
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 9167–9201
November 4-9, 2025 ©2025 Association for Computational Linguistics

Can LLMs Help You at Work? A Sandbox for
Evaluating LLM Agents in Enterprise Environments

Harsh Vishwakarma* Ankush Agarwal* Ojas Patil
Chaitanya Devaguptapu Mahesh Chandran

Fujitsu Research
EnterpriseBench - Tech Blog

{harsh.vishwakarma, ankush.agarwal}@fujitsu.com

Abstract

Enterprise systems are crucial for enhancing
productivity and decision-making among em-
ployees and customers. Integrating LLM based
systems into enterprise systems enables intelli-
gent automation, personalized experiences, and
efficient information retrieval, driving opera-
tional efficiency and strategic growth. However,
developing and evaluating such systems is chal-
lenging due to the inherent complexity of enter-
prise environments, where data is fragmented
across multiple sources and governed by so-
phisticated access controls. We present Enter-
priseBench, a comprehensive benchmark that
simulates enterprise settings, featuring 500 di-
verse tasks across software engineering, HR, fi-
nance, and administrative domains. Our bench-
mark uniquely captures key enterprise charac-
teristics including data source fragmentation,
access control hierarchies, and cross-functional
workflows. Additionally, we provide a novel
data generation pipeline that creates internally
consistent enterprise tasks from organizational
metadata. Experiments with state-of-the-art
LLM agents demonstrate that even the most
capable models achieve only 41.8% task com-
pletion, highlighting significant opportunities
for improvement in enterprise-focused AI sys-
tems.

1 Background and Introduction

Large Language Models (LLMs) are fundamen-
tally transforming how enterprises operate, driving
improvements in productivity across departments
(Plumb, 2025; Meta, 2024; Carlini, 2024). These
models have demonstrated remarkable capabili-
ties in automating knowledge-intensive tasks, from
question answering and code generation to report
writing and data analysis (Brachman et al., 2024;
Jiang et al., 2024; GitHub, 2024). Recent advance-
ments have led to emergence of Compound AI Sys-

*Equal contribution as co-first authors.
Code | Data

tems (CAI) (Zaharia et al., 2024; Lin et al., 2024)
(also referred to as Agents (LangChain, 2024; An-
thropic, 2024a)) that can orchestrate complex work-
flows for solving various tasks. These systems,
exemplified by tools like Devin (Labs, 2024) and
Glean (Glean), can automatically search across in-
formation sources, analyze data, and even initiate
actions when human intervention is needed.
However, developing effective CAI systems for
enterprises faces a critical challenge: enterprise
data is inherently complex and fragmented across
multiple sources, including email systems, Cus-
tomer Relationship Management (CRM) platforms,
SharePoint sites, internal wikis, and ticketing sys-
tems. This fragmentation is further complicated by
sophisticated access control mechanisms that gov-
ern who can access specific information resources.
Even seemingly simple queries often require or-
chestrating data gathering from multiple sources,
executing database calls, and performing complex
reasoning across diverse information types. While
current research has made progress in developing
CAI systems for specific use-cases relevant to en-
terprises, the unique challenges of enterprise envi-
ronments—particularly around data fragmentation
and access control—remain largely unaddressed
with current CAI systems.
To illustrate challenges and complexities of the
CAI, consider an enterprise specific scenario: an
employee asks, "Create a GitHub repository named
EnterpriseBench and generate a notification mes-
sage to my manager informing him about the repos-
itory creation." This seemingly straightforward
request requires a complex workflow that tradi-
tional approaches like Retrieval-Augmented Gener-
ation (RAG) (Bruckhaus, 2024) and existing LLM
agents (Talebirad and Nadiri, 2023; Zhang et al.; Li
et al., 2019) struggle to handle. A robust enterprise-
specific CAI system must orchestrate multiple sub-
tasks for this: create the GitHub repository Enter-
priseBench, resolve the sender and recipient details,

9167

https://ast-fri.github.io/EnterpriseBench
https://github.com/ast-fri/EnterpriseBench.git
https://huggingface.co/datasets/AST-FRI/EnterpriseBench

Chat Interface

Create a GitHub repo
EnterpriseBench and send a

notification to my Manager
Rohit Kapoor.

Emp_id: emp_001

Understood. I will create the
GitHub repo

“EnterpriseBench” and
notify Rohit Kapoor about

your new project.

Let me plan the steps

Planning

Analyze the
query

App
Selection:

GitHub

App
Selection:
Employee
Database

App
Selection:
Enterprise

Mail System

Deconstruct
the user

intent

Call
github_create to

create repo
EnterpriseBench

Call employee_read
to fetch Rohit

Kapoor’s email

Call
enterprise_email
_create to send

email

EnterpriseBench
Repo Created

Email sent to Rohit
Kapoor

Your manager Rohit Kapoor
has been notified, and

“EnterpriseBench”
repository has been created

successfully!

Agent Output: Task

Completed!

Dynamic Execution & Tool Interaction

Tool Call: github_create
{repo name:

EnterpriseBench}

EnterpriseBench Repo Created!

Fetch Sender’s and
Recipient’s data

Tool Call: employee_data_read
{emp_id: emp_001}

 {Andrew Watson,
 Andrew.Watson@inazuma.com}

Tool Call: employee_data_read
{name: Rohit Kapoor}

 {Rohit Kapoor,
 rohit.kapoor@inazuma.com}

{to: 'rohit.kapoor@inazuma.com',
subject: 'New Project Approval’,

body: ‘Created Repo
EntepriseBench’}

Tool Call: LLM(draft email)

 Email generated

Tool Call:
enterprise_mail_system_creat
e{to: 'rohit.kapoor@inazuma.com',

subject: 'New Project Approval’,
body: ‘Created Repo
EntepriseBench’}

 Email sent

User Input

Step-1
Step-2

Step-3

Step-4

Environment

Figure 1: Task Execution in EnterpriseBench. This figure illustrates how an LLM-based agent interacts with
the enterprise environment. Given a task, the agent perceives the available enterprise tools, applications, and data
sources, formulates a reasoning plan, and executes actions to complete the task.

generate a formal notification message—all while
respecting access controls and organizational hier-
archies. These requirements highlight the need for
sophisticated CAI systems that can (1) integrate
multiple enterprise data sources and tools, (2) en-
force access controls, (3) coordinate multiple tasks,
and (4) maintain context across system interactions
(as shown in Figure 1).
To enable development of such systems, we in-
troduce EnterpriseBench, the first comprehensive
benchmark that simulates the data from enterprise
environments. By providing a benchmark that mir-
rors complexities of real-world scenarios without
using sensitive real data, EnterpriseBench enables
rapid prototyping and evaluation of CAI systems
for enterprise settings. This allows organizations
to validate and refine their CAI systems before de-
ploying them on actual enterprise data. Our dataset
spans multiple domains, including Software Engi-
neering (code repositories, documentation), Sales
and CRM (customer interactions), Finance (bud-
gets, expense reports), IT support (ticketing sys-
tems, incident reports), HR (policies, employee
records), and Internal Communication platforms
(simulated team and email conversations). Enter-
priseBench emphasizes persona-based tasks that
require adherence to access controls and organiza-

tional hierarchies. Additionally, we also introduce
an automated task creation framework that gener-
ates complex, multi-source tasks conditioned on
persona roles and enterprise constraints.

We conduct a comprehensive evaluation of five
large language models, including GPT-4o (Hurst
et al., 2024), Claude 3.5 (Anthropic, 2024b), O1-
mini (OpenAI, 2024), LLaMA (Touvron et al.,
2023)—to assess their ability to generate complete
plans for accomplishing a given task. Our eval-
uation spans four planning strategies, including
ReAct (Yao et al., 2022b) and Chain-of-Thought
(CoT) (Wei et al., 2022), implemented using
two different frameworks, LangChain (LangChain,
2024) and DSPy (Khattab et al., 2024). Our key
contributions are listed below.

• A comprehensive benchmark of 500 enterprise
tasks across IT, HR, Sales and Finance, featuring
multi-step reasoning, access controls, and cross-
functional workflows.

• Our comprehensive evaluations shows a signif-
icant performance gap in current CAI systems,
with even state-of-the-art models achieving only
41.8% task completion.

• A simulated enterprise sandbox environment is
created for benchmark development, comprising

9168

data domains such as chat systems, emails, and
code workflows, along with representative em-
ployee information aligned with these domains.

• A persona-based task framework that generates
contextually appropriate challenges, testing both
technical capabilities and organizational con-
straints.

2 Related Work
Compound AI Systems LLMs have emerged as
powerful tools, demonstrating excellence in tasks
such as processing and generating human-like text
(Team et al., 2023; Achiam et al., 2023), writing
code (Chen et al., 2021), and performing complex
reasoning (Khetan et al., 2020). Beyond these fun-
damental capabilities, LLMs show immense poten-
tial within Compound AI Systems, enabling collab-
orative problem-solving, dynamic interactions, and
advanced decision-making (Yao et al., 2022b; Xi
et al., 2023; Wei et al., 2022). As tasks grow in com-
plexity and scope, leveraging multiple LLMs in a
cooperative framework becomes a natural strategy
to enhance their effectiveness. To evaluate these
systems, specialized benchmarks are developed,
which are discussed in the next module.
Evaluation of Compound AI System Compound
AI Systems have been developed to address a wide
range of tasks, including scientific experimentation
(Ghafarollahi and Buehler, 2024; Boiko et al., 2023;
M. Bran et al., 2024), embodied intelligence (Bro-
han et al., 2023), societal simulations (Gao et al.,
2023; Li et al., 2023), and web-based environem-
nts such as Mind2Web (Deng et al.), WebArena
(Zhou et al.), and WebShop (Yao et al., 2022a).
Recently, benchmarks have begun to emerge for
more specialized settings, such as software engi-
neering (Jimenez et al.; Li et al., 2024), computing
environments (Xie et al., 2024b; Bonatti et al.),
workplace (Styles et al.), text-to-SQL workflows
(Lei et al.), and real-world task planning (Yao et al.,
2025; Liu et al.; Xie et al., 2024a). Despite these
advancements, there remains a significant gap in
the development of enterprise-simulated environ-
ments that reflect real-world, day-to-day business
operations. The closest efforts in this direction
such as Xu et al. (2024a); Huang et al. (2025) focus
on narrow domains like database management or
CRM systems. However, none of them address
the challenges of managing large volumes of data
spread across diverse domains, formats, and sys-
tems—a key requirement for evaluating Compound
AI Systems in realistic enterprise settings.

Read/Write

Chats/Mails

20

Employee

Database

Management

40

Policy

Documents

20

Read/Write

Chats/Mails

20

IT Ticket Issue

Analyzer

40

Ticket Database

Management

30

Read/Write

Chats/Mails

20

Customer

Specific

30

Product

Specific

30

Sales Database

Management

40
GitHub

Specific

40

Code Issue

Patcher

40

Client/Vendor

Management

30

Support

Representative

Specific

30

Read/Write

Chats/Mails

20

Workspace

Database

Management

30

Read/Write

Chats/Mails

20

HR System IT Solutions Sales SWE Business Development

Figure 2: Classification of Tasks by Domain (counts)

To address this gap, we propose a novel bench-
mark, EnterpriseBench, specifically designed for
enterprise scenarios. This benchmark offers a ro-
bust framework for evaluating LLM-based agents
under realistic, domain-relevant conditions, thereby
supporting the development of effective and reli-
able enterprise AI systems. A comparison with
other related benchmarks is presented in Table 5.

3 EnterpriseBench: Crafting a Simulated
Enterprise Benchmark

We have developed an enterprise sandbox environ-
ment that simulates a realistic company setting.
This environment includes synthetic company data
enriched with employee-specific details such as
chat logs, emails, and GitHub activity. The data
sources are constructed by gathering publicly avail-
able information from the internet and applying
rule-based processing techniques, guided by do-
main experts to ensure authenticity. Based on this
simulated data, a variety of enterprise tasks are
generated within the sandbox, with strict access
control policies in place to support secure and real-
istic interactions.

The subsequent sections elaborate on the key
components of our benchmark. Section 3.1 out-
lines the design of enterprise tasks. Section 3.2
details the simulation of the enterprise sandbox, fol-
lowed by the automatic task construction pipeline
described in Section 3.3. Section 3.4 presents the
API calls and functions implemented within the
sandbox to support LLM agents. Finally, Sec-
tion 3.5 reports an expert study conducted to assess
the realism and validity of the sandbox environ-
ment and tasks.

