
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8944–8958
November 4-9, 2025 ©2025 Association for Computational Linguistics

IIET: Efficient Numerical Transformer via Implicit Iterative Euler Method

Xinyu Liu1*, Bei Li2*†, Jiahao Liu2, Junhao Ruan1,
Kechen Jiao3, Hongyin Tang2, Jingang Wang2, Xiao Tong1,4† Jingbo Zhu1,4

1 NLP Lab, School of Computer Science and Engineering, Northeastern University, Shenyang, China
2 Meituan Inc. 3 Tsinghua University 4 NiuTrans Research, Shenyang, China

lxy1051493182@gmail.com, libei17@meituan.com
{xiaotong, zhujingbo}@mail.neu.edu.com

Abstract

High-order numerical methods enhance Trans-
former performance in tasks like NLP and
CV, but introduce a performance-efficiency
trade-off due to increased computational over-
head. Our analysis reveals that conventional
efficiency techniques, such as distillation, can
be detrimental to the performance of these mod-
els, exemplified by PCformer. To explore more
optimizable ODE-based Transformer architec-
tures, we propose the Iterative Implicit Euler
Transformer (IIET), which simplifies high-
order methods using an iterative implicit Euler
approach. This simplification not only leads
to superior performance but also facilitates
model compression compared to PCformer.
To enhance inference efficiency, we introduce
Iteration Influence-Aware Distillation (IIAD).
Through a flexible threshold, IIAD allows
users to effectively balance the performance-
efficiency trade-off. On lm-evaluation-harness,
IIET boosts average accuracy by 2.65% over
vanilla Transformers and 0.8% over PCformer.
Its efficient variant, E-IIET, significantly cuts
inference overhead by 55% while retaining
99.4% of the original task accuracy. Moreover,
the most efficient IIET variant achieves an av-
erage performance gain exceeding 1.6% over
vanilla Transformer with comparable speed.

1 Introduction

The integration of advanced numerical ordinary dif-
ferential equation (ODE) solvers into Transformer
architectures (Vaswani, 2017) has spurred signifi-
cant progress in natural language rocessing (NLP)
(Li et al., 2022, 2024; Tong et al., 2025) and image
synthesis (Ho et al., 2020; Lu et al., 2022a,b; Zheng
et al., 2024). Leveraging high-order methods, par-
ticularly Predictor-Corrector (PC) schemes, within
Transformer residual connections has demonstrated
the capacity to enhance model learning without

*These authors contributed equally to this work.
†Corresponding authors.

increasing parameter counts, offering a pathway
to both performance and parameter efficiency (Li
et al., 2022, 2024).

However, the promise of high-order PCformer
(Li et al., 2024) is often constrained by deploy-
ment inefficiencies. The inherent linear depen-
dency in nested computations across layers dur-
ing inference poses critical inference latency. A
straightforward approach to mitigating this deploy-
ment bottleneck is Knowledge Distillation (Hinton,
2015; Kim and Rush, 2016). However, our pre-
liminary experiments demonstrate that the inher-
ent architectural discrepancy between the predictor
and corrector within PCformer impedes effective
knowledge transfer via distillation. Our empirical
investigations reveal an obvious 54% loss in perfor-
mance advantage for distilled student models, even
for those initialized with PCformer parameters.

Confronted with these deployment bottle-
necks, we pivot towards architectural innovations
grounded in numerical method principles. A naive
yet seemingly logical initial approach might be to
pursue uniformity in numerical methods between
predictor and corrector, such as pairing explicit
and backward Euler schemes. Similar attempts
have been validated in previous studies (Li et al.,
2024; Zhao et al., 2024), where a high-order pre-
dictor combined with a single-step backward Euler
method demonstrated promising results, particu-
larly on smaller datasets. However, ensuring solu-
tion precision inherently requires iterative solvers
to obtain the final solution, a process that shares
the same merits as high-order methods. Building
on this insight, we take a step further to explore
whether an iterative corrector mechanism is equally
critical for achieving both superior solution fidelity
and unlocking genuine efficiency gains.

To this end, we introduce the Iterative Implicit
Euler Transformer (IIET). Concretely, in IIET, each
iteration represents a computational step within
an implicit Euler iterative solver, where multiple

8944

corrections to the initial prediction are made to
ensure output precision. To further strengthen nu-
merical stability, we also employ linear multi-step
methods during each correction step. This archi-
tecture, detailed in Figure 1d, is designed not only
to achieve superior performance that scales with
increasing iterations, exhibiting competitive results
against PCformer, but also to be inherently com-
pressible due to its iterative nature. Notably, our
top-performing IIET models demonstrate a grow-
ing advantage over equivalent vanilla Transform-
ers as they scale, achieving improvements of 2.4%
(340M), 2.9% (740M), and a more substantial 5.6%
for the 1.3B model.

In this way, we can effectively accelerate the in-
ference of IIET via distillation techniques. Here,
we further propose Iteration Influence-Aware Dis-
tillation (IIAD), a method inspired by structured
pruning techniques (Men et al., 2024; Chen et al.,
2024), to reduce dispensable iterations. Specifi-
cally, IIAD first assesses “iteration influence” by
calculating input-output similarity for each itera-
tion. The optimal number of iterations per layer
is then determined according to a predefined in-
fluence threshold. Subsequently, a continued pre-
training phase is employed to restore the model’s
capabilities. This process enables users to tailor the
iterative correction steps of the IIET model accord-
ing to their computational budget, yielding efficient
IIET variants. Experiments demonstrate that our
efficient variant, E-IIET, reduces the inference com-
putational cost of IIET by over 60% while retaining
98.7% of its performance. The lower bound of our
efficient IIET variants not only outperforms the
vanilla Transformer by an average of 1.6 points but
also matches its inference efficiency, showcasing a
significant advancement in both performance and
deployment efficiency.

2 Background

We begin by establishing the connection between
residual connections and the Euler method, and
then discuss Transformer optimization strategies
informed by advanced explicit and implicit numer-
ical solutions of ODEs. Our work builds upon
the standard Transformer architecture (Vaswani,
2017), which comprises a stack of identical lay-
ers. For language modeling, each layer typically
comprises a causal attention (CA) block and a feed-
forward network (FFN) block. With residual con-
nections, the output of each block can be formu-

lated as yn+1 = yn + F(yn, θn), where F(yn, θn)
represents the transformation performed by either
the CA or FFN block with parameters θn.

2.1 Euler Method in Residual Networks

The Euler method provides a linear approximation
for first-order ODEs, defined as y′(t) = f(y(t), t)
with an initial value y(t0) = y0. Given a step size
h where tn+1 = tn + h, the method computes the
subsequent value yn+1 as:

yn+1 = yn + hf(yn, tn) (1)

where f(yn, tn) represents the rate of change of y,
determined by its current value and time t. Notably,
this formulation shares a structural similarity with
residual networks, where a trainable function, F(·),
approximates these changes. Consequently, from
an ODE perspective, residual connections can be in-
terpreted as a first-order discretization of the Euler
method. Although the success of residual connec-
tions highlights the benefits of the Euler method, its
first-order nature introduces significant truncation
errors (Li et al., 2022, 2024), limiting the precision
of yn+1. Fortunately, more advanced numerical
methods exist and have been successfully applied
to neural networks.

