Steering LLLM Reasoning Through Bias-Only Adaptation

Viacheslav Sinii', Alexey Gorbatovski!, Artem Cherepanov'?, Boris Shaposhnikov’,
Nikita Balagansky!, Daniil Gavrilov’,

I'T-Tech, 2Central University,

Correspondence: siniy.vyacheslav@gmail.com

Abstract

We show that training a single d-dimensional
steering vector per layer with reinforcement
learning, while freezing all base weights,
matches the accuracy of fully RL-tuned reason-
ing models on mathematical-reasoning tasks.
On an 8 billion-parameter model this adds only
~ 0.0016% additional parameters and repro-
duces performance across a range of base mod-
els and mathematical-reasoning benchmarks.
These results tighten the upper bound on the pa-
rameter budget required for high-level chain-of-
thought reasoning, indicating that millions of
adapter weights are unnecessary. The minimal
trainable footprint reduces optimizer memory
and inter-GPU communication, lowering the
overall cost of fine-tuning. Moreover, a logit-
lens analysis shows that the learned vectors
amplify coherent token directions, providing
clearer insight into the model’s internal compu-
tations.

1 Introduction

Reasoning models have recently made striking
gains by learning to produce a chain-of-thought
before the final answer Jaech et al. (2024); Guo
et al. (2025). Much of this progress comes from
reinforcement learning with verifiable rewards in
mathematical domains, a now-standard setup for
training reasoning models (Zeng et al., 2025; Hu
et al., 2025; Venhoff et al., 2025). However, train-
ing large models is costly, and, because of the
amount of parameters and complex internal com-
putations, the mechanisms induced by reasoning
training remain poorly understood.

In this work, we show that training just 0.0016%
of parameters suffices to match the performance of
a fully RL-tuned model. We train per-layer steering
vectors that are added to each layer’s output while
keeping all base weights fixed (see Section A for
visualization). Compared with LoRA (Hu et al.,
2022) and BitFit (Zaken et al., 2021), this approach

(i) requires orders of magnitude fewer resources
and (ii) isolates a much smaller, more interpretable
parameter set, making it easier to see what changes
during reasoning training.

We present a preliminary study showing that
these vectors amplify meaningful directions in rep-
resentation space, aligning with interpretable token
clusters such as causality (“Because”, “However”),
validation (“correctness”, “necessity”, “confirma-
tion”), and programming-language tokens.

Taken together, these results provide a simple,
resource-efficient training setup that both reduces
the cost of adapting large models and simplifies the
study of how reasoning training modifies pretrained
models.