3.1 EnterpriseBenchTasks

Our benchmark includes 500 enterprise tasks span-
ning five major domains: Human Resources (HR),
Information Technology (IT), Software Engineer-
ing (SWE), Business Operations, and Sales. Each
task is carefully designed to assess the capabili-
ties of Compound AI systems in enterprise setting.

9169

Domain Task Description User Employee Task Category Tools

SWE
Create a GitHub repo

EnterpriseBench and notify my
Manager Rohit Kapoor.

emp_001
(Level-10) CRUD

github_create, enter-
prise_mail_system_create,

employee_data_read

IT Management Can you show me the ticket IDs for
urgent issues I’m involved with?

emp_1106
(Level-10) Search it_service_management_read

Business
Development

Can you help me find the thread for
my recent conversations with

Julian? I need it for follow-up.

emp_1180
(Level-12) Search conversations_read

Employee
Database

Management

Can you provide a breakdown of my
total leaves taken so far this year?

emp_0726
(Level-09) Search employee_data_read

HR
Send a mail to Rahul Khanna to

notify the employees regarding new
PoSH policy document.

emp_0653
(Level-09) CRUD

employee_data_read,
enter-

prise_mail_system_create

Table 1: Examples of EnterpriseBench tasks across domains, categorized by task type and tools.

To capture a broad range of functionalities, the
tasks are grouped into three primary categories:
search tasks, CRUD (Create, Read, Update, Delete)
tasks, and unanswerable, which account for 65%,
30%, and 5% of the benchmark, respectively. The
domain-wise distribution of tasks is shown in Fig-
ure 2, and the average task complexity is defined by
the number of tools required to solve a task, which
is 3. Representative examples of tasks included in
the benchmark are shown in Table 1.

3.2 EnterpriseBench Sandbox: Simulating
Enterprise Data and Roles

The enterprise sandbox environment is developed
with careful consideration of three key components:
Departments to Populate, Data Sources to Collect,
and Compiling the Data to create the Simulation
Environment. We integrate both collected and syn-
thetically generated data across multiple domains-
HR, IT, Sales, Finance, and Software Development
within a simulated organizational setting. Table 2
show details regarding the data sources in Enter-
priseBench.
Employee data is sourced from Ayoobi et al. (2023),
filtered to include only relevant departments. To
reflect organizational structure, employees are cat-
egorized into four roles-Associates, Team Leads,
Managers, and Directors distributed in a 4:3:2:1
ratio per department. Additional attributes such as
salary, leave records, and joining dates are intro-
duced to mimic real-world enterprise dynamics.

3.2.1 Sandbox Data Simulation
The data simulation strategy is based on two pri-
mary methodologies.
Leveraging the Collected Data We collect the
enterprise-related data from different sources (de-

Application / Data
Source

Content Description # In-
stances

Chats Conversations between
employees 3000

Enterprise Mail
System

Internal and external
email threads 4500

Code Workspace Source code, issues,
issue git patch 1000

Customer Re-
lationship Manage-
ment

Records on sales,
product, customers,

support chats, sentiment
data, invoices, and

purchase orders

30195

Enterprise Pol-
icy Documents

Policy and compliance
documents 24

IT Service Man-
agement

Support tickets and
issue logs 163

Enterprise Inter-
nal Overflow

Similar to Stack
Overflow 5000

Enterprise So-
cial Blog

Internal blog posts,
company news and

updates
1000

HR Manage-
ment System

Employee records,
resumes and

organizational structure
1260

Business and
Management

Client Details, Vendor
Details, 800

Table 2: Details of Data Sources/Applications in the
EnterpriseBench Simulated Sandbox Environment

tails in Table 10) and use it to simulate the sandbox
environment. Below, we explain how it is utilized.

• Data Source Coverage: Domain experts (de-
tails in Appendix A.3) identified essential data
sources for each department. For example, the
Sales department should include Customer Sup-
port Chats, Product Sentiment Data, Product,
Customer, Sales Data, Invoices, Purchase Orders,
and Shipping Records.

• Pre-processing: Collected data undergoes struc-

9170

tural preprocessing, including extraction of enti-
ties (e.g., products, customers) and generation of
contextual data (e.g., support conversations).

• Mapping to Employee Personas: Data entries
are linked to employee personas based on expe-
rience, skills, and roles. For instance, customer
resolutions are semantically mapped to specific
support personnel.

• Enterprise Rephrasing: Entries are rephrased
using enterprise-specific metadata to ensure con-
textual consistency and realism.

Generating Conversations and Emails
Following the methodology in Xu et al. (2024b), re-
alistic conversations and emails are generated and
grounded in curated data to reflect authentic enter-
prise communication. More details on generation
are available in Appendix A.4.

3.2.2 Access Control Simulation
To emulate enterprise-level security, we implement
a dynamic Role-Based Access Control system,
where permissions are assigned based on organi-
zational role levels (specifically, Levels 9 through
14), task requirements, data sensitivity, and cross-
departmental relationships. For example, enter-
prise social platforms are accessible to all employ-
ees, while access to internal repositories (such as
GitHub) is restricted to designated technical teams
and their management chain. Access control poli-
cies are initially generated with assistance from
a LLM and subsequently validated by human ex-
perts.

3.3 EnterpriseBench Task Generation
Pipeline

We designed an LLM-based task generation
pipeline to produce structured, high-quality tasks
that require access to relevant data sources and
tools, while also enforcing persona-specific access
controls. The pipeline comprises four key stages: a)
selecting the initial domain and persona for the task,
b) selection from expert curated goal templates, c)
generating the corresponding task based on the se-
lected context, and d) refining the task iteratively.
A stepwise explanation is provided below.

3.3.1 Domain and Persona Selection
We begin by

• Task Domain Selection: Among the available
domains such as HR, IT, we randomly select a
target domain for which task has to be generated.

• Persona Sampling: From a set of personas cu-
rated by domain experts for each domain, a rep-
resentative persona is sampled for the selected
domain to serve as a proxy for task contextual-
ization.

• Context Retrieval: From the prepared data
sources available in the sandbox environment,
relevant contextual information associated with
the sampled persona and domain is retrieved to
ground the task in a realistic enterprise scenario.

3.3.2 Expert Curated Goal Templates
Creating generalizable goal templates across de-
partments is inherently challenging due to the
diversity and specificity of enterprise tasks. To
address this, we leverage the O*NET 29.2 1 re-
lease (Rounds et al., 1999), a comprehensive taxon-
omy of occupations and task definitions developed
by the U.S. Department. We manually curated
goal templates (examples in Table 9) tailored to
departmental tasks, refining them through iterative
reviews by domain experts to ensure contextual
relevance and practical applicability.

3.3.3 Task Generation
We use the persona and domain-relevant context,
along with the selected goal template and available
tools, to initiate the task generation process using
LLM calls. We begin by

• Entity Extraction: Filters are applied on the
persona-specific context to structure the input,
reducing token count and enhancing the preci-
sion of downstream processing. This structured
representation improves task grounding by high-
lighting salient information.

• Subgoal Decomposition: The expert curated
high-level goal is decomposed into fine-grained
subgoals, including retrieval steps and action
plans, by prompting the language model to op-
erate in a closed, tool-aware environment. This
stage introduces modularity into the task plan-
ning process.

• Task Structure: Based on the subgoals and ex-
tracted entities, task structure is defined that can
be mapped with the context entities. The struc-
ture mirror the reasoning sequence or plan that
a compound AI system would follow to execute
the complete task.

• Final Task Generation: The final task is assem-
bled by synthesizing the goal, subgoals, entities,

1O*NET 29.2

9171

https://www.onetcenter.org/database.html

and task structure, resulting in a fully formed,
executable task representation.

A comprehensive description of how the ground
truth is established can be found in Appendix A.1.

3.3.4 Iterative Improvement
Inspired by the iterative refinement method
proposed in Kim et al. (2023); Yao et al. (2025),
a validation and rephrasing loop is applied. The
generated task and ground truth is iteratively
revised until it passes a checklist of validation
criteria designed by human experts, ensuring
clarity, feasibility, and alignment with task
objectives.

We provide the end-to-end task generation
procedure in Algorithm 1, included in Ap-
pendix A.1. The LLM prompts used for task
generation are detailed in Appendix A.5. Infor-
mation about the domain experts involved in
designing goal templates, filtering ambiguous
tasks, and other aspects of task generation is
provided in Appendix A.3.

3.4 Tools: API and Functions
EnterpriseBench incorporates a suite of tools and
functions designed to simulate enterprise opera-
tions across diverse domains (see Table 8 for the
tool inventory). For search-based tasks, agents
use domain-specific application interface tools that
return results based on employee ID or semantic
matching. CRUD-based tasks leverage create, read,
update, and delete operations for each data source,
enabling dynamic data manipulation. To reflect
enterprise settings, tool and function outputs are
regulated by an access control mechanism that en-
forces permission constraints.

3.5 Expert Study
To ensure the correctness, realism, and practicality
of EnterpriseBench, we conducted a user study in-
volving ten experts from diverse professional back-
grounds. The experts were selected through a Mi-
crosoft Form circulated internally; additional de-
tails on form and experts are provided in Appendix
A.3. The selection was based on their domain ex-
pertise to ensure relevant and informed feedback.
During the study, participants were first introduced
to the sandbox environment, followed by a set of
questions designed to assess their understanding of
the setup. They were then presented with search-
based and CRUD-based tasks and asked to find an-

swers or perform the required operations. This step
helped assess the correctness of the tasks. Subse-
quently, participants evaluated the realism of each
task using a scale ranging from “very unrealistic”
to “very realistic,” and provided justifications for
their ratings. Based on the scores, we applied a
filtering process to retain only those tasks that met
enterprise-specific quality standards. As a result,
80% of the tasks were considered suitable, mean-
ing they were correct, realistic, and aligned with
enterprise applications, while the remaining tasks
were discarded.

4 Experimental Setup

4.1 Enterprise LLM Agent Setup

To efficiently solve our enterprise search tasks, we
design an LLM-based agent that follows a struc-
tured multi-step approach. Given a primary goal or
task T , the agent creates a plan by decomposing it
into sub-goals or sub-tasks P = {p1, p2, . . . , pn}
using a reasoning-based method. These sub-goals
are then refined into well-defined, solvable steps
S = {s1, s2, . . . , sn}. The agent, defined as
A = f(Θ,K), where Θ and K are model parame-
ters and prior knowledge, selects the appropriate
tools or API functions T to optimize information
retrieval and processing. It then iteratively executes
each sub-task, constructing the final answer A or
executing the final task.
This setup ensures reliable execution of Enter-
priseBench tasks by leveraging LLM Agents for
multi-step reasoning, tool utilization, and execu-
tion.

4.2 Experimental Settings

This section outlines our experimental setup, detail-
ing the experimental data, baseline methods used
to evaluate our benchmark, the evaluation metrics
employed, and the implementation specifics.

4.2.1 Experimental Dataset
We conduct experiments by building CAI sys-
tems with a range of models. For evaluation with
LangChain and DSPy, we use the benchmark of
500 samples. For supervised fine-tuning (SFT),
we expand the dataset to 1k samples using our task
generation pipeline and split it into training and test
sets with a 4:1 ratio. For Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), we conduct
experiment by creating 1200 preference pairs from
SFT training examples, following the procedure
described in OS-Genesis (Sun et al., 2024). The

9172

dataset formats for SFT and DPO are illustrated in
Listings 1 and 2, respectively in Appendix.

4.2.2 Baseline Methods
To evaluate the performance on the En-
terpriseBench benchmark, we conducted
experiments using several state-of-the-art
models: GPT-4o2, o1-mini3 (via Azure AI
Foundry), Anthropic Claude 3.5-Sonnet4

(anthropic.claude-3-5-sonnet-20240620-v1:0)
from Amazon Bedrock, as well as Llama-3.1-8B,
and Llama-3.3-70B, also accessed via Amazon
Bedrock. Building on these models, CAI system
baselines using a variety of planning strategies: no
planning, Chain-of-Thought (CoT) reasoning (Wei
et al., 2022), ReAct-style reasoning (Yao et al.,
2022b), and goal-aware planning. To implement
these systems, we adapted state-of-the-art agent
frameworks, namely LangChain (LangChain,
2024) and DSPy (Khattab et al., 2024). For
DSPy, we employ an optimization-based few-shot
prompting approach, while for LangChain, we
provide two few-shot examples with each LLM
call. Each system is designed to decompose
primary goals into subgoals, select relevant data
sources and tools, verify access controls, and
execute tasks in an end-to-end manner, ensuring
alignment with enterprise-specific requirements.
4.2.3 Implementation Details
Experiments were conducted using two NVIDIA
GPUs (80 GB each) for SFT and DPO training.
Additional 8 GB GPUs were employed to load
retrievers such as Colpali for implementing the En-
terpriseBench environment, while LLM inference
was carried out through APIs.
• Data Simulation: We utilized GPT-4o2 to gen-

erate and rephrase all components of Enter-
priseBench, ensuring consistency and high-
quality data synthesis.

