
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 914–926
November 4-9, 2025 ©2025 Association for Computational Linguistics

Parallel Continuous Chain-of-Thought with Jacobi Iteration

Haoyi Wu, Zhihao Teng, Kewei Tu*

School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{wuhy1, tengzhh2022, tukw}@shanghaitech.edu.cn

Abstract

Continuous chain-of-thought has been shown
to be effective in saving reasoning tokens for
large language models. By reasoning with
continuous latent thought tokens, continuous
CoT is able to perform implicit reasoning in
a compact manner. However, the sequential
dependencies between latent thought tokens
spoil parallel training, leading to long train-
ing time. In this paper, we propose Parallel
Continuous Chain-of-Thought (PCCoT), which
performs Jacobi iteration on the latent thought
tokens, updating them iteratively in parallel
instead of sequentially and thus improving
both training and inference efficiency of con-
tinuous CoT. Experiments demonstrate that by
choosing the proper number of iterations, we
are able to achieve comparable or even better
performance while saving nearly 50% of the
training and inference time. Moreover, PC-
CoT shows better stability and robustness in
the training process. Our code is available at
https://github.com/whyNLP/PCCoT.

1 Introduction

Chain-of-thought (CoT) enables large language
models (LLMs) to solve complex problems by gen-
erating intermediate reasoning steps (Wei et al.,
2022; Chu et al., 2024; Chen et al., 2025). However,
the explicit nature of CoT can lead to increased to-
ken consumption and lower inference speed (Sui
et al., 2025; Liu et al., 2025).

Recently, continuous CoT has been shown to be
effective in saving reasoning tokens by performing
implicit reasoning with continuous vectors (also
referred to as latent thought tokens) (Hao et al.,
2024; Shen et al., 2025). By reasoning in a con-
tinuous manner, LLMs have the freedom to reason
without being constrained in the discrete language
space, thus potentially performing reasoning more

* Corresponding author.

compactly and efficiently. However, existing ap-
proaches to continuous CoT rely on sequential de-
coding of the latent thought tokens, which leads to
long training time and low inference speed. How-
ever, because of the sequential dependencies be-
tween latent thought tokens that spoil parallel train-
ing, existing approaches to continuous CoT suffers
from long training time.

In this paper, we propose Parallel Continuous
Chain-of-Thought (PCCoT), which performs non-
linear Jacobi iteration (Ortega and Rheinboldt,
1970) on latent thought tokens to mitigate the
above-mentioned issues and improve the efficiency
of continuous CoT. Specifically, we iteratively up-
date all the latent thought tokens in parallel instead
of sequentially decoding them. By choosing the
proper numbers of iterations and latent thought to-
kens, we are able to speed up the reasoning process
by a large scale without sacrificing the performance.
Note that PCCoT subsumes previous work as spe-
cial cases. If performing only a single iteration,
then PCCoT is equivalent to Pause Tokens (Goyal
et al., 2024). If the iteration number is equal to
the number of latent thought tokens, then PCCoT
becomes equivalent to continuous CoT.

Our experiments on math reasoning demonstrate
that PCCoT using a small number of iterations
could achieve comparable or even better perfor-
mance than that of continuous CoT with sequential
decoding, while saving nearly 50% of the training
and inference time. Moreover, we observe that PC-
CoT with small numbers of iterations shows better
stability and robustness in the training process.

2 Background

Compared to standard CoT, continuous CoT di-
rectly feeds the final hidden state as the input em-
bedding for the next token (i.e., the next latent
thought token), instead of mapping the final hid-
den state to the vocabulary and then embedding

914

https://github.com/whyNLP/PCCoT

[Question] <bot>

…

…

…

…

Large Language Model

(a) Continuous CoT

[Question] <bot>

…

…

…

…

…

…

…

…

…

…

…

…

<latent><latent><latent>

Large Language Model

Large Language Model

Large Language Model

(b) Parallel Continuous CoT (PCCoT)

Figure 1: An illustration of Continuous Chain-of-Thought (left) and Parallel Continuous Chain-of-Thought (right).
The figure shows c = 3 latent thought tokens with the first forward pass and T = 2 extra iterations. The <eot>
token and the answer tokens are not shown in the figure. Each dashed box represents a single forward pass.

the selected next token to the hidden space to form
the next input vector. Figure 1a shows an illustra-
tion of continuous CoT. We follow the paradigm
in Coconut (Hao et al., 2024) and formally define
continuous CoT as follows.

Let x = (x1, x2, . . . , xn) be the query sequence.
Continuous CoT first appends a learnable special
token xn+1 = <bot> representing the beginning
of thought to the input sequence and feeds it to
the transformer model. The computation of latent
thought tokens is as follows:

hn+1 = f([Ex1 ; . . . ;Exn+1])

hn+i+1 = f([Ex1 ; . . . ;Exn+1 ;hn+1; . . . ;hn+i])

where i = 1, 2, . . . , c, c is the number of latent
thought tokens, f is the transformer model without
the prediction head, Exj is the embedding vector
of token xj . [·; ·] represents the concatenation of
two (or more) vectors.

After generating latent thought tokens, con-
tinuous CoT appends the end-of-thought token
xn+c+2 = <eot> to the input sequence and then
generates the answer tokens sequentially in the
same way as the standard transformer.

