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Abstract
Manual slide creation is labor-intensive and re-
quires expert prior knowledge. Existing nat-
ural language-based LLM generation meth-
ods struggle to capture the visual and struc-
tural nuances of slide designs. To address
this, we formalize the Reference Image to
Slide Generation task and propose Slide2Code,
the first benchmark with difficulty-tiered sam-
ples based on a novel Slide Complexity Met-
ric. We introduce SlideCoder, a layout-aware,
retrieval-augmented framework for generat-
ing editable slides from reference images.
SlideCoder integrates a Color Gradient-based
Segmentation algorithm and a Hierarchical
Retrieval-Augmented Generation method to
decompose complex tasks and enhance code
generation. We also release SlideMaster, a 7B
open-source model fine-tuned with improved
reverse-engineered data. Experiments show
that SlideCoder outperforms state-of-the-art
baselines by up to 40.5 points, demonstrating
strong performance across layout fidelity, ex-
ecution accuracy, and visual consistency. Our
code is available at https://github.com/
vinsontang1/SlideCoder.

1 Introduction

Slide creation is essential in academic and pro-
fessional communication for visually conveying
complex ideas. However, manual design is labor-
intensive and time-consuming (Al Masum et al.,
2005). While templates offer some relief, they en-
force fixed layouts and styles, limiting flexibility.

Recent progress in Large Language Models
(LLMs) (Nam et al., 2024; Ge et al., 2023) has
sparked interest in automatic slide creation. Au-
toPresent (Ge et al., 2025), an early study on
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The design of this 
image is great. Help 
me convert it into a 

editable slide.

Here is the python 
code for generating 

the slide. 

Figure 1: Illustration of slide generation scenarios from
design and mistakes made by MLLMs.

the Natural Language (NL) to slide generation
task, fine-tunes a LLAMA-based model (Grattafiori
et al., 2024) on the diversified SLIDESBENCH
dataset. It translates NL instructions into Python
code, which invokes SLIDESLIB, a high-level API
built on python-pptx (Canny, 2023), to construct
each slide. This pipeline reduces manual effort and
streamlines design workflows.

Despite Autopresent’s capability to generate
slides from natural language input, several signifi-
cant challenges remain unaddressed.

First, natural language inherently lacks an
accurate description of slide visual design (e.g.,
color, layout, and style) and users sometimes
directly input the design image for slide gener-
ation. For example, as shown in Figure 1, a user
sees a nice design from non-editable slides (png
and pdf format) or other source like webpage de-
sign, and hopes to convert it into an editable slide
(pptx format). Or the user lacks the skills to make
slides, they can generate the slide by input their
design image. In these scenarios, the Multimodal
Large Language Models (MLLMs) are needed to
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understand the design and generate slides.
Second, MLLMs face limitations when han-

dling complex slides, particularly those incorpo-
rating diverse element types and high element
density. As illustrated in Figure 1, these discrep-
ancies can be divided into three categories: miss,
which stands for the complete omission of certain
visual or textual elements (e.g., the top left corner
of the shape is missing); incorrect, referring to de-
viations in visual styles or attributes from those
specified or expected in the reference slides (e.g.,
title is not bold); and disorder, which describes
significant differences in spatial arrangements and
alignment of elements compared to the original lay-
out (e.g., the three subheadings are not properly
positioned and aligned.).

Third, MLLMs’ insufficient comprehension
of the python-pptx library leads to the genera-
tion of syntactically invalid or non-executable
code. Autopresent (Ge et al., 2025) attempts to
address this issue by constructing SLIDESLIB, a
simplified library built upon python-pptx, encap-
sulating commonly used operations into a set of
high-level APIs. However, this operation inher-
ently restricts the flexibility and comprehensive-
ness of slide generation. Specifically, SLIDESLIB
currently supports only five basic operation types,
which neglects more intricate layouts and design
requirements commonly encountered in realistic
scenarios. Consequently, presentations produced
by this approach tend to be overly simplistic, inad-
equately capturing complex human intentions and
detailed visual expectations.

To address the aforementioned limitations, we in-
troduce SlideCoder, a layout-aware RAG-enhanced
hierarchical slide generation framework, which can
understand the complex slides and python-pptx li-
brary accurately. First, we formulate a novel task,
Reference Image (RI) to slide generation, i.e., au-
tomatically generating the code for replicating the
slide, which is visually consistent with RI. To eval-
uate the performance of SlideCoder under complex
slide scenarios, we propose a novel Slide Complex-
ity Metric (SCM), and construct a new benchmark
Slide2Code with different difficulty levels based on
SCM. Second, we develop a novel Color Gradient-
based Segmentation algorithm (CGSeg) that ef-
fectively decomposes slide images into semanti-
cally meaningful regions. Besides, we propose the
Layout-aware Prompt, which integrates the posi-
tion information of elements to enhance MLLM’s
understanding of slide layout. Third, we propose a

novel Hierarchical Retrieval-Augmented Gener-
ation (H-RAG)-based Code Generation method,
which employs a dual-level retrieval-augmented
knowledge base (Cuconasu et al., 2024; Fan et al.,
2024) to explicitly enhance MLLMs’ understand-
ing of the python-pptx library. At the higher level,
a Shape Type Knowledge Base (TS-KB) systemati-
cally classifies slide elements and standardizes their
descriptions using python-pptx API terminologies.
At the lower level, a Operation Function Knowl-
edge Base (OF-KB) captures precise syntactic pat-
terns and invocation paradigms of python-pptx li-
brary functions.

To further enhance the MLLM’s ability to gen-
erate high-quality slides, we build a PPTX reverse-
engineering tool to construct high quality training
data for fine-tuning a 7B model SlideMaster based
on Qwen-VL-7B (Bai et al., 2025), which can ap-
proaches the performance of the closed-sourced
model GPT-4o (Achiam et al., 2023). Our contri-
butions are summarized as follows:

• We define reference image (RI) to slide gener-
ation task and propose a novel Slide Complex-
ity Metric (SCM), based on which we con-
struct Slide2Code, the first difficulty-leveled
benchmark with 900 samples.

• We propose SlideCoder, which consists of a
novel Color Gradient-based Segmentation al-
gorithm (CGSeg), a Layout-aware Prompt and
a Hierarchical Retrieval-Augmented Genera-
tion (H-RAG)-based Code Generation method
for enhancing the MLLM’s understanding on
the complex slides and python-pptx library.

• We train SlideMaster, a 7B open-source model
approaching the performance of GPT-4o. To
enable effective fine-tuning, we also build
a comprehensive PPTX reverse-engineering
tool for precise code generation.

2 Related Work

2.1 Multimodal Large Language Models for
Code Generation

The multimodal large model demonstrates excel-
lent capabilities in visually rich code generation
scenarios, such as UI code generation (Xiao et al.,
2024, 2025a; Yun et al., 2024; Wan et al., 2024;
Xiao et al., 2025b), SVG code generation (Ro-
driguez et al., 2025; Nishina and Matsui, 2024; Wu
et al., 2024; Xing et al., 2024), and visually rich pro-
gramming questions (Li et al., 2024; Zhang et al.,
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2024a; Ma et al., 2025). However, MLLMs are not
yet capable of plug-and-play use across tasks and
still produce subtle errors, therefore, some studies
explore their code repair abilities (Yang et al., 2024;
Yuan et al., 2024; Zhang et al., 2024b).

2.2 Slide Generation and Understanding

Previous work on slide generation has predomi-
nantly focused on basic content extraction from
input documents. With the recent advancements
in large language models (Fu et al., 2022; Hu and
Wan, 2014; Kan, 2007; Sefid and Wu, 2019), sev-
eral studies have begun to explore LLM-based slide
generation. For example, (Zheng et al., 2025) uti-
lizes LLMs to generate slides based on pre-defined
slide templates and user-provided text. (Ge et al.,
2025) introduces the task of natural language (NL)
to slide code generation, aiming to organize visual
slide content through textual input. However, its
use of coarse-grained natural language descriptions
and a native agent design significantly limits the
quality of the generated slides.

3 Slide2Code Benchmark

We construct the Slide2Code benchmark to evalu-
ate the performance of multimodal large language
models (MLLMs) on the Reference Image (RI) to
slide generation task. Each instance includes a ref-
erence slide image and its corresponding PPTX
slide. Slide2Code enables comparison of MLLM
backbones under varying complexity. §3.1 formally
defines the task, §3.2 describes our unified com-
plexity scoring system based on element quantity,
diversity, and visual density, and §3.3 details data
collection and sampling.