• Task Generation: The task generation process
was conducted using GPT-4o2, implementing an
end-to-end pipeline. Additionally, Anthropic
Claude 3.5-Sonnet4 was employed for final
quality assessment of the generated tasks. It took
approximately 1 minutes and 20 seconds to gen-
erate a single task.

• Tool Dependency and Execution: Tool depen-
dencies were defined using a structured JSON
file containing detailed descriptions of all tools

2https://platform.openai.com/docs/models#gpt-4o
3https://platform.openai.com/docs/models#o1
4https://aws.amazon.com/bedrock/claude/

within EnterpriseBench. For tool execution, API
calls were made to invoke various external tools.
Further details on tool specifications and imple-
mentations can be found in Table 8.

• Context Retrieval: We implemented id based con-
text retriever for text-based structured data, Col-
pali (Faysse et al., 2024) for PDF documents, and
query-to-SQL retrievers inspired by (Zhang et al.,
2025) for tabular content.

• SFT+DPO: We implemented SFT using LoRA
(Hu et al., 2022), targeting the modules q_proj,
k_proj, v_proj, and o_proj. All other hyper-
parameters followed the default LoraConfig in
the TRL library from Hugging Face5. DPO was
implemented using the DPOTrainer from TRL
with the same hyperparameters as SFT.
The hyperparameter configurations for LLM API
calls and retrievers are summarized in Table 12
and Table 13 in Appendix.

4.3 Evaluation Metric
To evaluate Compound AI systems on Enter-
priseBench, we assess the correctness of the final
execution of each task. For all tasks, correctness is
determined using Prometheus-26 with GPT-4 and
Gemini-2.5 Pro, as proposed by Kim et al. (2024),
which provides a rubric-based score ranging from
1 to 5. For CRUD tasks, we first call the read()
function to verify whether the task was executed
correctly, and then apply rubric-based scoring to
the read() output. In addition to automated eval-
uation, we conduct human evaluation focusing on
two aspects: (a) whether the agent successfully
completed the task, and (b) experts are required to
complete the task. A separate set of experts then as-
sess the correctness of these human-executed tasks.
Scores are averaged across three experts serving as
annotators.
For the evaluation of SFT and DPO, the trained
model generates planning or action steps, and the
LangChain framework is used to execute the tasks.
Evaluation is performed using Prometheus-2 with
Gemini-2.5 Pro, consistent with the evaluation
methodology applied to the CAI systems.

5 Results and Analysis
In this section, we evaluate our benchmark, En-
terpriseBench, using five LLM agents built with
state-of-the-art reasoning models: GPT-4o, Claude
3.5 Sonnet, Llama 3.1 8B, Llama 3.3 70B, and O1-
mini. The agents are tested under different planning

5https://huggingface.co/docs/trl/index
6LlamaIndex Prometheus-2 Cookbook

9173

https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#o1
https://aws.amazon.com/bedrock/claude/
https://huggingface.co/docs/trl/index
https://docs.llamaindex.ai/en/latest/examples/cookbooks/prometheus2_cookbook/

Model GPT-4 Evaluator Gemini-2.5 Pro Evaluator
w/o

Planning
CoT (Wei

et al., 2022)
ReAct (Yao

et al.,
2022b)

w/ Gold
Planning

w/o
Planning

CoT (Wei
et al., 2022)

ReAct (Yao
et al.,

2022b)

w/ Gold
Planning

LangChain Framework (LangChain, 2024)
GPT-4o 0.29 0.27 0.32 0.43 0.27 0.28 0.29 0.44
Claude-3.5-Sonnet 0.31 0.27 0.28 0.38 0.32 0.30 0.30 0.41
o1-mini 0.31 0.28 0.35 0.51 0.28 0.27 0.39 0.47
Llama-3.1-8B 0.04 0.06 0.14 0.20 0.03 0.04 0.13 0.21
Llama-3.3-70B 0.23 0.22 0.21 0.40 0.24 0.23 0.21 0.36

DSPy (Khattab et al., 2024)
GPT-4o 0.19 0.32 0.34 0.50 0.25 0.26 0.29 0.47
Claude-3.5-Sonnet 0.19 0.24 0.30 0.50 0.21 0.29 0.29 0.44
o1-mini 0.29 0.33 0.38 0.62 0.27 0.32 0.41 0.63
Llama-3.1-8B 0.10 0.14 0.16 0.34 0.07 0.15 0.15 0.34
Llama-3.3-70B 0.20 0.27 0.30 0.47 0.24 0.25 0.28 0.48

Table 3: EnterpriseBench Evaluation: Comparison of performance across agents using different models and
planning strategies with LangChain and DSPy frameworks, evaluated by GPT-4 and Gemini 2.5 Pro on 500 samples.

0.31

0.23

0.23

0.25

0.39

0.42

0.24

0.3

0.39

0.31

0.44

0.25

0.37

0.32

0.58

0.15

0.19

0.09

0.19

0.05

0.26

0.14

0.3

0.12

0.22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

SWE

Sales

IT Solutions

HR System

Business

Operations Llama 3.3 -

70B

Llama 3.1-

8B

o1 mini

Claude 3.5-

Sonnet

Gpt-4o

(a) Performance of
LangChain ReACT across
different Domains

0.3

0.22

0.25

0.24

0.44

0.31

0.21

0.17

0.22

0.56

0.32

0.29

0.26

0.48

0.65

0.18

0.02

0.21

0.37

0.02

0.36

0.17

0.21

0.47

0.22

0 0.2 0.4 0.6 0.8

SWE

Sales

IT Solutions

HR System

Business

Operations
Llama 3.3 -

70B

Llama 3.1-

8B

o1 mini

Claude 3.5-

Sonnet

Gpt-4o

(b) Performance of DSPy
ReACT across different Do-
mains

Figure 3: Comparison of different models using ReAct
planning: Performance across different domains of En-
terpriseBench.

strategies implemented via LangChain and DSPy.
We further report results from human evaluation,
assessing both the correctness of agent responses
and the successful execution of tasks. In addition,
we present results from a model trained on Enter-
priseBench, and provide an in-depth analysis of the
evaluation outcomes for CAI systems.

5.1 Evaluation on Enterprise Search Tasks

Compound AI System Evaluation Table 3
presents the evaluation of our benchmark across
various models, planning strategies, and frame-
works, scored using Prometheus-2 with GPT-
4. ReAct-based planning outperforms both no-
planning and CoT approaches across both frame-
works. Among the models, O1-mini achieves the
best performance, as expected given its advanced
reasoning capabilities. The open-source Llama
models show a significant performance drop com-
pared to the higher-performing models, highlight-
ing the need to improve their planning abilities.
Notably, gold planning yields the highest accura-
cies, with approximately 40% to 50% improve-
ments over ReAct. This substantial difference
underscores the necessity for more sophisticated
agents and frameworks capable of handling com-
plex planning tasks in enterprise settings, which

require coordination across multiple sources, tools,
and function calls to successfully complete the fi-
nal task. We also report performance across all
domains using ReAct planning in figure 3. Addi-
tionally, human evaluation was conducted on the
agent built with O1-mini using ReAct planning
within the LangChain framework, demonstrating
an accuracy of 31%.
To further evaluate the performance of current LLM
agents, we conducted a human CAI (humans act-
ing as LLM agents) study to assess task execu-
tion. The accuracy achieved was 70%, highlighting
the gap between human performance and that of
LLM agents in the enterprise setting. While human
agents achieved higher accuracy, this came at the
cost of significantly increased average completion
time—from 50 seconds with agents to 8 minutes 30
seconds per task with humans—revealing a clear
trade-off between precision and efficiency. These
findings suggest that there is room to improve plan-
ning strategies in current LLM agents to achieve
precision levels comparable to humans while main-
taining significantly faster execution times.
Trained Model Evaluation We conducted an addi-
tional experiment by training the Qwen3-8B model
on data generated through our task generation
pipeline. The model was fine-tuned using both
supervised fine-tuning (SFT) and direct preference
optimization (DPO) to predict planning or execu-
tion steps based on the task and available tools, with
task execution carried out through the LangChain
framework alongside GPT-4o. As shown in Ta-
ble 4, Qwen3-8B achieved 27% accuracy with SFT
and 29% with SFT+DPO on 1.2k samples, closely
approaching GPT-4o with CoT. These results high-
light the effectiveness of our benchmark and task
generation pipeline, showing that even with limited

9174

Model GPT-4o w/ CoT Qwen3-8B (SFT) Qwen3-8B (SFT+DPO)

Score 0.27 0.27 0.29

Table 4: Performance comparison across GPT-4o w/ CoT and
Qwen3-8B models using the LangChain framework for task
execution on 200 samples. DPO results are reported with 1.2k
preference pairs.

training data, small models can achieve competi-
tive performance with, and in some cases surpass,
larger LLMs such as GPT-4o. This provides a proof
of concept that for domain-specific tasks, small lan-
guage models (SLMs) trained with high-quality
data can outperform general-purpose LLMs.

5.2 In-Depth Analysis
We conduct an error analysis of the O1-mini ReAct
agent implemented with LangChain. The evalua-
tion was performed on 100 EnterpriseBenchtasks,
uniformly distributed across domains. The agent
achieved an accuracy of 31%, with the remaining
cases classified as failures. Below, we outline the
key failure modes identified through human evalu-
ation.
• Wrong Tool Selection / Wrong App Selection (18):

These errors arise from the complexity of tasks
requiring multiple tool calls, as well as limita-
tions in the model architectures used by LLM
agents. We observed that models such as o1-mini
perform slightly better in this regard compared
to GPT, Claude, and other open-source models.
Domain-wise performance, presented in Table 6
and Table 7 in the Appendix, shows that GPT per-
forms well in HR and IT tasks, Claude excels in
coding tasks, and o1-mini outperforms others in
several non-technical domains. Performance in
this area could be improved by incorporating con-
tinual learning, which would enhance the agent’s
ability to understand the environment and make
more accurate tool selections.

• Search-based Answer Hallucination (8): The
agent sometimes relies on prior knowledge in-
stead of the retrieved context, leading to halluci-
nations such as fabricated policy names, incorrect
dates, or non-existent entities, thereby compro-
mising factual accuracy. This limitation could
be mitigated through improved agent memory
management.

• Context Retrieval (2): The agent sometimes re-
trieves incomplete or irrelevant enterprise context
due to weak query formulation or mismatches be-
tween the retrieval index and task intent, which
leads to incorrect responses. Improving retriever
performance requires going beyond similarity

matching.
• Task Decomposition (20): These errors often

arise from the complexity of the tasks and the
agents’ limited understanding of the sandbox en-
vironment. Performance in this area could be
improved by employing a trained LLM agent
rather than relying solely on general knowledge
and few-shot examples.

• Partial Factual Coverage (14): Some answers
align with task goals but omit critical structured
details (e.g., employee IDs, policy names, dates),
reducing reliability and highlighting the need for
precision in enterprise settings. Performance can
be improved by using constrained decoding or
function-calling approaches, which ensure that
all required structured fields are consistently pro-
duced.

• Final Step Execution (7): Even with correct sub-
goals, the final synthesis step may miscombine
results, leading to incorrect answers and exposing
gaps in temporal or logical consistency. Perfor-
mance in this area could be improved by incor-
porating step validation or structured reasoning
mechanisms to ensure accurate integration of in-
termediate outputs.

Our findings highlight that enterprise agents re-
quire tighter coupling between planning, retrieval,
and grounding mechanisms, along with robustness
against hallucinations and tool invocation errors.
These insights aim to support the development of
next-generation agentic systems that meet the strict
accuracy demands of enterprise environments.

