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Abstract

Recent advances in text-only “slow-thinking”
reasoning have prompted efforts to transfer this
capability to vision-language models (VLMs),
for training visual reasoning models (VRMS).
However, such transfer faces critical challenges:
Effective "slow thinking" in VRMs requires vi-
sual reflection, the ability to check the rea-
soning process based on visual information.
Through quantitative analysis, we observe that
current VRMs exhibit limited visual reflection,
as their attention to visual information dimin-
ishes rapidly with longer generated responses.
To address this challenge, we propose a new
VRM Reflection-V!, which enhances visual
reflection based on reasoning data construc-
tion for cold-start and reward design for rein-
forcement learning (RL). Firstly, we construct
vision-centered reasoning data by leveraging
an agent that interacts between VLMs and rea-
soning LLMs, enabling cold-start learning of
visual reflection patterns. Secondly, a visual
attention based reward model is employed dur-
ing RL to encourage reasoning based on visual
information. Therefore, Reflection-V demon-
strates significant improvements across multi-
ple visual reasoning benchmarks. Furthermore,
Reflection-V maintains a stronger and more
consistent reliance on visual information dur-
ing visual reasoning, indicating effective en-
hancement in visual reflection capabilities.

1 Introduction

Recently, "slow-thinking" reasoning has emerged
as a significant advancement in large language
models (LLM) domain (Shao et al., 2024), demon-
strating remarkable capabilities in solving complex
reasoning tasks, such as OpenAl-ol (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025a). The
superior performance of "slow thinking" LLM pri-
marily benefits from its ability to perform "reflec-
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Question |

P Function y = f(z) is shown in the
figure. The area of region A, B are

a, b respectively. If g(z) = f(z) + 3
""" . what is the average value of g on the
interval [—2, 4]?

Textual Reflection ]

<Think> Region A lies under the curve from x= -2 to 0, while region B
X=0f0/4] The average value of g(x) over|a, b] is 72— fab g(z)... Let's
Vverify this calculation again... This calculation is correct. <\Think>

The final answer is %M

Visual Reflection ]

<Think> Region A lies under the curve from x= -2 to O, while region B
X20'f0'4! The average value of g(z) over|a, b] is 72— fab 9() ..

Let's check the image again, Region A lies below the x-axis, whereas
Region B lies above x-axis...<\ Think>

The final answer is =2E+2 Q

.. @B O
Information Moment Answer

Figure 1: Existing “slow-thinking” VLMs claimed “aha

moment” is often merely a textual reflection. We instead

highlight visual reflection, where VLM actively verifies
and refines its reasoning based on visual inputs.

tion" during reasoning (Yan et al., 2024). This
reflection mechanism allows models to check and
revise intermediate steps before generating the final
answer, thereby avoiding errors that may arise from
shortcut inference (Snell et al., 2024; Yang et al.,
2025d; Cheng et al., 2024), which is also called
“aha moment”. Inspired by this success, some
researchers attempt to integrate "slow thinking"
into vision-language models (VLMs), enabling the
trained visual reasoning models (VRMs) to gener-
ate more accurate and deliberate solutions (Wang
et al., 2025; Chen et al., 2025; Tan et al., 2025;
Huang et al., 2025). Specifically, they leverage
"slow thinking" LLMs to reason based on image
descriptions generated by VLMs, thereby introduc-
ing reflection patterns into reasoning data. These
visual reasoning data are often used for supervised
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fine-tuning (SFT) (Thawakar et al., 2025; Xu et al.,
2024), providing a cold-start initialization for sub-
sequent reinforcement learning (RL) (Huang et al.,
2025; Tan et al., 2025; Yang et al., 2025c).

In this paper, we propose that the true “aha mo-
ment” in visual reasoning arises when a model en-
gages in visual reflection—that is, when it actively
verifies and refines its reasoning based on the vi-
sual input, as shown in Figure 1. However, current
distillation-based approaches to training VRMs of-
ten miss this crucial aspect. By transferring su-
perficial reflective behaviors from LLMs trained
solely on text, these methods encourage reasoning
patterns that are detached from the visual modal-
ity. This is because the cold-start data for these
VRMs still originates from text-only reasoning on
visual descriptions, and the RL stage uses rewards
based solely on textual outputs (Huang et al., 2025;
Meng et al., 2025). Thus, instead of promoting
visual insight, these VRMs risk reinforcing tex-
tual hallucinations and visual neglect (Zhong et al.,
2024; Favero et al., 2024). As a result, VRMs may
appear reflective while actually bypassing the vi-
sual content, undermining both the reliability and
robustness of their reasoning.