2 Related Work

The use of steering vectors, a technique within
activation engineering, provides a direct way to
probe and manipulate model behavior with mini-
mal changes to the underlying weights. Tradition-
ally, such vectors are constructed from activation
differences on contrastive prompts (e.g., positive vs.
negative sentiment) and are typically interpreted
as feature amplifiers rather than creators of novel
behaviors (Turner et al., 2023; Panickssery et al.,
2023). They have already been used to identify
and control "reasoning” behaviours (Venhoff et al.,
2025; Ward et al., 2025). Other work demonstrates
that these vectors can also be trained, not merely
computed, allowing for more targeted control. For
example, Cao et al. (2024) optimized steering di-
rections using preference data, while Mack and
Turner (2024) and Engels et al. (2025) (building on
Betley et al. (2025)) showed that training simple ad-
ditive vectors in an unsupervised manner can elicit
complex latent behaviors, such as reasoning and
self-awareness. We apply these ideas on a scale
of a real GRPO-like training, and show that their
simlicity and interpretability benefits do not stand
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Model Setup AIME25 AIME24  AMC23 MATHS500 MinervaMath OlympiadBench Avg.
Qwen2.5-1.5B Base 00+£00 00+00 00£00 09£0.0 0.7 £0.0 03£0.0 03+0.0
Qwen2.5-1.5B Steering 1.4+£00 28+0.1 341+£0.1 575+15 203+1.8 233+0.6 232403
Qwen2.5-1.5B Full-Tune 1.2+00 41+£02 299402 584+07 206=£1.5 2224+ 1.1 22.7+04
Qwen2.5-1.5B SimpleRL-Zoo — 42+0.0 — 59.0+0.0 202400 21.0£0.0 —
Qwen2.5-1.5B Open-Reasoner — — 58.0+ 0.0 — — —
Qwen2.5-7B Base 6.7+00 133+£0.0 392+0.0 459+00 102+0.0 29.9 4+ 0.0 2424 0.0
Qwen2.5-7B Steering 70+03 12.8+0.0 50.5+0.1 747+1.0 36.6+1.1 36.6+ 1.2 36.4+£0.3
Qwen2.5-7B Full-Tune 6.6+02 13.6+02 538+0.1 77.3+£0.7 34.6+23 37.2+05 37.1+0.5
Qwen2.5-7B Open-Reasoner — — — 814 £0.0 — — —
Qwen2.5-7B Open-Reasoner (from Oat-Zero) — — 822+0.0 31.6+0.0 479 £ 0.0 —
Qwen2.5-7B SimpleRL-Zero — 15.6 £ 0.0 — 7824+0.0 38.6+0.0 404 + 0.0 —
Qwen2.5-7B R1-Distill — — — 88.1+0.0 359400 47.7+0.0 —
Qwen2.5-14B Base 33+£00 67+00 375+£00 61.7+00 203400 26.8£0.0 26.1£0.0
Qwen2.5-14B Steering 154+03 159+04 598+04 80.0+02 392417 435+ 1.1 423+02
Qwen2.5-14B Full-Tune 121+06 159404 592402 805+0.1 38.6+0.3 413+14  413+£0.1
Qwen2.5-Math-1.5B Base 33+£00 133+£0.0 27.5+0.0 322+00 94=£0.0 229+0.0 18.1£0.0
Qwen2.5-Math-1.5B  Steering 81+01 121+00 488+0.1 70.8+08 27.5+0.7 36.1+£05 339+03
Qwen2.5-Math-1.5B  Full-Tune 84+01 11.94+0.1 49.1+0.2 70.1£02 294+09 3284+ 0.5 33.6 £0.1
Qwen2.5-Math-1.5B  Oat-Zero — — — 742+£00 257400 37.6 £ 0.0 —
Qwen2.5-Math-7B Base 33+£00 167+0.0 458+0.0 522+0.0 123400 18.6 £ 0.0 248 £0.0
Qwen2.5-Math-7B  Steering 126 £0.2 244+02 625+02 799+12 360+28 441+0.8 433+£03
Qwen2.5-Math-7B  Full-Tune 140+£0.1 257+0.1 642+0.1 793+0.6 369+2.0 41.1+£0.9 435+04
Qwen2.5-Math-7B  Oat-Zero — — 80.0+0.0 30.1+0.0 41.0£0.0 —
Qwen2.5-Math-7B SimpleRL-Zero — 24.0 £0.0 — 80.2+0.0 37.54+0.0 39.0£0.0 —
LLaMa3.1-8B-It Base 00+00 10.0+£0.0 283+£0.0 523+0.0 21.14+0.0 18.4 4+ 0.0 21.74+0.0
LLaMa3.1-8B-It Steering 1.5+02 103402 324+0.7 587+£08 293+1.5 246+ 13 26.1 + 0.6
LLaMa3.1-8B-It Full-Tune 1.6 02 108+0.2 353+04 58.0+£0.7 294406 21.8+0.8 26.1 £0.1
LLaMa3.1-8B Base 00+£00 00+00 50£00 112+00 51=£0.0 20+£0.0 39+0.0
LLaMa3.1-8B Steering 03+00 03401 89401 257+09 124403 7.1+04 9.1+0.1
LLaMa3.1-8B Full-Tune 05+01 1.6+00 904+02 298+1.6 184+2.1 9.9+0.8 11.5+04

Table 1: Accuracies on six mathematical-reasoning benchmarks for three variants of each model: the Base model
(no training), a Fully-Tuned model, and our Steering model that trains only per-layer steering vectors while freezing
all other weights. For reference we also include numbers reported by SimpleRL-Zoo, Open-Reasoner, Oat-Zero,
and R1-Distill. Across models and datasets, Steering matches the performance of Fully-Tuned models.

in constrast to quality of the trained models.