6 Conclusion
In this paper, we highlight the importance of Com-
pound AI Systems in enterprise settings and the
need for a benchmark to evaluate their performance.
To address this, we introduce EnterpriseBench, a
novel benchmark designed to assess CAI systems
on complex enterprise tasks. Our experiments show
that even state-of-the-art agents face significant
challenges with these tasks. To create an evaluation
environment, we develop an enterprise sandbox
and a task framework, enabling the construction of
comprehensive benchmark with minimal input.

Limitations

The limitations of our work are as follows: 1) Our
enterprise data generation process requires an ini-
tial set of real enterprise data, which can be costly
to obtain. Relying solely on synthetic data may

9175

affect the realism of generated tasks. 2) Human ex-
perts are needed to verify intermediate steps during
task generation, adding to the complexity and cost.
3) While we achieve high accuracy in enterprise
task generation, some errors remain, suggesting
areas for future improvement. 4) The evaluation of
our benchmark relies on the current capabilities of
reasoning models, which are likely to improve over
time. 5) Our experiments did not involve large-
scale data generation with terabytes of data, which
would better represent real-world enterprise-scale
scenarios.

Acknowledgement

We thank the members of the AI Lab at Fujitsu Re-
search for their valuable feedback on this work. We
are also deeply grateful to the anonymous ARR re-
viewers, the meta-reviewer, and the ACL program
chairs for their thoughtful comments and sugges-
tions, which significantly improved the paper.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024a. Building effective agents.
https://www.anthropic.com/research/
building-effective-agents.

AI Anthropic. 2024b. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3(6).

Navid Ayoobi, Sadat Shahriar, and Arjun Mukherjee.
2023. The looming threat of fake and llm-generated
linkedin profiles: Challenges and opportunities for
detection and prevention. In Proceedings of the 34th
ACM Conference on Hypertext and Social Media,
pages 1–10.

Daniil A Boiko, Robert MacKnight, and Gabe Gomes.
2023. Emergent autonomous scientific research ca-
pabilities of large language models. arXiv preprint
arXiv:2304.05332.

Rogerio Bonatti, Dan Zhao, Dillon Dupont, Sara Ab-
dali, Yinheng Li, Yadong Lu, Justin Wagle, Kazuhito
Koishida, Arthur Bucker, Lawrence Keunho Jang,
et al. Windows agent arena: Evaluating multi-modal
os agents at scale. In NeurIPS 2024 Workshop on
Open-World Agents.

Michelle Brachman, Amina El-Ashry, Casey Dugan,
and Werner Geyer. 2024. How knowledge workers
use and want to use llms in an enterprise context. In
Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems, pages 1–8.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2023.
Do as i can, not as i say: Grounding language in
robotic affordances. In Conference on robot learn-
ing, pages 287–318. PMLR.

Tilmann Bruckhaus. 2024. Rag does not work for enter-
prises. arXiv preprint arXiv:2406.04369.

Nicholas Carlini. 2024. How i use "ai"?
https://nicholas.carlini.com/writing/
2024/how-i-use-ai.html.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Alexandre Drouin, Maxime Gasse, Massimo Caccia,
Issam H Laradji, Manuel Del Verme, Tom Marty, Léo
Boisvert, Megh Thakkar, Quentin Cappart, David
Vazquez, et al. Workarena: How capable are web
agents at solving common knowledge work tasks?
In ICLR 2024 Workshop on Large Language Model
(LLM) Agents.

Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Om-
rani, Gautier Viaud, Céline Hudelot, and Pierre
Colombo. 2024. Colpali: Efficient document re-
trieval with vision language models. arXiv preprint
arXiv:2407.01449.

Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao,
Jinghua Piao, Huandong Wang, Depeng Jin, and
Yong Li. 2023. SΘ3: Social-network simulation sys-
tem with large language model-empowered agents.
arXiv preprint arXiv:2307.14984.

Alireza Ghafarollahi and Markus J Buehler. 2024. Pro-
tagents: protein discovery via large language model
multi-agent collaborations combining physics and
machine learning. Digital Discovery.

GitHub. 2024. Github copilot: Your ai pair programmer.
Accessed: Feb. 11, 2025.

Glean. Glean: Work ai for all. Accessed: February 11,
2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adap-
tation of large language models. ICLR, 1(2):3.

Kung-Hsiang Huang, Akshara Prabhakar, Sidharth
Dhawan, Yixin Mao, Huan Wang, Silvio Savarese,
Caiming Xiong, Philippe Laban, and Chien-Sheng

9176

https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://nicholas.carlini.com/writing/2024/how-i-use-ai.html
https://nicholas.carlini.com/writing/2024/how-i-use-ai.html
https://github.com/features/copilot
https://www.glean.com/

Wu. 2025. Crmarena: Understanding the capacity of
llm agents to perform professional crm tasks in real-
istic environments. In Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers).

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Feihu Jiang, Chuan Qin, Kaichun Yao, Chuyu Fang,
Fuzhen Zhuang, Hengshu Zhu, and Hui Xiong. 2024.
Enhancing question answering for enterprise knowl-
edge bases using large language models. In Interna-
tional Conference on Database Systems for Advanced
Applications, pages 273–290. Springer.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models re-
solve real-world github issues? In The Twelfth Inter-
national Conference on Learning Representations.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Saiful Haq,
Ashutosh Sharma, Thomas T Joshi, Hanna Moazam,
Heather Miller, et al. 2024. Dspy: Compiling
declarative language model calls into state-of-the-art
pipelines. In The Twelfth International Conference
on Learning Representations.

Vivek Khetan, Roshni Ramnani, Mayuresh Anand,
Shubhashis Sengupta, and Andrew E Fano. 2020.
Causal bert: Language models for causality detec-
tion between events expressed in text. arXiv preprint
arXiv:2012.05453.

Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joon-
suk Park, and Jaewoo Kang. 2023. Tree of clarifica-
tions: Answering ambiguous questions with retrieval-
augmented large language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 996–1009.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. Preprint, arXiv:2405.01535.

Cognition Labs. 2024. Introducing devin, the first ai
software engineer. Accessed: February 11, 2025.

LangChain. 2024. What is an ai agent? https://blog.
langchain.dev/what-is-an-agent/.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao,
Dongchan Shin, SU Hongjin, ZHAOQING SUO,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al.
Spider 2.0: Evaluating language models on real-
world enterprise text-to-sql workflows. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang,
Jinyang Li, Shunyu Yao, Chen Qian, Binyuan Hui,
Qicheng Zhang, et al. 2024. Devbench: A compre-
hensive benchmark for software development. arXiv
preprint arXiv:2403.08604.

Nian Li, Chen Gao, Yong Li, and Qingmin Liao. 2023.
Large language model-empowered agents for simu-
lating macroeconomic activities. Available at SSRN
4606937.

Xu Li, Mingming Sun, and Ping Li. 2019. Multi-agent
discussion mechanism for natural language gener-
ation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6096–6103.

Matthieu Lin, Jenny Sheng, Andrew Zhao, Shenzhi
Wang, Yang Yue, Yiran Wu, Huan Liu, Jun Liu, Gao
Huang, and Yong-Jin Liu. 2024. Llm-based opti-
mization of compound ai systems: A survey. arXiv
preprint arXiv:2410.16392.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. Agentbench: Evaluating
llms as agents. In The Twelfth International Confer-
ence on Learning Representations.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Bal-
dassari, Andrew D White, and Philippe Schwaller.
2024. Augmenting large language models with chem-
istry tools. Nature Machine Intelligence, pages 1–11.

Meta. 2024. Large language models: Transforming the
future of work. https://forwork.meta.com/blog/how-
large-language-models-are-changing-the-future-of-
work/.

OpenAI. 2024. Openai o1-mini: Advancing cost-
efficient reasoning. Accessed: 2025-04-19.

Taryn Plumb. 2025. Here’s how google is us-
ing llms for complex internal code migrations.
https://www.infoworld.com/article/3804552/heres-
how-google-is-using-llms-for-complex-internal-
code-migrations.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in neural
information processing systems, 36:53728–53741.

James Rounds, Thomas Smith, Lawrence Hubert, Phil
Lewis, and David Rivkin. 1999. Development of
occupational interest profiles for o* net. Raleigh,
NC: National Center for O* NET Development, 8.

Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya
Guha, Victor Sanchez, and Bertie Vidgen. Work-
bench: a benchmark dataset for agents in a realistic
workplace setting. In First Conference on Language
Modeling.

9177

https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://blog.langchain.dev/what-is-an-agent/
https://blog.langchain.dev/what-is-an-agent/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang
Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, et al. 2024. Os-
genesis: Automating gui agent trajectory construc-
tion via reverse task synthesis. CoRR.

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-
agent collaboration: Harnessing the power of intelli-
gent llm agents. arXiv preprint arXiv:2306.03314.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
2024a. Travelplanner: A benchmark for real-world
planning with language agents. In International Con-
ference on Machine Learning, pages 54590–54613.
PMLR.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming
Xiong, Victor Zhong, and Tao Yu. 2024b. Osworld:
Benchmarking multimodal agents for open-ended
tasks in real computer environments. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Sys-
tems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kri-
tanjali Jain, Mengxue Bao, Zora Z Wang, Xuhui
Zhou, Zhitong Guo, Murong Cao, et al. 2024a.
Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint
arXiv:2412.14161.

Weijie Xu, Zicheng Huang, Wenxiang Hu, Xi Fang, Ra-
jesh Cherukuri, Naumaan Nayyar, Lorenzo Malandri,
and Srinivasan Sengamedu. 2024b. Hr-multiwoz: A
task oriented dialogue (tod) dataset for hr llm agent.

In Proceedings of the First Workshop on Natural Lan-
guage Processing for Human Resources (NLP4HR
2024), pages 59–72.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744–20757.

Shunyu Yao, Noah Shinn, Pedram Razavi, and
Karthik R Narasimhan. 2025. tau-bench: A bench-
mark for tool-agent-user interaction in real-world do-
mains. In The Thirteenth International Conference
on Learning Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Matei Zaharia, Omar Khattab, Lingjiao Chen,
Jared Quincy Davis, Heather Miller, Chris Potts,
James Zou, Michael Carbin, Jonathan Fran-
kle, Naveen Rao, and Ali Ghodsi. 2024. The
shift from models to compound ai systems.
https://bair.berkeley.edu/blog/2024/02/
18/compound-ai-systems/.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,
Bryan Hooi, and Shumin Deng. Exploring collabora-
tion mechanisms for llm agents: A social psychology
view. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2025. Murre: Multi-
hop table retrieval with removal for open-domain text-
to-sql. In Proceedings of the 31st International Con-
ference on Computational Linguistics, pages 5789–
5806.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A
realistic web environment for building autonomous
agents. In The Twelfth International Conference on
Learning Representations.

9178

http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

A Appendix

In this section, we present additional results and
analyses that could not be included in the main pa-
per due to space constraints. It also includes visual
illustrations of the sandbox environment for Enter-
priseBench, and LLM prompts used for benchmark
creation and baseline execution. Specifically, this
appendix contains the following:

• Algorithms, Additional Results, and Details
• Ablation Study
• Expert Study Details
• Details of simulating the Enterprise Sandbox
• LLM Prompts

A.1 Additional Results, Algorithm, and
Details

Algorithm To generate tasks tailored to individual
enterprise employees, we design a pipeline that
dynamically incorporates employee context,
role-specific goals, and relevant enterprise entities.
The process begins by retrieving contextual
information based on the employee’s ID and
domain of interest, followed by the selection of
a suitable goal template. This goal is expanded
into subgoals using contextual and entity-aware
reasoning. Templates are then populated to
construct a task instance, which is iteratively
refined and validated using LLM capabilities.
The full task generation procedure is detailed in
Algorithm 1.

Additional Results Table 6 shows the eval-
uation of EnterpriseBench using F1 score as the
metric across five domains in our benchmark:
SWE, Sales, HR, IT, and Business Development.
This table allows us to observe the performance of
tasks within each domain, which can guide future
development of better agents tailored for enterprise
settings through separate domain evaluations.
Additionally, Table 7 presents the evaluation
results using Prometheus-2 with GPT-4 across
domains.

Tools Inventory Table 8 presents the collec-
tion of tools and functions developed for our
EnterpriseBench sandbox environment to support
the operation of the LLM Agents.

Post Training Data format We conducted

SFT7 and DPO8 fine-tuning experiments using the
standard dataset formats, illustrated in Listing 1
and Listing 2, respectively.

