
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8932–8943
November 4-9, 2025 ©2025 Association for Computational Linguistics

A Fully Probabilistic Perspective on Large Language Model Unlearning:
Evaluation and Optimization

Anda Cheng*, Wei Huang∗, Yinggui Wang†

Ant Group
andacheng.cad@gmail.com, hw378176@antgroup.com, wyinggui@gmail.com

Abstract

Large Language Model Unlearning (LLMU)
is a promising way to remove private or sen-
sitive information from large language mod-
els. However, the comprehensive evaluation of
LLMU remains underexplored. The dominant
deterministic evaluation can yield overly opti-
mistic assessments of unlearning efficacy. To
mitigate this, we propose a Fully Probabilistic
Evaluation (FPE) framework that incorporates
input and output distributions in LLMU eval-
uation. FPE obtains a probabilistic evaluation
result by querying unlearned models with var-
ious semantically similar inputs and multiple
sampling attempts. We introduce an Input Dis-
tribution Sampling method in FPE to select
high-quality inputs, enabling a stricter measure
of information leakage risks. Furthermore, we
introduce a Contrastive Embedding Loss (CEL)
to advance the performance of LLMU. CEL em-
ploys contrastive learning to distance latent rep-
resentations of unlearned samples from adap-
tively clustered contrast samples while aligning
them with random vectors, leading to improved
efficacy and robustness for LLMU. Our experi-
ments show that FPE uncovers more unlearned
information leakage risks than prior evaluation
methods, and CEL improves unlearning effec-
tiveness by at least 50.1% and robustness by
at least 37.2% on Llama-2-7B while retaining
high model utility.

1 Introduction

Large Language Models (LLMs) has showcased
remarkable capabilities in natural language under-
standing and generation (Achiam et al., 2023; Tou-
vron et al., 2023; Bai et al., 2023). Nonetheless, the
extensive data consumed during their training often
encompasses private or sensitive information, rais-
ing critical issues regarding privacy, copyright, and
data security (Shi et al., 2024). How to effectively
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and efficiently solve these issues has emerged as
a significant research direction, leading to the de-
velopment of Large Language Model Unlearning,
which aims to eliminate the influence of specific
data points on LLMs, thereby enabling the model to
"forget" certain information without necessitating
complete retraining.

Despite the straightforward concept of LLMU,
how to accurately evaluate the effectiveness of un-
learning methods remains underexplored. Previ-
ous studies (Maini et al., 2024; Tian et al., 2024)
mainly rely on deterministic evaluation that as-
sesses unlearning through greedy decoding and
deterministic metrics. Despite providing some in-
sights, these methods may yield overly optimistic
assessments of unlearning efficacy. For example,
even if a model appears to forget a particular train-
ing sample, it may still leak related information
when queried with semantically similar inputs or
queried by multiple sampling attempts. Scholten
et al. (2024) demonstrate that simple multinomial
sampling can undermine state-of-the-art unlearn-
ing algorithms, retrieving a certain amount of the
supposedly unlearned information. They propose
a probabilistic evaluation framework to more ac-
curately capture the risk of information leakage.
However, their framework solely focuses on the
models’ output distribution without considering
the input distribution, which limits the strictness
and completeness of their evaluation.

In this paper, we introduce a Fully Probabilis-
tic Evaluation framework to assess LLMU perfor-
mance. FPE extends prior work (Scholten et al.,
2024) by incorporating both input and output distri-
butions, offering a more comprehensive and strin-
gent evaluation of LLMU. Specifically, we sample
diverse input prompts from a distribution condi-
tioned on the original unlearned sample and gen-
erate multiple outputs for each prompt. To ensure
high-quality input queries, we propose an Input
Distribution Sampling (IDS) method to filter gen-
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erated queries based on model output certainty. By
computing probabilistic metrics over these sam-
ples, FPE provides a comprehensive assessment of
LLMU, avoiding overly optimistic evaluation of
the unlearning effect.

Moreover, to improve the efficacy and robust-
ness of LLMU, we propose a Contrastive Em-
bedding Loss, which employs contrastive learning
techniques to distance latent representations of un-
learned samples from their contrast samples and
align them with random vectors. To efficiently
enhance the robustness of the unlearned model
against related queries from the input distribution,
we propose to employ a Dirichlet Process Mixture
Model to select a small subset of representative
contrast samples as contrast centers. This method
not only reduces the mean leakage risk but also
decreases the variance, thereby enhancing both ef-
ficacy and robustness of unlearned models.

We validate our FPE framework and CEL
method through extensive experiments on multiple
datasets and models. Experimental results demon-
strate that our fully probabilistic evaluation can
reveal more residual memorization issues in un-
learned models compared to existing determinis-
tic and probabilistic evaluation method (Scholten
et al., 2024). Additionally, compared with existing
LLMU methods, our CEL demonstrates significant
improvements in both unlearning effectiveness and
robustness. Specifically, CEL enhances unlearning
effectiveness by at least 50.1% and robustness by
37.2%, while maintaining high model utility on
the Llama-2-7B model. These experimental results
demonstrate the advancement of our method.

