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Abstract

The goal of open relation extraction (OpenRE)
is to develop an RE model that can generalize to
new relations not encountered during training.
Existing studies primarily formulate OpenRE
as a clustering task. They first cluster all test
instances based on the similarity between the
instances, and then manually assign a new re-
lation to each cluster. However, their reliance
on human annotation limits their practicality.
In this paper, we propose an OpenRE frame-
work based on large language models (LLMs),
which directly predicts new relations for test
instances by leveraging their strong language
understanding and generation abilities, without
human intervention. Specifically, our frame-
work consists of two core components: (1) a re-
lation discoverer (RD), designed to predict new
relations for test instances based on demonstra-
tions formed by training instances with known
relations; and (2) a relation predictor (RP), used
to select the most likely relation for a test in-
stance from n candidate relations, guided by
demonstrations composed of their instances.
To enhance the ability of our framework to pre-
dict new relations, we design a self-correcting
inference strategy composed of three stages:
relation discovery, relation denoising, and rela-
tion prediction. In the first stage, we use RD to
preliminarily predict new relations for all test
instances. Next, we apply RP to select some
high-reliability test instances for each new rela-
tion from the prediction results of RD through a
cross-validation method. During the third stage,
we employ RP to re-predict the relations of all
test instances based on the demonstrations con-
structed from these reliable test instances. Ex-
tensive experiments on three OpenRE datasets
demonstrate the effectiveness of our framework.
We release our code at https://github.com/
XMUDeepLIT/LLM-OREF.git.

“Equal contribution.

1 Introduction

Relation Extraction (RE), as a crucial task in infor-
mation extraction, aims to extract relations between
entity pairs from unstructured text. The extracted
relations play a vital role in many downstream ap-
plications, such as search engine (Li et al., 2006),
question answering (Yu et al., 2017), and knowl-
edge base population (Ji and Grishman, 2011).
Conventional RE studies mainly focus on building
models that can only handle predefined relations,
inherently limiting their utility in real-world sce-
narios where new relations continually emerge. To
address this limitation, researchers have turned to
Open Relation Extraction (OpenRE), which is not
confined to a predefined set of relations and can
dynamically discover new ones, making it more
practical for real-world applications.

In this regard, dominant methods formulate
OpenRE as a clustering task (Yao et al., 2011;
Marcheggiani and Titov, 2016; Elsahar et al., 2017),
which aggregates semantically related relation in-
stances into the same cluster, with each cluster
representing a potential new relation. Along this
line, subsequent studies directly utilize pretrained
language models (e.g., BERT (Devlin et al., 2019))
to encode an instance for obtaining its relational
representation and then perform clustering on these
representations (Hu et al., 2020). Since pretrained
language models have not been fine-tuned on RE
datasets, the performance of such methods remains
suboptimal. To deal with this issue, several meth-
ods leverage the available labeled datasets for RE
(which only contain known relations) to fine-tune
pretrained language models (Zhao et al., 2021;
Wang et al., 2022). However, the above methods
cannot align clusters with specific relation types,
restricting their applicability in downstream tasks.
While Zhao et al. (2023) mitigates this issue by
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actively selecting representative instances for hu-
man annotation during clustering, their approach
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remains impractical for real-world deployment due
to its reliance on human intervention.

Recently, Large Language Models (LLMs) have
demonstrated strong text understanding capabili-
ties across various downstream tasks and can ef-
fectively capture complex relation patterns in text
sequences (Wan et al., 2023; Wadhwa et al., 2023).
More importantly, unlike traditional classification
and clustering models, the generative nature of
LLMs allows them to predict new relations in the
form of natural language directly. Therefore, we
believe that exploring the potential of LLMs in
OpenRE is a promising research direction.

In this work, we conduct a preliminary study to
investigate the capabilities of LLMs in OpenRE.
We first observe that LLMs perform poorly at pre-
dicting new relations in a zero-shot manner. In
addition, providing LLMs with a few-shot demon-
stration that includes instances that do not belong
to new relations can improve their performance,
but the improvement is limited. Interestingly, we
find that their performance significantly improves
when instances of the new relations are provided in
few-shot demonstrations. These findings suggest
that while LLMs excel in comprehending relations
through demonstrations, they still struggle to dis-
cover new relations.

Based on these insights, we propose an LLM-
based Open Relation Extraction Framework (LLM-
OREF), which consists of two key components: the
Relation Discoverer (RD) and the Relation Predic-
tor (RP). The former aims to preliminarily predict
new relations for test instances by capturing rela-
tion patterns from demonstrations composed of in-
stances with known relations. The latter is designed
to deeply understand the relations of instances in
demonstration, and then accurately determine the
most probable relation for the test instance from
these relations. The primary distinction between
RD and RP lies in their input: whether the demon-
stration contains the relation of the test instance.
To reduce storage and training costs, both RD and
RP are built on the same LLM using the LoRA
(Hu et al., 2022) fine-tuning strategy. During train-
ing, since we can only access instances of known
relations, we construct the inputs of RD and RP
using these instances for corresponding training.
As RP’s demonstration includes the target relation
of the test instance, which greatly reduces the dif-
ficulty of relation prediction, its performance is
significantly better than that of RD. Therefore, to
enhance the training of RD, we introduce an extra

distillation loss (Lkp) in its training objective, de-
signed to leverage the output distribution of RP to
guide RD’s training.

To more effectively coordinate RD and RP to
discover new relations in real-world scenarios and
accurately predict relations of test instances, we
propose a self-correcting inference strategy. In
particular, the strategy involves three stages: re-
lation discovery, relation denoising, and relation
prediction. In the first stage, we employ RD to
initially predict new relations for each instance in
the test set, based on demonstrations consisting of
training instances with known relations. In the sec-
ond stage, considering that RD’s predictions may
contain noise, we use RP to cross-validate the accu-
racy of the predicted relation for each test instance,
yielding a set of reliable instances for each new
relation. In the third stage, we apply RP to more ac-
curately predict new relations for each test instance
using demonstrations constructed from these reli-
able instances.

