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Abstract

We present Prolog-MATH, a curated corpus
designed to support mathematical reasoning in
large language models (LLMs) through logic
programming. Each verbal math problem in
the dataset is paired with a chain-of-thought
explanation to generate Prolog program via a
two-stage automated pipeline. In the first stage,
an LLM (e.g., Deepseek-V3) predicts a set of
relevant mathematical predicates that could be
useful in solving the problem. In the second
stage, the LLM uses these suggested predicates
along with the expected answer type to gen-
erate a complete Prolog program. To improve
coverage, we fine-tune an open-source LLM us-
ing supervised fine-tuning, followed by GRPO
(Group Relative Policy Optimization) training
to address problems that Deepseek-V3 fails to
solve. To support this training, we propose a
predicate-aware reward function that evaluates
how well the generated solution incorporates
the suggested predicates, complementing the
standard binary reward. Experimental results
show that: 1) Our two-stage pipeline achieves
81.3% solution coverage on the MATH training
set; 2) GRPO training with the predicate-aware
reward function enables a series of base models
to correctly solve additional problems missed
by Deepseek-V3, further increasing solution
coverage to 97.4%. Data and source code can
be obtained at the Github repository1.

1 Introduction

Recently, Large Language Models (LLMs) have
achieved strong performance on math word prob-
lems by generating structured reasoning traces.
Popular paradigms include Chain-of-Thought
(CoT) (Wei et al., 2022; Shao et al., 2024),
Tree-of-Thought (Yao et al., 2023), Program-
of-Thought (Chen et al., 2023), and Graph-of-
Thought (Besta et al., 2023). Among these, CoT
remains dominant due to its simplicity and inter-

1https://github.com/Tinyyhope/Prolog-MATH
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Figure 1: A two-stage predicate-guided pipeline fol-
lowed by GRPO training for Prolog-MATH corpus cu-
ration.

pretability: each step is verbalized in natural lan-
guage. However, such traces lack formal semantics,
are not executable, and provide no reliable mecha-
nism for verifying intermediate steps.

One alternative is to generate executable
programs using languages like Python and
SymPy (Gou et al., 2023) to enable symbolic com-
putation. While these systems support partial sym-
bolic evaluation, Python’s imperative and control-
flow-centric nature makes it ill-suited for the declar-
ative, compositional reasoning required in sym-
bolic domains. This motivates the need for a rep-
resentation language that natively supports logical
inference, execution, and formal verification.

To address these limitations, we adopt Prolog
as a structured representation language for math-
ematical reasoning, building on recent advances
in symbolic problem solving (Yang et al., 2024;
Chen and Tam, 2024). In this framework, solv-
ing a math problem involves constructing a Prolog
program that satisfies a set of logical constraints
derived from the problem statement and yields the
correct final answer. Each constraint is encoded
as a predicate, capturing atomic reasoning steps
that can be composed into complete programs and
reused across structurally similar problems. Be-
yond symbolic interpretability, Prolog also enables
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effective integration with reinforcement learning
objectives. We introduce a predicate-aware reward
function that assigns feedback based on both the
final correctness of a program and the structural
quality of its predicates—capturing aspects such as
redundancy, canonicality, and symbolic alignment.
Unlike step-wise or token-level rewards (Light-
man et al., 2024; Wang et al., 2024), our func-
tion operates at the program level, providing in-
terpretable credit assignment without reliance on
human preference labels. This design aligns natu-
rally with frameworks like GRPO with rule-based
rewards (Shao et al., 2024).

To scale symbolic solution construction, we de-
sign a two-stage pipeline that annotates math prob-
lems with executable Prolog programs. Stage one
predicts problem-specific predicates based on math-
ematical structure; stage two composes full pro-
grams using these predicates and reusable back-
ground knowledge. For failures or invalid logic,
we apply GRPO with a predicate-aware reward to
refine or recover solutions. This yields the Prolog-
MATH dataset—a collection of verifiable Prolog
programs spanning diverse mathematical domains.