3 Parallel Continuous Chain-of-Thought

3.1 Jacobi Iteration
Because of the sequential dependencies between
latent thought tokens, existing approaches to contin-
uous CoT cannot perform parallel training, leading
to long training time. To this end, we propose to

perform Jacobi iteration on the latent thought to-
kens to improve the efficiency of continuous CoT,
which we refer to as Parallel Continuous Chain-of-
Thought (PCCoT). Figure 1b shows an illustration
of PCCoT.

Instead of decoding the latent thought tokens
sequentially, we iteratively update all the latent
thought tokens in parallel. Given the query
sequence x = (x1, x2, . . . , xn), we first ap-
pend the begin-of-thought token xn+1 = <bot>
and c dummy latent thought tokens xn+i+1 =
<latent>(i = 1, 2, · · · , c) to the input sequence,
and then feed it to the transformer model:

[h
(1)
n+1; . . . ;h

(1)
n+c+1] = f([Ex1 ; . . . ;Exn+c+1])

For the next T extra iterations, we update the input
vectors of the latent thought tokens as the final
hidden state vectors of the previous token in the
last iteration:

[h
(t+1)
n+1 ; . . . ;h

(t+1)
n+c+1] = f([Ex1 ; . . . ;Exn+1 ;

h
(t)
n+1; . . . ;h

(t)
n+c])

where t = 1, 2, . . . , T and T is the number of extra
iterations. After T extra iterations, we append the
end-of-thought token xn+c+2 = <eot> to the input
sequence and generate the answer tokens based on
the hidden states computed from the last iteration
in the same way as the standard transformer.

3.2 Relation to Other Methods
PCCoT is closely related to a few existing ap-
proaches. In fact, with different settings of the

915

number of continuous thought tokens c and the
number of extra iterations T , PCCoT can be re-
duced to these existing approaches.

Implicit Chain-of-Thought (iCoT) Implicit
Chain-of-Thought (iCoT) (Deng et al., 2024) re-
moves all reasoning tokens and directly decodes
the answer tokens. By setting c = 0, PCCoT is
nearly equivalent to iCoT.

Pause Tokens Pause Tokens (Goyal et al., 2024)
appends trainable discrete tokens to the input se-
quence to allow new computational pathways. By
setting c > 0 but not performing any extra itera-
tions (T = 0), PCCoT is nearly equivalent to Pause
Tokens.

Continuous Chain-of-Thought The only differ-
ence between PCCoT and continuous CoT (Hao
et al., 2024) is that PCCoT performs Jacobi itera-
tion on the latent thought tokens. It can be proved
that with a sufficient number of iterations, the com-
putation graph of PCCoT is equivalent to that of
continuous CoT. We leave the formal proof to Ap-
pendix A.

3.3 Training Method
PCCoT does not require any specialized training
procedure and is compatible with any existing train-
ing methods of continuous CoT. In this work, we
adopt CODI (Shen et al., 2025) for training as it has
the best performance in the literature. Specifically,
CODI jointly trains a teacher task and a student
task with a shared model. The teacher task learns
standard CoT with the standard cross-entropy loss
on gold reasoning and answer tokens. The student
task learns continuous CoT with the cross-entropy
loss on the answer tokens only. CODI additionally
distills the knowledge from the teacher task to the
student task by minimizing the L1 loss between
the teacher and student prediction distributions on
the last token of the answer prompt (“:” in “The
answer is:”). CODI uses a MLP to enhance the
hidden representation of the latent thought tokens,
but we do not use it for a fair comparison with the
baseline and other methods.

4 Experiments

4.1 Setup
Following Shen et al. (2025), we use GSM8K-Aug
and GSM8K-Aug-NL (Deng et al., 2023) as our
datasets. These datasets are extended from GSM8K
(Cobbe et al., 2021) with a 385k training set while

Approach GSM8K GSM8K-NL

GPT-2 Small
CoT 44.1 34.8
Implicit CoT 37.78 ±0.31 37.72 ±1.10

Pause Tokens 39.27 ±0.46 33.79 ±2.10

Continuous CoT 48.24 ±1.61 45.06 ±2.58

PCCoT (Ours) 49.48 ±0.31 49.23 ±0.80

CODI 43.7 35.3
Coconut 34.1 ±1.5 –
iCoT 30 3.2

Llama3.2-1B-Instruct
CoT 61.6 54.1
Implicit CoT 52.36 ±0.74 47.89 ±0.89

Pause Tokens 51.78 ±0.91 48.07 ±0.73

Continuous CoT 50.47 ±0.68 48.47 ±1.40

PCCoT (Ours) 53.35 ±0.18 50.72 ±1.39

CODI 55.6 49.7

Table 1: Test set accuracy (%) of different methods on
GSM8K-Aug and GSM8K-Aug-NL. The results of Im-
plicit CoT, Pause Tokens, Continuous CoT and PCCoT
are averaged over 3 random runs with standard devia-
tions also shown. The results of CoT, CODI (Shen et al.,
2025), Coconut (Hao et al., 2024) and iCoT (Deng et al.,
2024) are taken from the literature.

leaving the test set unchanged. GSM8K-Aug uses
only math equations as the reasoning steps, while
GSM8K-Aug-NL uses natural language as the rea-
soning steps.

We use the pretrianed GPT-2 (Radford et al.,
2019) and Llama3.2-1B-Instruct (Grattafiori et al.,
2024) as our base models and apply LoRA (Hu
et al., 2022) to fine-tune the models. We mainly
follow the hyperparameters in Shen et al. (2025).
We use a batch size of 128, a LoRA rank of r =
128 and a LoRA alpha value of 32. We use the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate of 3× 10−3 and weight decay
of 0.01 for GPT-2, and a learning rate of 8× 10−4

and weight decay of 0.1 for Llama3.2-1B-Instruct.
We train GPT-2 for 40 epochs and Llama3.2-1B-
Instruct for 10 epochs. More details can be found
in Appendix C.