To summarize, the main contributions of this
work are as follows: (1) We propose LLM-OREEF,
a novel OpenRE framework based on LLMs that
includes two key components, the RD and RP, to
enable the discovery of new relations and their ac-
curate prediction. (2) We propose a self-correcting
inference strategy that progressively refines new re-
lation prediction through a three-stage pipeline of
relation discovery, relation denoising, and relation
prediction. (3) Extensive experiments conducted
on three OpenRE datasets demonstrate the effec-
tiveness of our framework.

2 Preliminary Study

In this section, we conduct a preliminary study to
explore the ability of LLMs in discovering new
relations. To this end, we evaluate the performance
of an open-source LLM, LLaMA-2-7B (Touvron
et al., 2023), on a commonly used OpenRE dataset
FewRel (Han et al., 2018).

Specifically, we first simply evaluate the accu-
racy of the LLM on the test set of FewRel under a
zero-shot setting. The red dashed line in Figure 1
indicates that the LLM exhibits notably poor per-
formance. This is mainly attributed to the fact that
the model lacks task-specific guidance, having not
been exposed to any examples that illustrate the
structure and requirements of RE. To enhance the
LLM’s understanding of the RE task, we provide it
with demonstrations, including instances of known
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Figure 1: Accuracy of LLaMA-2-7B on FewRel. “w/o
demons” means no demonstrations are given; “demos
w/o tgt rel.” and “demos w/ tgt rel.” refer to demonstra-
tions that do not contain and that contain instances shar-
ing the target relation of the test instance, respectively.
On the x-axis, “K” denotes the number of instances in
demonstrations. In the “demos w/ tgt rel.” setting, as K
increases, it becomes harder for the model to identify
the target relation, leading to a gradual drop in accuracy.

relations in the training set of FewRel, to predict
new relations of test instances under a few-shot set-
ting. While this setting improves the LLM’s ability
to identify new relations, its performance is still in-
adequate for real-world applications (see yellow-3¢
line in Figure 1). These results intuitively reveal
that the ability of LLMs to discover new relations
is still limited. This motivates us to further explore
more effective methods and strategies to enhance
the performance of LLMs on OpenRE.
Furthermore, we explore the performance of
LLMs when demonstrations include the target
(new) relations of test instances, as done in stan-
dard in-context learning (ICL) (Brown et al., 2020).
From the green-¥% line in Figure 1, we observe
a substantial improvement in the LLM’s perfor-
mance. These findings indicate that LLMs can ef-
fectively grasp the semantics of a relation through
its instances in the demonstration, enabling them
to accurately identify the most likely relation for a
test instance from those presented in the demonstra-
tion. This has been noted in previous ICL-based
RE studies (Wan et al., 2023; Rajpoot and Parikh,
2023) and inspired the design of our framework.

3 Problem Definition

OpenRE endeavors to accurately predict target
(new) relations for test instances in real-world
scenarios. Hence, given an unlabeled dataset
D={x;}}V, (i.e., test set) with N test instances,
the OpenRE model is required to predict a new re-
lation y; for each test instance x;. Meanwhile, each

(a) Relation Discoverer

Demonstrations:

L Large Language Model
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relation: participating team B
relation: mountain range Pre-trained

relation: military branch Weights A

Target Relation:
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(b) Relation Predictor
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Figure 2: Illustration of two key components in our
framework. The demonstrations in RD consist of known
relation instances, while the demonstrations in RP are
composed of new relation instances. Additionally, the
demonstrations in RD do not include the target relation
of the test instance, whereas RP does. Both RD and RP
are built on the same LLM using the LoRA fine-tuning
strategy.

instance x;=<s;, h;, t;> consists of a sentence s;,
a head entity h;, and a tail entity ¢;. Following
recent works (Zhao et al., 2021; Wang et al., 2022),
we use a training set D'={2;}}Z, containing M in-
stances of known relations to adapt LLMs to the RE
task. Here, each training instance 2;=<s’, b, ¢’ >
is annotated with its associated relation label yg».
Notably, in OpenRE, the relations in the test set do
not overlap with those in the training set.

4 Our Framework

In this section, we provide a detailed description of
our LLM-based OpenRE framework, LLM-OREF.
In the following, we first elaborate on two key com-
ponents of LLM-OREF in §4.1, and then detail the
training and inference strategies of our framework
in §4.2 and §4.3, respectively.

4.1 Overall framework

As illustrated in Figure 2, LLM-OREEF consists of
two key components: the Relation Discoverer and
the Relation Predictor.

Relation Discoverer (RD). The RD endeavors
to predict new relations for test instances based on
demonstrations consisting of instances with known
relations.

As illustrated in Figure 2 (a), for each test in-
stance x;, we first randomly sample n known re-
lations from the training set, each associated with
a training instance, and concatenate them to form
demonstrations: Drp=|[2}, ¥, ..., ¥}, yn]. Subse-
quently, we construct the input Irp for RD by con-
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Figure 3: Illustration of the training strategy for RD.
Since RP’s demonstration includes the target relation,
relation prediction becomes easier, resulting in better
performance than RD. To improve RD, we introduce a
distillation loss (Lkp) that leverages RP’s output distri-
bution to guide RD’s training.

catenating the instruction prompt Prp, the demon-
strations Dgrp, and the test instance x;, forming
Irp=[Prp; Drp; z;]. Here, Prp serves to guide
the RD in comprehensively understanding the RE
task through the demonstrations Dgrp, while also
instructing it to predict a new relation (not con-
tained in Dgp) for the test instance x;. Finally, the
RD takes Irp as input to autoregressively generate
a new relation g; for x;.

Relation Predictor (RP). As the discovery of
new relations is inherently challenging, the RD
may produce noisy predictions. To mitigate this,
the RP is employed to denoise and refine these
predictions for the test instances.