3.1 Task Description

This work addresses the task of Reference Image
(RI) to slide generation, where the input is a slide’s
reference image I0 and the goal is to generate
Python code using the python-pptx library. Let
F0 denote the original slide file corresponding to
I0. Given a generation framework G and Multi-
modal Large Language Models (MLLMs) M , the
generated code Cg = GM (I0) can be executed to
obtain a new slide file Fg, whose rendered image
is denoted as Ig. As the original code C0 for F0 is
unavailable, we assess the performance of G and
M by comparing (I0, F0) and (Ig, Fg).

3.2 Slide Complexity Metric

To evaluate slide complexity, we propose a Tri-
Metric Slide Complexity Metric (SCM) that inte-
grates production difficulty and visual complexity.
Due to the mismatch between visual appearance
and construction effort, for example, inserting a
visually complex image may require minimal op-
erations. To adress this, we assess slides using:
(1) element count, (2) element type count (e.g.,
textbox, placeholder), and (3) Element Coverage
Ratio. The first two reflect operational cost, the
third captures visual richness. Since reference com-
plexity labels are not available, we evaluate the
relative complexity of sample i within a collection
Y = {1, 2, 3, ..., N}.

Let ci be the number of elements and ei the num-
ber of distinct element types in sample i. The El-
ement Coverage Ratio vi is the proportion of ac-
tivated color grids to total grids in the image of
sample i, computed via the gradient-based segmen-
tation algorithm CGSeg (see §4.1 for details).

Each raw dimension score xi ∈ {ci, ei, vi} is
normalized as x̃i = σ

(
xi−µ√
σ2+ϵ

)
, where µ and σ2

denote the mean and variance over all samples in
set Y , respectively. Here, σ(·) is the sigmoid func-
tion (Han and Moraga, 1995), and ϵ is a small
constant for numerical stability. The final complex-
ity score for slide i is computed via a weighted
aggregation: zi = α · c̃i + β · ẽi + γ · ṽi, where
α+β+γ = 1 and the weights α, β, γ reflect the im-
portance of production effort and visual complexity.
This metric shows a strong correlation with human
judgment, as detailed in Section §5.4.

3.3 Data Collection

To construct a comprehensive benchmark that cap-
tures diverse slide characteristics, we randomly
sample approximately 32,000 Zenodo10k (Zheng
et al., 2025) slide instances, the largest publicly
available slide dataset, to construct the slide set Y
as described in §3.2. To enhance diversity and al-
low comparative analysis, we additionally incorpo-
rate SLIDEBENCH samples in Y . This unified set
is then used to calculate the normalized complexity
scores z for all slides. KMeans algorithm is used
to obtain three clusters, whose cluster centers are
sorted in order of z to define the simple, medium,
and complex levels. From each cluster, we ran-
domly select 300 representative samples from Y to
form the final Slide2Code benchmark.

Figure 2 shows that both Zenodo10k and

9017



0 20 40 60 80 100
Proportion (%)

SLIDESBENCH

Zenodo10k

Slide2Code

41.1% 42.0% 16.9%

25.7% 43.1% 31.1%

33.3% 33.3% 33.3%

Simple Medium Complex

Figure 2: Proportion of samples across three levels in the
Slide2Code, Zenodo10k, and SLIDEBENCH datasets.

SLIDEBENCH contain a significantly larger pro-
portion of simple and medium slides. In contrast,
Slide2Code exhibits a more balanced composition
across all three levels, allowing a more equitable
evaluation of slide generation models under vary-
ing structural and visual complexities.

4 Methodology

In this section, we introduce SlideCoder, a uni-
fied end-to-end framework for generating Python-
executable slide code from reference images (RIs).
We assume a scenario where a user provides a de-
sign layout ("Design ") and embedded visual ele-
ments such as pictures or background images ("Pic-
tures "). SlideCoder comprises three core mod-
ules. First, a Color Gradient-based Segmenta-
tion (CGSeg) algorithm segments the input Design
into semantically meaningful regions. Second, a
Hierarchical Retrieval-Augmented Code Gen-
eration module, consisting of three collaborative
agents Describer, Coder, and Assembler, gener-
ates the slide code. Third, a Layout-aware Prompt
mechanism enhances the Assembler agent to en-
sure spatial consistency and syntactic correctness.
Finally, based on this framework, we fine-tune a
7B open-source model, named SlideMaster.

4.1 Color Gradient-based Segmentation

To reduce the difficulty of MLLM in understand-
ing complex slide design, we proposed CGSeg, a
recursive color gradient-based segmentation algo-
rithm to divide slide design into blocks. As shown
in Algorithm 1, CGSeg starts by dividing the input
image (Figure 4a) into a grid and computing the So-
bel magnitude for each block to measure the inten-
sity of the color gradient (lines 4–5). Blocks with
gradient magnitudes significantly higher than the
median are marked as activated block (lines 6–14),
as visualized in Figure 4b. To group visually co-
herent regions, CGSeg applies a flood-fill (Burtsev

Algorithm 1 Color Gradient-based Segmentation
(CGSeg)
Require: Image I , Grid size g, Depth D, Max depth Dmax,

Threshold T
Ensure: List of segmented sub-images
1: if D = Dmax then
2: return ∅
3: end if
4: G← SPLIT(I, g) // g × g grid blocks
5: C ← GRADMAG(G) // gradient magnitudes
6: Cmid ← MEDIAN(C)
7: M ← 0g×g // binary mask
8: for each cij in C do
9: if cij > T · Cmid then

10: Mij ← 1 // activate the block
11: else
12: Mij ← 0
13: end if
14: end for
15: M ← FILL(M) // flood-fill
16: Ms ← REGIONS(M) // split connected regions
17: R← ∅
18: for each m in Ms do
19: Im, pm ← CROP(I,m) // get sub-image
20: add Im and pm to R
21: R′ ← CGSEG(Im, g,D+1, Dmax, T )
22: add all in R′ to R
23: end for
24: return R

and Kuzmin, 1993) operation to the binary activa-
tion mask (line 15), identifying connected regions
corresponding to sub-images (line 16), as shown in
Figure 4c. These sub-images are further segmented
recursively to ensure a hierarchical decomposition
of the image Im, along with the corresponding
positional information pm (lines 1–3 and 17–23),
with the final segmentation result shown in Fig-
ure 4d. This recursive structure allows CGSeg to
adaptively refine segment granularity based on lo-
cal visual complexity, which is crucial for handling
slides with heterogeneous layout densities.

4.2 Hierarchical Retrieval-Augmented Code
Generation Module

4.2.1 Generation Process
We design three collaborative MLLM agents whose
code generation processes are augmented by H-
RAG. Describer is responsible for generating a
global Design description (Overall Description) as
well as block descriptions (Block Description) for
each segmented blocks. Based on block and their
associated block description, Coder produces cor-
responding code snippets. Subsequently, Assem-
bler generates the complete slide code by layout-
aware prompt, which will be elaborated in §4.3,
along with the Pictures provided. Executing this
code produces a slide that structurally and visually
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This textbox’s content 
is “understanding ...

Overall Description
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Layout-aware Prompt
You are a python-pptx expert. Based on the information and code snippets I provide, please assemble a complete python-pptx script: <Design>
refers to the reference image for this slide. Its global description is <Overall Description>. The code snippets and their layout positions are given as
<Code Snippets>, <Position*>. Here are some syntax rules that might be useful: <Grammar>. The background and images path is ...

Pictures and Prompt

Knowledge Base

Operation Function

<Grammar>

CoderDescriber

Blocks and Position

Design

…

< 𝑥!, 𝑦!, 𝑤!, ℎ! > < 𝑥", 𝑦", 𝑤", ℎ" >< 𝑥# , 𝑦# , 𝑤# , ℎ# >

There is a paragraph
runs in textbox ...

This autoshape
includes a textbox...

This slide is titled 
"Everyday Objects ...