We implement steering vectors only by activat-
ing only layer-wise additive biases in MLPs while
keeping all other model parameters frozen. This
approach is aligned with BitFit (Zaken et al., 2021),
which tunes only bias terms and has been shown
to effectively expose existing knowledge, often
matching the performance of full fine-tuning on lan-
guage tasks. Notably, BitFit and similar minimal-
adaptation methods sometimes underperform on
tasks requiring substantial generalization (Hu et al.,
2022); it remains unclear whether they suffice for
complex reasoning. And still, differently from Bit-
Fit, we tune only a subset of model biases, tighten-
ing the training landscape even more. These min-
imal interventions stand in contrast to parameter-
efficient finetuning methods such as prompt tuning
and LoRA (Hu et al., 2022; Li et al., 2025), or
full RL-based adaptation (Guo et al., 2025), which
actively adjust model parameters.

Our work is partly motivated by the recent results
on reasoning training only amplifying the reason-

ing behaviors already present in the base models
(Wang et al., 2025; Ye et al., 2025; Shao et al., 2025;
Liu et al., 2025a). If such a minimal intervention
is able to recover reasoning performance, this adds
as an evidence to such a claim. Our aim is to take
the study further by identifying what specific parts
of the model are holding these behaviours.

3 Methodology

3.1 Online Training

We adopt an online reinforcement learning proce-
dure loosely modeled on DeepSeek-R1 (Ahmadian
et al., 2024; Guo et al., 2025). For each prompt x,
we sample N candidate solutions ¥, . . ., yx from
the current policy mg. Each rollout y; receives a
binary reward r(z, y;) based on the presence of a
correct answer enclosed in a \boxed{. . . } tem-
plate. The model is trained with RLOO (Ahmadian
et al., 2024) objective. Other details are in Sec-
tion C.
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Layer Top-Cluster
idx

Representative tokens

Unifying idea

2 Source-code
& test-harness
vocabulary

tostring,
ComponentFixture, .SQL,
standalone, -independent,
fault, 203, @a, \Context

These are the words you meet in program-
ming projects - Angular’s ComponentFixture,
SQL file extensions, "fault" flags, HTTP sta-
tus 203, context objects, and helper functions
like toString().

2 Named entities
(people &
places)

Antonio, Pelosi, Baldwin,
Cumberland, Switzerland,
Peg, Salv-

Proper names of individuals and locations
that commonly co-occur in news articles or
knowledge-graph dumps.

17 Accuracy, val-
idation & logi-
cal necessity

correctness, correct,
precision, necessity,
possibility,

confirmation, answer,

goal, directly, derive /
deriving

These words belong to discourse about get-
ting things right - arguments, proofs, valida-
tions, QA reports, or formal specifications.

30 Causal &
contrastive
connectors

Because / because / A},
Therefore / donc, However
/ OO0HaZKO/ jedoch,

Words that introduce reasons, consequences,
or contrasts - typical of argumentative writing,

Given / Here, step

technical explanations, or test-case descrip-
tions.

Table 2: Clusters of tokens most aligned with the learned steering vectors, as measured by cosine similarity.

3.2 Steering Vector

We insert a learnable steering vector s, € R? at
the end of every transformer layer ¢ (there are L
layers in total). The vector is added directly to
the residual stream, so its dimensionality matches
the model’s hidden size d. All original weights
remain frozen; only these L steering vectors are
trained. Section A has a visualisation and Section B
contains our code implementation for clarity.

3.3 Training and Evaluation Setup

We experiment across multiple model families
and sizes: Qwen2.5-{1.5,7,14}B (Team, 2024),
Qwen2.5-Math-{1.5,7}B (Yang et al., 2024),
Llama3.1-8B, and Llama3.1-8B-Instruct
(Grattafiori et al., 2024). Training uses the
DeepScaleR dataset (Luo et al., 2025) with
sampling temperature 7 = 1, a 4K context for
Qwen2.5-Math-{1.5,73}B, and 8K for the other
models, 128 prompts per step.