We compare PCCoT with Implicit CoT, Pause
Tokens and Continuous CoT, all trained with the
method in Section 3.3. Pause Tokens uses 24 train-
able pause tokens, continuous CoT uses 12 latent
thought tokens, and PCCoT uses c = 24 latent
thought tokens with T = 3 extra iterations. We also

916

Approach Training (h) Inference (s)

CoT 4.39 1.353
Implicit CoT 11.23 0.040
Pause Tokens 11.88 0.041
Continuous CoT 24.91 0.443
PCCoT (Ours) 13.72 0.199

Table 2: Training and inference time of different meth-
ods with GPT-2 Small on GSM8K-Aug. The inference
time is measured with a batch size of 100 and only
the time for processing the question and CoT tokens is
included.

compare with the state-of-the-art results reported in
the literature, including CODI (Shen et al., 2025),
Coconut (Hao et al., 2024) and iCoT (Deng et al.,
2024).

4.2 Results

We report the average and standard deviation of the
test set accuracy from 3 random runs in Table 1.
The CoT baseline is taken from CODI (Shen et al.,
2025).

Compared with baseline methods, PCCoT
achieves the best performance on both datasets
with smaller standard deviation in most cases. This
indicates that PCCoT not only acquires better rea-
soning ability, but is also more robust and stable
during training.

Table 2 shows the training and inference time of
different methods with GPT-2 Small on GSM8K-
Aug. We use two H800 GPUs for training and use
one A6000 GPU for inference. The inference time
is measured with a batch size of 100 and only the
time for processing the question and CoT tokens
is included. We can see that PCCoT achieves a
significant speedup in both training and inference
compared with continuous CoT while achieving
better performance.

We further plot test set accuracy of PCCoT with
different numbers of extra iterations T and latent
thought tokens c on GSM8K-Aug (Figure 2). In-
terestingly, we find that increasing the number of
iterations does not necessarily improve the perfor-
mance. As T increases, the model performance
first has a significant improvement at about T = 3
and then starts to decrease (except for c = 12 la-
tent tokens). Moreover, with a large number of T ,
training becomes unstable, which leads to a large
standard deviation.

0 2 4 6 8 10 12
extra iterations T

36

38

40

42

44

46

48

50

Ac
cu

ra
cy

GPT2-Small on GSM8K

latent tokens c
6
12
18
24
CoT

Figure 2: Test set accuracy (%) of PCCoT with different
number of extra iterations T and latent thought tokens c
on GSM8K-Aug. The figure shows the average over 3
random runs with standard deviation.

5 Related Work

5.1 Continuous Chain-of-Thought

Previous studies have explored several approaches
to training models with continuous CoT. iCoT
(Deng et al., 2024) and COCONUT (Hao et al.,
2024) utilize special training curricula to help mod-
els learn to reason in latent space. Reasoning with
Latent Thoughts (Saunshi et al., 2025) and RELAY
(Yu et al., 2025) illustrate that looped transformers
naturally induce latent thoughts at each iteration.
CCoT (Cheng and Durme, 2024) and SoftCoT (Xu
et al., 2025) train auxiliary models to generate con-
tentful continuous CoT tokens to help generate
answers. Implicit-KD (Deng et al., 2023) intro-
duces a knowledge distillation paradigm where a
teacher model generates explicit CoT tokens and a
student model learns to generate continuous CoT
tokens. CODI (Shen et al., 2025) proposes a novel
self-distillation framework, where a single model
acts as both the teacher and the student.

5.2 Jacobi Decoding

Jacobi decoding (Santilli et al., 2023) applies the
Jacobi iteration method to the decoding process of
autoregressive language models. There have been
extensive researches on Jacobi decoding accelerat-
ing transformers in terms of inference. Lookahead
decoding (Fu et al., 2024) improves the efficiency
of Jacobi decoding by leveraging n-grams gener-
ated from previous Jacobi iterations. CLLM (Kou
et al., 2024) proposes a training approach special-
ized for Jacobi decoding that greatly improves the

917

efficiency of the Jacobi decoding process. Jacobi
iteration in PCCoT differs from that in Jacobi de-
coding in that PCCoT does not involve any discrete
token decoding, thus enabling the use of Jacobi
iteration in both training and inference.

6 Conclusion

In this paper, we propose Parallel Continuous
Chain-of-Thought (PCCoT), which performs Ja-
cobi iteration on latent thought tokens to improve
the efficiency of continuous CoT. Experiments
demonstrate that PCCoT with a small number of
iterations could achieve comparable or even better
performance than that of continuous CoT, while
saving nearly 50% of the training and inference
time. PCCoT also shows better stability and ro-
bustness in training and hence is more reliable than
continuous CoT.

Limitations

The current training method of PCCoT (i.e., CODI)
relies on distillation from the CoT teacher task.
Though PCCoT is much faster than continuous
CoT, it is still much slower than the standard CoT
in terms of training due to the distillation training
strategy.

We have analyzed the behavior of PCCoT on
latent thought tokens but fail to explain some of the
findings. For example, we find that the latent tokens
do not converge in multiple iterations after training,
which is not a problem for CoT inference but is
nonetheless counter-intuitive. Before scaling up
PCCoT to larger models and more diverse settings,
it is necessary to figure out how PCCoT works
and what the latent thought tokens are doing. See
Appendix B for more details.