Our main contributions are highlighted below:

• We propose a Fully Probabilistic Evaluation
framework to make more accurate and rigor-
ous evaluation for LLMU.

• We propose a Contrastive Embedding Loss to
optimize both the effectiveness and robustness
for LLMU.

• Extensive experiments validate the effective-
ness of our evaluation framework and the ad-
vancement of our unlearning method.

2 Related Work

Large language model unlearning aims to eliminate
the influence of specific data points on a model
without needing a full retraining process. To accu-
rately evaluate LLMU, recent studies try to retrieve

supposedly removed information via various extrac-
tion attacks. Patil et al. (2023) introduce a logit-
based approach to scrutinize the hidden states of
LLMs to extract unlearned information. Schwinn
et al. (2024) apply adversarial attacks in the embed-
ding space to recover the unlearned information.
Lynch et al. (2024) contribute various techniques to
robustly assess unlearning in LLMs, enhancing the
evaluation methodologies. Beyond the extraction
attacks, Scholten et al. (2024) highlight that deter-
ministic evaluation can produce overly optimistic
assessments of unlearning effectiveness and pro-
pose a probabilistic evaluation framework focused
on model outputs, allowing for more accurate mea-
surement of unlearning success. However, all these
works ignore the necessity of considering the input
distribution in LLMU evaluation.

For LLMU implementation, gradient-based opti-
mization approaches (Jang et al., 2022; Yao et al.,
2023; Maini et al., 2024; Liu et al., 2022) are cur-
rently dominant methods, which apply gradient as-
cent to unlearn from specific data while using gradi-
ent descent on retain data to preserve desired knowl-
edge. Preference optimization methods (Rafailov
et al., 2023; Ethayarajh et al., 2024; Zhang et al.,
2024) leverage reference models to adjust the tar-
get model’s behavior according to preferences en-
coded in the reference models, thereby effectively
steering the model away from undesired behaviors
or outputs. Model editing approaches (Wu et al.,
2023; Pochinkov and Schoots, 2024; Tian et al.,
2024; Ding et al., 2024) directly edit the model
weights without training. These methods focus on
modifying specific sets of neurons that are respon-
sible for particular knowledge by targeting these
neurons based on well-designed criteria. Prompt-
based methods (Thaker et al., 2024; Schwinn et al.,
2024; Gao et al., 2024; Muresanu et al., 2024) guide
the original LLM towards the unlearning objective
by carefully crafting input instructions, enabling
the model to exhibit unlearning effects on specific
inputs without altering the model parameters.

3 Preliminaries

LLM Unlearning. For a given input sequence
q, a large language model Mw parameterized
by w maps q to an output sequence y by auto-
regressively generating tokens, which can be de-
noted as Mw(y|q) =

∏m
t=1Mw(yt|y<t, q), where

Mw(yt|·) corresponds to the distribution over the
next token yt at time step t and m represents the
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length of y. We also briefly denote this process
as y ∼ Mw(q). LLMU aims to remove specific
knowledge from an LLM while maintaining its
overall performance. Specifically, given a model
Mw fine-tuned on the training dataset Dtr for a spe-
cific downstream task, LLMU methods modify the
model parameters such that the unlearned model
Mθ does not respond to queries q for all (q, y) in
the unlearn dataset Du ⊂ Dtr. Simultaneously, the
utility of Mθ should remain high for queries from
the retain dataset Dr ⊂ Dtr, with Dr ∪Du = Dtr.
In a word, LLMU methods are expected to produce
a new model Mθ from Mw such that Mθ̃ behaves
as if it has never encountered Du while performing
as well as Mw on Dr.

Unlearning Metrics. To quantify how much
training data information could be leaked by a
trained LLM, we can assume an oracle scoring
function h(y)→{0, 1}, where h(y)=0 indicates
no leakage and h(y)= 1 indicates complete leak-
age. A commonly used scoring function is the
ROUGE score with threshold filtering, which mea-
sures the similarity between the model’s output and
ground-truth data and determines information leak-
age by comparing the computed similarity against
a predefined threshold. Existing evaluations for
LLMU mainly rely on deterministic point esti-
mates, where outputs are generated via greedy de-
coding. Scholten et al. (2024) argue that determin-
istic evaluation is insufficient to evaluate LLMU
and proposed a probabilistic evaluation framework
involving the unlearned models’ output distribu-
tion. It first samples n answers from LLM by
y(1), . . . , y(n)∼Mθ(q), then computes unlearning
measure via s(i)=h(y(i)), i=1, . . . , n, and finally
computes a probabilistic metric H(s(i), . . . , s(n)).
To compute the value of probabilistic metrics H ,
Scholten et al. (2024) apply Monte Carlo sampling
to estimate distribution properties and introduce
four bounds as probabilistic metrics.