Block Description

from pptx import Presentation…
font.color.rgb = RGBColor()…

from pptx import Presentation…
textbox = slide.shapes.add_textbox…

from pptx import Presentation…
textbox = slide.shapes.add_textbox…

Code Snippets from pptx import Presentation
…
textbox = slide.shapes.add_textbox
font.color.rgb = RGBColor()
slide.shapes.add_shape
…

Final Code

Slide

Shape Type

Figure 3: The framework of SlideCoder.

(a) Input Image (b) Activated Grid Blocks (c) Flood-filled Regions (d) Final result

Figure 4: An example of CGSeg applied to a slide reference image. The algorithm begins by computing color
gradients (a-b), fills them (c), and recursively segments sub-regions (d).

aligns with the Reference Image(RI). If the gener-
ated code is not executable Assembler applies a
self-refinement mechanism to correct syntax errors,
where errors serves as the feedback to prompt the
MLLM to re-generate the code.

Beyond the above inputs, each agent draws
knowledge from distinct bases according to its role.
The form and origin of the knowledge used in each
agent’s prompt are detailed in §4.2.2.

4.2.2 Hierarchical Retrieval-Augmented
Generation

Hierarchical Retrieval-Augmented Generation(H-
RAG) comprises a Shape Type Knowledge Base
and an Operation Function Knowledge Base. The
former contains descriptions of objects from the
python-pptx documentation, used in Describer to
guide standardized description generation. For ex-
ample, in “This autoshape includes a textbox...”,
both terms are object names from the documenta-
tion. The latter includes full syntax specifications
(e.g., parameters, return values, etc.). Appendix F
details their structure.

We employ BGE M3-Embedding (Chen et al.,
2024) to embed entries and build a vector-based
retrieval database. For a prompt p, its vector qp is
computed, and cosine similarity cos(qp, ki) is used
to match ki. The top-k relevant entries are inserted
into p. Given the size of the Shape Type Knowl-
edge Base, all entries are included in Describer to

ensure complete type coverage.
In the hierarchical pipeline, agents collaborate

progressively. Describer retrieves object types
from the Shape Type Knowledge Base to identify
elements in block images and output standardized
descriptions. Coder uses these to query the Opera-
tion Function Knowledge Base and generate code
snippets. Assembler uses these snippets to retrieve
full syntax patterns and generate executable code.

4.3 Layout-aware Prompt
After Coder completes the generation of code snip-
pets for blocks, Assembler is applied to assemble
these code snippets for generating the final slide in
an accurate manner. The assembly prompt needs
to meet the following requirements: (1) ensure that
each block appears in the correct position in the
final slide; (2) avoid syntax errors in the merged
code and ensure code context consistency.

To achieve above goals, layout-aware prompt in-
jects the layout position using python-pptx standard
positioning units (inches) to ensure the position
correctness and retrieve the grammar <Grammar>
from Knowledge Base to avoid syntax errors and
code conflicts. Since the resolution of the Design
differs from the actual slide layout size, we apply
proportional scaling to the Position (<x, y, w, h>)
extracted from Color Gradient-based Segmentation
(CGSeg) algorithm to map it onto the slide coor-
dinates, denoted as <Position*>. Subsequently,
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the reference image design <Design>, global body
description <Overall description.>, partial codes
<Code Snippets> from Coder, layout representa-
tion <Position*>, and syntactic patterns <Gram-
mar> retrieved from the Hierarchical Retrieval-
Augmented Generation(H-RAG) knowledge base
are integrated into a predefined prompt template
to construct the final layout-aware prompt (see Ap-
pendix E for details).

4.4 SlideMaster
Using the SLIDESBENCH training set, we con-
struct a dataset of (RI, instruction, program) triplets.
The reverse-engineering tool proposed by (Ge et al.,
2025) produces labels (Python code) for only a
limited set of slide styles, resulting in suboptimal
training data quality. To mitigate this, we develop
a new reverse-engineering tool capable of handling
a broader spectrum of slide styles, thereby enhanc-
ing label quality. The effectiveness of this tool is
analyzed in §5.3. We fine-tune our model, Slide-
Master, based on Qwen2.5-VL-7B-Instruct (Bai
et al., 2025), using LoRA (Hu et al., 2022). Full
configuration details are provided in Appendix C.

5 Experiments and Results

We first describe the experimental setup in §5.1,
followed by a comprehensive evaluation of Slide-
Coder and SlideMaster in §5.2. We then analyze
the performance of the reverse-engineering tool in-
troduced in §5.3, and assess the alignment between
the evaluation metrics and human subjective judg-
ments in §5.4. Next, we conduct ablation studies
in §5.5 to validate the effectiveness of key modules
within SlideMaster. Finally, we provide qualita-
tive visualizations in §5.6. In addition, we provide
several auxiliary experiments in Appendix G.

5.1 Experimental Setup
Model. To evaluate the performance of the Slide-
Coder, we employ state-of-the-art (SOTA) models,
including GPT-4o (Achiam et al., 2023), Gemini-
2.0-flash (Google, 2025), and SlideMaster, which
is a fine-tuned model based on the open-source
Qwen2.5-VL-7B-Instruct (Bai et al., 2025). The
SOTA models are accessed via their official APIs,
with GPT-4o using version 20241120 and Gemini-
2.0-flash accessed in May 2025. For both models,
the maximum token limit and temperature are set
to 4096 and 0, respectively. For the Color Gradient-
based Segmentation module (Algorithm 1), we set
the activation threshold parameter T to 1.5 for all

experiments. In addition, for each difficulty level
of the Slide2Code benchmark (simple, medium,
complex), we randomly sampled 100 slides for
evaluation, resulting in 300 test samples in total.
Same as (Ge et al., 2025), we allow both Coder
and Assembler agents up to three self-refinement
attempt. The first successful attempt is taken as the
output. If Coder fails to generate executable code
after the maximum number of attempts, the corre-
sponding block is discarded. If Assembler fails,
the corresponding sample is marked as execution
failure.

Metric. To comprehensively assess generation
quality, we adopt four metrics, using the notations
defined in §3.1. (1) Global Visual Metrics, in-
cluding CLIP (Hessel et al., 2021) and SSIM (Nils-
son and Akenine-Möller, 2020) scores computed
between the original image I0 and the generated
image Ig; (2) Local Structural Metrics, which
compare the original and generated slide files F0

and Fg in terms of content similarity and position
similarity, following (Ge et al., 2025); (3) Execu-
tion, defined as the success rate of executing Cg

without errors; and (4) Overall Score, calculated as
the average of all metric values across all samples,
with failed executions assigned a score of zero.

5.2 Quantitative Results and Analysis
The upper part of Table 1 presents the performance
of different frameworks on our proposed bench-
mark, evaluated using the metrics introduced in
Section 3.1. The results show that SlideCoder con-
sistently achieves the best performance across all
difficulty levels. Specifically, its overall score sur-
passes the best baseline by 40.5, 34.0, and 29.9
points on the simple, medium, and complex levels,
respectively, demonstrating the overall superior-
ity of our framework. For execution success rate,
SlideCoder outperforms the best baseline by 38%,
32%, and 27% across the three difficulty levels,
indicating that the proposed H-RAG and CGSeg
mechanisms significantly enhance model perfor-
mance and reduce task difficulty.

Moreover, SlideCoder outperforms all baselines
in both Local Structural Metrics and Global Visual
Metrics, confirming its strong fidelity in preserving
both the structural layout and visual appearance of
the original slides. The stepwise decline in Slide-
Coder’s overall score across increasing difficulty
levels further indicates its ability to leverage vi-
sual and structural cues from the input slides. In
contrast, baseline models relying solely on natu-
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Table 1: Results on Slide2Code (top) and SLIDESBENCH (bottom) using SlideCoder and AutoPresent with
different MLLMs. Green , yellow , and red indicate simple, medium, and complex levels in SlideCoder. Bolded
values mark the best result per level.