2.2 Advanced Numerical Transformers

To improve the precision of yn+1, the Runge-Kutta
(RK) method offers a more accurate alternative. In-
spired by the o-order RK method, the ODE Trans-
former (Li et al., 2022) replaces residual connec-
tions with a RK process:

yn+1 = yn +
∑o

i=1
γiFi (2)

F1 = F(yn, θn) (3)

Fi = F(yn +
∑i−1

j=1
βijFj , θn) (4)

where Fi represents the ith order results computed
by a shared transformer block F(∗, θn). The co-
efficients γi, βij are learnable parameters. This
architecture effectively mitigates truncation error,
leading to significant performance gains in genera-
tion tasks such as machine translation.

Compared to explicit numerical methods, im-
plicit numerical methods typically offer higher pre-
cision and stability. The Predictor-Corrector (PC)
method, using an explicit predictor for initial esti-
mates and an implicit corrector for refinement, is a
classic example. Recent work has demonstrated the

8945

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1

× � 푖푡푒��푡푖��

푏�

푏�

��+1

(a) Vanilla Transformer (b) Linear Multi-step
Transformer

(c) Predictor-Corrector Transformer (d) Iterative Implicit Euler
Transformer

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1

�0

푏푙����

푏푙����−1

푏푙���0

��−1

��

��+1
푖

Figure 1: Architectural comparison: (a) Vanilla Transformer; (b) Linear multistep-enhanced Transformer; (c)
PCformer with 2nd-order Runge-Kutta predictor and 1st-order Euler corrector; (d) Our proposed Iterative Implicit
Euler Transformer (IIET). The iteration steps r in IIET is configurable, with experimental validation determining
r = 3 as the optimal setting in this work. All blocks follow an identical computational procedure as the blockn.

benefits of integrating PC components into neural
network architecture. PCformer (Li et al., 2024)
employs an o-order RK predictor and a linear multi-
step (Wang et al., 2019) corrector, defined as:

yp = yn +
∑o

i=1
γ(1− γ)o−iFi (5)

yn+1 = yn + αF(yp, θn) +
n∑

i=n−2

βF̃i (6)

where Fi shares the same meaning as in Eq. 2
and F̃i denotes the outputs of previous blocks.
α, β, and γ are learnable coefficients. Specifically,
PCformer’s predictor incorporates an Exponential
Moving Average (EMA) to weight the contribu-
tions of different orders, while the corrector inte-
grates previous block outputs for increased pre-
cision. PCformer achieves superior performance
over the ODE Transformer and, to some extent,
unifies structural paradigms for Transformers im-
proved with implicit numerical methods. Our IIET
can be interpreted as a specific instance within the
PC paradigm, with a particular emphasis on the
iterative corrector component.

3 Iterative Implicit Euler Transformer

In this section, we detail the theoretical founda-
tion and core architectural design of the Iterative
Implicit Euler Transformer (IIET). Our approach
leverages the inherent stability of the implicit Euler
method, a cornerstone of numerical analysis, to
address key challenges in deep sequence modeling.

3.1 Iterative Implicit Euler Method

The implicit Euler method, also known as the back-
ward Euler method, is a foundational first-order
implicit numerical technique celebrated for its ro-
bust stability properties, particularly advantageous
in handling stiff systems (LeVeque, 2007). Unlike
its explicit counterparts, the implicit Euler method
employs a backward difference quotient, formu-
lated as:

yn+1 = yn + hf(yn+1, tn+1). (7)

The implicit nature of Eq. 7, where the computation
of yn+1 depends on its value at the same time step
tn+1, inherently requires iterative solvers from nu-
merical analysis to obtain a solution. Specifically,
in traditional numerical methods for solving such
implicit equations, Newton’s iteration is frequently
employed due to its quadratic convergence rate and
robustness (Zhang et al., 2017; Shen et al., 2020;
Kim et al., 2024). However, within the context of
neural sequence modeling, where computational
efficiency and architectural simplicity are often pri-
oritized, we propose to investigate the efficacy of a
simpler alternative: fixed-point iteration (Rhoades,
1976). While prior works like Li et al. (2024) have
utilized explicit methods for initial approximations
followed by a single backward Euler correction, the
potential of iterative refinement within the implicit
corrector remains largely unexplored.

Thus, challenging the implicit assumption that
a strong predictor is sufficient for high precision

8946

(Li et al., 2024), we propose the central hypothesis
that iterative refinement inside the implicit correc-
tor constitutes a pivotal mechanism for enhancing
solution fidelity. We argue that a single-step cor-
rection inherently limits the achievable accuracy,
particularly when modeling intricate sequence dy-
namics and seeking high-fidelity representations of
yn+1. Consequently, this work rigorously investi-
gates whether leveraging iterative solutions within
the implicit corrector can translate to demonstrable
gains in downstream model performance.

Intriguingly, our empirical findings reveal
that computationally efficient fixed-point itera-
tion yields surprisingly high precision, particularly
within our neural sequence modeling framework.
Our proposed Iterative Implicit Euler (IIE) method
commences with an initial approximation, y0n+1,
derived from an explicit Euler step. This initial
estimate is then iteratively refined through r fixed-
point iterations as defined below:

y0n+1 = yn + hf(yn, tn) (8)

yin+1 = yn + hf(yi−1
n+1, tn+1), i ∈ [1..r]. (9)

The final approximation yn+1 is thus given by yrn+1,
representing the output of the rth iteration.

The IIE method, while formally retaining its
first-order numerical accuracy, achieves a signif-
icant enhancement in the approximation of yn+1

through iterative refinement. This iterative process
engenders a structured form of nested computations
that superficially resemble higher-order methods,
albeit through a fundamentally distinct mechanism
rooted in repeated fixed-point iterations. Acknowl-
edging the increased computational cost, the inher-
ent structural regularity of IIE, predicated solely on
the preceding iteration’s output, emerges as a cru-
cial enabler for inference efficiency optimizations,
as detailed in Section 4. This carefully engineered
balance between iteratively enhanced precision and
structural simplicity underpins the design philoso-
phy of the IIET architecture.

3.2 Model Architecture
Building on the IIE method, we propose the Iter-
ative Implicit Euler Transformer (IIET) as a foun-
dational architecture for sequence modeling, par-
ticularly for large language models. Adopting the
LLaMA architecture (Touvron et al., 2023b) (Trans-
former++), IIET consists of N stacked transformer
decoder layers. Each layer comprises a causal at-
tention module followed by a feedforward mod-
ule, and employs rotary positional encoding (Su

Algorithm 1 Iterative Implicit Euler Paradigm
1: procedure IIET BLOCK(yn, θn, L, r)
2: L is the global stack for historical hidden states
3: f0

n ← F(yn, θn) ▷ Compute initial value
4: L.append(f0

n) ▷ Store the initial context
5: for i← 0 to r − 1 do ▷ Refinement loop
6: Compute yi+1

n+1 using L via the update rule
7: f i+1

n ← F(yi+1
n+1, θn) ▷ Compute refined value

8: L.update(f i
n → f i+1

n) ▷ Update the context L
9: end for

10: Compute yr
n+1 using the final context L

11: return yr
n+1 ▷ Return the final layer output

12: end procedure

et al., 2024), SiLU activation (Shazeer, 2020), and
RMS normalization (Zhang and Sennrich, 2019).
Given an input sequence x = x1, ..., xL of length
L, the initial input embeddings are represented as
X0 = [x1, ..., xL] ∈ RL×dmodel , where dmodel is the
hidden dimension. The output of each subsequent
layer is then computed as Xn = Decoder(Xn−1),
for n ∈ [1, N].