Specifically, as shown in Figure 2 (b), for each
x; with its predicted relation ¢;, we first ran-
domly select n—1 new relations from the predic-
tion results of RD on the test set, each accompa-
nied by a test instance, and additionally sample
a test instance belonging to ¢;. Next, these in-
stances are concatenated to form demonstrations
Drp=[21,71, ..., Tn,Yn). Then, we create an in-
put Irp=[Prp; Drp; x;] for RP by concatenating a
specific instruction prompt Frp, the demonstration
Dgp, and the test instance x;, where Prp instructs
RP to identify the most likely relation for x; from
those contained in Dgp. Finally, we input Irp into
RP to obtain a new predicted relation y; for x;,
which can be used to verify or refine the initial
prediction g; provided by RD.

4.2 Model Training

To effectively train both RD and RP in our frame-
work, we adopt a two-stage training strategy. For
storage efficiency, we adopt LoRA to fine-tune a

shared LLM for both RP and RD. Notably, during
OpenRE training, the model is trained on the train-
ing set D’, which only contains instances of known
relations. Thus, the inputs for training RP and RD
are solely constructed from relations and instances
sampled within D',

The first stage. Here, we focus on effectively
training RP using the training set D’. Specifi-
cally, for each training instance :U3 with its cor-
responding relation y}, we first randomly sample
corresponding demonstrations Dgp from D’. Ac-
cording to the objective of RP, the demonstrations
Drp are required to include instances belonging
to the relation y’ Then, we construct the input
Irp=[Prp; Drp; = ] and feed it into RP. Finally, we
train RP to autoregresswely generate the relation yj
for the training instance 33; using the cross-entropy
loss LcEg:

A
1 J
e =~ 3w Py 3 T, 1)

where @ denotes the learnable LoRA parameters
for RP, and ¢ is the index of a token in y/.

The second stage. At this stage, we aim to en-
hance RD’s ability to discover new relations. For
each training instance :v; labeled with relation y},
we construct an RD’s input Irp = [Prp; DRrp; x;],
ensuring that the demonstration Dgrp, sampled
from D’, does not include any instances of y; Next,
we input Irp into RD and compute the autoregres-
sive loss L with respect to the target relation

[y}
L'ep =~ | ,‘Zlong |y] ) Trp),
2

where ¢ is the learnable LoRA parameters of RD.

Since Drp contains instances of the target rela-
tion y;», whereas Drp does not, RP can more easily
predict the relation m; than RD. Therefore, we also
employ the RP trained in the first stage as a teacher
to guide the training of RD. As depicted in Figure 3,
we compute the KL divergence Lxp between the
predictive distributions of RP and RD for the same

training instance z’;:
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Figure 4: The illustration of our self-correcting inference strategy. It consists of three stages: (a) relation discovery,
where the RD discovers potential new relations of test instances; (b) relation denoising, where the RP identifies
high-reliability instances for each new relation from the prediction results of RD; and (c) relation prediction, using
high-reliability instances of new relations to construct demonstrations, so that the RP can better predict relations of

test instances.
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Finally, the training objective for RD is given by
Lrp = L + aLkp, where « is a hyperparameter

used to balance the impact of Lxp on RD training.

4.3 Self-Correcting Inference Strategy

To coordinate RD and RP to effectively discover
new relations and accurately predict the relation
for each test instance, we propose a self-correcting
inference strategy. As depicted in Figure 4, this
strategy consists of three stages: relation discovery,
relation denoising, and relation prediction.

Relation Discovery. During this phase, RD is
used to perform initial predictions of new relations
for all instances in the test set D.

Specifically, for each test instance x;, we first
construct RD’s input Irp by randomly sampling
instances with known relations from the training
set D’ to form the corresponding demonstration
Drp. Then, we feed the input Igp into RD to
obtain the predicted relation ¢; for ;. Furthermore,
to improve the recall of RD in discovering new
relations, we make multiple predictions for each
test instance z; using different demonstrations to
obtain multiple prediction relations [9}, ..., §%] for
each test instance x;, where K is the number of
predictions.

Relation Denoising. Here, we focus on using RP
to pick out some high-reliability samples for each
new relation from the prediction results of RD.

Given each test instance x; and its predicted re-
lation g)f, we first sample multiple demonstrations
[Dp, -, Dip], each comprising g% and other new
relations. Notably, we ensure that these demonstra-
tions cover all new relations discovered in the previ-
ous stage. Subsequently, we utilize these sampled
demonstrations to build the corresponding input
[I}p, .., I3p] for the test instance x;. Next, we feed
these inputs into RP to generate new predictions
for x;. This allows us to assess the reliability of yf
by comparing it to other new relations. If RP con-
sistently outputs @f across multiple predictions, we
consider it a reliable relation for the test instance
ZT;.

After denoising all test instances, the remaining
ones undergo further rounds of denoising. In to-
tal, we perform 7" rounds to obtain high-reliability
samples.

Relation Prediction. Following the prior phase,
we gathered the reliable test instances for each new
relation. In this stage, we utilize these reliable
test instances to construct demonstrations Dgp that
enable RP to precisely predict new relations of
other test instances.

Specifically, for a test instance x;, we first sam-
ple n new relations along with their reliable test
instances to construct a demonstration Drp. We
then apply RP to select the most probable relation
7; for ; from these n candidates. After obtaining
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i, we sample other n—1 new relations and include
y; to form the candidate set for the next predic-
tion. We repeat this process until all new relations
have been traversed, ultimately obtaining the most
reliable relation for x;.

5 Experiments

5.1 Datasets & Evaluation Metrics

Following Zhao et al. (2023), we conduct ex-
periments on two widely used RE datasets:
FewRel (Han et al., 2018) and TACRED (Zhang
et al., 2017), as well as a constructed RE dataset,
FewRel-LT (Zhao et al., 2023). For each dataset,
we split the relation types into disjoint sets of
known and new relations. The details of datasets
are in Appendix A.1.

Following Zhao et al. (2023), we use B3 (Bagga
and Baldwin, 1998), V-measure (Rosenberg and
Hirschberg, 2007), Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), and Macro-F; (Opitz
and Burst, 2019) to measure the precision and re-
call of results, homogeneity and completeness of
results, the agreement between results and true dis-
tributions, and the classification performance.