Listing 1: SFT data format used in training
1 {
2 "messages ": [
3 {"role": "system", "content ": "You

are a helpful assistant"},
4 {"role": "user", "content ": "What

color is the sky?"},
5 {"role": "assistant", "content ": "It

is blue ."}
6]
7 }

Listing 2: DPO data format used in training
1 {
2 "prompt ": [
3 {"role": "user", "content ": "What

color is the sky?"}
4],
5 "chosen ": [
6 {"role": "assistant", "content ": "It

is blue ."}
7],
8 "rejected ": [
9 {"role": "assistant", "content ": "It

is green ."}
10]
11 }

Benchmark Coverage Complexity Diversity Expert Validation

SWEBench (Jimenez et al.) 2 0.5 1 ✗

WorkArena (Drouin et al.) 7 0.86 6 ✗

WorkBench (Styles et al.) 5 0 5 ✗

AgentBench (Liu et al.) 8 0 8 ✗

τ -bench (Yao et al., 2025) 3 0.67 8 ✗

CRMArena (Huang et al., 2025) 16 1.3 9 ✓

EnterpriseBench (Ours) 17 1.2 17 ✓

Table 5: Comparison of benchmarks in terms of: coverage
(# objects that mirror core components in the simulated en-
vironment; ER diagram nodes), environment complexity (#
dependencies/object; average connections in ER diagram),
and diversity (classification of tasks spread across domains).

Defining the Ground Truth Below, we summa-
rize the step-by-step pipeline used to generate task-
specific ground truth in a traceable and verifiable
manner:

1. Retrieve Context: Relevant data are fetched
from pre-defined enterprise sources using em-
ployee ID, task domain, and task category.

2. Extract Entities and Relations: An LLM is
employed to extract (i) entities (e.g., em-
ployee, GitHub repository name, issue ID)
and (ii) relations (e.g., issues linked to a repos-
itory, metadata associated with a repository).

7SFT Trainer Data Format
8DPO Data Format

9179

https://huggingface.co/docs/trl/en/sft_trainer##expected-dataset-type-and-format
https://huggingface.co/docs/trl/en/dataset_formats##preference

Department LangChain DSPy
GPT-4o Claude-3.5 o1-mini LLaMA-3.1-8B LLaMA-3.1-70B GPT-4o Claude-3.5 o1-mini LLaMA-3.1-8B LLaMA-3.1-70B

w/o Planning
SWE 0.29 0.24 0.26 0.03 0.29 0.24 0.20 0.26 0.07 0.28
Sales 0.20 0.26 0.22 0.03 0.25 0.25 0.21 0.25 0.07 0.29
HR 0.42 0.49 0.46 0.03 0.12 0.33 0.20 0.29 0.12 0.33
IT 0.32 0.31 0.32 0.03 0.31 0.32 0.24 0.28 0.13 0.32
Business Ops 0.26 0.37 0.36 0.03 0.32 0.25 0.36 0.27 0.03 0.15

CoT (Wei et al., 2022)
SWE 0.27 0.23 0.23 0.02 0.22 0.27 0.21 0.29 0.16 0.29
Sales 0.28 0.23 0.27 0.02 0.25 0.27 0.21 0.30 0.06 0.06
HR 0.47 0.34 0.44 0.03 0.30 0.37 0.25 0.35 0.14 0.35
IT 0.35 0.28 0.30 0.03 0.25 0.34 0.27 0.31 0.21 0.31
Business Ops 0.33 0.37 0.31 0.03 0.35 0.35 0.37 0.30 0.03 0.33

ReAct (Yao et al., 2022b)
SWE 0.27 0.23 0.24 0.02 0.22 0.25 0.20 0.31 0.11 0.31
Sales 0.29 0.23 0.29 0.12 0.25 0.12 0.21 0.32 0.08 0.17
HR 0.48 0.29 0.43 0.14 0.31 0.47 0.30 0.38 0.03 0.40
IT 0.37 0.28 0.28 0.13 0.22 0.24 0.27 0.33 0.19 0.30
Business Ops 0.31 0.39 0.42 0.13 0.19 0.49 0.35 0.37 0.13 0.36

w/ Gold Planning
SWE 0.36 0.40 0.35 0.14 0.42 0.44 0.38 0.48 0.37 0.42
Sales 0.26 0.27 0.28 0.13 0.27 0.32 0.25 0.44 0.13 0.28
HR 0.48 0.33 0.49 0.14 0.48 0.57 0.41 0.55 0.40 0.53
IT 0.37 0.40 0.38 0.14 0.33 0.43 0.43 0.49 0.31 0.39
Business Ops 0.45 0.56 0.61 0.24 0.34 0.51 0.47 0.51 0.33 0.47

Table 6: EnterpriseBench Evaluation: Domain-wise performance comparison using F1 score.

Algorithm 1: Generate Employee-Specific Task

1: function GENERATE(emp_id, persona, config, tools, task_domain,
task_category)

2: context ← GETCONTEXT(emp_id, config["source_paths"],
task_domain, task_category)

3: goal ← CHOOSEGOAL(config["goal_templates"], task_domain,
task_category)

4: entities← ENTITYEXTRACTION(tools, context, goal)
5: subGoals← GETSUBGOAL(goal, entities, context)
6: templates← GETTEMPLATE(subGoals, entities, context, persona)
7: task← GETTASK(goal, subGoals, entities, templates, context, persona)
8: for i = 1 to max_iter do
9: if VALIDATE(task) then return task
10: end if
11: task← REPHRASE(task)
12: end for
13: return task
14: end function

3. Decompose Goal into Subtask Templates: The
primary task goal is decomposed into logi-
cal subtasks using LLMs, guided by domain-
specific tools and the retrieved context.

4. Fill Subtask Templates: Extracted entities are
inserted into subtask templates according to
their semantic types.

5. Ground Each Subtask: Each subtask is linked
to relevant contextual evidence (sentences or
snippets) using the identified relations.

6. Generate Final Task Ground Truth: All sub-
tasks and their grounded context are com-
bined to form a complete, traceable task-level
ground truth.

7. Validation and Refinement: The generated
ground truth undergoes iterative refinement,
after which human experts validate correct-
ness and relevancy.

This process follows a reverse task synthesis

paradigm: rather than generating answers to prede-
fined questions, we start from the available context
and a goal template. We then frame the most appro-
priate task whose subgoals and answers are already
embedded in the context. This ensures that each
task is grounded, domain-relevant, and verifiable.

A.2 Ablation Study
We perform ablation studies to analyze the effect
of planning quality, task complexity, and access
control on model performance.
Gold Planning As shown in Table 3, providing
models with gold plans yields substantial improve-
ments over other planning strategies, highlighting
the critical role of accurate planning in complex
task execution.
Task Complexity We categorize tasks as easy if
they contain fewer than three subtasks, and hard
if they contain three or more. Table 11 compares
performance under the ReAct baseline versus our
planning-enhanced approach.
The results show a clear drop in performance as
task complexity increases (i.e., when the number
of subtasks ≥ 3). This ablation reveals that longer
interaction trajectories increase failure rates, likely
due to the models’ lack of prior knowledge of the
sandbox environment and limited memory across
steps. While planning improves robustness, it does
not fully close this gap, highlighting the difficulty
of long-horizon reasoning in unfamiliar environ-
ments.
Access Control In this ablation, we remove the ac-

9180

Department LangChain DSPy
GPT-4o Claude-3.5 o1-mini LLaMA-3.1-8B LLaMA-3.1-70B GPT-4o Claude-3.5 o1-mini LLaMA-3.1-8B LLaMA-3.1-70B

w/o Planning
SWE 0.30 0.19 0.30 0.02 0.21 0.17 0.21 0.33 0.13 0.24
Sales 0.16 0.20 0.17 0.06 0.14 0.16 0.15 0.21 0.11 0.20
HR 0.36 0.62 0.39 0.05 0.47 0.14 0.13 0.18 0.12 0.18
IT 0.19 0.23 0.33 0.07 0.19 0.15 0.11 0.35 0.10 0.21
Business Ops 0.33 0.30 0.33 0.00 0.15 0.33 0.37 0.36 0.05 0.18

CoT (Wei et al., 2022)
SWE 0.33 0.23 0.27 0.09 0.20 0.30 0.25 0.30 0.12 0.30
Sales 0.16 0.12 0.20 0.06 0.21 0.16 0.08 0.15 0.02 0.09
HR 0.44 0.40 0.40 0.05 0.40 0.45 0.30 0.48 0.15 0.48
IT 0.31 0.15 0.16 0.04 0.19 0.28 0.18 0.22 0.14 0.30
Business Ops 0.20 0.20 0.38 0.05 0.10 0.40 0.37 0.50 0.05 0.20

ReAct (Yao et al., 2022b)
SWE 0.34 0.27 0.31 0.15 0.26 0.28 0.22 0.32 0.19 0.37
Sales 0.14 0.16 0.26 0.20 0.15 0.13 0.09 0.20 0.03 0.17
HR 0.44 0.39 0.32 0.09 0.31 0.52 0.46 0.48 0.37 0.54
IT 0.34 0.19 0.27 0.19 0.13 0.22 0.17 0.26 0.21 0.21
Business Ops 0.20 0.41 0.58 0.05 0.23 0.54 0.57 0.65 0.03 0.23

w/ Gold Planning
SWE 0.50 0.60 0.63 0.13 0.59 0.65 0.62 0.80 0.38 0.63
Sales 0.16 0.21 0.21 0.23 0.13 0.27 0.15 0.20 0.14 0.16
HR 0.54 0.13 0.57 0.19 0.56 0.62 0.68 0.81 0.44 0.67
IT 0.46 0.47 0.53 0.12 0.42 0.58 0.51 0.68 0.50 0.49
Business Ops 0.40 0.50 0.60 0.30 0.33 0.40 0.56 0.62 0.25 0.40

Table 7: EnterpriseBench Evaluation: Domain-wise performance comparison with Prometheus-2 using GPT-4
score.

cess control constraint on tasks classified as Unan-
swerable. Without constraints, models attempt
these tasks despite lacking the necessary permis-
sions, leading to incorrect executions. These are
counted as failures in our evaluation, confirming
that access control mechanisms are essential to pre-
vent spurious task completions.

A.3 Expert Study Details

We selected domain experts from various depart-
ments within the organization to assist in task eval-
uation, goal template design, and sandbox envi-
ronment simulation. For the simulation and goal
template creation, we engaged a group of 10 do-
main experts spanning the target domains. For task
evaluation, we ensured relevant participation by
circulating a Microsoft Form, requiring that respon-
dents hold job titles aligned with roles defined in
EnterpriseBench: Sales, Customer Support, Engi-
neer, IT Support, and HR. Table 14 presents partic-
ipant profiles involved in sandbox simulation and
task validation.
Details of the MS form (screenshots in figure 4 to
validate the realism of enterprise data and tasks are
provided below:
• Part-1: (10 seconds) The participant (or expert)

logs in by selecting their department and role (in
figure 4a).

• Part-2: (15 minutes) After logging in, they are
presented with instructions outlining the task:
they are asked to assess the realism of the or-

ganizational environment-such as the employee
flow chart and access control-and then evaluate
the realism of the tasks, which are displayed on
the following page (in figure 4b, 4c).

• Part-3: (10 minutes/task) On the following
pages, elements of the enterprise environment
are shown, followed by role-specific tasks—such
as emails, chats, and more—tailored to the partic-
ipant’s selected department and role (see Figure
4d). The user is required to perform these tasks
in the sandbox and rate their realism.

The participants are asked to rate the realism of
environment setup and tasks using below options:

1. Very Unrealistic: The organizational structure
and tasks seemed very artificial and didn’t
resemble how real organizations typically op-
erate.

2. Unrealistic: While the organization and tasks
included some familiar elements, many as-
pects lacked a convincing or realistic struc-
ture.

3. Neutral: The organization and tasks felt par-
tially realistic, combining both plausible and
implausible elements.

4. Realistic: The organization largely resembled
a real-world setup, and the tasks reflected
what an employee might typically ask, though
there were minor inconsistencies.

5. Very Realistic: The organization appeared
fully authentic, with a structure akin to real-
world setups, and the tasks aligned well with

9181

those typically posed by employees.

A.4 Details of simulating the EnterpriseBench
Sandbox

In this section, we present the sandbox environment
created for EnterpriseBench. To set up an enter-
prise sandbox, two key components are required:
the ER diagram (Figure 5) and the employee hierar-
chy (Figure 6). The structure of these hierarchies is
inspired by CRMArena (Huang et al., 2025) from
Salesforce. The hierarchy was populated based on
the requirements of our benchmark, with guidance
from domain experts. Building on this foundation,
we now describe the statistics and design of the
three main components of the sandbox: (a) col-
lection of data sources for building enterprise ap-
plications, (b) access control mechanisms, and (c)
dynamic operations within the sandbox.