The key distinction between IIET and Trans-
former++ lies in IIET’s integration of the IIE
method within each decoder layer (Figure 1). Un-
like Transformer++, which directly computes the
layer’s output using a single Euler step (standard
residual), IIET employs an iterative refinement pro-
cess. Specifically, IIET first estimates an initial
value, y0n+1, via a single Euler step (Eq. 8):

y0n+1 = yn + F(yn, θn) (10)

where F(∗, θn) represents the nth transformer
layer with parameters θn. This initial estimate in
IIET corresponds to the direct output of each layer
in Transformer++.

In the subsequent iterations, our preliminary
experiments suggest that incorporating outputs
from previous layers, similar to Transformer-
DLCL (Wang et al., 2019), can enhance the perfor-
mance. We thus modify Eq. 9 as follows:

yin+1 = yn + αnF(yi−1
n+1, θn) +

n−1∑

j=0

αjF̃j (11)

where i ∈ [1..r] denotes the iteration step, F̃j rep-
resents the output of the previous layers j, and α
represents learnable layer merge coefficients.

Algorithm 1 further details the computational
flow within a single IIET layer. Specifically, the
matrix L stores the hidden states from previously
computed layers, thereby providing the necessary
historical context. Within a single block, an initial

8947

1 2 3 4

77.6

68.2
68.4

67.4

66.6

67.4

Pe
rp

le
xi

ty
IIET 55M

1 2 3 4

28.2

25.7
26.0

25.5

25.0
25.2

IIET 340M

iteration steps r

Figure 2: PPL on the Wikitext test set for 55M and
340M IIET across varying iteration steps r. Dashed
lines indicate Transformer++ and PCformer perfor-
mance at corresponding parameter scales. Note that
IIET’s FLOPs is nearly r + 1 times of Transformer++.

estimate of the output, denoted as y0n+1, is gener-
ated and then iteratively refined. Each iteration
i updates this estimate to yin+1 by leveraging the
function F and the context L. This fixed-point
iteration process ensures that the hidden state pro-
gressively converges to a more precise and stable
final output, yrn+1.

3.3 Experimental Setups

Baselines. We evaluate IIET’s performance
against two strong baselines: Transformer++ (Tou-
vron et al., 2023a) and PCformer (Li et al., 2024).
Transformer++ adopts the LLaMA architecture.
PCformer employs a 2nd-order Runge-Kutta pre-
dictor and a linear multi-step corrector 1. We train
all models from scratch at three parameter scales:
340M, 740M, and 1.3B. All models are trained
on the same dataset with identical token counts
to ensure controlled comparison. Detailed train-
ing hyperparameter settings can be found in Ap-
pendix A.1.

Datasets and Evaluation Metrics. Our models
are pre-trained on SlimPajama (Soboleva et al.,
2023) and tokenized using the LLaMA2 tok-
enizer (Touvron et al., 2023a). From the origi-
nal 627B-token dataset, we sample 16B, 30B and
100B tokens for training the 340M, 740M and
1.3B parameter models, respectively. For compre-
hensive evaluation, we assess perplexity (PPL) on
Wikitext (Wiki.) (Merity et al., 2016) and consider
several downstream tasks covering common-sense
reasoning and question answering: LAMBADA
(LMB.) (Paperno et al., 2016), PiQA (Bisk et al.,
2020), HellaSwag (Hella.) (Zellers et al., 2019),
WinoGrande (Wino.) (Sakaguchi et al., 2021),

1We also explored a 4th-order Runge-Kutta predictor and
more complex correctors, but these increased training costs
without substantially improving performance.

0 1 2 3 4 5 6 7 8
Iteration steps r

47
48

49
50

(a) Accuracy & PPL
Ave Acc (%)
Wiki PPL

0 1 2 3 4 5 6 7 8
Iteration steps r

0
10

20
30

40
50

(b) Speed & Memory
Speed (Toks/s)
Memory (GB)

24.5
25.5

26.5
27.5

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Figure 3: Ablation study on iteration steps r: (a) Impact
on model performance. (b) Corresponding effects on
inference speed and VRAM utilization.

ARC-Challenge (ARC-c) (Clark et al., 2018), and
SCIQ (Welbl et al., 2017). We report PPL on Wiki-
text and LAMBADA; length-normalized accuracy
on HellaSwag, ARC-Challenge, and PiQA; and
standard accuracy on the remaining tasks. All
evaluations are conducted using the lm-evaluation-
harness (Gao et al., 2021). In addition to language
modeling, we also conduct experiments on machine
translation and summarization tasks, with detailed
results in Appendix B.

Ablation Study on Iteration Steps.

3.4 Experimental Results

Iteration Steps. To identify the optimal iteration
steps r, we first apply varying r values to the 340M
IIET model and a smaller 55M parameter variant
(detailed in Appendix A.1). All models were evalu-
ated on Wikitext test set. As illustrated in Figure 2,
which showcases the benefit of iterative correction,
IIET’s performance exceeds PCformer at r = 2
and achieves its peak at r = 3. Therefore, we
adopt r = 3 in this work.

Results. IIET’s advantages are clearly demon-
strated on LLM evaluation benchmarks. As shown
in Table 1 (Pre-training Phase), IIET consistently
surpasses Transformer++ at comparable parameter
scales. At the 340M scale, IIET achieves a mean ac-
curacy 2.4 points higher than Transformer++ across
six challenging subtasks. This performance gap
widens with model size, reaching 2.9 points at
740M and a substantial 5.6 points at 1.3B parame-
ters. Moreover, IIET’s performance also matches
or exceeds that of PCformer across all tested scales,
demonstrating the advantages of the iterative cor-
rection paradigm. This strong scaling behavior,
consistent with the findings in Li et al. (2024)’s
work, confirms the robust scalability of IIET and
showcases its potential with larger models and
datasets.

8948

Wiki. LMB. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.
Scale Model ppl ↓ ppl ↓ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ ↑
Pre-training Phase

340M Params Transformer++ 28.2 78.3 28.9 64.3 34.2 76.0 23.6 51.9 46.5
16B Tokens PCformer 25.7 47.0 33.1 64.9 36.3 77.5 24.7 53.3 48.3

IIET 25.0 30.5 37.1 65.2 36.9 79.4 23.9 51.0 48.9

740M Params Transformer++ 23.3 34.8 36.1 66.4 38.4 78.6 24.5 50.2 49.0
30B Tokens PCformer 21.2 22.0 41.0 66.3 41.3 82.0 23.3 51.2 50.9

IIET 20.7 21.1 41.2 68.9 42.5 82.1 23.8 53.1 51.9

1.3B Params Transformer++ 16.3 11.8 51.6 71.0 51.7 86.7 28.1 54.6 57.2
100B Tokens PCformer 14.0 7.9 59.6 73.8 60.0 90.7 31.7 61.7 62.9

IIET 14.0 7.8 59.8 73.7 60.5 88.6 32.3 61.6 62.8

Iteration Influence-Aware Distillation Phase

340M Params Distil PCformer 27.2 50.4 32.2 64.6 34.9 78.0 24.7 51.3 47.6
5B Tokens Lower Bound 27.0 34.6 36.1 64.0 35.0 80.7 23.0 51.5 48.4

E-IIET 25.7 30.9 37.4 64.4 35.8 80.4 23.5 52.1 48.9

740M Params Distil PCformer 22.5 29.5 37.4 66.8 39.2 80.0 23.2 50.9 49.6
10B Tokens Lower Bound 23.0 29.9 37.6 67.4 38.7 79.7 25.2 53.0 50.3

E-IIET 21.2 24.2 40.1 68.5 41.0 81.0 24.6 52.4 51.3

1.3B Params Lower Bound 15.9 9.3 57.0 72.7 56.7 87.7 29.6 59.1 60.5
30B Tokens E-IIET 14.8 8.9 57.5 73.2 58.4 88.6 30.7 59.4 61.3

Table 1: Comparison of results between our models and baselines in the Pre-training Phase and Iteration Influence-
Aware Distillation Phase. The individual task performance is via zero-shot. We report the main results on the
same set of tasks reported by Gu and Dao (2023). The last column shows the average over all benchmarks that use
(normalized) accuracy as the metric. Bold values represent the best results in each set.