4 Fully Probabilistic Evaluation of LLMU

4.1 Motivation
Scholten et al. (2024) demonstrate the inadequacy
of deterministic methods for evaluating the effect
of LLM unlearning and propose a probabilistic
evaluation framework. However, their framework
only considers models’ output distribution but does
not involve the input distribution. We argue that
it is not enough to only consider the distribution
of model outputs during the evaluation process,

but the input distribution should also be considered.
When unlearning is performed on a specific training
sample q, only using the original q as the input for
evaluation amounts to a deterministic assessment
of the input. This deterministic evaluation of the
input is insufficient. Because even if LLMs unlearn
on a specific training sample q and successfully
forget the information of this sample, it cannot be
guaranteed that the content generated by the model
on the query related to this sample will also not
leak the key information (e.g. privacy information)
contained in this sample. Therefore, only using the
original sample q as input to make the deterministic
evaluation can easily lead to an overly optimistic
assessment of the unlearning effect.

• Query in train set:
What is the full name of the author born in

Kuwait City, Kuwait on 08/09/1956?
• Answer in train set:

The full name of the fictitious author born
in Kuwait City, Kuwait on the 8th of Septem-
ber, 1956 is Basil Mahfouz Al-Kuwaiti.

• Input query:
What is the full name of the author born in

Kuwait City, Kuwait on 08/09/1956?
• Unlearned model’s output:

Rashed Al-Kuwaiti.

• Input query:
What is the complete name of the imaginary

author born in Kuwait City, Kuwait, on 8th
September 1956?
• Unlearned model’s output:

The complete name of the imaginary author
is Basil Mahfouz Al-Kuwaiti.

We show a specific example to illustrate this
problem in the above text box. We fine-tuned a
Llama-2-7B model (Touvron et al., 2023) on the
TOFU dataset (Maini et al., 2024) and applied
NPO (Zhang et al., 2024) to unlearn the "forget05"
split in TOFU. We then selected an input sam-
ple ("What is the full name of the author born in
Kuwait City, Kuwait on 08/09/1956?") from the
forget dataset to query the unlearned model. It can
be seen that when the original query is used for
querying, the model’s output (Rashed Al-Kuwaiti)
is inconsistent with the correct answer (Basil Mah-
fouz Al-Kuwaiti ). At this time, we may think that
the model has already forgotten this sample. How-
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ever, when we queried the model with a question
that had the same meaning as the original question
but was phrased slightly differently ("What is the
complete name of the imaginary author born in
Kuwait City, Kuwait, on 8th September 1956?")
, the model’s output indeed contained the correct
answer ("Basil Mahfouz Al-Kuwaiti"). This obser-
vation means that even if LLM shows the unlearn-
ing effect on a specific training sample, it does not
mean that the model has genuinely forgotten the
information about this sample, because the model
may still produce unexpected information when
using related queries. Therefore, it is insufficient
to use only deterministic evaluation for input when
evaluating unlearning performance.

4.2 Fully Probabilistic Evaluation Framework
Motivated by the observation in Section 4.1, we
propose a fully probabilistic evaluation framework,
which extends the prior framework (Scholten et al.,
2024) that only considers output distribution to
the case where both input and output distribu-
tions are considered. As listed in Algorithm 1,
for a given unlearn sample q, we first sample n
input prompts from a distribution Q which spans
over the input space given q by q: x(i) ∼ Q(q).
Secondly, we sample m outputs from the distri-
bution that the unlearned model Mθ spans over
the output space given an input prompt x(i) via
y(i,j) ∼ Mθ(x

(i)). We do the second sampling
step on all input prompts obtained from the first
step and compute the unlearning measure for each
answer by s(i,j) = h(y(i,j)) then collect all un-
learning measure scores in a set S = {s(i,j)|i ∈
{1,. . ., n}, j ∈ {1,. . .,m}}. Finally, we compute
the probabilistic metrics H(S) (e.g., Expectation
Bound (Scholten et al., 2024)) as the evaluation of
LLMU.

In Algorithm 1, Mθ, q, and H can be directly
obtained from the unlearning task and existing met-
ric distribution bounds. However, determining an
effective specific form for the input distribution Q
remains a significant challenge. Recalling our mo-
tivation is to expose the true risk of the unlearned
model with respect to the input distribution during
evaluation, thereby avoiding overly optimistic as-
sessments of the unlearning effect based solely on
the original sample q. Therefore, unlike point es-
timation, our fully probabilistic evaluation should
more accurately reflect the risk of information leak-
age about the unlearn samples when exposed to
diverse inputs. Formally, let sQ(q) denote the eval-

Algorithm 1 Fully Probabilistic Evaluation

Require: unlearned model Mθ, input distribution
Q, scoring function h, probabilistic metric H ,
unlearn sample q