Our contributions are: 1) We curate an open-
source dataset, Prolog-MATH, which provides
symbolic solutions to math problems through a
two-stage automated pipeline: predicate suggestion
and program assembly using reusable predicates.
2) We extend symbolic supervision to diverse an-
swer types, including complex numbers, equations,
intervals, and matrices whereas prior datasets are
limited to flat numeric outputs. 3) We integrate
GRPO with a predicate-aware reward function that
reflects both semantic validity and predicate struc-
ture, enabling fine-grained feedback and recovery
from failed generations.

2 Prolog-MATH Corpus

Problem Setting. We use the chain-of-thought
(CoT) question–answer pairs from the MATH
dataset (Hendrycks et al., 2021) as our backbone,
which are released under the MIT License. Let X
be the set of math word problems and T the space
of natural language reasoning traces (CoTs). Each
input is a pair (x, t) with x ∈ X and t ∈ T . We
aim to learn a function f : X × T → C that maps
(x, t) to an executable Prolog program f(x, t) ∈ C,
which yields a symbolic answer ŷ ∈ A upon exe-
cution.

Unlike prior work (Yang et al., 2024; Chen and

Tam, 2024) that limits A to scalar outputs, we con-
sider a broader space of structured forms such as
vectors, intervals, equations, and matrices. This
generalization introduces challenges in program
synthesis and verification, requiring semantic align-
ment between informal CoTs and symbolic pro-
grams, as well as structural correctness in ŷ.

Predicate Generation. For each math problem
(x, t) ∈ X × T , we construct a symbolic Prolog
program f(x, t) in two stages. In Stage 1, a lan-
guage model ϕpred (e.g. Deepseek-V3) proposes
a set of predicate definitions Pgen(x) based on
(x, t) and a seed set Pcan of predefined operators:
Pgen(x)← ϕpred(x, t,Pcan).

Each validated predicate is stored in a shared
buffer with its definition and usage example. Pred-
icate names are injected into subsequent prompts
to encourage reuse. If a predicate is invoked across
multiple problems, it is promoted to the canonical
set Pcan. To reduce prompt length, only predicate
names and listed definitions are materialized on
demand.

Program Generation. In Stage 2, we synthesize
a complete Prolog program f(x, t) for each prob-
lem x ∈ X using a separate language model ϕcode.
The model is conditioned on the problem state-
ment x, its Chain-of-Thought trace t, the aggre-
gated predicate set P(x) from Stage 1 (including
both canonical and problem-specific predicates),
and a list of candidate symbolic answer types LA
drawn from the full type space A. This list serves
as a structural prior to guide symbolic program
synthesis. The resulting program is generated as:
f(x, t) ← ϕcode(x, t,P(x),LA). The program is
executed using SWI-Prolog to obtain a symbolic
prediction ŷ, which is compared against the gold
solution y using a symbolic equivalence checker
adapted from MATH-VERIFY2.

To improve symbolic coverage and correctness,
we implement an iterative retry mechanism. At
each iteration t, we allow up to K = 3 decod-
ing attempts for each failed instance in D(t)

fail, vary-
ing decoding parameters such as temperature (See
Appendix F for all answer types).We denote by
F(ϕcode,D) the set of newly verified programs ob-
tained by reapplying ϕcode to a failed problem set
D, followed by execution and symbolic verifica-
tion. These verified programs are then merged into
the corpus: D(t+1) = D(t) ∪F(ϕcode,D(t)

fail). Refer

2https://github.com/huggingface/Math-Verify
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to Algorithm A and Figure 1 for details.

Output. Our two-stage pipeline produces veri-
fied Prolog programs for 6,100 out of 7,500 MATH
training problems, achieving 81.3% problem-level
coverage while spanning 100% of symbolic an-
swer types in A. In Section 3, we further enhance
the coverage using GRPO on problems failed by
Deepseek-V3.