We report results on six math benchmarks:
AIME24/25, AMC23, MATH500 (Hendrycks et al.,
2021a), MinervaMath (Lewkowycz et al., 2022),
and OlympiadBench (He et al., 2024). For
MATHS500, MinervaMath, and OlympiadBench we
report PASS @ 1; for AIME24/25 and AMC23 we

report AVG@32 due to their smaller size. Base
models decode greedily, whereas trained models
use sampling with 7 = 1.0 following Zeng et al.
(2025). Evaluation context length is 4K and 32K
for Qwen2.5-Math-7B and other models respec-
tively. All metrics are averaged over three evalua-
tion seeds. Unless noted otherwise (e.g., Table 1),
figures and tables show the mean score across the
six benchmarks. When available, we include num-
bers from SimpleRL-Zoo (Zeng et al., 2025), Oat-
Zero (Liu et al., 2025b), Open-Reasoner (Hu et al.,
2025), and R1-Distill (Guo et al., 2025) for con-
text. Implementations use transformers (Wolf
et al., 2019), the v1lm inference engine (Kwon
et al., 2023), and Math-Verify! for reward assign-
ment.

4 Results

4.1 Steering Vectors are Effective for
Inducing Reasoning Capabilities

Table 1 shows that steering vectors match the ac-
curacy of fully tuned models across families and
scales. The only exception is LL.aMa3.1-8B, where
steering recovers about 70% of the full-tuning gain.

"https://github.com/huggingface/Math-Verify
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Metric Full-Tune Steering
Number of Parameters 147 B 245K
Optimizer Memory 13.8GB  240KB
Per-step Time 9.94 s 0.11s
Overall Time 52m 34s

Table 3: Resource cost for Qwen2.5-14B: full fine-
tuning vs. steering. Overall Time is across 314 steps ~
1 epoch.

See Section E for results when training on the
GSMS8K and MATH datasets.

Because only a fraction of parameters is op-
timized, the approach yields substantial savings
(Table 3): the optimizer state shrinks to kilobytes
and the parameter broadcast® time drops by nearly
an hour per training epoch. Measurements for
Qwen2.5-7B and LLLaMa3.1-8B-It are detailed in
Section G.

4.2 Interpretation

To understand what the learned steering vectors
are doing inside the network, we apply the logit-
lens technique (nostalgebraist, 2020). The key idea
is to "peek" into a residual stream after a specific
transformer layer by converting it into a full vocab-
ulary distribution and then reading the most likely
tokens.

Let the row u, € R? of Wy correspond to to-
ken v. For every token we compute the cosine
similarity

<Sla uv>
el [l |

A large positive ¢;(v) means the steering vector
pushes the hidden state toward token v; a large
negative value indicates suppression.

We collect top-50 tokens for each steering vector
and ask GPT-03 to translate all non-english tokens
and group the subsets of tokens into explainable
topics (see the prompt in Appendix F).

Table 2 shows the representative token groups
from different layers of LLaMa3.1-8B-It model
trained on GSM8K dataset. At layer 2, the steer-
ing vector aligns with programming-style terms
rather than math tokens, which is surprising given
the math-oriented task. While not being from the
math domain, this use of coding tokens suggests
the model leverages structural parallels between
programming and formal math notation. It also

av) = € [-1,1].

2We broadcast trainable model parameters to v11m infer-
ence engine after each parameter update.

picks up named entities because many GSM8K prob-
lems use character names and places to set up word
problems.

At layer 17, the vector shifts to words about
checking steps and validating results. This suggests
the model uses the middle stage to verify each
reasoning step before proceeding.

At layer 30, it focuses on linking words such
as "because", "therefore", and "however". This
indicates the final stage ties statements together to
guide the answer’s flow.

Overall, the learned steering vectors appear to be
highly interpretable and relevant to the reasoning
task on the GSM8K domain.