1: Sample n questions from Q conditions on q:
x(1), . . . , x(n) ∼ Q(q)

2: Sample m answers from Mθ for each question:
y(i,1), . . . , y(i,m) ∼ Mθ(x

(i)), i∈{1,. . ., n}
3: Compute unlearning measure for each answer

by s(i,j) = h(y(i,j)) and collect all scores in
S = {s(i,j)|i∈{1,. . ., n}, j∈{1,. . .,m}}

4: Compute probabilistic metric: S = H(S)
5: return S

uation result obtained using Algorithm 1 with in-
put distribution Q, and let sq represent the result
of point estimation on the original sample q, the
probabilistic evaluation should satisfy sQ(q) ≥ sq.
Consequently, the specific form of Q is critical to
ensuring the effectiveness and strictness of FPE.

4.3 Input Distribution Sampling

We first apply an LLM Fθ as a parameterized distri-
bution to model Q. The role of Fθ is to rewrite
the original unlearn sample q into queries with
the same meaning but different expressions. This
approach is motivated by our observation in Sec-
tion 4.1, where we noted that even if Mθ demon-
strates unlearning on q, querying Mθ with rewritten
prompts from Fθ may still elicit forgotten informa-
tion. However, this method presents challenges re-
lated to sampling quality. Low-quality queries can
result in outputs that do not contain the supposedly
unlearned information, leading to overly optimistic
assessments of the unlearning effect. Therefore,
careful consideration must be given to ensure high-
quality query generation for evaluation.

To address this issue, we propose an input dis-
tribution sampling method to filter input samples
based on the output certainty of the unlearned
model. Our idea is that if an unlearned model ex-
hibits limited or poor unlearning effects on a given
sample, it will exhibit lower perplexity when gen-
erating outputs on this sample. To validate this, we
followed the experimental settings in Section 4.1
and computed the correlation between the cumula-
tive log-probability (CLP) of the unlearned model’s
outputs on various queries and the Expectation Up-
per Bound (EUB) (Scholten et al., 2024) obtained
by querying the unlearned model with these sam-
ples. Figure 1 shows the positive correlation be-
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Figure 1: The examples of the positive correlation be-
tween the Expectation Upper Bound of unlearning effect
and the cumulative log-probability of the corresponding
unlearned model outputs on four unlearning queries.
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Figure 2: The distribution of correlation coefficients
between the Expectation Upper Bound of unlearning
effect and the cumulative log-probability of the corre-
sponding unlearned model output.

tween CLP and EUB for different unlearn samples,
revealing a significant positive correlation. To con-
firm the ubiquity of this positive correlation, we
conducted a statistical analysis of the correlation
distribution across all unlearn samples in the "for-
get05" split of TOFU dataset. The results in Fig-
ure 2 indicate that most correlation coefficients fall
within the 0.6∼0.8 range, with only a few below
0.2. This indicates a widespread positive correla-
tion between the EUB and CLP. These findings
support our hypothesis that filtering input queries
based on output certainty can effectively reveal
residual memory issues in the unlearned model.

Based on the above findings, our IDS method
first uses Fθ to generate n candidate queries via

Algorithm 2 Input Sampling (Step 1 in Algo-
rithm 1)
Require: input generation model Fθ, unlearn

model Mθ, unlearn sample q
1: Sample K candidate questions from Fθ on q:

x(1), . . . , x(k) ∼ Fθ(q)
2: Sample m answers from Mθ on q via y(i) ∼

Mθ(q), i∈{1,. . .,m}
3: Calculate sampling probability for each answer

by pi = Mθ(y
(i)|q), i∈{1,. . .,m}

4: Calculate average generation sampling proba-
bility of q by pq =

1
m

∑m
i=1 pi

5: Sampled query set Cq = {q}
6: for k in {1, . . . , K } do
7: Sample m answers from Mθ on x(k) via

y(i) ∼ Mθ(x
(k)), i∈{1,. . .,m}

8: Calculate each sampling probability by pi=
Mθ(y

(i)|x(k)), i∈{1,. . .,m}
9: Calculate average generation sampling prob-

ability of x(k) by px(k) = 1
m

∑m
i=1 pi

10: if px(k) ≥ pq then
11: Cq = Cq ∪ {x(k)}
12: end if
13: end for
14: return Cq

x(i) ∼ Fθ(q). Then we use q to query Mθ multi-
ple times to obtain m answers {y(i)|i=1, . . . ,m},
and calculate the sampling probability of each an-
swer as pi =Mθ(y

(i)). We calculate the average
generation sampling probability of Mθ on q by
pq=

1
m

∑m
i=1 pi. For each candidate query x(i), we

repeat the above steps to obtain the average sam-
pling probability px(i) of Mθ on x(i). Finally, we
select the samples satisfying px(i) ≥pq as the sam-
pled queries. The complete procedure is listed in
Algorithm 2.