3.5 Analysis

A key question concerning IIET is whether its per-
formance improves monotonically with an increas-
ing number of iterative correction steps. To inves-
tigate this, we conducted an ablation study on the
340M IIET model, varying the number of iteration
r. 2 As illustrated in Figure 3a, performance ini-
tially improves with increasing r. However, beyond
a certain threshold, further increases in r lead to a
plateau in performance gains. This suggests that
the iterative refinement process guides the final rep-
resentation towards a more precise ODE solution,
but with diminishing returns after optimal conver-
gence. Detailed downstream results can be found
in Appendix C. FurtherMore, to assess the impact
of r on inference efficiency, we measured the au-
toregressive generation throughput of IIET variants
on a single A100 GPU. Figure 3b shows that while
IIET’s inference speed substantially declines with
increasing r, its VRAM footprint remains largely
unaffected as it incurs no extra parameters.

Comparison with Equal FLOPs. Given that
IIET’s iterative correction adds FLOPs (to approx-
imately four times that of Transformer++ when

2In the case where r = 0, IIET is structurally the same as
the DLCL Transformer.

Model LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.

IIET 37.1 65.2 36.9 79.4 23.9 51.0 48.9
Trans WS 30.7 63.1 34.4 75.7 23.2 50.4 46.3
Trans 1.3B 37.3 65.7 37.6 78.6 23.7 51.5 49.0

Table 2: Performance comparison of models with
FLOPs comparable to the 340M IIET.

r = 3), we aimed for a performance compari-
son under equivalent computational budgets. Thus,
we trained a 1.3B Transformer++ model on iden-
tical 16B training data. The results in Table 2
show that IIET performs comparably to the much
larger Transformer++ but with substantially fewer
parameters, thereby reducing memory and train-
ing overhead. To ensure a fair comparison based
on model size, we compressed the 1.3B Trans-
former++ model using pruning and quantization to
align with IIET’s storage requirements. The results
of this evaluation are detailed in Appendix D. More-
over, models with exactly matched parameter scale
and FLOPs were benchmarked. Since IIET’s ar-
chitecture closely resembles weight-sharing meth-
ods, we established a naive weight-sharing base-
line: the Transformer++ model’s depth was quadru-
pled, with weights shared every four layers, namely
Trans WS. As shown in Table 2, this simple
weight-sharing approach alone does not yield per-

8949

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

Transformer++

IIET r=1

IIET r=2

IIETM
od

el
 A

rc
hi

te
ct

ur
e 0.87 0.26 0.24 0.18 0.17 0.23 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.10 0.11

0.81 0.38 0.29 0.16 0.42 0.40 0.40 0.53 0.28 0.25 0.19 0.20 0.24 0.16 0.24 0.10 0.06 0.09 0.07 0.07 0.15 0.22 0.23 0.22

0.69 0.33 0.28 0.15 0.26 0.40 0.25 0.24 0.28 0.32 0.19 0.15 0.23 0.17 0.23 0.16 0.23 0.22 0.10 0.10 0.46 0.04 0.29 0.36

0.80 0.36 0.14 0.20 0.32 0.16 0.27 0.19 0.22 0.22 0.15 0.27 0.56 0.50 0.26 0.19 0.43 0.77 0.65 0.47 0.42 0.56 0.38 0.34

Block Influence Analysis of 340M Parameter Model

0.2

0.4

0.6

0.8 B
lock Influence

Figure 4: Distribution of Block Influence (BI) for Transformer++ and IIET models with varying iteration steps r.
Higher BI values indicate lower model redundancy.

formance gains, highlighting the crucial contribu-
tion of IIET’s implicit iterative solver-based design
to its enhanced performance.

Parameter Redundancy of IIET. We hypothe-
size that the iterative correction process of IIET
enhances learning efficiency and reduces parame-
ter redundancy. To investigate this, we used Block
Influence (BI) (Men et al., 2024) to measure layer
redundancy in IIET and Transformer++. BI as-
sesses the influence of each model block on the
hidden state by measuring the similarity between
its input and output; lower similarity indicates a
higher influence. Specifically, the BI of a Trans-
former block is calculated as:

BIi = 1− EH,t

HT
i,tHi+1,t

||Hi,t||2||Hi+1,t||2
(12)

where Hi,t represents the tth row of the ith layer’s
input hidden states. We randomly sampled 5,000
text segments from Wikitext to calculate the BI
of each model. As shown in Figure 4, the influ-
ence of IIET’s blocks increases significantly with
iteration steps, demonstrating higher layer utiliza-
tion. This also indicates that the learning potential
of existing large-scale language models remains
under-exploited.

4 Iteration Influence-Aware Distillation

While IIET achieves strong downstream task per-
formance, its iterative structure introduces com-
putational overhead that curtails inference speed.
This added latency is particularly non-negligible for
autoregressive generation in large language mod-
els. To enhance IIET’s inference efficiency with-
out performance loss, we explore whether contin-
uous pre-training combined with distillation can
enable fewer forward passes, ideally a single one,
to yield outputs equivalent to those from the com-
plete, multi-step iterative correction process. To

this end, we analyze the impact of each iterative cor-
rection step on the hidden state within each block.
Surprisingly, Figure 5 shows that not all layers re-
quire the same number of iteration steps to achieve
accurate output, with deeper layers benefiting more
from additional iterative corrections, which is po-
tentially due to the varying roles layers play in the
Transformer’s representation-building process.

4.1 Methodology

In this section, we propose Iteration Influence-
Aware Distillation (IIAD). IIAD first analyzes the
iterative process of a pre-trained IIET, identifying
and eliminating non-essential iterative computa-
tions to yield an efficient variant, E-IIET. Subse-
quently, a layer-wise self-distillation phase restores
the performance of E-IIET.

Iteration Influence. Iteration influence employs
a computational methodology similar to block influ-
ence; however, its calculation is performed specif-
ically within individual IIET blocks. For a given
nth block, we consider its input yn and the out-
put yin+1 of each internal iteration i. The pairwise
differences between these representations are calcu-
lated using Eq. 12 to obtain the iteration influence
values. Based on these values and a specified com-
putational budget, users can determine the number
of iteration steps to retain per block.