3 Corpus Coverage Improvement

A subset of structurally complex problems such as
those involving nested predicates or matrix-valued
outputs remain unsolved. To address this, we in-
troduce a reinforcement learning (RL) framework
based on GRPO (Shao et al., 2024), repurposed for
symbolic corpus augmentation. We use GRPO
to search for correct programs over previously
failed problems. We propose a predicate-aware
reward function that evaluates each candidate pro-
gram along three axes: (1) symbolic equivalence
to the gold answer, (2) unused singleton predi-
cates structural validity via static analysis from
interpreter, and (3) alignment with suggested pred-
icates Pgen(x) from Stage 1. A perfect program
that produces the correct answer and uses all pred-
icates properly receives a score of 2.0. Programs
with minor structural issues, —such as unused sin-
gleton predicates, —are assigned 1.9. If the out-
put is incorrect but the program correctly invokes
predicates from Pgen(x), a partial reward of 0.5
is granted to encourage compositional reuse. All
other cases receive a reward of 0.0. This program-
level reward provides holistic, interpretable credit
assignment without relying on token-level supervi-
sion or human preferences. The full formalization
is provided in Appendix E.

4 Experiments

4.1 Setup

Dataset All experiments were conducted on the
Prolog-MATH dataset introduced in Section 2, con-
taining initial 6100 math word problems with sym-
bolic programs and structured answers. We con-
structed experimental splits of failed problems to
compare effectiveness of reward functions.

Training We conducted two sets of experi-
ments: For the GRPO experiment, we started
from a LoRA-finetuned Qwen2.5-3B-Instruct
model (rank=32), and train a symbolic policy
over failed problems using either a binary reward

Configuration Verified Accuracy
Two-stage (full) with P(x) and LA 68.2%
Two-stage w/o LA 26.3%
One-stage w/o P(x) 41.6%

Table 1: Ablation accuracy of proposed two-stage
pipeline on MATH-500 testset. P(x) denotes the use
of modular predicates, and LA denotes the answer type
prompt list.

(2.0 if correct, 0.0 otherwise) or our proposed
predicate-aware reward (see Appendix E). We used
LoRA (Hu et al., 2021) with 4-bit quantization and
rank of 32. We use Unsloth to reduce VRAM us-
age (Daniel Han and team, 2023). All prompts and
training details are provided in Appendix B.

Evaluation All symbolic outputs were exe-
cuted using SWI-Prolog and compared to the gold
answer using a symbolic verifier adapted from
MATH-VERIFY. This verifier checks for symbolic
equivalence via expression normalization, LaTeX
parsing, and numerical tolerance. In the GRPO
experiment, we evaluated coverage: the propor-
tion of previously failed problems for which the
model successfully generated a verified Prolog pro-
gram. A prediction is counted as correct if the final
executed output matches the gold answer under
symbolic equivalence. Coverage is reported for
both the binary reward and predicate-aware reward
settings.

4.2 Results
Two-stage pipeline is effective. To assess the
roles of predicate abstraction and symbolic answer
type prompting, we compare three pipeline con-
figurations. Table 1 shows results on MATH-500
with symbolic verification. The two-stage sys-
tem achieves the highest verified accuracy, while
removing answer type prompts often makes the
LLM default to numerical types, causing substan-
tial degradation. We also tested GPT-4o: its cover-
age (76.3%) is slightly below DeepSeek-V3, but it
produced 460 novel solutions, highlighting strong
generalizability. These findings confirm the broad
effectiveness of the two-stage pipeline and suggest
model choice can be adapted to task requirements.

Reward Function Coverage
binary +7.8%
predicate-aware +9.7%

Table 2: Coverage improvement on failed problems
from Deepseek-V3 via GRPO training on Qwen2.5-3B-
Instruct at 2k training steps.
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Model Coverage
DeepSeek-V3 81.3%
Qwen2.5-3B-Instruct +9.7%
Llama-3.1-8B-Instruct +14.9%
Qwen2.5-Math-7B-Instruct +15.2%
DeepSeek-R1-Distill-Qwen-7B +15.7%
Union +16.1%

Table 3: Coverage improvement after GRPO training
with predicate-aware reward across different models.

GRPO improves coverage on failed problems.
Table 2 shows the coverage of Deepseek-V3 failed
problems during GRPO on First, it is encouraging
to see that a small 3B model is able to produce
correct solutions on Deepseek-V3 failed problems.
Second, our proposed predicate-aware reward func-
tion yielded relative coverage improvement by 24%
compared to a binary reward function. Moreover,
the series of experiments showcase that our ap-
proach generalizes well, as it performs effectively
on both large models and smaller, specialized mod-
els.