Acknowledgements

This work was supported by the robotic AI-
Scientist platform of Chinese Academy of Science,
the HPC platform of ShanghaiTech University, and
the Core Facility Platform of Computer Science
and Communication, SIST, ShanghaiTech Univer-
sity. We also would like to thank Zongru Liu for
his assistance in running part of the experiments.

References
Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,

Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wanxiang Che. 2025. Towards

reasoning era: A survey of long chain-of-thought
for reasoning large language models. Preprint,
arXiv:2503.09567.

Jeffrey Cheng and Benjamin Van Durme. 2024. Com-
pressed chain of thought: Efficient reasoning through
dense representations. Preprint, arXiv:2412.13171.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,
Bing Qin, and Ting Liu. 2024. Navigate through enig-
matic labyrinth a survey of chain of thought reason-
ing: Advances, frontiers and future. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1173–1203, Bangkok, Thailand. Association
for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Inter-
national Conference on Learning Representations
(ICLR).

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.
From explicit cot to implicit cot: Learning to inter-
nalize cot step by step. Preprint, arXiv:2405.14838.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul
Smolensky, Vishrav Chaudhary, and Stuart Shieber.
2023. Implicit chain of thought reasoning via knowl-
edge distillation. Preprint, arXiv:2311.01460.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm infer-
ence using lookahead decoding. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya
Menon, Sanjiv Kumar, and Vaishnavh Nagarajan.
2024. Think before you speak: Training language
models with pause tokens. In International Confer-
ence on Learning Representations (ICLR).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

918

https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://doi.org/10.18653/v1/2024.acl-long.65
https://doi.org/10.18653/v1/2024.acl-long.65
https://doi.org/10.18653/v1/2024.acl-long.65
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2311.01460
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. Preprint, arXiv:2412.06769.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and
Hao Zhang. 2024. CLLMs: Consistency large lan-
guage models. In Forty-first International Confer-
ence on Machine Learning.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian
Chen, Adam Pearce, Nicholas L. Turner, Craig
Citro, David Abrahams, Shan Carter, Basil Hosmer,
Jonathan Marcus, Michael Sklar, Adly Templeton,
Trenton Bricken, Callum McDougall, Hoagy Cun-
ningham, Thomas Henighan, Adam Jermyn, Andy
Jones, and 8 others. 2025. On the biology of a large
language model. Transformer Circuits Thread.

Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao,
Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi
Huang, and Bryan Hooi. 2025. Efficient inference
for large reasoning models: A survey. Preprint,
arXiv:2503.23077.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

James M Ortega and Werner C Rheinboldt. 1970. It-
erative Solution of Nonlinear Equations in Several
Variables. Classics in Applied Mathematics. Society
for Industrial and Applied Mathematics (SIAM, 3600
Market Street, Floor 6, Philadelphia, PA 19104).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAI blog, 1(8):9.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodola. 2023. Accelerating
transformer inference for translation via parallel de-
coding. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12336–12355, Toronto,
Canada. Association for Computational Linguistics.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv
Kumar, and Sashank J. Reddi. 2025. Reasoning with
latent thoughts: On the power of looped transformers.
Preprint, arXiv:2502.17416.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu,
Yali Du, and Yulan He. 2025. Codi: Compress-
ing chain-of-thought into continuous space via self-
distillation. Preprint, arXiv:2502.21074.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4506–4515, Hong Kong, China. Association for Com-
putational Linguistics.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, and Xia
Hu. 2025. Stop overthinking: A survey on effi-
cient reasoning for large language models. Preprint,
arXiv:2503.16419.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed KV
cache for efficient inference of large language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 11175–11188, Bangkok,
Thailand. Association for Computational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao.
2025. Softcot: Soft chain-of-thought for efficient
reasoning with llms. Preprint, arXiv:2502.12134.

919

https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://openreview.net/forum?id=8uzBOVmh8H
https://openreview.net/forum?id=8uzBOVmh8H
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2503.23077
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://books.google.es/books?id=GA1P9UNnrmMC
https://books.google.es/books?id=GA1P9UNnrmMC
https://books.google.es/books?id=GA1P9UNnrmMC
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2024.acl-long.602
https://doi.org/10.18653/v1/2024.acl-long.602
https://doi.org/10.18653/v1/2024.acl-long.602
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2502.12134
https://arxiv.org/abs/2502.12134

Qifan Yu, Zhenyu He, Sijie Li, Xun Zhou, Jun Zhang,
Jingjing Xu, and Di He. 2025. Enhancing auto-
regressive chain-of-thought through loop-aligned rea-
soning. Preprint, arXiv:2502.08482.

A Relation to Continuous CoT

In Section 3.2, we mention that the computation
graph of PCCoT is equivalent to that of continuous
CoT with c latent thought tokens with sufficient
number of iterations. In this section, we provide a
formal proof of this statement.

Theorem 1. The computation graph of PCCoT
with c latent thought tokens and T extra iterations
is equivalent to that of continuous CoT with c latent
thought tokens if T ≥ c.

The proof is straightforward. After the first it-
eration, the hidden states of all layers of the first
n+ 1 tokens in PCCoT are the same as that in con-
tinuous CoT. By mathematical induction, after the
ith extra iteration, the hidden states of the ith latent
thought token are the same as that in continuous
CoT. Therefore, with T ≥ c extra iterations, all
the latent thought tokens are updated to the same
hidden states in both cases. We formally prove this
statement in the following.