A.4.1 Enterprise Data Simulation
The data simulation process is designed to align
with the overall enterprise structure. To ensure
authenticity, information was sourced from reli-
able and verified repositories. We collected rele-
vant data and parsed it to extract key attributes.
For example, from product sentiment data, we
extracted customer and product information and
synchronized it with the sales dataset to maintain
consistency across sources. Table 10 provides a
detailed overview of the data sources used in En-
terpriseBench, including the number of instances
and their respective origins. Example instances of
enterprise data sources are shown in Figures 7, 8,
and 9.

After collecting the data sources, we simulated
instances for specific enterprise applications to bet-
ter represent interconnected enterprise data, as sum-
marized in Table 10. The simulation description is
shown below.
Simulated Conversations The conversations gen-
erated in EnterpriseBench span various departmen-
tal teams, covering a wide range of topics—from
simple inquiries to comprehensive discussions
about a specific GitHub repository. These con-
versations are context-dependent and are designed
to closely simulate real-world interactions, follow-
ing the generation process of the proposed holistic
pipeline. Figure 7 presents an example of a chat
between two employees, Steve and John, from
the engineering department, based on the GitHub
repository maintained by Steve.
Simulated Customer Support Chat The customer

support conversations are generated based on prod-
uct sentiment data. Persona-based interactions sub-
jects are created by incorporating details of both the
customer and a sales representative (employee from
sales department). These interactions simulate a
conversation where the representative responds to
the customer’s sentiment by proposing a potential
solution to resolve the issue. Figure 8 illustrates an
example of such a conversation between a customer
and a sales representative.
Simulated Enterprise Mail System The email
simulations are generated based on threaded con-
versations, where each email exchange belongs to
a specific thread. Within a thread, multiple mes-
sages are exchanged between the sender and recipi-
ent, maintaining continuity and context. Figure 9
presents an example of an email thread between
two employees from the HR department.

A.4.2 EnterpriseBench Security Layer Details
In enterprise environments, ensuring secure and
regulated data access is critical. The Access Con-
trol Layer plays a fundamental role in enforcing
access policies and preventing unauthorized data
access. Our work, EnterpriseBench, implements a
structured approach by integrating access control
rules in a JSON format for each data source. A
LLM Agent is responsible for verifying access per-
missions based on an employee’s credentials and
the requested data.

Access Verification Mechanism The Access
Control Layer operates in conjunction with the re-
trieval process. When a query is processed, the
retriever first gathers relevant contextual data. Be-
fore the information is presented to the user, it is
passed through the Access Control Layer, where
all inaccessible content is filtered out based on pre-
defined rules.

For instance, as illustrated in Figure 10, the ac-
cess control rules dictate that a GitHub repository is
accessible only to its owner and senior employees
within the organizational hierarchy. If an employee
from a different department, or even from the same
department but with an emp_id different from the
repo_owner_id, attempts to access the repository,
the agent will respond with "Access Denied." Fur-
thermore, if an employee at the same level attempts
to perform a task requiring edit access to the repos-
itory, the agent will revoke the request, ensuring
strict compliance with access policies.

Dynamic and Customizable Access Control
The Access Control Layer is designed to be flex-

9182

(a) First page of the Microsoft Form used to collect infor-
mation about domain experts, including their department
and position.

(b) Next page of the form displaying simulated data details for the selected
department. This example shows sales data from the enterprise.

(c) Users are asked to rate the realism of the simulated
data for the selected department, choosing from options
ranging from ‘Very Unrealistic’ to ‘Very Realistic.’ They
also have to provide reasons when selecting ‘Unrealistic’.

(d) This page presents enterprise tasks for evaluation.
Users rate each task’s realism from ‘Very Unrealistic’ to
‘Very Realistic,’ and provide reasons if they select ‘Neu-
tral,’ ‘Unrealistic,’ or ‘Very Unrealistic’.

Figure 4: Domain Expert Validation in EnterpriseBench. Domain experts from all benchmark domains evaluate
the realism of the generated data and created tasks. This example shows screenshots of MS form for different steps
a domain expert completes during the validation process.

9183

ible, allowing dynamic modification of access
rules. This adaptability enables organizations to
customize security policies according to evolving
requirements while ensuring robust data protec-
tion. By maintaining granular control over data
accessibility, this framework enhances security and
compliance within enterprise systems.

A.4.3 Data Dynamics Operations
Data Dynamism is enabled in EnterpriseBench by
allowing agents to autonomously perform CRUD
operations across diverse enterprise data sources,
allowing for real-time changes and interactions.
By orchestrating task decomposition, access con-
trol, and data dynamism, we ensure the system
is capable of handling evolving business needs,
fostering enhanced operational efficiency and in-
formed decision-making across enterprise. Below,
we present the data dynamism pipeline along with
pseudocode, and illustrate it using a GitHub-based
example.

Data Dynamism Pipeline

from llmCrudOps import EnggConvCRUD
from llmCrudOps import GitHubCRUD
from llmCrudOps import GitIssuesCRUD
...

class DataDynamismPipeline:
def __init__(self, llm):

self.llm = AzureChatOpenAI(llm)

def fetch_crud_control(...):
Returns CRUD controller for selected data source
return control

def run_CAI_pipeline(user_persona, user_query):

1. Break down Primary Tasks into Subtasks
prompt_CoT=ChatPromptTemplate.from_messages
task_breakdown = prompt_CoT | self.llm
generated_subtasks = chain_task_breakdown.invoke(...)

for subtask in generated_subtasks:

2. Determine Data Source
prompt_ds=ChatPromptTemplate(...)
chain_data_source = prompt_ds | self.llm
selected_data_sources_str = chain_data_source.

invoke(...)

3. Determine Function and Parameters
prompt_fn=ChatPromptTemplate(...)
chain_function = prompt_fn | self.llm
selected_function_name_str = chain_function.

invoke(...)

4. Check Access Permissions
for function_name in selected_function_name_list:

prompt_acc=ChatPromptTemplate(...)
chain_access = prompt_acc | self.llm
access_status = chain_access.invoke(...)

If Allowed, Execute CRUD Operation and
Return Response

if access_status == "Allowed":
control = self.fetch_crud_control()

if function_name -> read:
result = control.read(*params)

elif function_name -> create:
result = control.create(*params)

elif function_name -> update:
result = control.update(*params)

elif function_name -> delete:
result = control.delete(*params)

return responses

GitHub CRUD Script

from accesscontrol import GitHubAccess

class GitHubCRUD:
def __init__(self, employees_csv_path, code_json_path):

self.access = access_control
self.employees_df = ...
self.code_data = ...
self.code_json_path = ...

def read(self, emp_id, path):
"""Reads GitHub code."""
check -> access.is_valid_employee(emp_id):

if (access.path_exists(...) and
(access.is_owner(...) or
access.is_engg_lvl_10_or_above(...) or
access.is_cto_or_lvl_14(...))):
for entry in self.code_data:

if entry["path"] == path:
return entry

print("Error:␣Code␣not␣found.")
else:

print("Error:␣Access␣denied.")

def create(repo_name, emp_id, path, ...):
"""Creates a new GitHub code entry."""
....

def update(self, emp_id, path, content, ...):
"""Updates an existing GitHub code entry."""
check -> access.path_exists(...)
check- > access.is_valid_employee(...)

if (access.is_owner(...) or
access.is_engg_lvl_10_or_above(...) or
access.is_cto_or_lvl_14(...)):
for entry in self.code_data:

if entry["path"] == path:
update entry

print("Error:␣Code␣not␣found.")
else:

print("Error:␣Access␣denied␣for␣update.")

def delete(self, emp_id, path):
"""Deletes a GitHub code entry."""
....

GitHub Access Check

class GitHubAccess:
def __init__(self, employees_csv_path, code_json_path):

self.employees_df = ...
self.code_data = ...
self.code_json_path = ...

def path_exists(self, path, code_json_path) -> bool:
"""Checks if the GitHub code path exists."""
....

def is_valid_employee(self, emp_id) -> bool:
"""Checks if the employee ID exists and is valid."""
....

def is_owner(self, path, emp_id) -> bool:
"""Checks if the employee is the owner of the code

path."""
...

def is_engineer_lvl_10_or_above(self, emp_id) -> bool:
"""Checks if the employee is an Engineer with level

>= 10."""
....

def is_cto_or_lvl_14(self, emp_id) -> bool:
"""Checks if the employee is a CTO with level 14."""
....

9184

Table 8: List of Apps, Tools, and their Descriptions

App Tool Description

HR System employee_data_read
Reads or Fetches the employee record based on emp_id, name,

email or semantic query (vector DB).
HR System employee_data_create Creates a new employee record.
HR System employee_data_update Updates an existing employee record.
HR System employee_data_delete Deletes an employee record (sets is_valid to False).

Enterprise
Mail System

enterprise_mail
_system_read

Reads email data based on sender’s email, recipient’s email,
optional thread ID, and optional email ID or semantic query

(vector DB). Retrieves user-specific emails, emails in a thread,
or a specific conversation while enforcing access control.

Enterprise
Mail System

enterprise_mail
_system_create

Creates a new email conversation. Generates unique email and
thread IDs, validates participants, and stores the email in the

database.

Enterprise
Mail System

enterprise_mail
_system_update

Updates an existing email conversation by modifying the
subject, body, importance, category, signature, or confidentiality

notice. Ensures user authorization before making changes.

Enterprise
Mail System

enterprise_mail
_system_delete

Deletes an email conversation based on user ID, thread ID, and
email ID. Ensures the user is a participant and has permission

before removing the email.

Chats conversations_create
Creates a new conversation entry in a particular software

engineer team between emp1 and emp2 if the conversation ID
does not already exist.

Chats conversations_read

Reads and displays a conversation between emp1 and emp2
based on their emp_id’s, conversation_id or semantic query

(vector DB). Only authorized employees either emp1 or emp2
can access the conversation.

Chats conversations_update
Updates an existing conversation entry if the conversation exists

between emp1 and emp2 of software engineer team.

Chats conversations_delete
Deletes an existing conversation entry if the conversation exists

between emp1 and emp2 of software engineer team, the
employee is authorized to delete it, and the repository is valid.

Workspace github_read

Reads and displays the GitHub repository along with their
issues based on specific path, repo_name or semantic query

(vector DB) or fetches all repositories accessible to an employee.
Ensures access control before retrieving data.

Workspace github_create
Creates a new GitHub code entry. Ensures the path is unique,

the employee is valid, and generates a hash for content integrity.

Workspace github_update
Updates an existing GitHub code entry. Ensures the path exists,
the employee has sufficient access rights, and updates content

with a new hash if modified.

Workspace github_delete
Deletes a GitHub code entry. Ensures the employee has the

appropriate access rights and removes the code entry if
permitted.

Sales products_create
Creates a new product entry if the product ID doesn’t already

exist, and the employee has the required access level.

Sales products_read
Reads and displays product details based on product_id or

semantic query (vector DB) if the employee has the required
access level and the product ID exists.

Sales products_update
Updates an existing product entry if the product ID exists, and
the employee has the required access level. Displays the product

details before and after the update.

Sales products_delete
Deletes an existing product entry if the product ID exists, and
the employee has the required access level. Confirms deletion

by attempting to read the product after deletion.

Sales product_sentiment_create
Creates a new product sentiment entry if the product ID,

customer ID, and employee have the necessary access rights.

Sales product_sentiment_read
Reads and displays the product sentiment data based on product
ID, customer ID or semantic query (vector DB) and employee

access rights.

Sales product_sentiment_update
Updates an existing product sentiment entry if the product ID,
customer ID, and employee have the necessary access rights.

9185

App Tool Description

Sales product_sentiment_delete
Deletes a product sentiment entry if the product ID, customer

ID, and employee have the necessary access rights.

Sales sales_create
Creates a new product entry if the product does not already exist

and the employee has the required permissions.

Sales sales_read
Reads and displays product sales details based on the product

ID, product_name, customer_id, customer_name,
data_of_purchase or semantic query (vector DB).

Sales sales_update
Updates an existing product sales entry if the product exists, the
employee is authorized, and the required permissions are met.