To evaluate scalability, we further applied our
predicate-aware GRPO pipeline to a range of mod-
els, including Qwen2.5-3B-Instruct, Qwen2.5-
Math-7B-Instruct, Llama-3.1-8B-Instruct, and
DeepSeek-R1-Distill-Qwen-7B. As shown in Ta-
ble 3, all models benefit from consistent cov-
erage improvements, with larger models such
as Qwen2.5-Math-7B-Instruct and DeepSeek-
R1-Distill-Qwen-7B achieving the largest gains
(+15.2% and +15.7%, respectively). Notably, even
smaller or distilled models, such as Qwen2.5-3B-
Instruct, achieve substantial improvement (+9.7%),
demonstrating that the method scales effectively
across different backbone sizes while remaining
computationally efficient.

The reward curves in Figure 3 corroborate these
results: larger and specialized models converged
to higher reward levels, while all tested variants
showed clear upward trends. This demonstrates
that our predicate-aware reward consistently drives
progress across model sizes. Moreover, combin-
ing multiple models yields the Union ensemble,
which achieves the highest coverage improvement
(+16.1%), highlighting complementary strengths.
Overall, these findings confirm that our approach
generalizes well across model families, allowing
practitioners to balance coverage gains with com-
putational cost. Notably, all experiments were run
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on 24GB RTX 4090 GPUs with minimal memory
consumption, highlighting the scalability and ac-
cessibility of our method under limited hardware
resources.

GRPO encourages efficient reasoning. While
improving coverage and correctness is essential,
we also aim to encourage more concise solutions.
As shown in Figure 2, models trained with our
predicate-aware reward exhibit a clear downward
trend in completion length, whereas the binary
baseline remains relatively stable throughout train-
ing. For example, Qwen-3B with predicate-aware
reward reduces its average completion length sub-
stantially after 1500 steps, converging to more con-
cise outputs than its binary counterpart. A similar
pattern is observed for DeepSeek. These results in-
dicate that the predicate-aware reward not only im-
proves coverage, but also promotes more efficient
reasoning, demonstrating that conciseness can be
achieved without sacrificing solution quality.

Prolog-MATH dataset enhances supervised
fine-tuning. To further validate the effectiveness
of our dataset, we compare models trained with
Prolog-MATH against those trained with the orig-
inal MATH dataset under the same configuration
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(rank=32, Qwen-3B). Both models were fine-tuned
with SFT and evaluated on the standard MATH-500
test set. The model trained on Prolog-MATH
achieved an accuracy of 36.8%, outperforming the
COT-trained counterpart at 33.2%. This demon-
strates that our dataset provides more effective su-
pervision, yielding consistent improvement under
identical training conditions.

Human Verification. To ensure the reliability
of our generated Prolog solutions, we conducted
manual verification of both the two-stage pipeline
and GRPO-generated solutions. For the two-stage
pipeline, 96 out of 100 random problem samples
from the MATH dataset produced mathematically
correct and reasonable answers, with core predi-
cates (e.g., solve_quadratic/4, coprime/2) ap-
plied appropriately in nearly all successful cases.
For GRPO training, manual inspection of 100 gen-
erated solutions from Qwen2.5-3B-Instruct con-
firmed that 90% followed correct mathematical
logic (Appendix G). These results indicate that er-
rors are relatively rare and do not substantially af-
fect overall dataset quality or evaluation outcomes.

5 Related Work

Structured Reasoning Chain-of-Thought (CoT)
prompting (Wei et al., 2022) marked one of the
earliest efforts to generate logical, step-by-step ver-
bal reasoning in large language models. Building
on this foundation, numerous advanced methods
have emerged to further enhance reasoning capa-
bilities (Zhou et al., 2023; Zhu et al., 2023; Huang
et al., 2022; Liang et al., 2023). Despite these ad-
vances, most of these techniques rely heavily on
natural language reasoning, which remains limited
in its ability to detect and correct flaws in verbal
logic. To address this limitation, researchers have
explored structured approaches—such as trees and
graphs—for reasoning. Graph-based representa-
tions have shown promising results, particularly in
mathematical word problem solving (Zhang et al.,
2020; Kipf and Welling, 2016). In addition, data
augmentation techniques like forward and back-
ward reasoning with variable and answer masking
have been proposed to enrich CoT solutions (Yu
et al., 2023; Jiang et al., 2024). Our work departs
from natural language reasoning to embrace struc-
tured reasoning via logic programming.