5.2 Baselines

We compare our LLM-OREF (based on LLaMA-2-
7B (Touvron et al., 2023) and Qwen2.5-14B (Yang
et al., 2025)) with two vanilla models and five rep-
resentative OpenRE baselines, including: 1) RW-
HAC (Elsahar et al., 2017), 2) SelfORE (Hu et al.,
2020), 3) RSN (Wu et al., 2019), 4) RoCORE
(Zhao et al., 2021), 5) ASCORE (Zhao et al., 2023).
The details of these baselines are in Appendix A.2.

5.3 Implementation Details

For all experiments, the number of demonstrations
n is set to 4, and the number of relation discovery
predictions K for each test instance is set to 3.
The number of relation denoising iterations is set
to T=3. The prompt templates for RD and RP
are in Appendix A.3. When training, we adopt
AdamW (Loshchilov and Hutter) as the optimizer,
along with a linear learning rate schedule. All
models are trained for one epoch using LoRA with
r=64 and a=64. The hyper-parameters, including
the learning rates for RD and RP, the distillation
temperature, and the corresponding loss weight a,
are listed in Table 2. During inference, we utilize
vLLM (Kwon et al., 2023) for efficient inference

acceleration. All experiments are conducted on two
NVIDIA H100 (80GB).

5.4 Main Results

Table 1 presents the main experimental results com-
paring our framework with a range of baselines
across three datasets. Next, we provide a detailed
analysis of the results:

The results in Table 1 show that our framework
achieves superior performance on both the class-
balanced dataset FewRel and the class-imbalanced
datasets TACRED and FewRel-LT. It consistently
outperforms all baselines, including the state-of-
the-art ASCORE, while eliminating the need for
human intervention. These results not only demon-
strate the effectiveness of our framework but also
provide valuable insights for future research in
OpenRE.

Compared with traditional clustering methods
such as RW-HAC, SelfORE, RSN, and RoCORE,
which cannot automatically align clusters with
specific relations, our framework demonstrates
markedly greater practicality. It consistently out-
performs these baselines across all datasets and
achieves particularly large performance gains on
the challenging TACRED and FewRel-LT datasets,
both of which suffer from severe class imbalance.
This superior performance under imbalanced con-
ditions further validates the real-world applicability
of our framework.

From Table 1, we observe that the vanilla
LLaMA-2-7B and Qwen2.5-14B exhibit consis-
tently poor performance across all datasets, under-
scoring the limitations of directly applying LLMs
for OpenRE. In contrast, our framework, built upon
these models, achieves significant and consistent
improvements, highlighting the necessity of a tai-
lored framework for adapting LL.Ms to OpenRE.
Moreover, these results demonstrate that our frame-
work can be effectively applied to different LLMs,
further confirming its generality.

5.5 Ablation Study

We further conduct ablation studies by removing
various components of our framework to assess
their individual contributions. Specifically, we com-
pare our framework with the following variants in
Table 3.

(1) w/o. self-correcting inference strategy. In
this variant, we remove the self-correcting infer-
ence strategy from LLM-OREEF, using RD for new
relation discovery, which is then taken as the final
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Dataset Method B3 V-measure ARI Classification
Prec. Rec. Fi Hom. Comp. Fi Prec. Rec. Fi
RW-HAC (Elsahar et al., 2017) 0.175 0.367 0.237 0.357 0463 0.403 0.108 0.251 0.264 0.216
SelfORE (Hu et al., 2020) 0.527 0.552 0.539 0.728 0.736 0.732 0.517 0.604 0.632 0.600
RSN (Wu et al., 2019) 0.174 0.640 0.274 0.389 0.659 0489 0.173 0.112 0.239 0.134
RoCORE (Zhao et al., 2021) 0.806 0.843 0.824 0.883 0.896 0.889 0.807 0.827 0.868 0.837
FewRel ASCORE (Zhao et al., 2023) 0.799 0.841 0.820 0.888 0.901 0.894 0.801 0.832 0.862 0.838
LLaMA-2-7B 0.528 0.327 0.404 0.694 0.527 0599 0.373 0.608 0.402 0.430
Qwen2.5-14B 0.546 0.555 0.550 0.725 0.712 0.719 0485 0.710 0.596 0.586
Ours (LLaMA-2-7B) 0.647 0.700 0.672 0.790 0.809 0.800 0.637 0.750 0.737 0.718
Ours (Qwen2.5-14B) 0.817 0.850 0.833 0.893 0.905 0.899 0.810 0.887 0.883 0.879
RW-HAC (Elsahar et al., 2017) 0.317 0.668 0.430 0.443 0.668 0.532 0.291 0.244 0.246 0.171
SelfORE (Hu et al., 2020) 0.517 0441 0476 0.631 0.600 0.615 0434 0.343 0.396 0.360
RSN (Wu et al., 2019) 0.312 0.807 0.451 0445 0.768 0.563 0.354 0.149 0.118 0.225
RoCORE (Zhao et al., 2021) 0.696 0.685 0.690 0.786 0.786 0.787 0.640 0.547 0.594 0.563
TACRED ASCORE (Zhao et al., 2023) 0.742 0.821 0.780 0.807 0.856 0.831 0.781 0.698 0.715 0.699
LLaMA-2-7B 0.441 0.305 0.361 0474 0.346 0400 0.159 0377 0450 0.325
Qwen2.5-14B 0.683 0.610 0.644 0.713 0.656 0.684 0.619 0.709 0.648 0.592
Ours (LLaMA-2-7B) 0.739 0.700 0.719 0.769 0.731 0.749 0.798 0.665 0.742 0.633
Ours (Qwen2.5-14B) 0.803 0.775 0.789 0.817 0.858 0.837 0.893 0.713 0.784 0.704
RW-HAC (Elsahar et al., 2017) 0.255 0.322 0.285 0.379 0421 0.399 0.145 0.190 0.176 0.160
SelfORE (Hu et al., 2020) 0.563 0.456 0.504 0.717 0.661 0.687 0.377 0439 0.526 0.462
RSN (Wu et al., 2019) 0.211 0.500 0.297 0350 0.510 0415 0.193 0.098 0.173 0.117
RoCORE (Zhao et al., 2021) 0.662 0.717 0.689 0.800 0.801 0.800 0.581 0.507 0.538 0.517
FewRel-LT ASCORE (Zhao et al., 2023) 0.650 0.845 0.735 0.790 0.885 0.835 0.676 0.530 0.609 0.550
LLaMA-2-7B 0.588 0.291 0.389 0.725 0.511 0.600 0.269 0.549 0.404 0.412
Qwen2.5-14B 0.601 0.516 0.555 0.743 0.679 0.710 0478 0.665 0.595 0.547
Ours (LLaMA-2-7B) 0.651 0.655 0.653 0.778 0.767 0.773 0.594 0.713 0.736 0.698
Ours (Qwen2.5-14B) 0.777 0.775 0.776 0.862 0.858 0.860 0.738 0.856 0.876 0.855

Table 1: Main results on three OpenRE datasets. The experimental results demonstrate the effectiveness of our
framework under both class-balanced and class-imbalanced settings.

