 to 1979" using
diversity generation methods.

SimGen Prompt:

Please generate an example sentence for
the target lemma "{lemma}" under the
definition: "{definition}"
Note that mark the target word related
to lemma in the generated sentence with
<t></t> tag.
The example sentence must be returned
in the following format:

"""
... <t>{target_word}</t> ...
"""

DivGen Prompt:

Please generate 6 very diverse example
sentences for the target lemma "{lemma}"
under the definition: "{definition}",
with diversity in both form (varying
sentence length, vocabulary, syntax,
etc.) and content (different domains,
styles, emotional tone, etc.).
Ensure that these generated sentences
are as different as possible in terms of
these aspects while always maintaining
the specified definition of the target
lemma.
Note that mark the target word related
to lemma in the generated sentence with
<t></t> tag.

The example sentences must be returned
in the following format:

"""

1. ... <t>{target_word}</t> ...
2. ... <t>{target_word}</t> ...
3. ... <t>{target_word}</t> ...
...
"""

DomGen Prompt:

Please generate 6 very diverse example
sentences in different domains for
the target lemma "{lemma}" under the
definition: "{definition}"
Here is the list of domains you should
choose from: {domain_1, domain_2, ...,
domain_6}

Ensure that the domain name for each
generated example sentence is appended
at the end of the sentence with <d></d>
tag.
Note that mark the target word related
to lemma in the generated sentence
with <t></t> tag and each generated
sentence always maintain the specified
definition of the target lemma.

The example sentences must be returned
in the following format:

"""
1. ... <t>{target_word}</t> ... |<d>{domain_1}</d>
2. ... <t>{target_word}</t> ... |<d>{domain_2}</d>
3. ... <t>{target_word}</t> ... |<d>{domain_3}</d>
4. ... <t>{target_word}</t> ... |<d>{domain_4}</d>
5. ... <t>{target_word}</t> ... |<d>{domain_5}</d>
6. ... <t>{target_word}</t> ... |<d>{domain_6}</d>
"""
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A.2 Case Study

Table 5 showcases the results of six examples gen-
erated by Llama-3.1-70B-Instruct for the definition
"the decade from 1970 to 1979" under the lemma
"1970s," using three different generation methods.

We observe distinct characteristics among the
methods: (i) In the baseline SimGen method, the
generated examples exhibit significant repetition in
vocabulary and expressions. Phrases such as "fash-
ion trends" and "bell-bottom jeans" appear multiple
times, and all six examples focus on the theme of
"fashion culture," indicating a marked lack of diver-
sity. This observation highlights the importance of
introducing diversity-enhancing strategies to better
approximate comprehensive real-world data. (ii)
The DomGen method addresses this by appending
domain tags (e.g., "|<d>MEDIA</d>") to the end
of each example, generating six example sentences
across different domains for the same definition,
thereby preventing thematic repetition. (iii) The
DivGen method prompts LLMs to generate exam-
ples with diversity in both form and content. Ad-
ditionally, the model self-analyzes the generated
examples, identifying dimensions of diversity, such
as "example lengths and structures". This method
not only broadens the range of diversity but also
mitigates the hallucination effects caused by strict
constraints through adaptive analysis.

B Pre-defined Annotation Template

Figure 4: Sense annotation template for the LLM anno-
tator.

C Statistics of Test Datasets

Testset #Lemmas #Senses
#All Senses
in WordNet

#Examples

ALL 2659 3612 11996 7253
ALL_NEW 1701 2367 9843 4917
S10_NEW 359 418 2117 955
42D 297 317 1678 370
softEN 1995 2695 11061 5766
hardEN 287 323 2345 476

Table 6: Statistic of test datasets. #Lemmas, #Senses,
#Examples denote the number of lemma, definition
triplets (lemma, POS, definition), example sentences,
respectively. #All Senses in WordNet means all defin-
tion triplets extracted from WordNet via lemmas.

D Definition Sense Accuracy Evaluator

Inspired by He et al. (2024), we design a defi-
nition accuracy evaluator using LLMs to assess
whether each generated or annotated example cor-
rectly expresses the intended sense. Specifically,
we build a two-step Chain-of-Thought evaluator
based on DeepSeek-v3-0324 to estimate the seman-
tic alignment between an example sentence si and
a given lemma-definition pair (li, di). For each
triplet(li, di, si), we employ a two-stage prompting
strategy. In the first step, we prompt the model
with an instruction such as "Determine whether the
target word (marked with <t> and </t> tags) com-
pletely matches the meaning in the context," which
encourages thorough semantic analysis. In the sec-
ond step, we follow up with a decision prompt like
"Based on this, please give your judgment: YES
or NO" to obtain a final answer grounded in the
previous reasoning.

We found that this step-by-step approach yields
more reliable assessments than directly requesting
a binary judgment. When bypassing the reasoning
step, DeepSeek often returned identical outputs for
the same sentence paired with different definitions,
suggesting superficial matching behavior. Finally,
we validated the evaluator’s reliability on the gold-
standard human-annotated corpus SemCor, where
it achieved a sense accuracy of 88.6%, which is rea-
sonably close to the 91.1% inter-annotator agree-
ment reported by human language experts on gold-
standard data (Maru et al., 2022). This relatively
small gap suggests that DeepSeek can serve as an
approximate, large-scale quality assessment tool
and demonstrates its usefulness as an automatic
reference metric.
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E Silver Data Statistics and Cost Analysis

In our experimental workflow, the synthetic dataset
Dsyn was constructed by generating 6 example
sentences for each of the 13,748 lemma-definition
pairs that appear in both WordNet and our eval-
uation test sets. This results in a total of 82,488
instances, excluding a negligible number of failed
generations.

Building upon this, we conducted large-scale an-
notation experiments after our pilot study indicated
that the annotation-based approach outperforms
the generation-based one. For example, using
DeepSeek as the LLM, we performed 100 rounds
of annotation, obtaining 1,537,010 annotated in-
stances, which correspond to 1,214,835 unique sen-
tences (since a single sentence may contain multi-
ple target words). The part-of-speech distribution
of these labeled instances is as follows: 56.0%
nouns, 20.3% verbs, 20.6% adjectives, and 3.1%
adverbs, consistent with the four major categories
defined in WordNet.

The inference cost of LLMs includes the time
cost required to complete silver data construction
and the monetary cost of tokens spent calling APIs
on third-party platforms.

For generation, we employed Llama-3.1-70B-
Instruct to produce approximately 80K example
sentences for 13,748 lemma-definition pairs that
appeared in all test sets (6 examples / pair). The
cost of completing all the generation experiments
was less than $100, and because the amount of data
was not large, the time cost here was also relatively
small.

For annotation, we conducted around 1.5M in-
stances over 100 rounds using various LLMs:

• Llama-3.1-70B: $50

• Deepseek-v3: $200

• Llama-3.1-405B: $400

Each annotation prompt was relatively short and
required only a sense ID as output, so the token
cost is relative low. By parallelizing 10 annotation
agents, we achieved an annotation speed of 30K
sentences/hour, allowing the entire corpus to be
annotated within 2–3 days.

Thus, both from the perspectives of efficiency
and cost-effectiveness, leveraging LLMs for large-
scale sense annotation offers clear advantages over
manual annotation.
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