Tool-based Reasoning Integrating external tools
into large language models (LLMs) has proven ef-

fective in enhancing both their reasoning capabili-
ties and interpretability (Cobbe et al., 2021; Mishra
et al., 2023; Gou et al., 2023; Gao et al., 2023; Shao
et al., 2023; Chen et al., 2023; Trinh et al., 2024).
Among these tools, Prolog—a symbolic declarative
language—stands out for its strength in symbolic
reasoning. Its integration not only improves the
logical consistency of natural language generation
(Vakharia et al., 2024), but also bolsters arithmetic
reasoning abilities in LLMs (Yang et al., 2024; Tan
et al., 2024; Borazjanizadeh and Piantadosi, 2024).
Our work employs a two-stage pipeline to suggest
mathematical predicates and then generate prolog
solutions for solving competition-level mathemati-
cal problems.

Reward Design Reward modeling plays a piv-
otal role in reinforcement learning. In mathe-
matical reasoning, two common approaches have
emerged: process-based and output-based reward
models (Lightman et al., 2024; Wang et al., 2024).
While both have demonstrated effectiveness, they
typically rely on labeled datasets to train neural
reward models. In contrast, rule-based reward
functions offer a promising alternative, achieving
strong performance without the need for labeled
data (Shao et al., 2024). Building on this, our work
adopts a rule-based framework and introduces a
predicate-aware reward function, which enables
partial reward assignment to Prolog-generated solu-
tions aligned with suggested predicates of a given
problem.

6 Conclusion

Our work introduces Prolog-MATH, a dataset
specifically designed for tackling competition-level
mathematical problems using declarative logic pro-
gramming. With the proposed two-stage pipeline
using the generated predicates as a guidance sig-
nal and GRPO for Prolog generation, we achieve
97.4% correct solution coverage in Prolog-MATH.
GRPO training even on a small 3B LLM is proven
to discover correct solutions on failed problems
by Deepseek-V3. Our proposed predicate-aware
reward function is effective in improving solution
coverage compared to binary reward function used
commonly in mathematical reasoning. We plan to
apply the proposed pipeline on more mathematical
corpora to enhance the presence of logic program-
ming in mathematical reasoning and other reason-
ing tasks.
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Limitation

While our approach effectively curates a Prolog-
MATH corpus tailored to competitive-level math-
ematical reasoning tasks with strong coverage, it
does not yet achieve complete (100%) coverage.
We also observe that large language models oc-
casionally produce Prolog code containing syntax
errors, which negatively impacts overall genera-
tion accuracy. Future work includes extending our
approach to additional domains within the MATH
corpus. Constrained decoding techniques (Lu et al.,
2022; Geng et al., 2023) offer a promising direc-
tion to mitigate syntax errors in generated code. In
particular, the VLLM decoding framework (Kwon
et al., 2023), which supports grammar-constrained
decoding via BNF specifications, appears espe-
cially promising. Lastly, our GRPO experiments
have thus far been conducted on models of size 3B,
7B, and 8B; future work will explore the generaliz-
ability of our approach to other language models.

Ethics Statement

This research adheres to the ACL Code of Ethics.
Our work involves the automated generation and
evaluation of symbolic reasoning data using large
language models and a Prolog interpreter. All
datasets used in this study are publicly available
or derived from publicly accessible sources, and
no personally identifiable or sensitive information
is included. The generated Prolog-MATH corpus
focuses on mathematical problem-solving and does
not involve human subjects, crowdsourced annota-
tions, or social or demographic data.
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Appendix

A Algorithm

Algorithm 1: Two-Stage Corpus Construction via Predicate Bootstrapping and Retry

Input :Dataset of math problems and CoTs {(xi, ti)}Ni=1, answer type space A, LLMs
ϕpred, ϕcode, retry limit K, convergence threshold ϵ