Dataset Model RPIr RDIr Temperature r Weight «
LLaMA-2-7B  5e-5  3e-6 4 0.5
FewRel Qwen2.5-14B  5Se-5 3e-6 4 0.2
LLaMA-2-7B  le-4  8e-5 4 1
TACRED Qwen2.5-14B  7e-5  6e-6 2 0.9
LLaMA-2-7B  5e-5  3e-6 4 0.5
FewRel-LT Qwen2.5-14B  6e-5 3e-6 4 0.1

Table 2: Hyper-parameter settings.

prediction. As shown in line 1 of each dataset in
Table 3, this results in a significant performance
drop on three datasets. This indicates that the
self-correcting inference strategy effectively coor-
dinates RD and RP, enabling more accurate new
relation prediction.

(2) w/o. distillation strategy and w/o. relation
predictor. In our framework, RP is used not only as
a teacher model for knowledge distillation during
training but also for relation denoising and predic-
tion during inference. To evaluate its impact, we
design two ablated variants: one without RP during
training, and another without RP in both training
and inference. As shown in lines 2 and 3 of each
dataset, removing RP during training causes a per-
formance drop, which becomes more pronounced
when RP is also removed during inference. These

results demonstrate that the distillation strategy en-
hances RD’s ability to discover new relations, and
that RP plays a critical role in the overall effective-
ness of our framework.

(3) w/o. relation discoverer. This variant uses
RP directly to predict new relations based on
demonstrations of known relation instances. How-
ever, Line 4 in each dataset shows that removing
RD causes a notable performance drop across all
datasets. An intuitive reason is that RP struggles
to identify new relations when relying solely on
known relation demonstrations. These results high-
light the crucial role of RD in ensuring the practi-
cality and effectiveness of our framework.

(4) w/o. relation denoising stage. Here, we re-
move the relation denoising stage from our frame-
work and directly use the new relation instances
discovered by RD as demonstrations for RP’s rela-
tion prediction. This results in a significant perfor-
mance drop across all three datasets (see line 5 of
each dataset). This demonstrates that the denoising
stage effectively selects noisy instances of new re-
lations, thereby enabling RP to better understand
new relations and accurately predict the relation of
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Dataset Method B3 V-measure ARI Classification
Prec. Rec. Fi Hom. Comp. F Prec. Rec. F
Ours 0.647 0.700 0.672 0.790 0.809 0.800 0.637 0.750 0.737 0.718
1 w/o. self-correcting inference strategy 0.657 0.571 0.611 0.801 0.724 0.761 0.570 0.753 0.619 0.624
2 w/o. distillation strategy 0.625 0.677 0.650 0.770 0.789 0.780 0.613 0.746 0.726 0.708
FewRel 3 w/o. relation predictor 0.639 0.568 0.601 0.790 0.722 0.754 0.559 0.739 0.595 0.587
4 w/o. relation discoverer 0.288 0.111 0.160 0.404 0.348 0.374 0.102 0.638 0.161 0.235
5 w/o. relation denoising stage 0.582 0.627 0.604 0.745 0.762 0.754 0.570 0.710 0.691 0.674
6 w/o. relation prediction stage 0.615 0.675 0.644 0.765 0.783 0.774 0.619 0.726 0.722 0.696
Ours 0.739 0.700 0.719 0.769 0.731 0.749 0.798 0.665 0.742 0.633
1 w/o. self-correcting inference strategy 0.741 0.681 0.710 0.770 0.676 0.720 0.699 0.563 0.666 0.541
2 w/o. distillation strategy 0.725 0.680 0.702 0.752 0.707 0.729 0.773 0.650 0.735 0.625
TACRED 3 w/o. relation predictor 0.747 0.539 0.626 0.774 0.589 0.669 0.526 0.659 0.607 0.513
4 w/o. relation discoverer 0.384 0.119 0.181 0.361 0.246 0.293 0.071 0.619 0.247 0.288
5 w/o. relation denoising stage 0.710 0.658 0.683 0.747 0.703 0.724 0.726 0.645 0.717 0.605
6 w/o. relation prediction stage 0.697 0.710 0.703 0.723 0.718 0.720 0.780 0.589 0.634 0.538
Ours 0.651 0.655 0.653 0.778 0.767 0.773 0.594 0.713 0.736 0.698
1 w/o. self-correcting inference strategy 0.725 0.560 0.632 0.826 0.704 0.760 0.615 0.750 0.629 0.629
2 w/o. distillation strategy 0.624 0.623 0.623 0.753 0.738 0.745 0.576 0.699 0.733 0.692
FewRel-LT 3 w/o. relation predictor 0.700 0.553 0.618 0.809 0.697 0.749 0.572 0.704 0.606 0.579
4 w/o. relation discoverer 0.341 0.120 0.177 0.444 0351 0.392 0.108 0.573 0.169 0.241
5 w/o. relation denoising stage 0.586 0.579 0.582 0.733 0.715 0.724 0.540 0.648 0.676 0.634
6 w/o. relation prediction stage 0.591 0.643 0.616 0.736 0.742 0.739 0.581 0.692 0.726 0.676

Table 3: Ablation results on three RE datasets.

test instances.