Proof. We prove the theorem by mathematical in-
duction.

Base case First, consider t = 1. Since

[h
(1)
n+1; . . . ;h

(1)
n+c+1] = f([Ex1 ; . . . ;Exn+c+1])

we have

h
(1)
n+1 = f([Ex1 ; . . . ;Exn+1])

also
hn+1 = f([Ex1 ; . . . ;Exn+1])

we have h
(1)
n+1 = hn+1.

Inductive step We assume that h
(t)
n+i =

hn+i, ∀t ≥ i for i = 1, 2, . . . , k, where k ≤ c.
Consider k + 1.

Since

[h
(t+1)
n+1 ; . . . ;h

(t+1)
n+c+1] = f([Ex1 ; . . . ;Exn+1 ;

h
(t)
n+1; . . . ;h

(t)
n+c])

we have

[h
(t+1)
n+1 ; . . . ;h

(t+1)
n+k+1] = f([Ex1 ; . . . ;Exn+1 ;

h
(t)
n+1; . . . ;h

(t)
n+k])

and h
(t)
n+i = hn+i, ∀t ≥ i, i = 1, 2, . . . , k, we have

[h
(t+1)
n+1 ; . . . ;h

(t+1)
n+k+1] = f([Ex1 ; . . . ;Exn+1 ;

hn+1; . . . ;hn+k])

∀t ≥ k, i.e.

h
(t+1)
n+1 = f([Ex1 ; . . . ;Exn+1])

h
(t+1)
n+2 = f([Ex1 ; . . . ;Exn+1 ;hn+1])

· · ·
h
(t+1)
n+k+1 = f([Ex1 ; . . . ;Exn+1 ;hn+1; . . . ;hn+k])

Also,

hn+1 = f([Ex1 ; . . . ;Exn+1])

hn+2 = f([Ex1 ; . . . ;Exn+1 ;hn+1])

· · ·
hn+k+1 = f([Ex1 ; . . . ;Exn+1 ;hn+1; . . . ;hn+k])

Therefore,

h
(t+1)
n+1 = hn+1

h
(t+1)
n+2 = hn+2

· · ·
h
(t+1)
n+k+1 = hn+k+1

∀t ≥ k.
i.e. h(t)n+i = hn+i, ∀t ≥ i for i = 1, 2, . . . , k+1.

Thus, by induction, we have h(t)n+i = hn+i, ∀t ≥
i for i = 1, 2, . . . , c+ 1. Therefore, if T ≥ c, then
T + 1 ≥ c + 1, we have h

(T+1)
n+i = hn+i, ∀i =

1, 2, . . . , c+ 1. All the latent thought tokens in PC-
CoT have the same vector representation as those in
continuous CoT. The computation graph of PCCoT
is equivalent to that of continuous CoT.

B Analysis

B.1 More Results
In Section 4.2, we show the test set accuracy of
PCCoT with different number of extra iterations
T and latent thought tokens c on GSM8K-Aug. In
Figure 3, we switch the x-axis and legend of Fig-
ure 2 to show how the number of latent thought
tokens c affect the performance of PCCoT. We also
annotate the settings that corresponds to iCoT (no
latent thought tokens), Pause Tokens (no extra iter-
ations) and continuous CoT (the number of extra
iterations T is equal to the number of latent thought
tokens c).

920

https://arxiv.org/abs/2502.08482
https://arxiv.org/abs/2502.08482
https://arxiv.org/abs/2502.08482

0 5 10 15 20 25
latent tokens c

36

38

40

42

44

46

48

50

Ac
cu

ra
cy

Pause Tokens

iCoT

Continuous CoT

GPT2-Small on GSM8K

extra iterations T
0
1

3
6

9
12

24
CoT

Figure 3: Test set accuracy (%) of PCCoT with different
latent thought tokens c and number of extra iterations T
on GSM8K-Aug. The figure shows the average over 3
random runs with standard deviation.

It can be seen that with T = 0, 1, 3, the per-
formance of PCCoT is stably improved with the
increase of the number of latent thought tokens c.
The standard deviation of the performance is also
small, which indicates that the training process is
stable and robust. It is worth noting that even with
T = 1 extra iteration (the green line), PCCoT out-
performs Pause Tokens (the blue line) by a large
margin on any number of latent thought tokens c.
With T = 3 extra iterations (the yellow line), the
performance of PCCoT increases even faster with
the number of latent thought tokens c. However,
with over T = 6 extra iterations, the model per-
formance does not show stable improvement and
starts to fluctuate heavily. This may explain why
continuous CoT cannot scale up the number of la-
tent thought tokens (Hao et al., 2024; Shen et al.,
2025), as using too many latent thought tokens
would require a large number of iterations (forward
passes). This leads to instability in the training
process and limits the performance of the model.

B.2 Convergence of Latent Thought Tokens

In Theorem 1, we can conclude that the latent
thought tokens in PCCoT will eventally converge
at t = c extra iterations. We thus attempt to inspect
how the latent thought tokens converge during these
iteration updates.