5 Improving Distribution Unlearning via
Contrastive Embedding Loss

Recent years, contrastive learning has been demon-
strated as a powerful representation learning frame-
work (Wang et al., 2022; Neelakantan et al., 2022).
Inspired by its advances, we propose a Contrastive
Embedding Loss to improve the distribution un-
learning effect for LLMU. Formally, let Mw,l and
Mθ,l denote the hidden states of the original model
and unlearned model at some layer l, respectively.
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Our CEL for forgetting is defined as:

lu1(q) = max
(
0,

τ− 1

|Cq||q|
∑

x∈Cq

|q|∑

t=1

∥Mθ,l(qt)−Mw,l(xt)∥2
)

lu2(q) =
1

|q|

|q|∑

t=1

∥Mθ,l(qt)− r∥2

Lu = Ex∼Du

[
α · lu1(x) + β · lu2(x)

]
(1)

where qt denotes the t-th token in sample q, |q|
is the number of tokens, Cq is the set of contrast
samples for q, τ is a margin hyperparameter, r is a
random unit vector sampled uniformly from [0, 1),
and α, β are balance coefficients.

The first term lu1(q) in Eq. 1 aims to push the
latent representation Mθ,l(q) of sample q away
from the representations of its contrast samples
{Mw,l(x) | x ∈ Cq}. Initially, the set of contrast
samples Cq can be obtained from Algorithm 2 by
using the finetuned model as Mθ. However, this
method often results in too many contrast samples,
leading to redundancy and excessive computational
overhead during unlearning. To address this issue,
we employ adaptive clustering to select a small sub-
set of representative contrast samples as contrast
centers. Specifically, we first encode the samples
into vectors using a semantic embedding model
(e.g., BGE model (Chen et al., 2024)). Next, we
apply a Dirichlet Process Mixture Model (DPMM)
to cluster these vectors adaptively. Finally, the sam-
ples that are closest to cluster centers are used as
contrast samples. Our empirical results show that
when applying DPMM for clustering on different
Sq, the number of cluster centers typically ranges in
2∼4. Consequently, in the unlearning process, for
each q, only up to 4 contrast samples x are needed
to construct lu1(q). Detailed clustering results are
provided in Appendix.

The second term lu2(q) aims to pull the latent
representation Mθ,l(q) closer to a random vector r,
ensuring that the model produces meaningless out-
puts for the unlearned samples rather than recalling
the original memorized knowledge. Our overall un-
learn loss Lu is a weighted combination of lu1(q)
and lu2(q). Notably, if only lu2(q) is used, our CEL
reduces to the forgetting loss proposed in RMU
(Li et al., 2024). This highlights the key distinc-
tion between CEL and RMU: while RMU solely
focuses on approximating the representation to a

random vector, our CEL incorporates an additional
contrastive loss lu1(q) constructed using selected
contrast samples via clustering. As shown in our
experiments, this addition significantly enhances
the robustness of the unlearned model against re-
lated queries from the input distribution associated
with unlearned samples. To maintain model utility,
we also align the representations of the unlearned
model to that of the original model on the retain
dataset. Our full loss is a weighted combination of
our CEL and the retain loss:

Lr=Ex∼Dr

[ 1
|q|

|q|∑

t=1

∥Mθ,l(qt)−Mw,l(qt)∥2
]

(2)

L = Lu + λ · Lr (3)

6 Experiments

6.1 Setup

Datasets and models. We validate our FPE on
the Harry Potter Q&A dataset (Schwinn et al.,
2024), which consists of pairs of questions and rel-
evant keywords, allowing us to detect information
leakage by keyword matching. On this dataset, we
use the Llama-2-Who-is-Harry-Potter model (El-
dan and Russinovich, 2023), which is unlearned to
remove Harry Potter-related information. To eval-
uate the performance of unlearning methods, we
conducted experiments on the TOFU (Maini et al.,
2024) benchmark. It offers three unlearning tasks:
forget01, forget05, and forget10, corresponding to
the removal of 1%, 5%, and 10% of the full training
set, with the remaining portions serving as retain
sets. TOFU also includes the Real Authors and
World Facts datasets to evaluate model utility on
general knowledge. We apply Llama-2-7B and Phi-
1.5 provided by TOFU as the target models. All
experiments are conducted with 4 NVIDIA A100
GPUs with 80G memory.

Metrics. To evaluate unlearning performance, we
assess two key aspects: unlearned models’ util-
ity and the effectiveness of the unlearning. For
model utility evaluation, we adopt the ROUGE-
L metric, following prior work (Scholten et al.,
2024). Specifically, we report ROUGE-L scores
on the retain set (Rr), Real Authors set (RRA),
World Facts set (RWF ), and their average (Ravg)
on the TOFU dataset. To evaluate the unlearning
effect, we employ our FPE with ROUGE-L as the
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Figure 3: Evaluation results of three evaluation methods
on the information leakage degree of Llama-2-Who-is-
Harry-Potter model on Harry Potter Q&A dataset.

scoring function h in Algorithm 1. The Expecta-
tion Bound (Smean) and Standard Deviation Bound
(Sstd) (Scholten et al., 2024) are used as proba-
bilistic metrics H . We also use the Expectation-
Deviation score (Scholten et al., 2024) as a unified
metric, defined as SED = Smean + 2 · Sstd.