Framework Backbone Execution% Local Structural Metrics Global Visual Metrics OverallContent Position Clip SSIM
Slide2Code

AutoPresent

AutoPresent
61.0 92.7 78.9 70.8 80.3 48.6
53.0 89.6 77.3 69.2 79.1 41.4
67.0 87.2 71.4 65.9 73.4 48.5

Gemini2.0-flash
57.0 91.4 78.3 69.7 79.0 44.8
68.0 88.7 79.9 66.3 71.6 51.5
66.0 89.3 72.2 63.1 64.7 45.2

GPT-4o
58.0 92.7 80.9 68.8 75.6 45.4
50.0 92.3 74.6 67.6 72.6 36.8
69.0 90.3 73.3 62.3 63.3 47.1

SlideCoder

SlideMaster
86.0 92.4 87.4 77.6 91.1 76.7
75.0 84.7 79.8 75.4 86.4 61.7
73.0 76.1 70.5 72.4 82.8 54.2

Gemini2.0-flash
97.0 94.5 88.6 81.3 90.7 87.0
90.0 90.9 84.6 82.3 85.5 76.6
88.0 92.7 80.9 81.7 81.2 71.6

GPT-4o
99.0 96.3 88.1 79.8 91.8 89.1
100.0 92.5 84.7 81.5 86.2 85.5
96.0 94.3 80.0 80.7 82.6 78.4

SLIDESBENCH

AutoPresent
AutoPresent 84.1 92.2 67.2 81.6 73.7 65.3

Gemini2.0-flash 56.4 91.7 62.9 77.1 66.0 40.4
GPT-4o 86.7 92.5 76.3 78.0 70.8 66.9

SlideCoder
SlideMaster 87.2 91.5 76.9 73.4 80.0 68.4

Gemini2.0-flash 89.7 90.0 85.4 81.8 80.0 75.0
GPT-4o 94.9 94.8 83.9 82.1 80.9 78.8

ral language descriptions exhibit weak sensitivity
to slide complexity, failing to reflect the difficulty
hierarchy in their overall scores.

On the SLIDESBENCH dataset (as shown in
the lower part of Table 1), SlideCoder also sur-
passes all baselines across all metrics, with an
overall score of 78.8 when using GPT-4o as the
backbone, representing a 11.9 improvement over
the best-performing baseline. Notably, the open-
source fine-tuned model SlideMaster also demon-
strates competitive performance, outperforming the
best GPT-4o-based baseline on both datasets.

5.3 Reverse Tool Analysis

Table 2: Object Types and Corresponding Style count

Type Name Ours AutoPresent’s

title 10 3
textbox 10 5
bullet points 8 5
background color 1 1
image 2 2
placeholder 4 –
freeform 2 –
connector 5 –
table 4 –
triangle 5 –

Table 2 summarizes the supported object types
and corresponding styles in our proposed reverse
engineering tool. Our tool supports 10 commonly
used object types and 44 distinct object styles,
whereas Autopresent (Ge et al., 2025) only sup-
ports 5 object types and 16 styles. Detailed com-
parisons can be found in Appendix B. To quantita-
tively assess the reverse engineering capabilities of
both tools, we adopt two evaluation metrics:

Reconstruction Ratio: This metric calculates
the ratio between the number of shapes in the slide
reconstructed from the reverse-engineered code
and the original slide. Our tool achieves a recon-
struction ratio of 90.38%, significantly outperform-
ing (Ge et al., 2025), which only reaches 65.67%.
This demonstrates the broader object type coverage
enabled by our tool.

CLIP Score: Our method achieves a CLIP
score (Hessel et al., 2021) of 88.66%, whereas
Autopresent (Ge et al., 2025) only achieves
69.87%. The higher score indicates that our reverse-
engineered slides more accurately preserve the vi-
sual and stylistic details of the original, owing to
the broader support for object types and styles.
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Figure 5: Examples of slides generated by different methods in three difficulty levels.

5.4 Slide Complexity Metric Analysis

To evaluate the effectiveness of the proposed Slide
Complexity Metric (SCM), we conducted a human
subject study. A total of 100 samples were ran-
domly selected from the Slide2Code benchmark for
evaluation. Four doctoral students were recruited
as annotators, each assigned 50 slides to assess.
The annotators were instructed to score each slide
from the perspective of three dimensions: the num-
ber of shapes, the diversity of shape types, and the
level of element coverage. The scoring range was
0–100, following the protocol in Appendix D. Each
slide was rated independently by two annotators,
and the final score was their average.

To assess the alignment between SCM and hu-
man perception, we first compute the Pearson corre-
lation coefficient (Cohen et al., 2009) between the
SCM complexity scores and the averaged human
scores. The result is r = 0.873 with a p-value of
2.776× 10−32, indicating a strong and statistically
significant correlation. Additionally, we calculated
the intraclass correlation coefficient (Koo and Li,
2016) between the SCM scores and each individual
annotator’s score to assess consistency. The ICC
result is 0.726 with a p-value of 1.186 × 10−31,
demonstrating substantial agreement between SCM
and human evaluations. These results confirm that
SCM is a reliable and objective metric aligned with
human judgment of slide complexity.

5.5 Ablation Study

We design three ablation settings to validate the
effectiveness of different components in our frame-
work: (1) w/o Layout, removes the layout-aware
prompt; (2) w/o CGSeg, disables both the CGSeg
mechanism and the layout-aware prompt; (3) w/o

Table 3: Overall performance of ablation study.

Setting Execution% Overall

SlideCoder
100.0 89.9
100.0 85.8
100.0 82.2

w/o Layout
100.0 81.2
93.9 73.6
93.9 71.8

w/o CGSeg
75.8 55.4
51.5 39.6
69.7 48.4

w/o H-RAG
90.9 80.4
81.8 69.3
84.8 70.7

Native Setting
75.8 53.9
48.5 37.4
66.7 46.9

H-RAG, removes the <Grammar> content from
all prompts.(4) Native setting, which removes H-
RAG on top of the w/o CGSeg setting. Detailed
descriptions are provided in Appendix A.1. We
randomly sample 33 instances from each difficulty
level, resulting in a total of 99 samples, and per-
form inference using GPT-4o. The overall results
are reported in Table 3, with detailed metric result
provided in Appendix A.2. After removing each
component, both execution rate and overall score
exhibit varying degrees of decline, which demon-
strates the contribution of each component to the
overall framework. Notably, the w/o CGSeg set-
ting shows significant performance drops across all
metrics. Although slightly better than the Native
setting due to the presence of H-RAG.

5.6 Case Study

Figure 5 presents slides generated by different mod-
els under three levels of difficulty. It can be ob-
served that models based on natural language often
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fail to satisfy the detailed and layout-specific re-
quirements of reference images. These models fre-
quently produce slides with overlapping elements
or content that extends beyond canvas boundaries.
In medium and complex samples, the generated
code often fails to compile. In contrast, Slide-
Coder’s CGSeg mechanism enables the MLLM
to focus more effectively on fine-grained details.
Moreover, the layout-aware prompt helps ensure
that the spatial arrangement of elements aligns
more closely with reference image.

6 Conclusion

We introduce a new Reference Image to Slide Gen-
eration task and a novel Slide Complexity Metric
for evaluating slide complexity. Based on this met-
ric, we build the Slide2Code benchmark with differ-
ent levels of difficulty. We also propose SlideCoder
enhanced by a Color Gradient-based Segmentation
algorithm, a Layout-aware Prompt and a Hierar-
chical Retrieval-Augmented Code Generation for
accurate slide generation. A high-quality training
set is curated to fine-tune a 7B open-source model.
Experimental results show that SlideCoder outper-
forms the strongest baselines.

Limitations

In this work, we take the first step toward vision-
based slide generation. While our method achieves
substantial improvements across multiple evalu-
ation metrics, several limitations remain unad-
dressed. First, the current framework focuses on
generating a single slide from one reference image
and does not explore the multi-slide generation sce-
nario. Second, we assume that user input contains
separate design and image components, and do not
handle the case where a complete slide with em-
bedded pictures is provided as input. Third, due to
budget and time constraints, our segmentation al-
gorithm adopts a fixed-rule paradigm. Future work
may investigate more flexible model-based detec-
tion approaches to enable adaptive and accurate
block partitioning.
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A Detail ablation analysis

A.1 Details of Ablation Settings
• w/o Layout: Removes only the layout-aware

prompt, meaning that the input to Assembler
does not contain the positional coordinates of
each block.

• w/o CGSeg: Disables the CGSeg mechanism.
Since the goal of Coder is to generate par-
tial code and Assembler is responsible for
code assembly, the removal of CGSeg renders
Assembler unnecessary. Consequently, both
Assembler and its layout-aware prompt are
removed in this setting, and the output code
generated by Coder is directly treated as the
final output of the framework.

• w/o H-RAG: Disables the retrieval of knowl-
edge base content for all agents.