5 Conclusion

In this paper, we have demonstrated that training
lightweight steering vectors alone can recover the
reasoning performance of fully-tuned models on
standard mathematical benchmarks. This result
carries two important implications. First, steering
vector training offers a highly parameter-efficient
and cost-effective alternative: only a small set of
layer-wise bias terms must be learned, drastically
reducing storage and communication time require-
ments. Second, it isolates a small, interpretable set
of parameters that capture the effects of reasoning
training, simplifying the study of the mechanisms
of models’ reasoning abilities.

Limitations

First, our experiments cover a narrow slice of
online-training settings. Broader sweeps — across
settings, tasks, and model sizes — would test gener-
ality and may reveal cases where steering vectors
fall short of full fine-tuning.

Second, while the logit-lens provides a conve-
nient way to inspect how steering vectors influence
token logits at each layer, it does not capture the
downstream transformations applied by subsequent
layers. As a result, later computations may mod-
ify the initial steering signal, leading to interpre-
tations of logit-lens itself that conflict with layer-
wise observations. Applying more comprehensive
interpretation techniques, such as probing classi-
fiers, causal interventions, or circuit-level analysis,
could yield deeper insights into how steering vec-
tors shape the model’s behavior.

9205



Acknowledgment

Viacheslav dedicates his contribution in this paper
to his girlfriend, Marina.

References

Arash Ahmadian, Chris Cremer, Matthias Gallé,
Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. 2024. Back to ba-
sics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint
arXiv:2402.14740.

Jan Betley, Xuchan Bao, Martin Soto, Anna Sztyber-
Betley, James Chua, and Owain Evans. 2025. Tell
me about yourself: Llms are aware of their learned
behaviors. arXiv preprint arXiv:2501.11120.

Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin,
Lu Lin, Fenglong Ma, and Jinghui Chen. 2024. Per-
sonalized steering of large language models: Versa-
tile steering vectors through bi-directional preference
optimization. Advances in Neural Information Pro-
cessing Systems, 37:49519-49551.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Josh Engels, Neel Nanda, and Senthooran Rajamanoha-
ran. 2025. Interim research report: Mechanisms of
awareness. Al Alignment Forum. https://www.al
ignmentforum.org/posts/m8WKfNxp9eDLRkCk9
/interim-research-report-mechanisms-of-a
wareness.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding
Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, and 1 oth-
ers. 2024. Olympiadbench: A challenging bench-
mark for promoting agi with olympiad-level bilin-
gual multimodal scientific problems. arXiv preprint
arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and

Jacob Steinhardt. 2021a. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xi-
angyu Zhang, and Heung-Yeung Shum. 2025. Open-
reasoner-zero: An open source approach to scaling
up reinforcement learning on the base model. arXiv
preprint arXiv:2503.24290.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, and 1 others. 2022. Solving quan-
titative reasoning problems with language models.
Advances in neural information processing systems,
35:3843-3857.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xi-
angxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, and
1 others. 2025. Llms can easily learn to reason from
demonstrations structure, not content, is what mat-
ters! arXiv preprint arXiv:2502.07374.

Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang,
Chao Du, and Min Lin. 2025a. There may not be aha
moment in r1-zero-like training — a pilot study. ht
tps://oatllm.notion.site/oat-zero. Notion
Blog.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025b. Understanding r1-zero-like training: A criti-
cal perspective. arXiv preprint arXiv:2503.20783.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and
Ion Stoica. 2025. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl. https://pretty

9206


https://www.alignmentforum.org/posts/m8WKfNxp9eDLRkCk9/interim-research-report-mechanisms-of-awareness
https://www.alignmentforum.org/posts/m8WKfNxp9eDLRkCk9/interim-research-report-mechanisms-of-awareness
https://www.alignmentforum.org/posts/m8WKfNxp9eDLRkCk9/interim-research-report-mechanisms-of-awareness
https://www.alignmentforum.org/posts/m8WKfNxp9eDLRkCk9/interim-research-report-mechanisms-of-awareness
https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

-radio-b75.notion.site/DeepScaleR-Surpass
ing-01-Preview-with-a-1-5B-Model-by-Sca
ling-RL-19681902c1468005bed8ca303013a4e?2.
Notion Blog.