(5) w/o. relation prediction stage. To assess
the necessity of the relation prediction stage, this
variant lets RD generate multiple candidate rela-
tions per test instance, with RP predicting the final
relation from the candidate set. As shown in line
6 of each dataset, this approach consistently re-
duces final prediction performance, especially on
TACRED. These results confirm that the relation
prediction stage is essential for accurate new rela-
tion prediction.

In Appendix B, we further analyze the perfor-
mance of relation discovery and the effect of the
distillation loss weight c.

6 Related Work

Conventional RE methods (Song et al., 2019; Wu
et al., 2022; Zhang et al., 2022, 2023b; Yue et al.,
2024; Zhang et al., 2023a,c, 2025, 2024) cannot
handle the continual emergence of new relations
in real-world scenarios, which motivates the devel-
opment of OpenRE. Previous approaches can be
divided into two categories: Tagging-based (Yates
et al., 2007; Etzioni et al., 2008) and Clustering-
based (Yao et al., 2011; Marcheggiani and Titov,
2016; Elsahar et al., 2017; Wang et al., 2023).
Tagging-based methods extract relations by an-
alyzing the syntactic structure of sentences, but
they often overlook semantic information, making
clustering-based approaches more appealing. The
clustering-based approaches aim to aggregate se-

mantically related relation instances into the same
cluster, with each cluster representing a potential
new relation. Wu et al. (2019) leverages labeled
data from predefined relations to train a model that
can measure semantic similarity between relation
instances. The learned similarity metric was then
applied to cluster new relation instances. With the
rise of pretrained language models (e.g., BERT (De-
vlin et al., 2019)), many studies (Hu et al., 2020;
Zhao et al., 2021) have leveraged these models
to encode an instance for obtaining its relational
representation, as they are capable of capturing
deep semantic information from text. Clustering is
then performed on these representations to group
semantically similar relation instances. However,
the clustering-based approaches above cannot align
clusters with specific relation types, restricting their
applicability in downstream tasks. A recent study
by Zhao et al. (2023) alleviates this issue by in-
corporating active learning into OpenRE, which
actively selects representative instances for human
annotation during the clustering process to align
clusters with a specific relation type, but the need
for human intervention severely restricts its prac-
ticality in real-world scenarios. Although a recent
study by Wang et al. (2024) utilizes an API-based
LLM as a phrase extractor to generate relational
phrases for new relation instances, the use of a
closed-source LLM incurs substantial API costs
and cannot fully explore the RE ability of LLMs
through training, making it difficult to distinguish
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fine-grained semantic relations. In this paper, we
propose a novel OpenRE framework based on an
open-source LLM to automatically discover new
relations in real-world scenarios.

7 Conclusion

In this paper, we propose an LLM-based OpenRE
framework, which aims to leverage the strong lan-
guage understanding and generation abilities of
LLMs to directly predict new relations for test in-
stances without human intervention. The frame-
work comprises two main components: (1) a Re-
lation Discoverer (RD) that predicts new relations
for test instances based on demonstrations built
from training instances with known relations; and
(2) a Relation Predictor (RP) that identifies the
most likely relation for a test instance from n candi-
dates, guided by demonstrations formed by their in-
stances. To improve our framework’s ability to pre-
dict new relations, we introduce a self-correcting
inference strategy comprising three stages: relation
discovery, relation denoising, and relation predic-
tion. Specifically, we first use RD to preliminarily
predict new relations for all test instances. Then,
we apply RP to select high-reliability test instances
for each new relation from the prediction results of
RD. Finally, we employ RP to re-predict the rela-
tions of all test instances based on demonstrations
constructed from these reliable test instances. Ex-
perimental results and in-depth analysis on three
public datasets demonstrate the effectiveness of our
framework.

Limitations

Despite its effectiveness, LLM-OREF has several
limitations. First, our framework uses a fixed
number of demonstrations during inference. Fu-
ture studies should consider treating the number
of demonstrations as a dynamic variable to better
adapt to more complex scenarios in real-world ap-
plications. Second, we assume that the training
data for known relations is noise-free. However,
potential label noise in known relations could nega-
tively impact new relation discovery, which future
work should aim to address.

Acknowledgements

The project was supported by the National Natu-
ral Science Foundation of China (No. 62276219),
Natural Science Foundation of Fujian Province
of China (No0.2024J011001), and the Public

Technology Service Platform Project of Xiamen
(N0.3502720231043). We also thank the reviewers
for their insightful comments.

References

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In The first international
conference on language resources and evaluation
workshop on linguistics coreference, volume 1, pages
563-566. Citeseer.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Hady Elsahar, Elena Demidova, Simon Gottschalk,
Christophe Gravier, and Frederique Laforest. 2017.
Unsupervised open relation extraction. In The Se-
mantic Web: ESWC 2017 Satellite Events: ESWC
2017 Satellite Events, Portoroz, Slovenia, May 28—
June 1, 2017, Revised Selected Papers 14, pages 12—
16. Springer.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68-74.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4803—-4809.

William Hogan, Jiacheng Li, and Jingbo Shang. 2023.
Open-world semi-supervised generalized relation dis-
covery aligned in a real-world setting. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 14227-14242.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang,
and Philip S Yu. 2020. Selfore: Self-supervised re-
lational feature learning for open relation extraction.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3673-3682.

9048



Lawrence Hubert and Phipps Arabie. 1985. Comparing
partitions. Journal of classification, 2:193-218.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human
language technologies, pages 1148—1158.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Yufei Li, Yuan Wang, and Xiaotao Huang. 2006. A
relation-based search engine in semantic web. IEEE

transactions on knowledge and data engineering,
19(2):273-282.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-
state variational autoencoders for joint discovery and
factorization of relations. Transactions of the Associ-
ation for Computational Linguistics, 4:231-244.

Juri Opitz and Sebastian Burst. 2019. Macro f1 and
macro fl. arXiv preprint arXiv:1911.03347.

Pawan Rajpoot and Ankur Parikh. 2023. Gpt-finre:
In-context learning for financial relation extraction
using large language models. In Proceedings of the
Sixth Workshop on Financial Technology and Natural
Language Processing, pages 42—45.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. Empirical Methods in Natu-
ral Language Processing, Empirical Methods in Nat-
ural Language Processing.