• Native setting: Disables both H-RAG and
CSeg components. Specifically, we input ordi-
nary prompts that do not incorporate H-RAG,
allowing the MLLMs to generate complete
slide code directly from the reference image.

This setup is used to evaluate the baseline
capability of native MLLMs in handling the
reference image to slide code generation task.

A.2 Detailed Analysis of Ablation Results

Table 4 provides a detailed evaluation metrics under
different ablation settings.

In the w/o Layout setting, the Position score
under the complex level drops significantly from
81.35 to 72.16. This is primarily because, in com-
plex cases, the CGSeg algorithm typically divides
the Reference Image(RI) into more blocks, and
without layout information, the Agent struggles
to model spatial relationships among multiple el-
ements. This often leads to overlapping or out-
of-bound content, causing a sharp decline in the
Position metric and slightly affecting other metrics
as well.

In the w/o CGSeg setting, both the CGSeg
mechanism and the layout-aware prompt are re-
moved. As a result, a single Describer Agent is
required to handle the entire complex slide, which
exceeds its processing capacity, often leading to
code generation failures and a sharp drop in ex-
ecution success rate. Its performance is slightly
better than the Native setting due to the additional
knowledge provided by H-RAG.

In the w/o H-RAG setting, the <Grammar>
component is removed from each Agent. Ex-
cluding this component from Describer reduces
its ability to accurately identify the correspond-
ing python-pptx object. Similarly, removing it
from Coder and Assembler deprives the Agents
of essential syntactic guidance, often resulting in
version-related errors caused by inconsistencies
between the model’s training data and the current
version of the python-pptx library. These combined
factors lead to overall performance degradation.

In the Native setting, both the CGSeg mech-
anism and H-RAG are removed, leaving a single
Coder Agent to handle the entire slide without any
auxiliary support. This reduces the framework to
a plain MLLM-based inference process, severely
limiting its ability to generate structured and exe-
cutable code, and resulting in the lowest execution
rate and overall performance.

B Detailed comparisons of Reverse Tool

Table 5 lists the object types and their styles sup-
ported by our reverse engineering tool.

Table 6 lists the object types and their styles
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supported by AutoPresent’s reverse engineering
tool.

C LoRA fine-tuning parameters

The LoRA fine-tuning parameters are listed in Ta-
ble 7.

D Evaluation Dimensions and Scoring
Criteria

The evaluation guidelines for the four doctoral stu-
dent annotators are provided in Figure 8.

E Prompt Templates

The prompt templates for the Describer and Coder
are shown in Figure 7 and Figure 10, respectively.
Layout-aware prompt is shown in Figure 11.

F Details of the Knowledge Base
Construction

Figure 12 presents several examples from the Shape
Type Knowledge Base, which consists of object
types defined in the python-pptx library along with
their corresponding descriptions. Figure 13 shows
an example from the Operation Function Knowl-
edge Base, which includes the function name, pa-
rameters, return value, usage example, and a textual
explanation of the function.

G Overview of Auxiliary Experiments

We also conduct several auxiliary experiments. An
overview is given below:

• User-Centric Evaluation of RI-to-Slide
Generation (Appendix G.1): evaluates ef-
ficiency and quality by comparing SlideCoder
with human-created slides.

• Comparison with Existing Commercial
Tools (Appendix G.2): compares SlideCoder
with commercial models, highlighting differ-
ences in accuracy, cost, and privacy.

• Qualitative Analysis of Difficulty Levels
in Slide2Code (Appendix G.3): examines
benchmark difficulty levels using the Slide
Complexity Metric.

• Qualitative Failure Case Analysis of Slide-
Coder and AutoPresent (Appendix G.4):
categorizes nine error types to analyze typ-
ical failure patterns.

• Evaluation of SlideMaster vs. Base Model
(Appendix G.5): assesses the contribution of
task-specific fine-tuning by comparing Slide-
Master with its base model.

• User Study to Evaluate Practical Demand
(Appendix G.6): surveys volunteers from dif-
ferent disciplines to measure interest and per-
ceived usefulness.

• Experiment on Hand-Drawn Sketches (Ap-
pendix G.7): tests SlideCoder’s robustness in
generating slides from human-drawn inputs.

• Ablation and Comparative Analysis of the
Segmentation Algorithm (Appendix G.8):
compares CGSeg with state-of-the-art image
segmentation models to evaluate segmentation
quality in slide generation.

G.1 User-Centric Evaluation of RI-to-Slide
Generation

We further conducted a user-centric study to assess
the efficiency of RI-to-Slide code generation in
practical scenarios. In this experiment, we ran-
domly selected three representative slides from
each difficulty level of the Slide2Code benchmark,
covering simple, medium, and complex cases, and
engaged both the SlideMaster model and human
participants to reproduce them. To eliminate the
influence of network fluctuations, we use the lo-
cally deployed SlideMaster model, which typically
completes generation within 80–120 seconds. Four
doctoral students were recruited as participants,
following a standardized slide creation guideline,
which is shown in Figure 9, and a four-fold cross-
validation protocol was adopted to ensure reliabil-
ity.

The result shown in Table 13, reveals that man-
ual slide creation is significantly slower, with hu-
mans requiring two to three times longer than Slide-
Master to complete slides across all difficulty lev-
els. This inefficiency primarily arises from the
need for precise element-by-element reconstruc-
tion, which becomes increasingly time-consuming
in dense or complex layouts. Nevertheless, human-
created slides achieve higher Content scores, ow-
ing to character-level text entry, which enables ex-
act textual reproduction. However, this advantage
comes at the cost of prolonged creation time and
is counterbalanced by lower Position and SSIM
scores, reflecting difficulties in achieving pixel-
level alignment without specialized tooling.
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In contrast, SlideMaster consistently yields
higher Position and SSIM scores, demonstrating its
superior ability to preserve structural fidelity and vi-
sual consistency. As a result, SlideMaster achieves
higher overall scores while simultaneously reduc-
ing slide creation time by an average of 63.75%.
Together, these findings underscore the practical
value of automated RI-to-Slide generation, high-
lighting a clear trade-off between human precision
in textual fidelity and the efficiency and structural
accuracy achieved by layout-aware automation.

G.2 Comparison with Existing Commercial
Tools

To provide a grounded comparison with exist-
ing proprietary systems, we evaluated ppt.gptsci1

alongside SlideCoder instantiated with GPT-4o and
SlideMaster on the Slide2Code benchmark. Ta-
ble 14 summarizes the quantitative results in three
difficulty levels, showing that our framework con-
sistently outperforms ppt.gptsci in both local struc-
tural metrics (Content, Position) and global visual
metrics (CLIP, SSIM). Table 8 further compares in-
ference costs, indicating that SlideMaster achieves
strong performance with zero marginal cost, while
ppt.gptsci requires additional expense.

We also observed that ppt.gptsci frequently over-
segments slides into numerous unstructured au-
toshape objects, resulting in cluttered and less in-
terpretable outputs. Moreover, as a cloud-based
service, it raises potential data privacy concerns
since users must upload their content to external
servers. In contrast, SlideMaster is lightweight
(7B), open-source, and suitable for local deploy-
ment, offering a cost-free, privacy-preserving, and
more controllable alternative for RI-to-slide gener-
ation.

G.3 Qualitative Analysis of Difficulty Levels
in Slide2Code

As detailed in Section 3.2, the difficulty levels in
Slide2Code are derived using the proposed Slide
Complexity Metric (SCM), which integrates three
dimensions: (i) the total number of elements, (ii)
the number of distinct element types (e.g., textbox,
placeholder, image, autoshape), and (iii) the ele-
ment coverage ratio, i.e., the proportion of activated
blocks identified by the CGSeg algorithm. Figure 6
reports the average statistics across the three levels,
along with representative visualizations.

1https://ppt.gptsci.com/

The results in Figure 6 reveal a clear progres-
sion from simple to complex slides: element count,
element types diversity, and the coverage ratio in-
crease with increasing difficulty. At the complex
level, slides contain both a larger number and a
wider variety of elements, together with a denser vi-
sual occupation, which collectively impose greater
challenges for automated generation. These find-
ings qualitatively validate the effectiveness of SCM
in separating different levels of complexity.