Andrew Mack and Alex Turner. 2024. Mechanistically
eliciting latent behaviors in language models. Al
Alignment Forum. https://www.alignmentforum
.org/posts/ioPnHKFyy4Cw2Gr2x/mechanistic
ally-eliciting-latent-behaviors-in-langu
age-1.

nostalgebraist. 2020. interpreting gpt: the logit lens.
https://www.alignmentforum.org/posts/AcK
RB8wDpdaN6v6ru/interpreting-gpt-the-logit
-lens.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg
Tong, Evan Hubinger, and Alexander Matt Turner.
2023. Steering llama 2 via contrastive activation
addition. arXiv preprint arXiv:2312.06681.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yip-
ing Wang, Sewoong Oh, Simon Shaolei Du, Nathan
Lambert, Sewon Min, Ranjay Krishna, and 1 others.
2025. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,
David Udell, Juan J Vazquez, Ulisse Mini, and
Monte MacDiarmid. 2023. Steering language mod-
els with activation engineering. arXiv preprint
arXiv:2308.10248.

Constantin Venhoff, Ivin Arcuschin, Philip Torr, Arthur
Conmy, and Neel Nanda. 2025. Understanding rea-
soning in thinking language models via steering vec-
tors. arXiv preprint arXiv:2506.18167.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, and 1 others. 2025. Re-
inforcement learning for reasoning in large language
models with one training example. arXiv preprint
arXiv:2504.20571.

Jake Ward, Chugiao Lin, Constantin Venhoff, and Neel
Nanda. 2025. Reasoning-finetuning repurposes la-
tent representations in base models. arXiv preprint
arXiv:2507.12638.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and 1 others. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang

Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. arXiv
preprint arXiv:2503.18892.

9207


https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://www.alignmentforum.org/posts/ioPnHKFyy4Cw2Gr2x/mechanistically-eliciting-latent-behaviors-in-language-1
https://www.alignmentforum.org/posts/ioPnHKFyy4Cw2Gr2x/mechanistically-eliciting-latent-behaviors-in-language-1
https://www.alignmentforum.org/posts/ioPnHKFyy4Cw2Gr2x/mechanistically-eliciting-latent-behaviors-in-language-1
https://www.alignmentforum.org/posts/ioPnHKFyy4Cw2Gr2x/mechanistically-eliciting-latent-behaviors-in-language-1
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

A Steering Vector Visualization

- Transformer Transformer Transformer @
F Layer Layer Layer
Residual Stream Residual Stream Residual Stream

Figure 1: Layer-wise trainable steering vectors. All base transformer weights are frozen (blue). The only trainable
parameters are one d-dimensional vector vy per layer (orange), added to the residual stream at every token position:
h&t — hg’t + vy.

B Steering Vector Implementation

Steering Vector Implementation

class SteeringVector (nn.Module):
def __init__(self, hidden_size: int):
super().__init__Q)

self.hidden_size = hidden_size

self.steering_vector = nn.Parameter(
torch.zeros(self.hidden_size) .unsqueeze(0) .unsqueeze(?)

)

def forward(self, x):
return x + self.steering_vector

class TransformersQwen2DecoderLayerWithSteering(TransformersQwen2DecoderLayer):
def __init__(self, config: Qwen2Config, layer_idx: int):
super().__init__(config=config, layer_idx=layer_idx)
self.steering_vector = SteeringVector(hidden_size=config.hidden_size)

self.layer_idx = layer_idx

def forward(self, =*args, xxkwargs):
hidden_states, *rest = super().forward(*args, **kwargs)

hidden_states = self.steering_vector(hidden_states)

return (hidden_states, *rest)

- J

C Training Objective

To reduce variance, we compute a baseline b as the mean reward for all rollouts associated with x:
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The parameters are updated via a policy-gradient step:

VQJ = Eme,yNM(J»’) [a(x, y) V@ 10g 779(1/ | 1’)] ’
D LoRA

A limitation of steering vectors is that the same vector is added to every token position. We hypothesize
that this token-independence may cap performance and partly account for the gap between the full-model
baseline and steering-only training.