Sales sales_delete
Deletes an existing product sales entry based on access rules

and authorization. Ensures the product exists and the employee
has the necessary permissions.

Sales customer_support_chats
_create

Creates a new support entry with employee ID, product ID,
customer ID, text, and an optional interaction date. Validates

inputs before appending data to the support log.

Sales customer_support_chats
_read

Reads customer support chats between employee and customer
based on employee ID, product ID, customer ID or semantic
query (vector DB). Ensures employee validation and access

control before retrieving records.

Sales customer_support_chats
_update

Updates an existing support record with new text and an
interaction date. Ensures the entry exists and the employee has

necessary permissions before modifying data.

Sales customer_support_chats
_delete

Deletes a support entry based on employee ID, product ID, and
customer ID. Checks access control and validates inputs before

removing the record.

IT Solutions it_service_management
_create_issue

Creates a new IT helpdesk issue if the employee has access and
the issue ID doesn’t exist.

IT Solutions it_service_management
_read_issue

Reads and displays a IT helpdesk issue that is raised by an
employee with id raised_by_emp_id and handled by IT

department employee with employee ID emp_id or semantic
query (vector DB) if the employee has access.

IT Solutions it_service_management
_update_issue

Updates an existing helpdesk issue if the employee has access.

IT Solutions it_service_management
_delete_issue

Deletes a helpdesk issue if the employee has access.

Social
Platform social_platform_create Creates a new post in the clubbed posts JSON.

Social
Platform social_platform_read Reads a post from the clubbed posts JSON.

Social
Platform social_platform_update Updates an existing post in the clubbed posts JSON.

Social
Platform social_platform_delete Deletes a post from the clubbed posts JSON.

Internal
Overflow overflow_read Reads and displays an overflow post if the user has access.

Internal
Overflow overflow_create

Creates a new overflow post if the user is a valid employee and
the post ID is unique.

Internal
Overflow overflow_update

Updates an existing overflow post if the user is the owner and a
valid employee.

Internal
Overflow overflow_delete

Deletes an overflow post if the user is the owner and a valid
employee.

Enterprise
Policy

Documents
document_read

Retrieves the relevant data from the policy document pds using
ColPali

LLM Call llm_call General purpose llm call

9186

Domain Goal Template
Business Operation Send an email about scheduling a meeting
Business Operation Send an email about Performance Management

HR Send an email requesting for leaves
HR Update the Salary of employee [Employee ID] to $150000

Sales Get the details of [Product ID or Product Name] (id, name, price, description) with the most reviews
from customers.

Sales Get the sentiment (positive/negative/neutral) from the customer’s review content for [Product ID or
Product Name].

SWE Update the metadata of a particular repository
SWE List the names of all the GitHub repositories owned by [Employee ID]

IT Get all my tickets on [date] with ‘high‘ priority, give ID and list them
IT Send a message about new Asset Configurations

Table 9: Domain experts curated task goal templates for the EnterpriseBench task curation, organized by domain.

Data Source Data Source Elements Data Formats Collected/Generated # Instances Data Origin Collected Source Link

Collaboration Tools
(Chats)

HR

Business Development

Sales

Management

IT

SDE

JSON Generated

500

500

500

500

500

500

Employees.csv +

GitHub Code +

Policy Documents +

Sales + etc.

-

Customer Relation
Management

Customer Support Chats

Product Sentiments

Customers

Customer Orders

Products

Sales

JSON

JSON

JSON

PDF

JSON

JSON

JSON

Generated

Collected

Collected

Generated

Collected

Collected

Collected

1000

13500

832

832

1352

13511

1700

Product Sentiments +

Customer.csv +

Employees +

Sales

Product Sentiments
Customers (Extracted from
Product sentiments)

Policy Documents Policy Documents
PDF

Collected
24

-
Documents Collected from
Google Datasets

Enterprise Mail
System

HR

Finance

Sales

Management

IT

SDE

Other Dept Emails

JSON Generated 7000

Employees.json +

GitHub Code +

Policy Documents +

Sales + etc.

-

Enterprise Social
Platform

Tech Crunch Posts

(Social Platform)
JSON Collected 39115 -

Tech Crunch Posts

Business and
Management

Clients

Vendors

JSON

JSON

Generated

Generated

400

400
- Open Source Business Datasets

HR Management

Employees

Resumes

Roles

JSON

PDF

PDF

Collected

Generated

Generated

1265

1265

1 * 32

Employees.csv
LinkedIn Profiles (Ayoobi et al.,
2023)

Enterprise Overflow
Technical Posts

(like StackOverflow)
JSON Collected 8398 Posts - Stack Overflow Posts

IT Service
Management

IT Tickets JSON Collected 163Tickets - Help Desk Tickets

Workspace GitHub Repository JSON Collected
29241

957

GitHub +

Employees.json
GitHub Code

Table 10: Overview of Data Sources used in the EnterpriseBench sandbox. The table includes data domains,
elements, formats, whether the data was collected or generated, number of instances, data origin, and links to public
sources (if applicable).

9187

https://www.kaggle.com/datasets/karkavelrajaj/amazon-sales-dataset
https://datasetsearch.research.google.com/
https://www.kaggle.com/datasets/thibalbo/techcrunch-posts-compilation
https://huggingface.co/datasets/mikex86/stackoverflow-posts
https://www.kaggle.com/datasets/tobiasbueck/email-ticket-text-german-classification
https://huggingface.co/datasets/codeparrot/github-code

Figure 5: Expert-curated ER diagram for the EnterpriseBench sandbox

9188

Figure 6: Expert-curated employee hierarchy for the
EnterpriseBench sandbox

Model Complexity ReAct w/ Planning

GPT-4o w/ LangChain
Easy 0.39 0.61
Hard 0.21 0.35

o1-mini w/ LangChain
Easy 0.44 0.67
Hard 0.26 0.39

Table 11: Performance comparison of models with Re-
Act vs. planning, grouped by task complexity.

Model Name Model ID Provider Region Temp. Max Tokens Max Retries

Claude 3.5 Sonnet anthropic.claude-3-5-sonnet-20240620-v1:0 Amazon Bedrock us-east-2 0 Default -
LLaMA 3 8B Instruct meta.llama3-1-8b-instruct-v1:0 Amazon Bedrock us-west-2 0 Default -
LLaMA 3 70B Instruct meta.llama3-3-70b-instruct-v1:0 Amazon Bedrock us-east-2 0 Default -
GPT-4o gpt-4o Azure OpenAI - 0 Default 2
o1-mini o1-mini Azure OpenAI - 0 25,000 2

Table 12: Hyperparameter settings for API calls.

Model Top-K Truncation Padding Similarity Metric

vidore/colpali 1 - - Default
ColBERT 5 True True Cosine Similarity

Table 13: Retriever configurations for similarity-based
search.

Profession Gender Age
Software Engineer M 25
Senior Engineer F 29
Sales Development Repre-
sentative

M 28

Sales Manager F 35
IT Engineer M 29
Technical Assistant M 32
HR Head F 40
Lead HR F 30
Finance Associate M 23
Finance Manager M 40

Table 14: Domain Experts Information: Profession,
Gender, and Age Information

9189

Hey Steve, I’ve been working on the
‘NodeLogSerializer‘ in the ‘api_logs‘
module.I used the ‘Auth‘ class from

the ‘framework‘ module to
authenticate the request. What’s the

purpose of using ‘Auth‘ in this
context?

Hi John, I think you’re using ‘Auth‘ to
handle authentication for the

serializer.Am I right?

Yeah, that’s correct. I’m using it to
ensure the request is coming from
an authenticated user. But I’m not

sure if it’s the best approach.
Should I be using a more robust

authentication mechanism?

I’d say it’s a good start, but it might
not be the most secure way to handle
authentication. Have you considered

using a library like ‘django-all auth‘ for
more robust authentication?

I haven’t looked into that yet,
but I’m open to suggestions.
What do you think about the

code structure and
organization of the serializer?

I think it’s generally well-organized,
but I’d suggest breaking it down into

smaller functions or methods for
better modularity.

Thanks for the feedback! I’ll
look into that.

John

John

John

John

Steve

Steve

Steve

Figure 7: Example from the EnterpriseBench sandbox: Collaboration Tools chat between 2 employees of an
engineering department

9190

Hi, I purchased the Camel Oil Pastel
with Reusable Plastic Box - 50 Shades
for my 5-year-old daughter. She loves

the colors, but I'm concerned because
some of the pastels are breaking easily

when she applies more pressure. Is
there anything we can do about this?

Hello! Thank you for reaching out to us about
your concern with the Camel Oil Pastel set. I'm
happy to help. Sorry to hear that some of the
pastels are breaking easily. This isn't the
experience we want for our customers,
especially the young artists like your daughter.
To better understand the situation, could you
please tell me:
1. Are all the pastels breaking, or is it just a

few specific shades?
2. 2. Have you noticed if the breaking

occurs more frequently on certain types
of paper or surfaces?

3. 3. Have you or your daughter used oil
pastels before, or is this the first time?

1. It's about 5 of them so far,
different shades.

2. 2. Yes, it happens more on
smooth paper, less on
textured or sketching paper.

3. 3. This is her first time with oil
pastels.

Thank you for providing that detailed information. It
helps a lot in diagnosing the issue. Given that the
breaking is more frequent on smooth paper, it
might be due to the lack of texture for the pastels to
grip. For smoother surfaces, we recommend using
a fixative (available at most art supply stores)
between layers to prevent smudging and potentially
reduce breakage. However, since this is your
daughter's first time with oil pastels, I'd also like to
offer some general tips for handling them gently but
effectively.
Additionally, since 5 pastels have broken, I'd like to
offer a replacement for those specific shades.
Please let me know if this is something you'd be
interested in, and I'll guide you through the process.
Lastly, to ensure your daughter continues to enjoy
her art, I'm including a link to our \"Tips for Using Oil
Pastels\" guide, which might be helpful for both of
you.

That sounds great, thank you! Yes,
please, a replacement for the

broken pastels would be
wonderful. And thank you for the

guide link, I'll definitely check it out.
You're welcome! I'm glad we could find a

solution that works for you and your daughter.
For the replacement, I'll need to send you a
quick form to fill out with the order number,

the specific shades that broke, and your
shipping address. You should receive it in your

email within the next 10 minutes. If you have
any questions or need assistance with the

form, please don't hesitate to ask.

Customer

Customer

Customer

Rep

Rep

Rep

Figure 8: Example from the EnterpriseBench sandbox: Customer Support Chat between a customer and sales
representative

9191

Date: 2012-03-18 06:58:29 IST
Sender: aji.joseph@inazuma.com,
Recipient: deepa.gangadharan@inazuma.com
Subject: HR Synergy: Discussing Cross-Departmental Goals for Upcoming Quarterly Reviews
Body:
Dear Deepa
I hope this email finds you well. As we approach the upcoming quarterly reviews, I wanted to touch base with you regarding the HR synergy project. As you know, our department’s goals are
closely aligned with the company’s overall objectives. I’d like to schedule a meeting to discuss how we can work together to achieve these goals. Please find attached the draft goals
document for your review. I’ve highlighted the key areas where we need your input. Looking forward to hearing from you soon.
Importance: High
Category: INTERNAL
Signature: Aji Joseph, HR Generalist, Inazuma Corporation, Bangalore
Confidentiality Notice: This email contains confidential information intended only for the use of the individual or entity named above. Any unauthorized use, disclosure, or distribution is
strictly prohibited.

Data: 2021-03-21 22:52:11 IST
Sender: deepa.gangadharan@inazuma.com
Recipient: aji.joseph@inazuma.com
Subject: Re: HR Synergy: Discussing Cross-Departmental Goals for Upcoming Quarterly Reviews
Body:
Hi Aji,
Thanks for reaching out and sharing the draft goals document. I’ve reviewed it and have some suggestions for the ’Employee Engagement’ section. I’ve attached my feedback document for
your reference. Would it be possible to schedule the meeting or next Wednesday at 2 PM? I’ve also invited our team lead, Rohan, to join the discussion. Looking forward to your confirmation.
Importance: Normal,
Category: FOLLOW-UP
Signature: Deepa Gangadharan, HR Manager, Inazuma Corporation, Bangalore
Confidentiality notice: This email contains confidential information intended only for the use of the individual or entity named above. Any unauthorized use, disclosure, or distribution is
strictly prohibited.