G.4 Qualitative Failure Case Analysis
To better understand the limitations of current ap-
proaches, we conducted a systematic failure case
study based on all test samples generated under
two configurations: SlideCoder with GPT-4o and
AutoPresent with GPT-4o. We defined nine distinct
error types, including six atomic element errors
(Content Error, Position Error, Style Error, Missing
Element, Size Error, and Spurious Element) and
three composite structural errors (Out-of-Bound
Element, Incomplete Element, and Globally Irrele-
vant Slide). Each generated output was manually
annotated for the presence of these errors, and their
occurrence rates were computed. The results are
summarized in Table 9.

The analysis highlights several key findings.
First, Missing Element errors dominate in Auto-
Present, occurring in more than 72% of cases,
whereas SlideCoder reduces the rate to below 6%
thanks to the block-wise decomposition enabled by
CGSeg. Second, Position Errors in AutoPresent
are also frequent (10.2%), indicating insufficient
layout grounding; in contrast, SlideCoder’s layout-
aware prompting reduces this error to less than
1%, demonstrating its effectiveness in preserving
spatial fidelity. Moreover, other error categories,
such as Style, Size, and Spurious Elements, are
consistently better handled under the SlideCoder
framework.

G.5 Evaluation of SlideMaster vs. Base Model
To clarify the contribution of fine-tuning, we com-
pared SlideMaster with its base model Qwen2.5-
VL-7B-Instruct on the Slide2Code benchmark
within the SlideCoder framework. Table 15 re-
ports the results across three difficulty levels. The
base model exhibits extremely low execution suc-
cess rates of 5%, 3%, and 3%, making it essen-
tially unusable for RI-to-Slide generation without
task-specific adaptation. In contrast, SlideMaster
achieves a dramatic improvement, with execution
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success rates exceeding 70% across all levels, while
also delivering consistently higher content, posi-
tion, CLIP, and SSIM scores.

These results clearly demonstrate that the fine-
tuning process not only improves execution robust-
ness but also enhances the quality of generated
slides. This validates the necessity of adaptation
to the RI-to-Slide task and highlights the signifi-
cance of SlideMaster as an open-source backbone
for reproducible research in this domain.

G.6 User Study to Evaluate Practical Demand

To examine the practical relevance of RI-to-Slide
generation, we conducted a structured user study
with 30 master’s and PhD students from 9 academic
disciplines. Participants were asked to rate three
statements on a 0–10 scale, where higher values
indicate greater significance, interest, or perceived
practicality. The evaluation guidelines followed by
the participants are illustrated in Figure 14.

The results, summarized in Table 10, reveal con-
sistently high scores across all three questions:
slide-making is regarded as important in academic
and professional activities (8.30), and there is even
stronger interest (9.07) and perceived practicality
(9.22) for a system that converts reference images
into editable PPTX slides.

These findings demonstrate that users from di-
verse backgrounds not only recognize the impor-
tance of slide preparation but also strongly value
automated solutions, thereby validating the task’s
practical demand and significance.

G.7 Experiment on Hand-Drawn Sketches

To investigate whether SlideCoder can generalize
beyond digital inputs, we designed an experiment
using hand-drawn sketches. Ten samples were ran-
domly selected from the Slide2Code benchmark,
and a PhD student with design experience was
asked to draw simplified sketch representations Ip
of each reference slide I0, guided by both the ref-
erence image I0 and its structured counterpart F0.
The sketches were then provided to SlideCoder
(with GPT-4o as backbone) to generate new slides
Fg, which were subsequently rendered into images
Ig.

We compared the generated results with the
ground-truth slides F0 and reference renderings
I0 using the same evaluation metrics as in the main
benchmark. Table 11 reports the results, showing
that SlideCoder achieves a 90% execution success

rate and maintains competitive performance across
Content, Position, CLIP, and SSIM.

G.8 Ablation and Comparative Analysis of
the Segmentation Algorithm

To examine the effectiveness of our proposed Color
Gradient-based Segmentation (CGSeg) in the con-
text of slide generation, we conducted a compara-
tive analysis against the Segment Anything Model
(SAM), one of the most advanced general-purpose
segmentation frameworks. While SAM has demon-
strated strong performance on natural images, our
experiments reveal that it fails to produce seman-
tically meaningful blocks for slide images. This
limitation arises from the dominance of dense tex-
tual layouts in slides, where visual entities such as
characters or words appear as fine-grained, discrete
units. As a result, SAM tends to treat each glyph
as a separate segment, yielding a large number of
regions with little standalone semantic meaning.

Such over-segmentation leads to severe ineffi-
ciencies in downstream processing. For example,
if an image is decomposed into 50 blocks, the sys-
tem must invoke GPT-4o over one hundred times to
generate block descriptions, block code, and final
assembly, resulting in significant overhead without
added semantic value.

To quantitatively validate this observation, we
compared CGSeg and SAM on the Slide2Code
benchmark, measuring the average number of seg-
mented regions across different complexity levels.
Table 12 shows that SAM produces more than 60
segments per slide on simple cases and still tens
of segments on complex slides, whereas CGSeg
consistently maintains a compact decomposition of
around 3–4 segments.

These results confirm that SAM’s segmentation
is misaligned with the structural and semantic orga-
nization of slides. In contrast, CGSeg consistently
produces compact and meaningful partitions that
reflect slide layout logic, enabling efficient down-
stream processing. This analysis demonstrates
that task-specific segmentation is critical, and that
CGSeg effectively fills this gap by offering seman-
tically grounded decompositions tailored to slide
generation.
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Table 4: Detailed performance analysis under several ablation settings. Green , yellow , and red indicate simple,
medium, and complex levels in SlideCoder. Bolded values mark the best result per level.

Setting Execution% Global Visual Metrics Local Structural Metrics OverallContent Position Clip SSIM

SlideCoder
100.0 97.1 89.9 80.8 92.9 89.9
100.0 92.7 86.5 82.7 85.8 85.8
100.0 95.0 81.3 82.2 82.3 82.2

w/o Layout
100.0 88.8 86.4 81.2 79.2 81.2
93.9 90.4 75.2 80.9 78.4 73.6
93.9 93.6 72.2 80.3 76.4 71.8

w/o CGSeg
75.8 90.4 86.5 69.4 73.1 55.4
51.5 91.7 81.4 68.5 71.4 39.6
69.7 93.0 83.2 68.1 69.0 48.4

w/o H-RAG
90.9 98.6 88.4 79.7 91.8 80.4
81.8 91.6 84.7 81.7 87.8 69.3
84.8 94.0 87.9 81.3 83.4 70.7

Native Setting
75.8 90.0 87.9 71.1 71.2 53.9
48.5 92.9 83.3 66.7 69.5 37.4
66.7 92.6 85.7 66.5 70.4 46.9

Table 5: The object types and their styles supported by our reverse engineering tool.

Object Type Styles

textbox Position, Text frame margin, Alignment, Paragraph spacing, Font style, Fill
color, Font size, Bold, Italic, Underline

rectangle Position, Line color, Line width, Fill color
object_placeholder Position, Fill color, Object position
freeform Position, Fill color
bullet_points Position, Item content, Font size, Font color, Fill color, Bold, Italic, Underline
image Position, Image path
background_color Color
connector Start position, End position, Arrow color, Arrow width, Arrow style
table Position, Cell height, Cell fill color, Text inside cell
triangle Position, Type, Line color, Line width, Fill color

Table 6: The object types and their styles supported by AutoPresent’s reverse engineering tool.

Object Type Styles

title Font size, Font color, Fill color
textbox Position, Font size, Bold, Font color, Fill color
bullet_points Position, Item content, Font size, Font color, Fill color
image Position, Image path
background color Color
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Table 7: LoRA fine-tuning configuration used in our experiments.

Parameter Value

Rank 8
Max Sequence Length 4096
Batch Size 4
Gradient Accumulation Steps 8
Learning rate 1e-4
Epochs 10
Warmup Ratio 0.1
Mixed Precision bf16

Table 8: Cost per sample (USD) for different models.

Model Cost ($)
SlideMaster 0

GPT-4o 0.083
ppt.gptsci 0.090

Table 9: Qualitative failure case analysis: error occurrence rates (%) across different error types for SlideCoder
(GPT-4o) and AutoPresent (GPT-4o).