To let the offset be token-specific, we replace the fixed steering vector with a low-rank adaptor (LoRA)
(Hu et al., 2022) applied to the MLP down-projection in every transformer layer:

(fixed steering) h' = h + s,
(LoRA steering) h' =h+ B-A- hyp,

where h € R? is the residual stream, s € R? is a learned constant, hyp € RMLP is the intermediate
representation of MLP layer, and A and B are LoRA rank-r matrices which are the only trainable
components in this setup.

All experiments use LoRA rank r = 4, scaling factor a = 4, and no dropout following Engels et al.
(2025).

E Steering Vectors on GSM8K and MATH

Experimental Setup. We conduct experiments on four pretrained transformer checkpoints:
Qwen-2.5-1.5B (Team, 2024), Qwen-2.5-Math-1.5B (Yang et al., 2024), Llama-3.1-8B, and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024). For each model, we evaluate three training regimes:
(i) full fine-tuning, (ii) training only steering vectors, and (iii) training only LoRA (Hu et al., 2022)
adapters which may be viewed as adaptive steering vectors (Appendix D, Mack and Turner (2024)). For
LoRAs we use rank 4. In the latter two cases, all other parameters are kept frozen.

We use two mathematical datasets for training and evaluation. The GSM8K training split contains 8,790
problems (Cobbe et al., 2021); for evaluation, we randomly subsample 500 items from its original split to
shorten iteration time. The MATH corpus (Hendrycks et al., 2021b) provides 12,000 training examples, and
its evaluation split consists of 500 items, which we use as is. We report mean@8 = E,[E?_ r(x, y)] win
rates on each dataset.

All experiments are implemented using the transformers library (Wolf et al., 2019) and the v11m
inference engine (Kwon et al., 2023). Additional hyperparameter details are provided in Appendix L.

Result. Table 4 summarizes accuracy for the pretrained model, fully-tuned models, steering vectors, and
LoRA adapters. As expected, RL training yields large gains on mathematical benchmarks on all setups.
Steering vectors achieve similar improvements across nearly all model-dataset pairs and even exceed
full fine-tuning in some cases (e.g., Qwen2.5-1.5B when evaluated on MATH-500 and LLaMa3. 1-8B when
trained on GSM8K and evaluated on MATH-500, both being base models that did not undergo instruction
tuning), which we attribute to the implicit regularization of updating far fewer parameters.

If we accept the working assumption that a steering vector can only amplify features that the original
network already contains and cannot create new ones, the table gives direct evidence for that view: when
the base model "knows" how to solve the task, steering is usually enough to reach the same quality as full
fine-tuning.

There are, however, a few setups where the steering training stays noticeably below the full training - for
example, the Qwen2.5-Math-1.5B and LLaMa3. 1-8B evaluated on GSM8K. In most cases the LoRA closes
the gap completely. Because LoRA modifies a small, learned set of rank-decomposed weight matrices
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Train / Test Setup Qwen2.5-1.5B Qwen2.5-Math-1.5B Llama3.1-8B Llama3.1-8B-It

Base 0.63 29.26 1.08 66.03
Full-Tune 78.91 86.49 76.49 87.22
GSMBK / GSMBK Steering 73.84 (s.0m) 79.89 (-6.60) 70.36 (6.13) 87.22 .00
LoRA 76.49 (242 85.41 (1.08) 74.24 (225 85.41 (i3
Base 1.51 28.73 0.76 32.51
Full-Tune 40.78 65.95 16.86 46.65
GSM8K /MATH Steering 48.69 791 61.79 (4.6 22.81 (4595 48.51 (1386
LoRA 49.32 (+8.54) 64.31 (-1.69) 19.28 (+242) 49.04 (+2.39)
Base 1.51 28.73 0.76 32.51
Full-Tune 44.48 70.44 27.39 52.39
MATH /MATH Steering 51.39 @691 65.27 517 22.05 534 50.81 (159
LoRA 53.68 (+9.20) 69.35 (-1.09 24.32 (3.07) 50.40 (-1.99
Base 0.63 29.26 1.08 66.03
Full-Tune 68.57 82.56 52.12 85.03
MATH 7 GSM8K Steering 69.56 (+0.99) 7641 (615 45.24 (6388 84.02 1o
LoRA 72.53 (+3.96) 81.88 (068 52.52 (+0.40) 85.06 (+0.03)