Data: 2021-03-22 14:52:11 IST
Sender: aji.joseph@inazuma.com
Recipient: deepa.gangadharan@inazuma.com
Subject: Re: HR Synergy: Discussing Cross-Departmental Goals for Upcoming Quarterly Reviews
Body:
Hi Deepa,
Thanks for your prompt response and valuable feedback. I've reviewed your suggestions and incorporated them into the revised goals document (attached). I've also confirmed the
meeting with Rohan for next Wednesday at 2 PM. Please note that I've marked the 'Employee Retention' section as 'High Priority' in the revised document. I'd like to discuss this further during
the meeting. See you both on Wednesday..
Importance: High,
Category: FOLLOW-UP
Signature: : Aji Joseph, HR Generalist, Inazuma Corporation, Bangalore
Confidentiality notice: This email contains confidential information intended only for the use of the individual or entity named above. Any unauthorized use, disclosure, or distribution is
strictly prohibited.

Figure 9: Example from the EnterpriseBench sandbox: Mail delivery between an employee and HR

9192

Figure 10: Access Control Design for the EnterpriseBench Sandbox

9193

A.5 LLM Prompts

Below are the prompts used for LLM-based generation. These prompts were initially
created using a system prompt and then refined through human intervention.

A.5.1 Prompts for Task Generation

Entity Extraction - Filter out entities by inference tools on context
You are a Tool Dependency Inference Agent.

Input:
context={context}
tools={tools}

Instructions
You are given a natural language *context* describing what the user wants to
analyze or understand, along with a list of available tools. Your job is to
map the context to the functionality of the tools, and describe the expected
outputs if each tool were applied to this context.

- DO NOT generate verbose or overly synthetic descriptions.
- GENERATE THE FULL OUTPUT.

- Instead, for each tool, generate what the output **should look like** (in
tabular format, dictionary, or concise key points) when used for the provided
context.

- Generate the expected output of each tool given in ‘tools‘.

- Make sure your response is grounded in the tool descriptions. Do NOT make
assumptions beyond the capabilities defined in each tool.

Output Format:
Return a JSON structure with keys as tool names and values as the expected
output structures when each tool is called on the provided context.

Examples:
.....

Subgoal Decomposition - Create plan to execute the task
You are a SubGoal Generating Agent that decomposes a high-level goal into
smaller, actionable subgoals.

9194

Input:
data_chain={data_chain}
primary_goal={primary_goal}
tool_inference={tool_inference}
context={context}

Instructions
Your task is to break down the given primary goal into granular subgoals. Each
subgoal must:

- Stay strictly aligned with the original primary goal.
- Don’t assume context is direct input; first subgoal(s) must extract it using
tools IF NECESSARY, with arguments derived from the primary_goal (note: emp_id
is always given, for product ID and Customer ID fetch details if not mentioned
in primary_goal).
- Map to **one** tool from the provided tool_inference.
- Operate on a **single data source** from the data_chain.
- Optionally use the output from the previous subgoal to enable layered
analysis.
- Avoid redundancy or synthetic-sounding tasks.

DO NOT include subgoals that are irrelevant or too broad.
DO NOT combine multiple tools in a single subgoal.

Output Format:
Return a JSON with a list of precise subgoals required to achieve the primary
goal.

Examples:
.....

Task Template Generation - Create Task Template for each Subgoal
You are a Task Template Generating Agent.

Input:
subgoals={subgoals}
tool_inference={tool_inference}
context={context}

Instructions
Your goal is to convert each subgoal into a natural-sounding question template
that:
- Could realistically be asked by a Domain expert with details {persona} in an
enterprise setting.
- Matches the intent of the subgoal.
- Uses placeholders (e.g., <product>, <issue>, <device>) that correspond to
elements in the provided context.
- Is answerable using the tool mentioned in the corresponding tool dependency.

9195

- Use first-person phrasing as if the question is being asked directly.
- Ensure the question naturally follows from the subgoal and reflects its
purpose.
- Each question must map clearly to one tool dependency.
- Do not fabricate placeholders — derive them from the context.
- Avoid overly synthetic or robotic phrasing.

Output Format:
Return a list of question templates, one for each subgoal.

Examples:
.....

Final Task Generation - Create Final Task with Ground Truth
You are a Human Domain Expert tasked with curating high-quality, structured
business tasks that reflect realistic analytical workflows.

Input:
persona={persona}
data_chain={data_chain}
primary_goal={primary_goal}
subgoals={subgoals}
tool_inference={tool_inference}
templates={templates}
Ground Truth Context={context}

Instructions

Your objective is to generate a well-structured, domain-relevant task and its
subtasks grounded in business context, using the knowledge of a human domain
expert.

Step 1: Create a single task
- Use the ‘primary_goal‘ to formulate a task that reflects a realistic and
meaningful question a **domain expert in the role described by ‘persona‘**
would ask.
- Don’t change the intent of the primary goal.
- Just rephrase the primary goal into a task specific question.
- Don’t add SUMMARIZE, ANALYZE etc. for primary goal, stick to the goal only
- Avoid generic phrasing or overly robotic structure.
- The tone should be informed, goal-directed, and tailored to the needs and
context of the given persona.
- The reasoning behind the task should reflect the depth, clarity, and
practicality that a professional in this domain would apply.
- Don’t synthetically include terms that changes the primary_goal

Step 2: Create subtasks
For each subgoal:
- Select the corresponding template from ‘templates‘.
- Ground the template into a **realistic subtask question** by replacing

9196

placeholders using only the ‘context‘.
- Identify the appropriate tool from ‘tool_inference‘.
- Select the most relevant stage from the ‘data_chain‘ that helps accomplish
this subgoal.
- Derive a **closed-form ‘subtask_ground_truth‘** from the ‘context‘. The
answer should reflect how a **human domain expert** would interpret and explain
the outcome.
- Provide a ‘thinking_trace‘ that explains:
> "To answer this subgoal, we need to apply <tool_dependency> on
<selected_stage_from_data_chain> to extract <target insight>."
- Return the following fields for each subtask:
- ‘subgoal‘
- ‘question‘ (grounded from template)
- ‘subtask_ground_truth‘ (explicit, closed-form, and written in the tone of a
human domain expert)
- ‘thinking_trace‘
- ‘data source‘

Step 3: Add subtask dependency graph
- Define the chronological or logical dependencies among subtasks as a directed
graph only when the thinking_trace or subtask_ground_truth of current subtask
depends upon earlier subtask(s) (e.g., 1→2; 1,3→4).
- Ensure the ordering reflects realistic reasoning flow by a domain expert.

Step 4: Create final ground truth
- create the final ‘ground_truth‘ from Ground Truth Context.
- The final answer should be constructive, precise, and demonstrate how a human
domain expert would explain the conclusion using insights from each subtask.
- Avoid ambiguity. Focus on actionable insights and detailed, contextual
explanations.
- Clearly emphasize any quantitative figures, key features, or specific stats
present in the subtask_ground_truth.

Guidelines
- Do **not** invent entities or facts—rely only on what’s grounded in the
‘Ground Truth Context‘.
- Tailor the language and tone to match the persona’s domain knowledge and role.
- Do not reuse the word "analyze" for every subtask—use domain-specific verbs
and phrasing.
- Prioritize realism, precision, and interpretability in every output.
- Treat this as if you are preparing tasks and answers for executive review or
expert-level decision-making.
- Do not include these kinds of statements in subtasks (// Additional subtasks
would follow similar structure for the remaining repositories), include all,
don’t do incomplete generations.

Examples:
.....

9197

Validation - validate the task across quality checklist
You are an expert evaluator for employee-specific task generation quality.
Your job is to evaluate whether a generated task and ground truth meet
strict enterprise-grade standards for clarity, precision, realism, and privacy
adherence.

Inputs
Context Information:
{formatted_context}
Generated Task:
- Task: {current_task["task"]}
- Ground Truth: {current_task["ground_truth"]}
Evaluation Criteria:
Please evaluate the following seven questions and provide a YES or NO answer
for each, along with a detailed explanation. Each question enforces a specific
quality standard for secure, grounded, and useful employee-specific task
generation.

1. Is the task meaningfully aligned with the context content [e.g.,
employee interactions, performance logs, internal communications, technical
contributions]?
- The task should logically emerge from the provided context and reflect
personal, employee-specific insights.
- A good task references themes like appraisals, IT tickets, communication
patterns, or personal contributions.
- A bad task is disconnected, overly general, or focused on organization-wide
information the employee shouldn’t access.

2. Is the task specific, closed-ended, and fully grounded in the context
without requiring speculation?
- A good task is answerable based only on the provided context and targets
a precise insight.
- A bad task is vague, speculative, or assumes external knowledge not
represented in the context.

3. Does the task avoid referencing or implying the presence of context (e.g.,
“according to my data,” “based on the logs,” or “from the context”)?
- A well-formed task should feel natural and conversational, as if the
employee is asking a smart assistant.
- It should never acknowledge that it’s grounded in a hidden data layer.

4. Does the ground truth directly and clearly answer the task using only
context-derived facts, without ambiguity or open-endedness?
- A valid ground truth gives a complete, unambiguous response aligned with
the task.
- It must resolve the question without hedging or deferring.

5. Does the ground truth avoid meta-references (e.g., “the system says,”
“based on the data,” “the context shows”)?
- A high-quality answer should stand on its own, like a statement from a
knowledgeable system or assistant.
- Meta-language reduces clarity and realism.

9198

6. Does the task and ground truth resemble a realistic exchange between an
enterprise employee and a smart assistant?
- The language should reflect enterprise professionalism.
- The task must be in first person (e.g., “Can I see,” “Do I have,” “Is
there any update on my. . . ”).
- The tone should reflect how a real employee interacts with a system.

7. Does the task respect employee privacy boundaries and reflect insights that
only the employee is authorized to access?
- Tasks should refer only to the requesting employee’s data (e.g., my
performance, my GitHub contributions).
- It must not request information about peers, teams, or enterprise-wide
metrics unless explicitly scoped to the individual.

Format your response exactly as follows:
ˋˋj̀son
"question1": <
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"question2": <
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"question3": <
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"question4":<
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"question5":<
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"question6":<
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"question7":<
"answer": "YES/NO",
"explanation": "Your detailed explanation here"
>,
"overall_pass": true/false
ˋˋ`

9199

Improvement - improve the task for ambiguity
You are an expert in rephrasing and improving enterprise-grade employee-specific tasks
for internal smart assistants. Your job is to revise a task and ground truth that failed strict
enterprise validation.

Context Information: {formatted_context}
Expert who curated this task:
- Persona: {persona}
Current Task:

• Task: {current_task["task"]}

• Ground Truth: {current_task["ground_truth"]}

Evaluation Results:
{json.dumps(evaluation, indent=2)}

Instructions: You must revise the task and/or the ground truth to address specific weaknesses and
ensure the highest standards for clarity, realism, and employee privacy.
Task Revisions:

• If question1, question2, or question4 is marked NO:

– Rewrite the task to reflect employee-specific insights from the context (e.g., appraisal
feedback, performance review details, ticket status, contribution history).

– Ensure it is specific, fact-seeking, closed-ended, and answerable directly from the context.
– Make the task sound like a natural enterprise query from a real employee to a smart

assistant.
– Avoid references like “based on the logs,” “from my context,” etc.

• If question7 is marked NO:

– Ensure the task only accesses data the employee is authorized to see (e.g., “my tasks,”
“my appraisal”).

– Avoid questions about peers, teams, or organization-wide metrics.
– Use first-person phrasing (e.g., “Can I check...”, “Do I have...”, “Is there any update on

my...”).

Ground Truth Revisions:

• If question3 or question5 is marked NO:

– Ensure the response is precise, complete, and self-contained.
– Remove any meta-references (e.g., “the context says...”).
– Avoid vague phrases like “others,” “may vary,” or “etc.”
– Use specific, grounded details from the context.

Realism & Tone:

• If question6 is marked NO:

– Adjust the tone to reflect a professional employee-to-assistant interaction.
– Avoid robotic or overly formal phrasing.
– Mimic realistic enterprise queries—natural, polite, and context-aware.

Additional Guidelines:

9200

• Do not invent data; only use what’s provided in the context.

• Use actionable verbs like “check,” “determine,” “summarize,” “flag,” or “identify.”

• Maintain a first-person voice—employees are asking about themselves.

• Ensure the ground truth is verifiable and closed-form, derived from the real context.

Output Format: Return only the improved task and ground truth in the exact JSON format:

{
"task": "Your improved task statement",
"ground_truth": "Your improved ground truth"

}

9201