Output :Verified Prolog corpus D
Initialize predicate buffer B ← ∅ // for all generated predicate defs
Initialize canonical set Pcan ← seed operators
Initialize corpus D(0) ← ∅
Stage 1: Predicate Extraction
foreach (x, t) ∈ X × T do
Pgen(x)← ϕpred(x, t,Pcan)
foreach p ∈ Pgen(x) do

if SWI-Prolog validates p then
Add p to buffer B with definition and usage

Stage 2: Program Generation and Retry
t← 0, T (0) ← ∅ // initial covered types
repeat
D(t)

fail ← ∅
foreach (x, tx) ∈ X × T do

Extract Pused(x) as names from buffer B
τ(x)← predicted answer type from CoT tx
for k ← 1 to K do

f(x)← ϕcode(x, tx,Pused(x), τ(x))
ŷ ← run(f(x))
if verify(ŷ, y) then
D(t+1) ← D(t) ∪ {(x, f(x), ŷ)}
Promote used predicates in f(x) to Pcan
break

if no success then
D(t)

fail ← D
(t)
fail ∪ {x}

T (t+1) ← symbolic answer types covered by D(t+1)

∆domain ← |T (t+1) \ T (t)|
t← t+ 1

until ∆domain < ϵ

return D(t)
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B Instruction Prompt

Below is the prompt we use for generation in Stage 1 Predicate Generation:

Setting Prompt Template

Predicate generation with reuse You are a symbolic reasoning assistant. Define any new Prolog predicates needed to
solve the problem below, and reuse the given background predicates when appropriate.
Problem:
<Question>
Chain-of-Thought:
<CoT reasoning>
Predefined Predicates:
« predicate_name(...) »
(repeat for multiple predefined predicates)
Output:
Define any new predicates in the same format:
predicate_name(Input1, Input2, ..., Output) :- Definition.
% Example: predicate_name(...).
Do not solve the problem. Do not include natural language. Only output the Prolog
predicate definitions.

Table 4: Prompt template for Stage 1 predicate generation with reuse. The model is encouraged to reuse provided
background predicates and define additional ones if needed.

Below is the prompt for Stage 2 Prolog program generation:

Setting Prompt Template

Full (with answer type & sug-
gested predicates)

Below is a Prolog generation prompt with all components.

You are a helpful Prolog programming assistant.
<answer_type>
Example: Provide an example problem and its complete Prolog program solution.
Target Problem: <problem>
CoT Solution: <cot_solution>
Suggested Predicates: <pred_text>
Generate a complete executable Prolog program that solves the problem.
Do not include natural language.
:- solve, halt.

Without Answer Type Below is the same template as above, but omitting the <answer_type> line.

Without Suggested Predicates Below is the same template as above, but omitting the Suggested Predicates:
<pred_text> line.
The model must generate all predicates from scratch, using only the problem and CoT.

Table 5: Prompt templates for Stage 2 program generation. The full version includes both answer type hint and
suggested predicates. Each ablation removes one component.

Below is the instruction prompt that we use for supervised fine-tuning in Section 4:

Setting Prompt Template

Prolog generation with predi-
cates

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
### Instruction:
Please generate a prolog answer based on the given predicates to solve the given math
problem.
<background operators>
### Input:
<Question>
### Output:
<Prolog Code>

Below is the prompt we used for GRPO training:
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Setting Prompt Template

GRPO training prompt Below is a system-user style prompt used for Prolog reward fine-tuning.
System:
You are a helpful Prolog programming assistant.
User:
<problem>
The final answer must be a valid Prolog term using one of the following formats:
<answer type list>
Use write(...) to output the final answer.
Do NOT include explanations or natural language.
Suggested predicates: generate necessary predicates to solve the problem.

Table 6: Prompt template used in GRPO fine-tuning. The prompt follows a system-user format, includes answer
type hints, and optionally suggested predicates.
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C Generated Predicates

Below, we provide a detailed overview of a subset of the predicates generated by our pipeline. We describe
the input-output behavior of each operator, as well as the frequence of apperance.