In this work, we primarily investigate two de-
signs for efficient IIET variants: ❶ Lower Bound:
Each layer performs only a single forward pass,
establishing a performance lower bound for effi-
cient IIET. ❷ E-IIET: This variant establishes a
threshold using the minimum of the initial iteration
influence values computed in each layer. Conse-
quently, iteration steps with influence scores below
this threshold are omitted, preserving each layer’s
initial computation and essential iteration steps.
Specifically, E-IIET reduces the number of iter-
ation steps from a baseline of 72 to 15 in the 340M

8950

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

initial compute

iteration 1

iteration 2

iteration 3

C
al

cu
la

tio
n

Ph
as

e

0.90 0.29 0.19 0.11 0.23 0.21 0.18 0.21 0.17 0.18 0.18 0.22 0.25 0.30 0.22 0.24 0.19 0.39 0.27 0.15 0.31 0.59 0.23 0.26

0.20 0.06 0.03 0.02 0.07 0.07 0.05 0.06 0.04 0.05 0.05 0.06 0.08 0.11 0.04 0.13 0.07 0.03 0.03 0.01 0.04 0.00 0.02 0.03

0.11 0.01 0.01 0.00 0.02 0.03 0.02 0.02 0.01 0.02 0.01 0.03 0.05 0.10 0.01 0.07 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.01

0.04 0.01 0.01 0.02 0.03 0.02 0.03 0.06 0.06 0.03 0.07 0.10 0.16 0.51 0.12 0.07 0.49 0.49 0.53 0.49 0.54 0.15 0.19 0.43

Iteration Influence Analysis of 340M IIET

0.2

0.4

0.6

0.8

Iteration Influence

Figure 5: Iteration Influence within each layer of the 340M IIET model. Deeper colors indicate larger hidden state
changes after this iteration. The 740M IIET results are presented in Appendix E due to space constraints.

variant and 23 in the 740M variant.

Iteration Influence-Aware Distillation. In the
continuous pre-training stage, we employ a warm-
start initialization strategy, directly inheriting pa-
rameters from the pre-trained IIET model to retain
knowledge acquired during its initial pre-training
phase. To enable efficient IIET variants (e.g., E-
IIET) to approximate the precise output represen-
tations of the full IIET, we utilize a fine-grained,
block-specific knowledge distillation framework
incorporating two complementary losses: 1) Mean
Squared Error (MSE) Loss: For each block, an
MSE loss encourages E-IIET to mimic the refined
hidden states produced by the full IIET. This loss
is computed as:

LMSE =
1

n

n∑

i=1

∥hIIET
i − hE-IIET

i ∥22 (13)

where hi are the hidden state outputs of the ith

block. 2) Kullback-Leibler (KL) Loss: To fur-
ther align prediction behavior, we compute the KL
divergence between the final output probability dis-
tributions of the full IIET and E-IIET:

LKL = DKL
(
p(zIIET/τ) ∥ p(zE-IIET/τ)

)
(14)

where z represent the output logits and τ is the
distillation temperature. By combining these two
distillation losses with Cross-Entropy loss, we train
E-IIET to effectively capture the knowledge em-
bedded within the full IIET’s iterative refinement
process. The final training objective for this contin-
uous pre-training stage is thus:

LE-IIET = LCE + αLMSE + βLKL (15)

4.2 Experiments and Results
Setups. To train efficient IIET variants, we sam-
ple one-third of the original pre-training tokens (see
Appendix A.2 for detailed training settings). For

Model 340M 740M

Spd. FLOPs VRAM Spd. FLOPs VRAM

Transformer++ 49.97 0.38 1.37 48.91 0.80 2.80
PCformer 14.14 1.06 1.41 14.38 2.30 2.86
IIET 11.07 1.40 1.42 10.95 3.05 2.89

Lower Bound 42.66 0.38 1.37 42.03 0.80 2.80
E-IIET 25.95 0.60 1.38 22.12 1.52 2.83

Table 3: A comparison of inference speed (tokens per
second), FLOPs (T) and VRAM (GB) for baseline mod-
els, PCformer, and efficient IIET variants.

performance comparison against E-IIET, we also
prepare two key baselines: a Lower Bound variant,
which omits all iterative corrections, and a distilled
version of PCformer. All models are trained fol-
lowing the method outlined in Section 4.1.

Main Results. Table 1 presents the main results
for IIAD. As a baseline, directly distilling PC-
former into a standard Euler architecture (namely
Distil PCformer) leads to substantial performance
degradation, highlighting the importance of the so-
phisticated numerical solvers employed by higher-
order methods to achieve their accuracy. In con-
trast, E-IIET, compared to the full IIET model, re-
tains the vast majority of its performance while
reducing the average iterative correction overhead
by about 55%. Importantly, even the Lower Bound
efficient IIET variant achieves performance on par
with PCformer, demonstrating IIET’s strength in
balancing efficiency with strong performance.

Inference Efficiency. We analyze the inference
speed, FLOPs and VRAM usage of our main mod-
els. As Table 3 indicates, E-IIET achieves over a 2x
speedup compared to full IIET, while largely main-
taining IIET’s performance advantage (E-IIET vs.
full IIET scores: 48.9/48.9 for 340M and 51.3/51.9
for 740M model). However, due to the FLOPs in-
curred by its remaining iteration steps, E-IIET still
exhibits nearly twice the inference latency of Trans-

8951

former++. A key characteristic of these efficient
IIET variants is the inverse relationship between
performance and efficiency: fewer iterations lead
to lower performance but higher efficiency. No-
tably, Table 3 shows that the maximum efficiency
attained by these variants (i.e, Lower Bound) is
close to that of the Transformer++, with their aver-
age performance surpassing it by 1.6 points. This
adaptability makes E-IIET a flexible solution for
practical deployment, as users can select the itera-
tion steps based on their resource constraints (e.g.,
reducing iterations to maximize inference speed).

5 Related Work

Ordinary Differential Equations in Deep Learn-
ing The conceptual link between Ordinary Dif-
ferential Equations (ODEs) and residual networks,
first established by Weinan (2017), has catalyzed
the development of numerous ODE-inspired neural
architectures. In computer vision, this perspective
give rise to models such as PolyNet (Zhang et al.,
2017), FractalNet (Larsson et al., 2016), Multi-
stepNet (Lu et al., 2018), and Momentum Residual
Networks (Sander et al., 2021). The ODE view-
point has also been highly influential in generative
modeling, particularly for diffusion models (Ho
et al., 2020). For example, Liu et al. (2022) re-
framed Denoising Diffusion Probabilistic Models
(DDPMs) as a process of solving differential equa-
tions on manifolds, introducing a pseudo linear
multi-step method to improve performance. Build-
ing on this, DPM-Solver (Lu et al., 2022a,b) sig-
nificantly accelerated the sampling process by em-
ploying exact ODE solutions and higher-order nu-
merical methods. More recently, ODE principles
have been leveraged to enhance Transformer archi-
tectures for sequence modeling and generation (Lu
et al., 2019; Wang et al., 2019). Dutta et al. (2021)
redesigned the Transformer as a more efficient
multi-particle dynamic system, while Tong et al.
(2025) proposed high-order methods to mitigate
error accumulation in first-order ODE blocks. Fur-
ther advancing this line of work, PCformer (Li
et al., 2024) introduced a predictor-corrector frame-
work to boost performance, and they first show
the potential of such numerical design in large lan-
guage model literature. In our work, we build upon
this foundation by employing the implicit Euler
method, aiming to enhance language modeling per-
formance while achieving a superior trade-off be-
tween accuracy and computational efficiency.