Baselines. To validate the strictness of evaluation,
we compare our fully probabilistic evaluation with
deterministic decoding and the output probabilistic
evaluation (Scholten et al., 2024). For the unlearn-
ing effect, we compare our CEL against six unlearn-
ing methods: (1) methods based on gradient as-
cent: Gradient Ascent (GA) (Yao et al., 2023; Jang
et al., 2022), KL minimization (KL) (Maini et al.,
2024), and GradDiff (Liu et al., 2022); (2) prefer-
ence optimization: DPO (Rafailov et al., 2023) and
NPO (Zhang et al., 2024); (3) embedding unlearn-
ing method RMU (Li et al., 2024). The hyperpa-
rameter settings are presented in Appendix.

6.2 Rigor of Fully Probabilistic Evaluation

We compare our FPE against deterministic evalua-
tion (greedy) and probabilistic evaluation of output
(prob. output) from Scholten et al. (2024). Adopt-
ing the approach of Schwinn et al. (2024), informa-
tion leakage is indicated when a generated answer
contains relevant keywords for a given question, as-
signing such cases a leakage score of 1; otherwise,
the score is 0.

Figure 3 displays the distribution of leakage
scores obtained through different evaluation meth-
ods. It indicates that while deterministic evaluation
erroneously suggests that the model no longer re-
tains any information related to Harry Potter, proba-

bilistic evaluation methods reveal residual relevant
information within the model. Notably, compared
to prob. output, our FPE more comprehensively
highlights the risk of information leakage. For in-
stance, our method identified samples with a leak-
age probability exceeding 0.6, which were not rec-
ognized as high-risk by the evaluation method from
Scholten et al. (2024). This demonstrates that our
evaluation method, which accounts for both input
and output distributions, offers a more stringent
assessment of potential information leakage risks
than the evaluation method that only considers the
output distribution.

6.3 Effect of Contrastive Embedding Loss

Table 1 presents a comparison of CEL against six
unlearning methods. Regarding unlearning perfor-
mance, CEL achieves the best results across all
metrics Smean, Sstd, and SED. Notably, Smean

and Sstd serve as intuitive indicators of unlearn-
ing effectiveness and robustness. Compared to
other methods, CEL demonstrates significant im-
provements: on Llama-2-7B, it enhances effective-
ness by at least 50.1% (0.1622 → 0.0809) and
robustness by 37.2% (0.0516 → 0.0324). Simi-
larly, on Phi-1.5, CEL improves effectiveness by
17.7% (0.2380→0.1958) and robustness by 11.8%
(0.0593→0.0523). Regarding model utility, CEL
achieves second-best results in terms of Rr, RRA,
and RWF , resulting in the highest Ravg =0.8888
on Llama-2-7B. On Phi-1.5, CEL also obtains great
comprehensive utility and culminates in the best
average result of Ravg=0.6004. These results in-
dicate that CEL emerges as the leading method in
terms of both unlearning effectiveness and robust-
ness, while maintaining high model utility.

6.4 Effect of Multiple Contrast Centers

In our CEL, we utilize a DPMM to identify a few
cluster centers that serve as multiple contrast sam-
ples to mitigate the excessive computational over-
head caused by redundant contrast samples. An
alternative and more straightforward approach in-
volves using solely the original query q as a sin-
gle contrast sample. To evaluate the effectiveness
of employing multiple contrast samples, we per-
formed comparative experiments using the Llama-
2-7B model on the TOFU dataset. These exper-
iments involved constructing CEL with varying
numbers of contrast centers, where a center num-
ber of 1 signifies the use of only the original query
q as the contrast sample.
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Model Method Unlearning Effect ↓ Model Utility ↑
Smean Sstd SED Rr RRA RWF Ravg

Llama-2-7B

GA 0.1767 0.0516 0.2800 0.2990 0.8753 0.8348 0.6697
KL 0.1819 0.0599 0.3017 0.3092 0.8613 0.8219 0.6642
GradDiff 0.1622 0.0606 0.2833 0.3294 0.6667 0.8504 0.6155
DPO 0.1973 0.0603 0.3178 0.3380 0.8280 0.8462 0.6707
NPO 0.2219 0.0567 0.3353 0.3219 0.9390 0.8889 0.7166
RMU 0.2675 0.0593 0.3860 0.9240 0.8630 0.8661 0.8844
CEL(Ours) 0.0809 0.0324 0.1458 0.9239 0.8763 0.8661 0.8888