Error Type SlideCoder (GPT-4o) AutoPresent (GPT-4o)
Content Error 0.7 5.6
Position Error 0.7 10.2
Style Error 1.0 4.5
Missing Element 5.8 72.9
Size Error 0.3 6.8
Spurious Element 1.0 9.0
Out-of-Bound Element 1.0 5.6
Incomplete Element 0.0 1.1
Globally Irrelevant Slide 0.3 10.2

Table 10: User study results evaluating the practical demand for RI-to-Slide generation, based on responses from 30
graduate students across 9 academic disciplines. Scores are reported on a 0–10 scale (higher is more favorable).

Question Description Average Score
Q1 How significant is slide-making in your aca-

demic/professional activities?
8.30

Q2 How interested would you be in a system that con-
verts reference images to PPTX?

9.07

Q3 How practical do you think such a system would be
in your work?

9.22

Table 11: Evaluation of SlideCoder (GPT-4o) on hand-drawn sketch inputs. Results are averaged over 10 samples
using the standard evaluation metrics.

Method (Sketch Input) Execution Content Position CLIP SSIM Overall
SlideCoder (GPT-4o) 90% 94.2 85.3 87.2 93.8 81.1
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Table 12: Comparison of CGSeg and SAM in terms of average number of segmented regions per slide on the
Slide2Code benchmark. Lower values indicate more semantically meaningful segmentation.

Method Simple Medium Complex
CGSeg 3.0 3.5 3.7
SAM 61.9 47.9 27.3

Table 13: Comparison between SlideMaster and Human performance across different difficulty levels. Green ,
yellow , and red indicate simple, medium, and complex levels in Slide2Code. Bolded values mark the best result

per level.

Method Time(s) Local Structural Metrics Global Visual Metrics OverallContent Position CLIP SSIM

SlideMaster
88.9 95.6 97.3 89.8 95.6 94.6

128.9 91.2 90.3 81.7 88.5 87.9
183.1 80.4 76.8 79.9 87.2 81.1

Human
246.3 98.2 93.6 86.1 72.1 87.5
312.6 97.1 84.9 84.1 78.9 86.2
582.6 98.3 73.6 73.2 58.3 75.9

Table 14: Comparison with ppt.gptsci across different methods. Green , yellow , and red indicate simple,
medium, and complex levels in Slide2Code. Bolded values mark the best result per level.

Method Local Structural Metrics Global Visual Metrics OverallContent Position CLIP SSIM

SlideMaster
95.6 97.3 89.8 95.6 94.6
91.2 90.3 81.7 88.5 87.9
80.4 76.8 79.9 87.2 81.1

GPT-4o
96.2 93.8 86.7 96.1 93.2
93.1 95.6 85.6 93.4 91.9
85.4 83.3 83.3 90.8 85.7

ppt.gptsci
85.3 85.7 60.4 58.8 72.6
81.8 79.1 61.4 69.0 72.8
74.7 60.9 67.6 51.5 63.7

Table 15: Evaluation of SlideMaster against its base model Qwen2.5-VL-7B-Instruct across different difficulty
levels. Green , yellow , and red indicate simple, medium, and complex levels in Slide2Code. Bolded values
mark the best result per level.

Model Exec.(%) Local Structural Metrics Global Visual Metrics OverallContent Position CLIP SSIM

BaseModel
5 91.8 86.9 76.9 87.8 4.3
3 79.6 80.2 72.4 84.9 2.4
3 74.1 70.2 70.6 79.2 2.2

SlideMaster
86 92.4 87.4 77.6 91.1 74.9
75 84.7 79.8 75.4 86.4 61.2
73 76.1 70.5 72.4 82.8 55.1
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Simple

Median

Complex

Difficulty Element CountType Count Visualization

1.00

1.47

3.20

1.71

2.83

8.14

Coverage Ratio

18.43%

31.76%

37.77%

Score

0.33

0.41

0.67

Figure 6: Qualitative analysis of the three difficulty levels in the Slide2Code benchmark. Columns report the
average Type Count (number of distinct element categories), Element Count (total number of elements), Coverage
Ratio (percentage of activated blocks detected by CGSeg), and Score (overall Slide Complexity Metric). The
Visualization column illustrates representative slides for each level.

Figure 7: Prompt of Describer.
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Slide Complexity Evaluation Guide 

Purpose of Evaluation 
This guideline is intended to assist you in subjectively evaluating the complexity of slide samples based 
on the following three dimensions: 

1. Number of Shapes 
2. Diversity of Shape Types 
3. Visual Complexity 

Each dimension should be scored on a scale from 0 to 100. You are expected to assess each slide 
independently and provide a final overall score reflecting your holistic judgment of the slide’s 
complexity. 
Evaluation Procedure 
For each slide, please follow these steps: 

1. Review the slide thoroughly to understand its structure and element layout. 
2. Evaluate each of the three dimensions separately (see detailed criteria below). 
3. Based on your judgment, assign a comprehensive overall score (0–100).Record your scores 

(three dimensions + overall) clearly in the scoring table. 
Scoring Dimensions and Criteria 
1. Number of Shapes 
Refers to the total count of visual elements on the slide, including but not limited to: text boxes, diagrams, 
arrows, lines, images, geometric shapes, etc. 

• 0–20: Very few elements (e.g., only a title and 1–3 text boxes). 
• 21–50: Moderate amount of shapes (e.g., 4–10 elements, such as text + one chart). 
• 51–80: High density of shapes (e.g., 11–20 elements, visually filled slide). 
• 81–100: Extremely dense, cluttered with over 20 elements. 

2. Diversity of Shape Types 
Measures how varied the types of visual components are. Common types include text boxes, images, 
tables, flowcharts, icons, arrows, geometric shapes (e.g., rectangles, circles, lines), and more. 

• 0–20: Only one type used (e.g., all text). 
• 21–50: Two or three different types, basic variety. 
• 51–80: Four to six types, indicating notable diversity. 
• 81–100: Rich variety with more than six distinct shape types. 

3. Visual Complexity 
Refers to how complex the slide appears in terms of visual density, layout structure, information layering, 
and cognitive load. It captures the subjective perception of how “complicated” the slide looks. 

• 0–20: Very clean and minimalist, with generous whitespace. 
• 21–50: Well-structured, moderately filled, visually comfortable. 
• 51–80: Noticeably dense, some clutter, yet still readable. 
• 81–100: Overwhelming amount of information, chaotic layout, hard to scan quickly. 

Overall Score Guidelines 
After rating the three dimensions above, you are asked to provide a final overall score (0–100) that 
reflects your subjective judgment of the slide’s overall complexity. 
⚠ Note: This does not need to be a simple average of the three scores. Instead, consider how each 
factor influences the overall perception of complexity. 

Figure 8: Evaluation guidelines provided to the four doctoral student annotators.
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Standardized Slide Creation Guideline 

To ensure consistency and reproducibility in the manual slide reconstruction process, all 
human participants in this study were required to strictly follow a standardized slide creation 
guideline. This guideline was designed to minimize individual operational variability and 
establish a unified procedure, as detailed below. 

Canvas Configuration 

• Prohibit the use of any pre-designed templates, themes, or automatic layout 
suggestions. 

Element Identification and Placement 

• Identify all visible elements in the reference slide, including text boxes, shapes, 
images, charts, and decorative objects. 

• Reconstruct each element by manually placing it on the slide, ensuring pixel-level 
alignment with its original layout and maintaining consistent relative size and aspect 
ratio. 

• Preserve the correct front-to-back stacking order (z-order) of elements to match the 
original visual hierarchy. 

Textual Content Reproduction 

• Enter all textual content manually, character by character, to ensure precise fidelity. 
• Use font families, sizes, weights, and colors that are as visually consistent as possible 

with the original; when exact matches are unavailable, prioritize maintaining 
structural layout and relative proportions rather than exact styling. 

• Adjust line spacing, paragraph spacing, and text box boundaries to visually align with 
the reference layout. 

Styling and Color Consistency 

• Use color-picking tools to replicate the fill colors, stroke colors, and border 
thicknesses of all graphical elements as accurately as possible. 

• Maintain consistency in visual weight, line styles, and alignment across elements. 
• Do not use any automated styling, smart art, or theme-based formatting features. 

Final Verification and Export 

• Verify that all reconstructed elements are accurately positioned, aligned, and 
complete, ensuring that no content is missing or misplaced. 

• Export the completed slides both as PPTX files and high-resolution PNG images for 
subsequent evaluation. 