Implicit ODE Method Existing approaches that
utilize implicit ODE solvers can be broadly catego-
rized into two paradigms. The first, exemplified by
seminal works like Neural ODEs (Chen et al., 2018;
Zhang et al., 2021) and Deep Equilibrium Mod-
els (DEQs) (Bai et al., 2019), represents a signifi-
cant shift towards implicit deep learning. Neural
ODEs model the network as a continuous transfor-
mation by using a neural network to parameterize
the state’s derivative, which is solved with a numer-
ical ODE solver. In contrast, DEQs define network
layers implicitly through an equilibrium point, de-
noted as z∗ = f(z∗, x), which is found iteratively,
with gradients computed via implicit differentia-
tion. While subsequent research has explored these
models for applications like time-series forecasting,
their computational cost remains a significant bar-
rier for large-scale language modeling; for instance,
a DEQ model can require over five times the com-
putation to match the performance of a standard
Transformer-XL model (240M). More recently, the
Neural ODE Transformer (Tong et al., 2025) has
achieved performance surpassing that of the vanilla
Transformer on language modeling tasks. Another
class of methods utilizes advanced implicit numeri-
cal solvers to optimize mainstream model architec-
tures (Li et al., 2024, 2020; Shen et al., 2020; Kim
et al., 2024). For instance, IE-Skips (Li et al., 2020)
modifies the original skip connection in ResNet for
robustness. Similarly, IM-BERT (Kim et al., 2024)
introduced the use of the implicit Euler method to
enhance the adversarial robustness of BERT. Our
proposed IIET distinctively focuses on autoregres-
sive generation, and the core formulation is quite
different, that we adopted an iterative refinement
schema began from a fixed point. To our knowl-
edge we are the first to apply iterative implict Euler
into LLMs paradigm.

6 Conclusions

We propose a novel Transformer architecture, the
Iterative Implicit Euler Transformer (IIET), de-
signed for enhanced language modeling perfor-
mance. IIET leverages the iterative implicit Euler
method, providing substantial improvements over
vanilla Transformers with a simplified architecture
compared to PCformer. Furthermore, we introduce
an inference acceleration technique for IIET, which
uses self-distillation to prune the iterative process,
allowing users to adjust inference efficiency based
on their budget.

8952

Limitations

Although the IIAD method is designed to produce
efficient IIET variants for inference, the IIAD pro-
cess itself introduces notable computational over-
head during its application. Future research will
focus on integrating the determination of layer-
specific iteration requirements directly into the pre-
training stage. This could facilitate the direct train-
ing of inherently efficient IIET models, potentially
bypassing a separate, resource-intensive distillation
phase.

Beyond optimizing IIET’s per-token efficiency,
we also identify a promising avenue for broader
application. Current large reasoning models of-
ten achieve high performance by generating sub-
stantially more tokens than are present in the fi-
nal answer, leading to significant inference latency.
IIET, on the contrary, enhances per token repre-
sentational power through depth-wise iterative re-
finement, albeit at an increased per-token compu-
tational cost. We hypothesize that this trade-off
could be ultimately advantageous in multi-step rea-
soning tasks: IIET’s more precise computation per
token might enable it to generate complete and cor-
rect answers in fewer overall autoregressive steps,
thereby reducing the total token count and poten-
tially overall latency. Validating this hypothesis,
however, necessitates training and evaluating IIET
at larger model and data scales, which remains a
key direction for future investigation.

Acknowledgments

This work was supported in part by the National
Science Foundation of China (Nos. 62276056
and U24A20334), the Yunnan Fundamental Re-
search Projects (No.202401BC070021), the Yun-
nan Science and Technology Major Project (No.
202502AD080014), and the Program of Introduc-
ing Talents of Discipline to Universities, Plan 111
(No.B16009).

References
Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019.

Deep equilibrium models. Advances in neural infor-
mation processing systems, 32.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. 2018. Neural ordinary dif-
ferential equations. Advances in neural information
processing systems, 31.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024.
Compressing large language models by stream-
lining the unimportant layer. arXiv preprint
arXiv:2403.19135.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti,
and Tanmoy Chakraborty. 2021. Redesigning the
transformer architecture with insights from multi-
particle dynamical systems. Advances in Neural In-
formation Processing Systems, 34:5531–5544.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
and 1 others. 2021. A framework for few-shot lan-
guage model evaluation. Version v0. 0.1. Sept, 10:8–
9.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Geoffrey Hinton. 2015. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–
6851.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, and 1 others. 2024. Minicpm:
Unveiling the potential of small language models
with scalable training strategies. arXiv preprint
arXiv:2404.06395.

Mihyeon Kim, Juhyoung Park, and Youngbin Kim.
2024. Im-bert: Enhancing robustness of bert through
the implicit euler method. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 16217–16229.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. 2016. Fractalnet: Ultra-deep neu-
ral networks without residuals. arXiv preprint
arXiv:1605.07648.

Randall J. LeVeque. 2007. Finite difference methods for
ordinary and partial differential equations - steady-
state and time-dependent problems. SIAM.

8953

Bei Li, Quan Du, Tao Zhou, Yi Jing, Shuhan Zhou, Xin
Zeng, Tong Xiao, JingBo Zhu, Xuebo Liu, and Min
Zhang. 2022. Ode transformer: An ordinary differen-
tial equation-inspired model for sequence generation.
arXiv preprint arXiv:2203.09176.

Bei Li, Tong Zheng, Rui Wang, Jiahao Liu, Qingyan
Guo, Junliang Guo, Xu Tan, Tong Xiao, Jingbo
Zhu, Jingang Wang, and 1 others. 2024. Predictor-
corrector enhanced transformers with exponential
moving average coefficient learning. arXiv preprint
arXiv:2411.03042.

Mingjie Li, Lingshen He, and Zhouchen Lin. 2020. Im-
plicit euler skip connections: Enhancing adversarial
robustness via numerical stability. In International
Conference on Machine Learning, pages 5874–5883.
PMLR.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. 2022.
Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. 2022a. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in
around 10 steps. Advances in Neural Information
Processing Systems, 35:5775–5787.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. 2022b. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic
models. arXiv preprint arXiv:2211.01095.

Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong,
Tao Qin, Liwei Wang, and Tie-Yan Liu. 2019. Un-
derstanding and improving transformer from a multi-
particle dynamic system point of view. arXiv preprint
arXiv:1906.02762.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin
Dong. 2018. Beyond finite layer neural networks:
Bridging deep architectures and numerical differen-
tial equations. In International Conference on Ma-
chine Learning, pages 3276–3285. PMLR.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel

Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

BE Rhoades. 1976. Comments on two fixed point itera-
tion methods. Journal of Mathematical Analysis and
Applications, 56(3):741–750.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Michael E Sander, Pierre Ablin, Mathieu Blondel, and
Gabriel Peyré. 2021. Momentum residual neural
networks. In International Conference on Machine
Learning, pages 9276–9287. PMLR.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Jiawei Shen, Zhuoyan Li, Lei Yu, Gui-Song Xia, and
Wen Yang. 2020. Implicit euler ode networks
for single-image dehazing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 218–219.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
Slimpajama: A 627b token cleaned and deduplicated
version of redpajama.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Anh Tong, Thanh Nguyen-Tang, Dongeun Lee, Duc
Nguyen, Toan Tran, David Leo Wright Hall, Cheong-
woong Kang, and Jassik Choi. 2025. Neural ode
transformers: Analyzing internal dynamics and adap-
tive fine-tuning. In ICT.R.2025 Poster. Unpublished.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023a. Llama: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023b. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. arXiv preprint arXiv:1906.01787.