Linfeng Song, Yue Zhang, Daniel Gildea, Mo Yu,
Zhiguo Wang, and Jinsong Su. 2019. Leveraging de-
pendency forest for neural medical relation extraction.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1IJCNLP), pages 208-218.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Somin Wadhwa, Silvio Amir, and Byron C Wallace.
2023. Revisiting relation extraction in the era of large
language models. In Proceedings of the conference.
Association for Computational Linguistics. Meeting,
volume 2023, page 15566.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023.
Gpt-re: In-context learning for relation extraction
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 3534-3547.

Jiaxin Wang, Lingling Zhang, Wee Sun Lee, Yujie
Zhong, Liwei Kang, and Jun Liu. 2024. When
phrases meet probabilities: enabling open relation
extraction with cooperating large language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 13130-13147.

Jiaxin Wang, Lingling Zhang, Jun Liu, Xi Liang, Yu-
jie Zhong, and Yaqgiang Wu. 2022. Matchprompt:
Prompt-based open relation extraction with semantic
consistency guided clustering. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 7875-7888.

Qing Wang, Yuepei Li, Qiao Qiao, Kang Zhou, and
Qi Li. 2025. Towards a more generalized approach
in open relation extraction. Proc. of 63rd Annual
Meeting of the Association for Computational Lin-
guistics.

Qing Wang, Kang Zhou, Qiao Qiao, Yuepei Li, and
Qi Li. 2023. Improving unsupervised relation extrac-
tion by augmenting diverse sentence pairs. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 12136—
12147.

Changxing Wu, Liuwen Cao, Yubin Ge, Yang Liu, Min
Zhang, and Jinsong Su. 2022. A label dependence-
aware sequence generation model for multi-level im-
plicit discourse relation recognition. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11486—11494.

Ruidong Wu, Yuan Yao, Xu Han, Ruobing Xie, Zhiyuan
Liu, Fen Lin, Leyu Lin, and Maosong Sun. 2019.
Open relation extraction: Relational knowledge trans-
fer from supervised data to unsupervised data. In
Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th
international joint conference on natural language
processing (EMNLP-IJCNLP), pages 219-228.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Limin Yao, Aria Haghighi, Sebastian Riedel, and An-
drew McCallum. 2011. Structured relation discovery
using generative models. In proceedings of the 2011
conference on empirical methods in natural language
processing, pages 1456—1466.

Alexander Yates, Michele Banko, Matthew Broadhead,
Michael J Cafarella, Oren Etzioni, and Stephen Soder-
land. 2007. Textrunner: open information extraction

9049



on the web. In Proceedings of Human Language
Technologies: The Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL-HLT), pages 25-26.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos
Santos, Bing Xiang, and Bowen Zhou. 2017. Im-
proved neural relation detection for knowledge base
question answering. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 571-581.

Hao Yue, Shaopeng Lai, Chengyi Yang, Liang Zhang,
Junfeng Yao, and Jinsong Su. 2024. Towards bet-
ter graph-based cross-document relation extraction
via non-bridge entity enhancement and prediction
debiasing. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 680-691.

Liang Zhang, Zijun Min, Jinsong Su, Pei Yu, Ante
Wang, and Yidong Chen. 2023a. Exploring effec-
tive inter-encoder semantic interaction for document-
level relation extraction. In IJCAI, pages 5278-5286.

Liang Zhang, Jinsong Su, Yidong Chen, Zhongjian
Miao, Min Zijun, Qingguo Hu, and Xiaodong Shi.
2022. Towards better document-level relation extrac-
tion via iterative inference. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 8306-8317.

Liang Zhang, Jinsong Su, Zijun Min, Zhongjian Miao,
Qingguo Hu, Biao Fu, Xiaodong Shi, and Yidong
Chen. 2023b. Exploring self-distillation based rela-
tional reasoning training for document-level relation
extraction. In Proceedings of the AAAI conference
on artificial intelligence, volume 37, pages 13967—
13975.

Liang Zhang, Zhen Yang, Biao Fu, Ziyao Lu, Liangy-
ing Shao, Shiyu Liu, Fandong Meng, Jie Zhou, Xi-
aoli Wang, and Jinsong Su. 2024. Multi-level cross-
modal alignment for speech relation extraction. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
11975-11986.

Liang Zhang, Yang Zhang, Ziyao Lu, Fandong Meng,
Jie Zhou, and Jinsong Su. 2025. A self-denoising
model for robust few-shot relation extraction. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 26782-26797.

Liang Zhang, Chulun Zhou, Fandong Meng, Jinsong Su,
Yidong Chen, and Jie Zhou. 2023c. Hypernetwork-
based decoupling to improve model generalization
for few-shot relation extraction. In Proceedings of
the 2023 conference on empirical methods in natural
language processing, pages 6213-6223.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D Manning. 2017. Position-aware
attention and supervised data improve slot filling.
In Conference on empirical methods in natural lan-
guage processing.

Jun Zhao, Tao Gui, Qi Zhang, and Yaqgian Zhou. 2021.
A relation-oriented clustering method for open re-
lation extraction. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9707-9718.

Jun Zhao, Yongxin Zhang, Qi Zhang, Tao Gui, Zhongyu
Wei, Minlong Peng, and Mingming Sun. 2023. Ac-
tively supervised clustering for open relation extrac-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 4985-4997.

A Details of Experiment Setup

A.1 Datasets

FewRel. It consists of 80 relation types, with 700
instances per relation. The first 40 relations are
categorized into the known relation set, while the
remaining 40 are categorized into the new relation
set.

TACRED. It covers 41 relation types, in which
the first 20 relations are categorized into the known
relation set, while the remaining 21 are categorized
into the new relation set.

FewRel-LT. Since FewRel is a class-balanced
dataset that fails to reflect the long-tail distribu-
tion of relations in real-world scenarios, we fol-
low Zhao et al. (2023) to construct the FewRel-
LongTail (FewRel-LT) dataset. It shares the same
split of known and new relations as FewRel, with
each known relation keeping 700 instances. How-
ever, the number of instances for each new relation
is adjusted to n = =29~ where id is from 0 to

' 0.5%id+1> "
39, representing each new relation.