Table 4: mean@8 accuracy for each combination of training dataset, evaluation dataset, model, and tuning setup.
Rows are grouped by Train / Test dataset pairs, and each column corresponds to a specific model variant. For
Steering and LoRA rows, the colored value in parentheses indicates the difference compared to Full-Tune for that
model - green if better, red if worse. This highlights how close lightweight methods can get to full fine-tuning
performance, and where gaps remain.

rather than a single global vector, it provides finer control over what is added to the residual stream. The
fact that LoRA always bridges the remaining gap shows that a more targeted, low-rank adjustment is the
reason why single steering vector cannot reach the performance of a fully-trained model.

F Logit Lens. GPT Prompt

GPT Prompt for Token Clustering

You will be given a list of tokens together with a score.
You should translate all non-english tokens and suggest the main topics
that unite the biggest subsets of tokens in the list.

<list>

G Training Cost Savings

(a) Number of Parameters (b) Optimizer Memory
Qwen2.5-7B Llama3.1-8B Qwen2.5-7B  Llama3.1-8B
Full-Tune 76B 8B Full Tune 7.1 GB 7.5GB
Steering 100 K 131 K Steering 98 KB 128 KB

(c) Per-step Time

Qwen2.5-7B Llama3.1-8B

(d) Overall Time (314 steps ~ 1 epoch)

Full-Tune 5.30s 5.32s
Steering 0.06 s 0.07s

Qwen2.5-7B Llama3.1-8B

Full-Tune 27.7m 27.8 m
Steering 0.314m 0.36 m

Table 5: Resource-efficiency comparison of full fine-tuning versus steering across three model sizes.



H Computational Resources

All models were trained on 16 H100 GPUs. Qwen2.5-1.5B models were trained for approx. 9 hours,
Qwen2.5-Math-1.5B for approx. 2.5 hours, LLaMa3.1-8B-It for approx. 9 hours, LLaMa3.1-8B-It for
approx. 120 hours.

I Hyperparameters

Ir num_generations

Qwen-2.5-1.5B GSMS8K Full-Tune 2 x 107 64
Steering 5 x 107* 64

LoRA-1 5x107% 64

LoRA-4 5x107* 64

MATH  Full-Tune 2 x 107° 64

Steering 5 x 10~* 64

LoRA-1 5x107* 64

LoRA-4 5x107* 64

Qwen-2.5-Math-1.5B  GSMS8K Full-Tune 2 x 107° 16
Steering 1x1073 16

LoRA-1 5x107* 16

LoRA-4 5x107% 16

MATH  Full-Tune 2 x 107° 16

Steering 1 x 1073 16

LoRA-1 5x 107 16

LoRA-4 5x107% 16

Llama-3.1-8B GSM8K Full-Tune 5 x 107° 64
Steering 5 x 1074 64

LoRA-1 1x107* 64

LoRA-4 1x10~* 64

MATH  Full-Tune 5 x 107° 64

Steering 5 x 107* 64

LoRA-1 1x107* 64

LoRA-4 1x107¢ 64

Llama-3.1-8B-Instruct GSMS8K Full-Tune 1 x 107° 16
Steering 2 x 1074 16

LoRA-1 6x107% 16

LoRA-4 1x107% 16

MATH  Full-Tune 1 x 107° 16

Steering 2 x 1074 16

LoRA-1 3x107¢ 16

LoRA-4 3 x10~* 16

Table 6: Hyperparameter settings for each model and training setup.
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