Operator/Predicate Frequency

coprime(A, B): Check if two numbers are coprime
Inputs: A (number), B (number)
Output: true/false 42
number_of_diagonals(N, Diagonals): Calculate number of diagonals in an
N -gon
Inputs: N (integer)
Output: Diagonals (integer) 35
solve_quadratic(A, B, C, Roots): Solve Ax2 +Bx+ C = 0
Inputs: A, B, C (number)
Output: Roots (list) 28
discriminant(A, B, C, D): Compute D = B2 − 4AC
Inputs: A, B, C (number)
Output: D (number) 27
fibonacci(N, Result): Compute the N -th Fibonacci number
Inputs: N (integer)
Output: Result (integer) 27

D Training Samples

Question Prolog Code

What is the sum of all values of y for
which the expression y+6

y2−5y+4
is unde-

fined?

quadratic_roots(A, B, C, Root1, Root2) :-
Discriminant is B*B - 4*A*C,
Root1 is (-B + sqrt(Discriminant)) / (2*A),
Root2 is (-B - sqrt(Discriminant)) / (2*A).

sum_of_roots(A, B, _, Sum) :-
Sum is -B / A.

solve :-
sum_of_roots(1, -5, 4, Sum),
format(" d", [Sum]).

:- solve, halt.

Find the distance between the points
(−5,−2) and (7, 3).

distance((X1,Y1), (X2,Y2), D) :-
DX is X2 - X1,
DY is Y2 - Y1,
D is sqrt(DX * DX + DY * DY).

solve :-
distance((-5,-2), (7,3), D),
write(D), nl.

:- solve, halt.

For what values of b is −2 not in the
range of the function f(x) = x2+bx+
2? Express your answer in interval nota-
tion.

solve :-
solve_b_range(BMin, BMax),
write(’The values of b are in the interval: (’),
write(BMin), write(’,’), write(BMax), write(’)’), nl.

:- solve, halt.

E Reward Function and GRPO Objective

E.1 Predicate-Aware Reward Function
For each failed problem x ∈ Dfail, the policy πθ samplesG candidate programs {fi(x)}Gi=1. Each program
is executed using SWI-Prolog to produce an output ŷi, or fails with an error.
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We define a program-level reward function r(fi(x)) ∈ [0, 2] that reflects both symbolic correctness and
structural quality:

r(fi(x)) =





2.0, if ŷi = y and δi = 0,

1.9, if ŷi = y and δi = 0.1,

0.5, if ŷi ̸= y and ψi = 1,

0.0, otherwise.

(1)

Here: δi ∈ {0, 0.1} is a structural penalty computed via static analysis (e.g., for unused singleton
predicates); ψi = 1 indicates that all predicates from the suggested set Pgen(x) are correctly invoked.

This reward design encourages programs that are not only semantically correct but also compositionally
structured and reusable.

E.2 GRPO Objective for Symbolic Policy Optimization

We adopt a token-level GRPO objective, adapted to symbolic settings. Let oi,t be the t-th token of program
fi(x), and let Âi,t denote the group-relative advantage at token t. The training objective is:

JGRPO(θ) = Ex∼Xfail


 1

G

G∑

i=1

1

|fi(x)|

|fi(x)|∑

t=1

min
(
ρi,tÂi,t, clip(ρi,t, 1−ϵ, 1+ϵ)Âi,t

)

−β ·DKL[πθ∥πref]

(2)

where: ρi,t =
πθ(oi,t|x,oi,<t)
πold(oi,t|x,oi,<t)

is the importance weight; DKL[πθ∥πref] denotes the KL divergence from a
reference policy; ϵ is the PPO-style clipping threshold; β is the KL regularization strength.

This formulation steers the policy toward generating structurally sound programs, while ensuring
training stability via KL regularization and group-wise credit attribution.

F Symbolic Answer Types

To enable structured verification and facilitate symbolic reasoning, we define a set of symbolic answer
types that capture the semantics of mathematical outputs in a structured form. Each symbolic answer
is expressed as a Prolog term with a clear compositional structure. These symbolic types allow us to
uniformly represent numbers, expressions, intervals, equations, and other mathematical objects in a way
that is both machine-interpretable and human-readable. The complete list of supported symbolic types is
summarized in Table 8.
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Symbolic Type Description and Example

5, -3 Plain number. Example: 5, -3
decimal(Value) Decimal number. Example: decimal(2.5)
complex(Re, Im) Complex number. Example: complex(1, -2)→ 1− 2i
frac(Numer, Denom) Fraction. Example: frac(3, 4) → 3