Following Wu and Tu (2024), we measure the

0 5 10 15 20
extra iterations t

10 4

10 3

10 2

10 1

100

101

M
SE

 L
os

s

Convergence of Latent Thought Tokens

training iterations T
rand
3
12

Figure 4: MSE of the latent thought tokens before and
after the tth extra iteration. “rand” means the model
is randomly initialized. Other models are trained with
c = 24 and different T . The model is tested on random
samples from the test set of GSM8K.

change of the latent thought tokens over consecu-
tive iterations using the mean squared error. Fig-
ure 5 shows the convergence of latent thought to-
kens of a randomly initialized model, a PCCoT
model trained with c = 24, T = 3 and a PCCoT
model trained with c = 24, T = 12. We set the
number of latent thought tokens c = 24 when test-
ing. The input is a randomly selected batch with
size 64 from the test set of GSM8K. We measure
the change of the latent thought tokens over con-
secutive iterations using the mean squared error
(MSE). Since Theorem 1 has proved that the ith
latent thought token will reach a fixed point after
i extra iterations, we exclude the tokens that have
reached the fixed point from the MSE computation.

From Figure 5, we can see that a randomly initial-
ized model would perfectly converge as the number
of iteration increases. However, no matter what T
is, after training the latent thought tokens no longer
converge and stays fluctuating after a certain num-
ber of iterations. This may indicate that Jacobi
iterations may not operate as we expect: The suc-
cess of PCCoT is not due to the fast convergence
of the latent thought tokens.

B.3 Similarities between Latent Thought
Tokens

We also inspect the similarity between the latent
thought tokens. Figure 5 shows the MSE between
the latent thought tokens of a randomly initialized
model and some PCCoT models. The axis shows
the indices of the latent thought tokens, and the
color of the block indicates the MSE between the

921

0 10 20

0

5

10

15

20

Randomly Initialized

0 2 4

0

2

4

T = 6, c = 6

0 5 10

0
2
4
6
8

10

T = 12, c = 12

0 10 20

0

5

10

15

20

T = 3, c = 24

0 10 20

0

5

10

15

20

T = 6, c = 24

0 10 20

0

5

10

15

20

T = 12, c = 24

10 2

10 1

100

101

M
SE

 L
os

s

Similarities between Latent Thought Tokens

Figure 5: MSE between the latent thought tokens. The darker the block is, the more similar the latent thought tokens
are. The model is tested on random samples from the test set of GSM8K.

two latent thought tokens. The darker the block is,
the more similar the latent thought tokens are.

It can be seen that with larger token indices, the
latent thought tokens are more similar to each other.
Compared to the randomly initialized model, the
latent thought tokens of the PCCoT models are less
similar to each other. With T = 3, c = 24, we can
clearly find that the first three latent thought tokens
are less similar to other latent thought tokens.

Interestingly, with T = 6, the first six latent
thought tokens show an interleaved pattern. The
latent thought tokens with odd indices are more
similar to each other, but less similar to the latent
thought tokens with even indices. Also, the latent
thought tokens with even indices are more similar
to each other, but less similar to the latent thought
tokens with odd indices. This pattern is also ob-
served by further increasing the number of itera-
tions in T = 3 settings, but is not clear in T = 12
settings. In randomly initialized models, this inter-
leaved pattern is not observed. Up to now, we have
not found a clear explanation for this phenomenon.
Perhaps this indicates that the latent thought to-
kens have some interdependencies, but we still do
not know what does this mean and how it may po-
tentially affect PCCoT in terms of scaling up and
extending to more general and complex tasks.

Approach Accuracy

PCCoT 49.48 ±0.31

+ untrainable latent tokens 47.31 ±1.07

Table 3: Test set accuracy (%) of PCCoT and its variant
with untrainable latent thought tokens on GSM8K-Aug.

B.4 The Initialization of Latent Thought
Tokens

In this section, we inspect how dependent latent
thought tokens are on the initialization (i.e. the
embedding of <latent> token). Instead of making
the <latent> token trainable, we freeze the start-
ing state of all the latent thought tokens to the same
random initialization during training. i.e. E<latent>

is a fixed vector, randomly initialized and not train-
able.

Table 3 shows the test set accuracy of PCCoT
and its variant with fixed latent thought tokens on
GSM8K-Aug. We use T = 3 extra iterations and
c = 24 latent thought tokens. Although the latent
thought tokens are fixed to a random initialization,
the model still achieves a reasonable performance.
This indicates that the latent thought tokens are
robust to the initialization and the model can still
learn to update and use them as reasoning tokens.

Note that this does not mean that E<latent> is

922

Approach GSM8K GSM8K-NL

CoT 44.1 34.8
PCCoT 49.48 49.23
PCCoT w/ CoT decoding 50.42 39.80
CoT w/ gold reasoning steps 88.21 87.95
PCCoT w/ CoT decoding & gold reasoning steps 62.24 55.88

Table 4: Test set accuracy (%) on GSM8K and GSM8K-NL. We compare the performance of PCCoT with standard
CoT and PCCoT with standard CoT decoding. Models are finetuned from GPT-2 Small.

not important to the model. Instead, if we perturb
E<latent> on a trained model by changing them to
a random vector, the accuracy drops to 0.0%.

B.5 Comparison with Standard CoT
From Table 1, Figure 2 and Figure 3, we can
see that the performance of PCCoT surpasses that
of standard CoT on GPT-2 Small, especially on
GSM8K-Aug-NL. Since we adopt the distillation
training method (CODI) that the student distills the
knowledge from the teacher CoT, we also compare
the performance of PCCoT with standard CoT de-
coding, which means that we use the weights of
the PCCoT model but decode the reasoning tokens
with standard CoT decoding. Table 4 shows the
test set accuracy on GSM8K and GSM8K-NL.

There are two counter-intuitive observations in
Table 4.

• The performance of PCCoT is better than that
of PCCoT with standard CoT decoding on
GSM8K-NL.

• The performance of PCCoT with standard
CoT decoding is better than that of standard
CoT.