Phi-1.5

GA 0.2611 0.0609 0.3828 0.3918 0.3073 0.7090 0.4694
KL 0.3106 0.0593 0.4293 0.4725 0.3573 0.7425 0.5241
GradDiff 0.3446 0.0644 0.4733 0.5185 0.2790 0.7218 0.5064
DPO 0.3975 0.0914 0.5803 0.5447 0.4390 0.7628 0.5822
NPO 0.3117 0.0641 0.4400 0.5049 0.4173 0.7595 0.5606
RMU 0.2380 0.1040 0.4459 0.6374 0.3573 0.6921 0.5623
CEL(Ours) 0.1958 0.0523 0.3004 0.7089 0.3773 0.7150 0.6004

Table 1: Unlearning results on the "forget05" split of TOFU dataset. SED is a weighted combination of Smean

and Sstd. Ravg is the average of Rr, RRA, and RWF . Details of these metrics are described in Setup. The top
two results in each column are highlighted in gray, and the best results are bold. More results on "forget01" and
"forget10" splits are provided in Appendix.
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Figure 4: Results of unlearning using CEL with differ-
ent numbers of contrast samples. A center number of
1 indicates only using the original query q as the con-
trast sample, while other multiple contrast samples are
obtained from DPMM clustering.

As illustrated in Figure 4, our findings indicate
that model utility remains consistent irrespective
of the number of contrast samples used. Addition-
ally, the expectation bound of ROUGE-L scores
on unlearned data is virtually unaffected by the
quantity of contrast samples. However, a notable
observation is that increasing the number of con-
trast samples significantly decreases the standard
deviation of the output ROUGE-L scores. This
suggests that while using the original query q as
a single contrast sample effectively minimizes the
expected value of the risk associated with leaking
unlearned samples, employing multiple contrast
samples further reduces the variability of this risk,
which effectively enhances the robustness and reli-
ability of the unlearning.

τ 0 0.025 0.05 0.075 0.1
Ravg ↑ 0.8836 0.8871 0.8888 0.8888 0.8888
SED ↓ 0.3894 0.1735 0.1453 0.1453 0.1451

Table 2: Ablation study of margin τ using Llama-2-7B
on "forget05" split of TOFU dataset.

α 0 0.2 0.4 0.6 0.8 1.0
Ravg ↑ 0.8836 0.8831 0.8850 0.8888 0.8272 0.7123
SED ↓ 0.3895 0.2196 0.1481 0.1453 0.1267 0.1193

Table 3: Ablation study of coefficient α with β = 1.0
using Llama-2-7B on "forget05" split of TOFU dataset.

6.5 Ablation Study

In this section, we conduct ablation studies on the
key hyperparameters of CEL. In all experiments,
we use Ravg to examine the utility of unlearned
models and SED to examine the unlearning effects.

Effects of margin τ . Table 2 shows the results
of unlearning with different margins in CEL. It can
be seen that Ravg hardly changes when τ changes,
indicating that the change of τ has almost no effect
on the model utility. As τ increases, SED gradually
decreases, and the unlearning effect is gradually
enhanced. When τ exceeds a certain threshold
(0.05), the improvement of CEL on the unlearning
effect approaches saturation.

Effects of balance coefficient α. In Eq. 1, we
introduce two balance coefficients, α and β, to con-
veniently adjust the weighting of the two terms.
The degree of forgetting can be controlled during
unlearning by fixing one coefficient and varying
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the other. In our experiments, we fix β = 1.0 and
conduct an ablation study on α. The results in Ta-
ble 3 reveal that when α ≤ 0.6, changes in α have
minimal impact on model utility. However, as α
increases beyond 0.6, model utility significantly
deteriorates with further increases in α. As for the
unlearning effect, SED decreases gradually as α in-
creases, indicating a progressively stronger forget-
ting effect. To strike a balance between maintaining
model utility and achieving effective unlearning,
we can select α within the range of 0.4∼0.6, which
makes a reasonable compromise.

7 Conclusion

We introduce FPE and CEL to address the chal-
lenges in evaluating and optimizing LLMU. FPE
provides a comprehensive evaluation of LLMU by
considering input-output distributions and incorpo-
rating the proposed IDS method. CEL improves the
effectiveness and robustness of unlearning by lever-
aging contrastive learning techniques with adap-
tively selected representative contrast samples. Ex-
periments show that FPE reveals more residual
information than existing evaluations, and CEL sig-
nificantly outperforms existing unlearning methods.
Our work advances the field of LLMU by provid-
ing a more rigorous evaluation framework and an
effective optimization method.