8954

Ee Weinan. 2017. A proposal on machine learning via
dynamical systems. Communications in Mathemat-
ics and Statistics, 1(5):1–11.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Jing Zhang, Peng Zhang, Baiwen Kong, Junqiu Wei, and
Xin Jiang. 2021. Continuous self-attention models
with neural ode networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 35,
pages 14393–14401.

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and
Dahua Lin. 2017. Polynet: A pursuit of structural
diversity in very deep networks. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 718–726.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou,
and Jiwen Lu. 2024. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion
models. Advances in Neural Information Processing
Systems, 36.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu.
2024. Dpm-solver-v3: Improved diffusion ode solver
with empirical model statistics. Advances in Neural
Information Processing Systems, 36.

A Training Settings

A.1 Pre-training Phase

To evaluate IIET’s performance across different
model sizes, we train models from scratch at three
parameter scales: 340M, 740M, and 1.3B. For all
training runs, we employ the AdamW optimizer
with a maximum learning rate of 3e-4. A batch
size of 0.5M tokens is used for the 340M model,
while 1M tokens are used for the 740M and 1.3B
models. We apply a cosine learning rate schedule
to all model scales, which includes a 0.01 warmup
ratio, 0.01 weight decay, and gradient clipping at
1.0. Furthermore, a smaller 55M parameter IIET
variant is trained to determine the optimal iteration
count, r. The complete hyperparameter details for
the pre-training phase are provided in Table 4.

A.2 Iteration Influence-Aware Distillation
Phase

To train efficient IIET variants, we sample one-
third of the total pre-training tokens for each con-
figuration (e.g., 5 billion tokens for 340M mod-
els, 10 billion tokens for 740M models and 30 bil-
lion tokens for 1.3B models). Users can customize
the corrective iteration process for these variants
based on their computational budget. In this study,
we focus on two main types of efficient IIETs: a
‘lower bound’ configuration that removes all itera-
tive steps, and E-IIET, which utilizes a threshold for
iteration selection. For training, all efficient IIET
variants use the full IIET as a teacher model and are
trained with the fine-grained supervision method
detailed in Section 4.1. We apply a cosine decay
learning rate schedule with an initial value of 2e-4,
while other pre-training hyperparameters are kept
consistent. Furthermore, for comparison purposes,
we train Distil PCformer, a self-distilled version
of PCformer using the same methodology. To en-
sure a fair comparison, we use the same evaluation
dataset and metrics as described in Section 3.3.

A.3 Two-Stage Training

We conduct the two-stage training experiment fo-
cusing on a model with a 740 million parameter
scale. The specific model configurations are pro-
vided in Table 4. In the initial stage, we train a stan-
dard Transformer architecture with a linear learning
rate warmup followed by a constant rate. In the
second stage, we adapt the model to the IIET struc-
ture with r = 3. The detailed hyperparameters for
both training phases are summarized in Table 5.

8955

Hyperparameters 55M 340M 740M 1.3B

model_type llama llama llama llama
hidden_act silu silu silu silu
initializer_range 0.02 0.02 0.02 0.02
hidden_size 512 1024 1536 2048
intermediate_size 1408 2816 4224 5504
max_position_embeddings 2048 2048 2048 2048
num_attention_heads 4 8 8 16
num_hidden_layers 12 24 24 24
num_key_value_heads 4 8 8 16
pretraining_tp 1 1 1 1
rms_norm_eps 1.00× 10−6 1.00× 10−6 1.00× 10−6 1.00× 10−6

tie_word_embeddings True True True False
torch_dtype float16 float16 float16 float16
vocab_size 32000 32000 32000 32000

training_len 2048 2048 2048 2048
total_batch_size 128 256 512 512
learning_rate 0.0004 0.0003 0.0003 0.0002
max_steps 5000 30000 30000 100000
warm_up 0.05 0.05 0.01 0.01

Table 4: The key hyperparameters for both the model architecture and the training process.

Hyperparameters Value

Foundational Pretraining

batch_size 512
learning_rate 3e-4
lr_scheduler_type constant_with_warmup
warmup_steps 300
training_len 2048
total_steps 22,000

Architectural Transition

batch_size 512
learning_rate 3e-4
lr_scheduler_type cosine
warmup_steps 0
training_len 2048
total_steps 8,000

Table 5: Hyperparameter configuration for two-stage
training.

B Experimental Results on Other Tasks

To validate the generalizability of our proposed
IIET architecture, we present experimental results
on machine translation and summarization. For a
fair and direct comparison, our experimental setup
strictly follows the one established in PCformer (Li
et al., 2024). Specifically, we train IIET in a stan-
dard big configuration (6-layer encoder and 6-layer
decoder), with three iterations of our iterative im-
plicit Euler method applied to the encoder, which is
consistent with the methodology in our main exper-

Model En-De
BLEU

En-Fr
BLEU

OPUS
SacreBLEU

Summarization
Rouge-1/2/L

Transformer++ 29.2 42.9 30.8 (34.0/27.6) 40.5/17.7/37.3
PCformer 30.9 43.9 32.6 (36.0/29.1) 42.0/19.0/38.7
IIET 30.7 43.8 32.1 (35.7/28.6) 42.0/19.0/38.7

Table 6: Performance comparison of IIET against base-
line models on machine translation (WMT14) and sum-
marization tasks.

iments. Results for all baseline models, including
PCformer, are taken directly from the original pub-
lication. For the OPUS benchmark, we report the
average score of the X-En and En-X translation
directions.

The results in Table 6 confirm that IIET achieves
performance competitive with the state-of-the-art
PCformer model while substantially outperforming
the strong Transformer++ baseline. However, we
posit that IIET’s primary practical advantage lies
in its superior adaptability for low-FLOPs deploy-
ment in resource-constrained environments. This
adaptability contrasts with models like PCformer,
where the inherent predictor-corrector discrepancy
can hinder effective compression. Furthermore, our
training logs reveal an increase in validation per-
plexity during the final training stages, which we
attribute to overfitting. This observation suggests
that even stronger performance may be achievable

8956

Model Iter. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.

Transformer++ - 28.9 64.3 34.3 76.0 23.6 51.9 46.5
PCformer - 33.1 64.9 36.3 77.5 24.7 53.3 48.3

IIET 0 32.4 65.1 34.8 78.3 23.5 50.4 47.4
IIET 1 34.4 64.7 36.1 76.3 23.3 50.1 47.5
IIET 2 34.6 65.0 36.8 77.2 24.2 51.9 48.3
IIET 3 37.1 65.2 36.9 79.4 23.9 51.0 48.9
IIET 4 36.8 64.3 37.3 78.1 22.8 53.8 48.8
IIET 5 36.3 64.5 37.3 78.6 23.4 53.2 48.9
IIET 6 35.8 64.7 37.4 79.0 24.1 52.9 49.0
IIET 7 35.5 65.2 37.0 79.2 23.3 53.0 48.9
IIET 8 35.2 65.6 36.5 79.4 22.6 51.1 48.4

Table 7: Performance comparison of IIET with varying
iteration steps at 340 million parameters.

through simple hyperparameter tuning, such as in-
creasing the dropout rate. We leave this exploration
for future work.