A.2 Baselines

We compare our LLM-OREF with these OpenRE
baselines: 1) RW-HAC (Elsahar et al., 2017) pro-
poses an unsupervised method for OpenRE by re-
weighting word embeddings based on dependency
paths and clustering the resulting relation represen-
tations. 2) SelfORE (Hu et al., 2020) proposes
a self-supervised framework that iteratively clus-
ters contextualized entity pair representations using
adaptive soft clustering, and refines them through a
relation classification module trained with pseudo
labels. 3) RSN (Wu et al., 2019) learns similar-
ity metrics of relations from labeled data of pre-
defined relations, and then transfers the relational
knowledge to identify new relations in unlabeled
data. 4) RoOCORE (Zhao et al., 2021) leverages
the labeled data of predefined relations to learn a

9050



relation-oriented representation, while jointly op-
timizing objectives on both labeled and unlabeled
data to improve new relation discovery. 5) AS-
CORE (Zhao et al., 2023) proposes an actively
supervised clustering method for OpenRE, where
clustering learning and human labeling are alter-
nately performed, and an active labeling strategy is
designed to select representative instances for label-
ing while dynamically discovering new relational
clusters.

A.3 Prompt Template

Specifically, the prompt format used for both the
Relation Discoverer and Relation Predictor is as
follows:

Prompt Template

You are an expert in relationship extraction.
Consider the following relationships to ex-
tract the relationship between the head en-
tity and the tail entity from the text.

The relationship must be in these possible
relationships: [Relation Names].
Demonstrations:

text: [Text of Demo]

head_entity: [Head entity of Demo]
tail_entity: [Tail entity of Demo]
relationship: [Relationship of Demo]

text: [Text of test instance]

head_entity: [Head entity of test instance]
tail_entity: [Tail entity of test instance]
relationship:

B Analysis

B.1 The Performance of Relation Discovery

Dataset Method Precision Recall Macro-F; Accuracy Pass@K

LLM-OREF 0750 0737 0718 0.737 -
FewRel RD(K=1) 0753 0619 0624 0619 0619
RD(K=3) 0501 0401  0.400 0396 0.788
RD(K=5) 0474 0386 0388 0392 0843
LLM-OREF 0665 0742  0.633 0.757 -
RD(K=1) 0563 0666  0.541 0.625 0.625
TACRED ¢ hk=3) 0425 0395 0349 0431 0.791
RD(K=5) 0332 0300 0258 0271 0.842
LLM-OREF 0713 0736  0.698 0712 -
RD(K=1) 0750 0629  0.629 0.607 0.607
FewRel-LT ¢ k=3 0441 0403 0380 0.392 0.768
RD(K=5) 0448 0406 0384 0423 0.833

Table 4: Performance of Relation Discovery under dif-
ferent numbers of predictions K.

In the relation discovery stage, we make multiple
predictions for each test instance to obtain multi-

ple prediction relations for improving the recall of
the Relation Discoverer (RD) in discovering new
relations. As shown in Table 4, the Pass @K metric
significantly improves with increasing number of
predictions K, indicating that the relations of test
instances are increasingly recalled correctly by the
RD. Such improved recall is critical for enabling
more effective relation denoising in the subsequent
stage. Therefore, we set the number of predic-
tions K = 3 across all datasets. Furthermore, our
framework consistently outperforms the RD on all
evaluation metrics, further demonstrating the effec-
tiveness of our approach.

B.2 The Effect of Distillation Loss Weight «

0.66 - FewRel
- TACRED
0.647 -~ FewRel-LT

0.6 r/'—/_._—*_._.\.—d._.\'

Macro-F1 Score

0.54 1 ‘\’/‘_*/‘\/‘\’_/

Oil 0;2 013 014 015 0;6 0;7 018 019 110
The value of hyperparameter a

Figure 5: Performance with different weight o of Lxp
for Relation Discoverer.

To investigate the impact of the distillation loss
weight a on the ability of the RD to discover new
relations, experiments are conducted to compare
the performance of the RD by varying the value
of a. Figure 5 shows that the RD achieves the
best performance on the FewRel and FewRel-LT
when o = 0.5, and on the TACRED when o« = 1.
Meanwhile, we observe that the distillation strategy
exhibits low sensitivity to the value of «. Therefore,
we set o = 0.5 for the FewRel and FewRel-LT, and
a = 1 for the TACRED.

C Discussion

C.1 OpenRE Setting

Recent studies (Hogan et al., 2023; Wang et al.,
2025) suggest that the unlabeled dataset is typi-
cally a mixture of known and new relations. For
a fair comparison, we adopt the test setting used
by most existing works, where the test set contains
only instances of new relations. This commonly
used setting is generally more challenging than

9051



Dataset Method F, B3-F; V-measureF; ARI

KNoRD (Hogan et al., 2023)  0.774  0.732 0.730 0.695
FewRel MixORE (Wang et al., 2025) 0.833  0.897 0.880 0.882
Ours 0.941  0.898 0.902 0.883
KNoRD (Hogan et al., 2023)  0.852  0.768 0.788 0.719
TACRED MixORE (Wang et al., 2025) 0.883  0.868 0.860 0.847
Ours 0.907  0.868 0.867 0.871
KNoRD (Hogan et al., 2023)  0.867  0.639 0.731 0.509
FewRel-LT ~ MixORE (Wang et al., 2025) 0.916  0.875 0.861 0.893
Ours 0.959  0.890 0.896 0.898

Table 5: Performance of Relation Discovery under dif-
ferent numbers of predictions K.

the mixed setting, as RE models typically perform
better on relations they have encountered during
training. Consequently, the performance of RE
models under this widely used setting can be re-
garded as a lower bound of their performance in
the mixed setting. Here, we further compare our
method with the relevant baselines under the mixed
setting. From Table 5, we observed that our method
still outperforms all baselines under this setting, fur-
ther validating the effectiveness and robustness of
our approach.
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