For the first observation, note that we adopt the
distillation training method that the student distills
the knowledge from the teacher, thus it is counter-
intuitive that the performance of PCCoT (the stu-
dent task) is better than that of PCCoT with stan-
dard CoT decoding (the teacher task).

One possible explanation is that the standard
CoT has a gap between training and inference: dur-
ing training, the model learns to generate the next
token based on the gold previous tokens, while
during inference, the model generates tokens au-
toregressively and if the model makes a mistake, it
will propagate to the next token. In PCCoT, since
the latent thought tokens are continuous vectors,
such a gap does not exist in the reasoning process.

Therefore, on GSM8K-Aug-NL, the reasoning path
is much longer and it is more likely that the stan-
dard CoT model will make mistakes. However,
PCCoT avoids this problem in reasoning and thus
its performance surpasses that of standard CoT.

To verify this, we evaluate the performance of
CoT with gold reasoning steps and PCCoT with
gold reasoning steps and standard CoT decoding.
It can be seen that the performance of CoT with
gold reasoning steps is much better than that of
CoT, which indicates that the gap between training
and inference does exist in standard CoT.

For the second observation, it might indicate
that during the training of PCCoT, the student task
serves as a regularizer for the teacher CoT task and
helps the model to learn better reasoning paths. We
are not sure about this and further investigation is
needed to understand this phenomenon.

B.6 Visualization of the Attention Map

We visualize the attention map of PCCoT to under-
stand how the latent thought tokens interact with
other tokens. Figure 6 shows the attention map of
two different heads at different layers of PCCoT
with c = 24 latent thought tokens and T = 3 extra
iterations. In Figure 6a, the latent thought tokens
put most of the attention at the sink token (Xiao
et al., 2024), especially the last 15 latent thought
tokens. The answer prompts attend to the end-of-
thought token and previous answer prompt tokens.
The final answer prompt token mostly attends to
the sink token. In Figure 6b, the latent thought
tokens evenly put attention on some previous latent
thought tokens. The answer prompts also attend to
the latent thought tokens.

Interestingly, we do not find any special latent
thought tokens in the attention map: there does
not exist a latent token that has significantly differ-
ent attention patterns from others. It may indicate
that the latent thought tokens carry the information
evenly and this process is significantly different

923

Jo
hn cu
ts hi
s

gr
as

s to 2
in

ch
es . It

gr
ow

s . 5
in

ch
es pe

r
m

on
th .

W
he

n it
ge

ts to 4
in

ch
es he

cu
ts it

ba
ck

do
wn to 2

in
ch

es . It
co

st $
10

0 to ge
t

hi
s

gr
as

s
cu

t .
Ho

w
m

uc
h

do
es he pa
y

pe
r

ye
ar ?

<p
co

t.b
ot

>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.e

ot
>

Th
e

an
sw

er is :

John
cuts

his
grassto

2
inches

.
It

grows.
5

inches
permonth

.
When

it
getsto

4
inches

he
cuts

it
back

down
to
2

inches
.

It
cost

$100
to

gethis
grasscut

.
How

much
does

he
pay
per

year?
<pcot.bot>

<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>

<pcot.eot>
The

answer
is
:

Layer 2, Head 3

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n
Sc

or
e

(a)

Jo
hn cu
ts hi
s

gr
as

s to 2
in

ch
es . It

gr
ow

s . 5
in

ch
es pe

r
m

on
th .

W
he

n it
ge

ts to 4
in

ch
es he

cu
ts it

ba
ck

do
wn to 2

in
ch

es . It
co

st $
10

0 to ge
t

hi
s

gr
as

s
cu

t .
Ho

w
m

uc
h

do
es he pa
y

pe
r

ye
ar ?

<p
co

t.b
ot

>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.l

at
en

t>
<p

co
t.e

ot
>

Th
e

an
sw

er is :

John
cuts

his
grassto

2
inches

.
It

grows.
5

inches
permonth

.
When

it
getsto

4
inches

he
cuts

it
back

down
to
2

inches
.

It
cost

$100
to

gethis
grasscut

.
How

much
does

he
pay
per

year?
<pcot.bot>

<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>
<pcot.latent>

<pcot.eot>
The

answer
is
:

Layer 6, Head 1

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n
Sc

or
e

(b)

Figure 6: The attention map in PCCoT with c = 24 latent thought tokens and T = 3 extra iterations. The model is
finetuned from GPT-2 Small on GSM8K-Aug. The input question is “John cuts his grass to 2 inches. It grows .5
inches per month. When it gets to 4 inches he cuts it back down to 2 inches. It cost $100 to get his grass cut. How
much does he pay per year?”. It is taken from the dev set of GSM8K-Aug.

Hyperparameter Value

LoRA rank r 128
LoRA α 32
LoRA dropout 0.1
LoRA bias False
LoRA target module attn, ffn

Table 5: LoRA configurations.

from the standard CoT, where the generation of
the answer tokens is heavily dependent on some
specific important reasoning tokens (Lindsey et al.,
2025).

C Experiment Details

In this section, we provide more details about the
experiments and some justifications for the hyper-
parameter choices.