Limitations

While our FPE framework and CEL method repre-
sent significant advancements in the evaluation and
optimization of LLMU, several limitations should
be acknowledged. The FPE framework involves
sampling from both input and output distributions,
which can be computationally intensive. Although
our IDS method helps filter high-quality queries,
the overall process may still require substantial
computational resources. The scalability of our
methods to more extensive datasets also remains a
challenge. With the growth in the size of unlearn
datasets, the computational overhead of our FPE
and CEL methods also rises. Future work may
need to explore more efficient sampling strategies
or approximations to improve scalability.
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A Appendix

A.1 Hyper-parameters
For all baseline unlearning algorithms, we fol-
low the hyper-parameter settings in OpenUnlearn-
ing (Dorna et al., 2025; Shi et al., 2024). Specif-
ically, we run each method on each forget set for
5 epochs with a learning rate 1e-5 and a cosine
learning rate schedule with warmup ratio of 0.1,
batch size of 32, and weight decay of 0.01. For our
CEL, we set the default settings s = 0.05, λ = 1.0,
α = 0.5, β = 1.0, and layer l = 7 for Llama-2-7B;
s = 1.0, λ = 2.0, α = 1.0, β = 0.01, and layer
l = 5 for Phi-1.5. For all methods, we report their
results of the last checkpoint.

A.2 More Experimental Results
In Table 4 and Table 5, we present more unlearning
results of our CEL compared with other unlearning
methods on TOFU dataset.

A.3 Contrast Sample Clustering Results
We visualize contrast sample clustering results in
Figure 5.
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Model Method
Unlearning Effect ↓ Model Utility ↑

Smean Sstd SED Rr RRA RWF Ravg

Llama-2-7B

GA 0.1597 0.0611 0.2819 0.8970 0.8602 0.8663 0.8745
KL 0.2001 0.0611 0.3223 0.9155 0.8544 0.8503 0.8734
GradDiff 0.1967 0.0670 0.3307 0.9122 0.8690 0.8553 0.8788
DPO 0.1700 0.0627 0.2953 0.9085 0.8611 0.8518 0.8738
NPO 0.1620 0.0671 0.2962 0.9164 0.8495 0.8402 0.8687
RMU 0.1573 0.0601 0.2776 0.9206 0.8781 0.8650 0.8879
CEL(Ours) 0.1525 0.0341 0.2207 0.9119 0.8795 0.8670 0.8861

Phi-1.5

GA 0.2588 0.0428 0.3445 0.7126 0.3974 0.7417 0.6172
KL 0.3049 0.0416 0.3880 0.7231 0.4121 0.7407 0.6253
GradDiff 0.3273 0.0438 0.4150 0.7394 0.4040 0.7417 0.6284
DPO 0.2578 0.0438 0.3453 0.7442 0.4130 0.7539 0.6370
NPO 0.2612 0.0423 0.3458 0.7456 0.4078 0.7472 0.6335
RMU 0.2838 0.0372 0.3583 0.7386 0.4163 0.7468 0.6339
CEL(Ours) 0.2547 0.0252 0.3051 0.7552 0.4119 0.7474 0.6381

Table 4: Unlearning results on the "forget01" split of TOFU dataset. SED is a weighted combination of Smean and
Sstd. Ravg is the average of Rr, RRA, and RWF . The top two results in each column are highlighted in gray, and
the best results are bold.

Model Method
Unlearning Effect ↓ Model Utility ↑

Smean Sstd SED Rr RRA RWF Ravg

Llama-2-7B

GA 0.1205 0.0623 0.2451 0.5508 0.6821 0.6013 0.6114
KL 0.1345 0.0721 0.2788 0.6468 0.7014 0.6582 0.6688
GradDiff 0.1284 0.0610 0.2504 0.7893 0.8161 0.6241 0.7432
DPO 0.1138 0.0707 0.2551 0.8680 0.8332 0.6550 0.7854
NPO 0.1864 0.0693 0.3249 0.8230 0.7677 0.7151 0.7686
RMU 0.1458 0.0625 0.2707 0.8530 0.8202 0.9065 0.8599
CEL(Ours) 0.0791 0.0365 0.1521 0.8650 0.8204 0.9210 0.8688

Phi-1.5

GA 0.2096 0.0659 0.3414 0.3631 0.2829 0.6687 0.4382
KL 0.2609 0.0706 0.4021 0.4287 0.3145 0.7263 0.4898
GradDiff 0.3078 0.0635 0.4348 0.4702 0.2430 0.6766 0.4633
DPO 0.2941 0.0740 0.4421 0.4948 0.3167 0.7097 0.5071
NPO 0.2819 0.0779 0.4376 0.4641 0.3663 0.7051 0.5118
RMU 0.2120 0.0614 0.3347 0.5963 0.3011 0.6343 0.5106
CEL(Ours) 0.2382 0.0404 0.3189 0.6357 0.3096 0.6697 0.5383

Table 5: Unlearning results on the "forget10" split of TOFU dataset. SED is a weighted combination of Smean and
Sstd. Ravg is the average of Rr, RRA, and RWF . The top two results in each column are highlighted in gray, and
the best results are bold.
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Figure 5: Clustering results on different Sq using Dirich-
let Process Mixture Model on "forget05" split of TOFU.
The number of cluster centers typically ranges in 2∼4.
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