4

mixed(Whole, frac(N, D)) Mixed number. Example: mixed(2, frac(3,4))→ 2 3
4

eq(Variable, Value) Equation. Example: eq(x, 5) → x = 5
expr(...) Symbolic expression. Example: expr((1+sqrt(2))/2)
symbolic_constant Mathematical constant. Example: π
interval(A, B) Open interval. Example: interval(1, 5) → (1, 5)
interval_union([...]) Union of intervals. Example: interval_union([interval(0,1), interval(2,3)])
solution([...]) List of solutions. Example: solution([1, 2])
plus_minus(A, sqrt(B)) ± root. Example: plus_minus(2, sqrt(3)) → 2±

√
3

sqrt(X) Square root. Example: sqrt(5) →
√
5

base(Base, Digits) Base notation. Example: base(2, 1010) → 10102
vector([...]) Tuple/vector. Example: vector([3, 4]) → (3, 4)
matrix([[...], [...]]) Matrix. Example: matrix([[1,2],[3,4]])
trig(Function, Arg) Trig function. Example: trig(sin, pi/6)→ sin(π/6)
formatted_number("...") Preformatted LaTeX string.
unit(Value, UnitType) Number with unit. Example: unit(40, percent)→ 40%
pi_expr(expr(...)) Expression involving π. Example: pi_expr(expr(pi/12))
signed_frac(frac(N, D)) Signed fraction. Example: signed_frac(frac(-3, 4))
paren_tuple(...) Parenthesized tuple. Example: paren_tuple(3, 4)→ (3, 4)

Table 8: Supported symbolic answer types in our framework, each representing a structured mathematical output.

G Human Verification of Intermediate Steps

To assess the quality of the generated Prolog programs and to verify plausible but incorrect intermediate
steps, we conducted a manual evaluation on two samples of 100 problems each.

G.1 Verification of Two-stage Pipeline

We randomly sampled 100 problems from the MATH dataset, ensuring coverage across all domains: 20
algebra, 17 counting and probability, 14 geometry, 13 precalculus, 19 number theory, and 17 intermediate
algebra questions.

Our analysis confirmed that 96% of sampled problems produced mathematically correct and reasonable
answers. In particular, we examined the use of core predicates (e.g., solve_quadratic/4, coprime/2),
and found that 96% of successful solutions utilized these predicates appropriately.

Most errors occurred in number theory and geometry. In these cases, intermediate steps were plausible
but not fully correct, often tracing back to imperfections in the CoT reference solutions. For instance, in a
number theory problem asking:

“Let N be the greatest integer multiple of 8, no two of whose digits are the same. What is the
remainder when N is divided by 1000?”

The generated solution assumed that the last three digits must be an arrangement of {0,1,2}. Although
this assumption was flawed, it coincidentally yielded the correct final result. Such issues highlight the
limitations of imperfect CoT guidance. In future work, we plan to strengthen predicate design with formal
logical constraints (e.g., digit constraints in number theory) to avoid invalid assumptions.

G.2 Verification of GRPO-Generated Solutions

To further assess solution quality, we sampled 100 problems generated by Qwen2.5-3B-Instruct during
GRPO training. Manual verification showed that 90% of the generated programs aligned with correct
mathematical logic.

The remaining 10% of cases contained characteristic errors. For example, consider the problem:

“Compute the largest integer k such that 2004k divides 2004!.”
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The correct solution requires factorizing 2004 = 22 · 3 · 167 and applying Legendre’s formula to
each prime factor, taking k = min(⌊v2(2004!)/2⌋, v3(2004!), v167(2004!)) = 12. However, the GRPO-
generated code only computed v167(2004!), ignoring the contributions of 2 and 3. While this coincidentally
produced the correct final answer (k = 12), the reasoning was incomplete. This illustrates how some
GRPO-generated programs exhibit plausible but logically insufficient intermediate steps.

G.3 Conclusion
Overall, our verification confirms that plausible but incorrect intermediate steps are rare and do not
significantly affect dataset quality. These evaluations also provide valuable guidance for future work,
where we aim to further reduce such cases by introducing stronger logical constraints into predicate
design.
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