C.1 Model and Training Details

We provide the LoRA configurations and train-
ing details in Table 5 and 6. Most configurations
are consistent with those in CODI (Shen et al.,
2025). During training, only the embeddings of the
added special tokens (<bot>, <latent>, <eot>)
are trainable. The embeddings of all other tokens
are freezed. We use GSM8K-Aug and GSM8K-
Aug-NL (Deng et al., 2023) as our datasets, which
are licensed under MIT. Our use of the datasets
is consistent with their intended use. There are

385,620 training samples in each dataset with a
validation set of 500 samples and a test set of 1,319
samples. When autoregressively decoding tokens,
we always use the greedy decoding strategy. For
the three random runs, we use 0, 1, 2 as the ran-
dom seeds respectively. Our implementation is
based on HuggingFace Transformers (Wolf et al.,
2020) with kernel replacement with FlashAttention
2 (Dao, 2024).

C.2 Justifications for Hyperparameter
Choices

LoRA instead of Full Finetuning We use LoRA
instead of full finetuning since we find our model
would easily overfit under full finetuning. The dev
loss will increase quickly after a certain amount of
training.

Not using MLP for Latent Thought Tokens
CODI (Shen et al., 2025) adds an additional train-
able MLP followed by layer norm to transform the
final hidden representations of the latent thought
tokens before feeding them into the next step. This
introduces additional parameters and breaks the
fair comparison to the baseline. Moreover, our ex-
periments show that adding an additional MLP on
PCCoT has negligible improvement on the perfor-
mance. This is consistent with CODI, where the
additional MLP only improves 1.2% of accuracy.
Therefore, we decide not to use MLP for latent
thought tokens in CODI for our experiments.

924

Model GPT-2 Small Llama3.2-1B-Instruct

Dataset GSM8K GSM8K-NL GSM8K GSM8K-NL

CODI α 1 1 1 1
CODI β 1 1 1 1
CODI γ 1 1 20 20
learning rate 3e-3 3e-3 8e-4 8e-4
lr scheduler cosine
optimizer AdamW
β1 0.9
β2 0.999
batch size 128
warmup ratio 0.03
weight decay 1e-2 1e-2 1e-1 1e-1
gradient clipping 1.0 1.0 1.0 1.0
epochs 40 40 10 10
GPU H800x2 A100x2 H20x4 H20x4

Table 6: Training details of different models. The α, β and γ are the hyperparameters in CODI (Shen et al., 2025).
The batch size is the total effective batch size across all GPUs.

Greedy Decoding instead of Sampling We em-
pirically find that the model performance has neg-
ligible difference when using different decoding
strategies. This may because the questions on
GSM8K are relatively short and easy.

Inference Time Measurement In Table 2, we
measure the inference time of different approaches
with a batch size of 100 and only the time for pro-
cessing the question and CoT tokens is included.
We do not include the time for generating the an-
swer tokens since the number of answer tokens may
differ between different approaches. Additionally,
the number of gold answer tokens is usually only
1 or 2, which is negligible compared to the num-
ber of question and CoT tokens. The 100 samples
are selected from the test set of GSM8K with an
average length of 105 tokens.

Settings of Baseline Approaches In Section 4.1,
we mention the settings of the baseline approaches.
We choose the best-performing setting for each
approach. Specifically, Pause Tokens uses 24 train-
able pause tokens, continuous CoT uses 12 latent
thought tokens, and PCCoT uses c = 24 latent
thought tokens with T = 3 extra iterations. Though
CODI (Shen et al., 2025) reports 6 latent thought
tokens is the best performing setting for continuous
CoT, we find that using 12 latent thought tokens
is much better than using 6 in our experiments.
Notice that the average number of CoT tokens in

GSM8K-Aug is 20.32, the choice of c = 24 latent
thought tokens somewhat indicates a replacement
of explicit reasoning tokens with implicit reasoning
tokens.

Choice of the Datasets We choose GSM8K as
our dataset since they are commonly used in the lit-
erature of continuous CoT (Hao et al., 2024; Shen
et al., 2025; Deng et al., 2024; Cheng and Durme,
2024). We have also tried other datasets, including
CLUTRR (Sinha et al., 2019), CommonsenseQA
(Talmor et al., 2019) and StrategyQA (Geva et al.,
2021). However, we cannot distinguish the perfor-
mance of different approaches on these datasets,
which may be due to the fact that these datasets
have limited training samples.

D Data Examples

In this section, we provide some data examples
from the test set of the datasets we used in our
experiments.

D.1 GSM8K-Aug

Question

Every day, Wendi feeds each of her
chickens three cups of mixed chicken
feed, containing seeds, mealworms and
vegetables to help keep them healthy.
She gives the chickens their feed in
three separate meals. In the morning,

925

she gives her flock of chickens 15 cups
of feed. In the afternoon, she gives
her chickens another 25 cups of feed.
How many cups of feed does she need to
give her chickens in the final meal of
the day if the size of Wendi's flock
is 20 chickens?

Step 1
<<3*20=60>>

Step 2
<<60-15-25=20>>

Answer
20

D.2 GSM8K-Aug-NL
Question
Every day, Wendi feeds each of her
chickens three cups of mixed chicken
feed, containing seeds, mealworms and
vegetables to help keep them healthy.
She gives the chickens their feed in
three separate meals. In the morning,
she gives her flock of chickens 15 cups
of feed. In the afternoon, she gives
her chickens another 25 cups of feed.
How many cups of feed does she need to
give her chickens in the final meal of
the day if the size of Wendi's flock
is 20 chickens?

Step 1
If each chicken eats 3 cups of feed
per day, then for 20 chickens they
would need 3*20=60 cups of feed per
day.

Step 2
If she feeds the flock 15 cups of
feed in the morning, and 25 cups in
the afternoon, then the final meal
would require 60-15-25=20 cups of
chicken feed.

Answer
20

926