Figure 9: Standardized slide creation guidelines provided to the four doctoral student annotators.
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Prompt of Coder 
Code generation process 
Please write Python code to create a PowerPoint slide that matches the following description: 
{block_description} 
 
The following is an introduction in python-pptx API Documentation: 
{<Grammar> } 
 
Please generate Python code using the python-pptx library to create a PowerPoint slide based on the 
provided codes. The code should:   
1. Create a new PowerPoint presentation.   
2. Add a slide using the slide layout with index 6 (typically a Blank Layout) to ensure a clean slate 
for custom content placement.   
3. Include all text elements and shapes as specified in the slide, with properties such as font, size, 
color, and alignment accurately applied.   
4. Use inches (in) units for all size and position measurements, directly converting them using 
python-pptx's Inches() function for shapes and positions, and Pt for font sizes.   
5. Save the presentation in the output/generated_ppts directory with a descriptive filename (e.g., 
generated_slide.pptx).   
6. Ensure the code is well-commented and handles any necessary imports. 
{block_image} 
 
Fix code process 
You are a python-pptx expert. 
The previous code generated an error. Please fix the code. 
Error message:   
{error_message} 
Previous code: 
{code} 
 
Introduction in python-pptx API Documentation: 
{<Grammar> } 
Please provide the complete corrected code that will create the PowerPoint slide successfully. 
 
  

Figure 10: Prompt of Coder.
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Layout-aware prompt 
 
You are a python-pptx expert. Based on the information and code snippets I provide, please assemble 
a complete python-pptx script:  
<Design> refers to the reference image for this slide.  
 
Its global description is <Overall Description>.  
 
The code snippets and their layout positions are given as  
<Code Snippets1>, <Position1*>.  
<Code Snippets1>, <Position1*>.  
… 
 
Here are some syntax rules that might be useful: <Grammar>.  
 
The background and images path is ... 
 
 
Background path: 
{background_image_path} 
Image1 Path: 
{image_path_1} 
Image1 Coordinates: 
Left: {x1} inches 
Top: {y1} inches 
Width: {w1} inches 
Height: {h1} inches 
Please provide the complete corrected code that will create the PowerPoint slide successfully. 
Please generate Python code using the python-pptx library to create a PowerPoint slide based on the 
provided codes. The code should: 

1. Create a new PowerPoint presentation. 
2. Add a slide using the slide layout with index 6 (typically a Blank Layout) to ensure a clean 

slate for custom content placement. 
3. Include all text elements and shapes as specified in the slide, with properties such as font, 

size, color, and alignment accurately applied. 
4. Use inches (in) units for all size and position measurements, directly converting them using 

python-pptx's Inches() function for shapes and positions, and Pt for font sizes. 
5. Save the presentation in the output/generated_ppts directory with a descriptive filename 

(e.g., generated_slide.pptx). 
6. Ensure the code is well-commented and handles any necessary imports. 

 

Figure 11: Layout-aware prompt.
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Auto Shape 
An auto shape is a predefined, customizable shape in PowerPoint, such as a rectangle, ellipse, or 
block arrow, with approximately 180 variations. Auto shapes can have a fill, outline, and contain 
text. Some include adjustable features, indicated by yellow diamond handles (e.g., to modify the 
corner radius of a rounded rectangle). A text box is a specific type of auto shape, typically 
rectangular, with no default fill or outline. 
 
######## 
 
Picture 
A picture in PowerPoint refers to a raster image, such as a photograph or clip art, treated as a distinct 
shape type with unique behaviors compared to auto shapes. Note that an auto shape can have a 
picture fill, where an image serves as the shape’s background instead of a color or gradient, but this 
is a separate feature. 
 
######## 
 
Graphic Frame 
A graphic frame is a container that automatically appears in a PowerPoint file when adding graphical 
objects like tables, charts, SmartArt diagrams, or media clips. It cannot be inserted independently 
and typically requires no direct interaction from the user. 
 
######## 
 
Group Shape 
A group shape is created when multiple shapes in PowerPoint are grouped, enabling them to be 
selected, moved, resized, or filled as a single unit. The group shape is only visible through its 
bounding box when selected, containing the individual member shapes. 
 
######## 
 
Line/Connector 
Lines are linear shapes distinct from auto shapes. Some lines, known as connectors, can attach to 
other shapes and remain connected when those shapes are moved. Connectors are not yet fully 
supported in some contexts, but they are valuable for creating dynamic diagrams. 
 
######## 
 
Content Part 
A content part involves embedding external XML data, such as SVG, within a PowerPoint 
presentation. PowerPoint itself does not actively utilize content parts, and they can generally be 
ignored without impacting functionality. 
 
…… 

Figure 12: Examples from the Shape Type knowledge base.
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# Function: `pptx.Presentation` 
 
## Function Name 
 
`pptx.Presentation` 
 
## Function Parameters 
 
- **pptx** (`Union[str, IO[bytes], None]`, optional, default: `None`) 
  - Description: Specifies the source of the presentation. 
    - If a `str`, it represents the file path to a `.pptx` file. 
    - If an `IO[bytes]`, it represents a file-like object containing the `.pptx` file data. 
    - If `None`, loads the built-in default presentation template. 
  - Constraints: The file or stream must be a valid `.pptx` file if provided. 
 
## Function Return Value 
 
- **Type**: `presentation.Presentation` 
- **Description**: A `Presentation` object representing the loaded or newly created PowerPoint 
presentation. 
 
## Function Python Example 
 
```python 
from pptx import Presentation 
 
# Create a new presentation using the default template 
prs = Presentation() 
 
# Load an existing presentation from a file 
prs = Presentation("existing_presentation.pptx") 
 
# Load a presentation from a file-like object 
from io import BytesIO 
with open("existing_presentation.pptx", "rb") as f: 
    prs = Presentation(BytesIO(f.read())) 
``` 
 
## Function Purpose 
 
The `pptx.Presentation` function is the primary entry point for creating or loading a PowerPoint 
presentation. It initializes a `Presentation` object, which provides access to slides, slide masters, 
layouts, and other presentation components, enabling programmatic manipulation of presentation 
content. 

Figure 13: An example from the Operation Function knowledge base.
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User Study Evaluation Guideline 

To ensure rigor, transparency, and reproducibility, a structured guideline was provided to all 
participants prior to the survey. The guideline was designed to minimize subjectivity, promote 
consistent interpretations of the questions, and ensure that responses captured individual 
experiences across diverse disciplines. 
Participants. A total of 30 graduate students (master’s and PhD level) from 9 academic disciplines 
participated in the study. Participants were recruited to represent a wide range of research and 
professional backgrounds, ensuring that the survey results reflect diverse slide-making practices. 
All participation was voluntary and anonymous. 
Survey Dimensions. Participants were asked to evaluate three dimensions: 

1. Significance of Slide-Making — How essential and frequent is slide preparation in their 
academic or professional activities (e.g., preparing presentations for classes, research 
conferences, or project meetings). 

2. Interest in RI-to-Slide Generation — How appealing is a system that converts reference 
images (including archived slides, screenshots, or sketches) into editable PPTX files, 
assuming such a tool is readily accessible. 

3. Perceived Practicality — How useful such a system would be in their own workflow, 
including its potential to reduce workload, accelerate preparation, and support collaborative 
or creative processes. 

Scoring Scale. Each dimension was rated on a 0–10 Likert-type scale, with 0 meaning “not at all” 
and 10 meaning “extremely high.” Intermediate values were explicitly encouraged to capture 
nuanced judgments. Participants were reminded that: 

• scores should reflect their own personal experience rather than general expectations; 
• the same scale interpretation should be consistently applied across all three questions; 
• there were no “correct” answers, only subjective perceptions. 

Procedure. Before scoring, participants reviewed the guideline, which included detailed definitions 
of each dimension, illustrated examples of scenarios (e.g., academic talks, team discussions, design 
brainstorming), and clarification of potential ambiguities. Participants then completed the survey 
independently and privately, without peer discussion, to avoid mutual influence. 
Reliability Measures. To improve consistency, participants were asked to read through all three 
questions once before answering, and to review their answers at the end to ensure coherence. This 
process was adopted to minimize careless errors, anchoring bias, or inconsistent use of the scale. 
 

Figure 14: Evaluation guidelines provided to participants in the user study.
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