C IIET with Varying Iteration Steps

We evaluated the downstream task performance
of our 340M model across iteration steps r = 0
to r = 8, as detailed in Section 3.3. Table 7
shows that as the number of iterations increases,
IIET’s performance on downstream tasks initially
improves progressively before these gains begin
to plateau. Although performance slightly de-
grades at r = 8, IIET still surpasses both Trans-
former++ and PCformer. Notably, with r = 2
iterations, IIET achieves performance comparable
to PCformer with its per-block forward pass count
is also similar to PCformer’s. This demonstrates
that our proposed iterative implicit Euler (IIET)
architecture, despite its simpler design, offers rep-
resentation refinement capabilities that are close
to those of higher-order methods. Finally, using
identical training data, IIET exhibited superior data-
fitting ability over the other models, as indicated
by its perplexity scores.

D Comparison with Compressed Vanilla
Models

To ensure a fair comparison based on model size,
we compressed the 1.3B Transformer++ model
(trained on 16B tokens) using pruning and quan-
tization. These compressed baselines are further
compared with the 340M IIET to demonstrate the
structural advantages of IIET.

Quantization We employ the AutoGPTQ li-
brary3 to perform 4-bit quantization on the 1.3B
Transformer++. This process produces Trans quant,
a model with a parameter storage footprint compa-
rable to the 340M IIET model in bfloat16 format.

3https://github.com/AutoGPTQ/AutoGPTQ

Model Para. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.

IIET 340M 37.1 65.2 36.9 79.4 23.9 51.0 48.9
Transformer++ 1.3B 37.3 65.7 37.6 78.6 23.7 51.5 49.0

Quantization (4-bit) 1.3B 35.9 65.3 36.5 77.3 22.5 49.3 47.8

Prun3 1.1B 23.3 62.5 34.2 72.8 23.0 50.0 44.3
Prun6 975M 11.5 59.4 32.5 67.7 22.7 50.4 40.7
Prun12 650M 2.9 53.3 28.9 52.5 22.1 50.9 35.1

Table 8: Performance comparison between IIET and
compressed variants of the vanilla Transformer. The
Transformer variants were created using pruning and
quantization to match the storage footprint of IIET.

The quantization is calibrated on a set of 512 sam-
ples from the C4 dataset. We apply the quantization
using a group size of 128, a damping percentage
of 0.01, and the standard activation order. Table 8
shows that Transformer++ (4-bit) experiences a
slight performance degradation compared to 1.3B
Transformer++ and also underperforms the 340M
IIET model (47.8 vs 48.9). The results suggest
that IIET offers structural advantages beyond what
post-hoc compression can achieve. Moreover, we
do not apply quantization to the activations, which
is in line with common practice. As a result, while
4-bit quantization reduces the parameter storage
footprint, it does not lead to a significant reduction
in FLOPs, since activations are still processed at
16-bit precision.

Pruning We use the method from Short-
GPT (Men et al., 2024) to perform layer-wise prun-
ing experiments on the vanilla Transformer. We cal-
culate the block influence for each layer and create
three pruned models (Prun3, Prun6, and Prun12)
by removing the 3, 6, and 12 layers with the lowest
influence scores, respectively. However, we find
that pruning has a significant impact on the perfor-
mance of Transformer++. As shown in Table 8,
compared to the original model, the accuracy of
Prun3 decreases by 4.6 points, while Prun6 shows
a more substantial drop of 8.2 points. When half
of the layers are pruned (Prun12), the model’s per-
formance on all test sets was nearly random, so we
did not further increase the pruning ratio. Notably,
all pruned models performed worse than the 340M
IIET model.

E Iteration Influence of 740M IIET

Figure 6 displays the Iteration Influence of the
740M IIET model. By selecting the minimum ini-
tial computation of each layer as the threshold, we
can reduce the number of corrective iterations from
72 to 23.

8957

https://github.com/AutoGPTQ/AutoGPTQ

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

initial compute

iteration 1

iteration 2

iteration 3

C
al

cu
la

tio
n

Ph
as

e

0.95 0.29 0.25 0.21 0.22 0.17 0.16 0.19 0.17 0.14 0.19 0.23 0.28 0.47 0.48 0.22 0.30 1.12 1.58 0.34 0.31 0.14 0.31 0.47

0.32 0.08 0.07 0.07 0.06 0.04 0.08 0.06 0.06 0.03 0.05 0.07 0.12 0.02 0.05 0.10 0.16 0.06 0.16 0.06 0.13 0.02 0.00 0.00

0.19 0.03 0.03 0.06 0.02 0.01 0.07 0.02 0.03 0.01 0.02 0.03 0.11 0.01 0.01 0.06 0.05 0.02 0.03 0.02 0.06 0.00 0.00 0.00

0.07 0.04 0.02 0.10 0.02 0.44 0.35 0.08 0.10 0.06 0.05 0.09 0.30 0.60 0.36 0.16 1.17 1.55 0.60 0.30 0.27 0.36 0.48 0.22

Iteration Influence Analysis of 740M IIET

0.5

1.0

1.5 Iteration Influence

Figure 6: Impact of different iteration stages on the hidden state within each layer of the 740M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration.

F Two-Stage Training for IIET

Motivated by the significant computational expense
of pre-training large language models from scratch,
we investigated a two-stage training paradigm for
transitioning a vanilla Transformer to an IIET. Our
methodology draws inspiration from the learn-
ing rate strategies of recent large models like
MiniCPM (Hu et al., 2024) and Deepseek-v3 (Liu
et al., 2024), which characteristically maintain a
constant learning rate after an initial warmup pe-
riod during pre-training. A key advantage of this
stable training phase is that it facilitates dynamic
adjustments to the data curriculum. In this work,
we extend this principle of in-training adaptation
from the data to the model itself by transitioning
the model architecture from a vanilla Transformer
to an IIET during the stable learning rate phase.

Our training methodology is partitioned into two
distinct phases: ❶ Foundational Pretraining (≈
75% of tokens). We first pre-train a standard Trans-
former++ using a constant learning rate of 3e-4,
preceded by a 300-step linear warmup. This stage
efficiently establishes a robust feature foundation
while avoiding the IIET’s computational overhead.
❷ Architectural Transition (≈ 25% of tokens).
The model’s architecture is then transitioned to an
IIET for the remaining training. The learning rate
decays from 3e-4 via a cosine schedule, leverag-
ing the IIET’s dynamics for final model refinement.
The experiments are conducted at the 740M param-
eter scale, see Appendix A.3 for detailed experi-
mental settings.

As presented in Table 9, our two-stage IIET (de-
noted “Two-stage”) demonstrates impressive per-
formance. A significant performance gain is ob-
served during the second training phase, ultimately
achieving results comparable to an IIET trained
from scratch (51.5 vs. 51.9). Furthermore, this ap-
proach significantly outperforms the vanilla Trans-
former (Trans++) trained on the same data. By

Model LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.

Transformer++ 36.1 66.4 38.4 78.6 24.5 50.2 49.0
PCformer 41.0 66.3 41.3 82.0 23.3 51.2 50.9
IIET 41.2 68.9 42.5 82.1 23.8 53.1 51.9

Two-stage 39.3 67.5 41.3 81.9 25.3 53.7 51.5

Table 9: Performance comparison of the two-stage IIET
and baseline models at the 740M parameter scale.

introducing IIET only during the final quarter of
the training process, the associated computational
overhead is reduced by 75%. This finding offers
a promising path for applying IIET to models at
much larger scales, and we anticipate that future
work will continue to explore this direction.

8958