Consistent with the previous discussion, we
conducted a detailed analysis of existing VRMs
and found that they struggle with visual reflec-
tion. Specifically, experiments observe that exist-
ing VRMs’ attention to and reliance on visual infor-
mation decline rapidly as the number of generated
tokens increases. And VRMs trained by distilling
text-only reflection data even exhibit lower reliance
on visual prompts than their backbone VLMs. This
indicates that existing VRMs struggle to attend to
and leverage visual information during reflection,
thereby degrading into text-only reflection models.

To address the aforementioned challenges, we
propose a novel two-stage training strategy for
training VRMs. In the cold-start stage, we focus
on resolving the limitations of image description-
based approaches in incorporating visual reflection
patterns within training data. Specifically, we lever-
age a multi-modal agent, where LLMs interact with
VLMs, to complete reasoning in an LLM-VLM
interleaved way. This data construction paradigm
ensures that visual information can be continuously
accessed and repeatedly utilized during reasoning,
thereby introducing a visual reflection pattern for
VRMs to learn. In the RL stage, to further promote
the visual reflection behavior learned from cold-
start data, we introduce a visual attention based re-

ward for group relative policy optimization (GRPO)
(Shao et al., 2024). This reward encourages VRMs
to consistently attend to visual information.

Reflection-V, our VRM trained with the pro-
posed strategy, achieves significant improvements
on benchmarks focusing on mathematical (Lu et al.,
2023; Wang et al., 2024a), multi-disciplinary (Yue
et al., 2024a,b), and general reasoning (Chen et al.,
2024a). At the 7B scale, it is comparable to or even
surpasses several widely used very large VLMs,
like GPT-40 (Hurst et al., 2024) and InternVL2.5-
38B (Chen et al., 2024b). Notably, the aforemen-
tioned quantitative analyses and case study further
show that compared to the base model, Reflection-
V maintains more sustained attention to visual in-
formation and actively engages in visual reflection,
representing the emergence of the true "aha mo-
ment" in visual reasoning.

2 VRMs Struggle with Visual Reflection

In this section, we claim that existing VRMs strug-
gle to perform visual reflection. To support this
claim, we analyze the visual tokens’ role during
reasoning. Specifically, we quantify visual tokens’
effect using the following metrics: attention weight
and a visual dependency measure. This observation
later motivates our proposed methodology.

2.1 Visual Attention Weight

To capture how the contribution of visual tokens
varies during reasoning, we track the attention
weights from response tokens to visual tokens as
more tokens are generated. Let Ti.s and 75 denote
the sets of response and visual tokens, respectively.

For the h-th layer, let ag;) represent the attention

weight from the n-th response token to the j-th
visual token. Thus the total attention from the n-th

response token to Ty is given by

(h)
. a,
Atin(n, Tyis) = 2 ZJETV; ()
2oh ZjETvis a)>0

2.2 Visual Dependency Measure

Furthermore, after generating several tokens, we
drop the visual tokens and assess VRMs’ reliance
on the visual token during reasoning by measuring
the divergence in subsequent generations, which
is quantified based on the divergence between the
next-token prediction distributions with and with-
out visual tokens. We use the Hellinger distance
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Figure 2: Attention weights on visual tokens and the
visual dependency measure during reasoning on the
MMMU dataset. Both metrics decline sharply as more
tokens are generated, and RL-enhanced models (e.g.,
OpenVLThinker-7B) do not mitigate this decay.

(Favero et al., 2024), defined as

k

Haia(p.q) =272, > (VBi — va)* @

=1

to quantify the divergence between two probabil-
ity distributions. Therefore, when the number of
generated response tokens is n, the visual depen-
dency measure VDM(n|T\;s, T;,) for a given image-
question pair (75, Ty) is given by

Hdist (p('|Tri?7TqaTvis)ap('|Tr<e?aTq)) . (3)

2.3 Diminishing Visual Attention and
Dependency

As Figure 2 illustrates, both the mean Visual De-
pendency Measure on MMMU (Yue et al., 2024a)
and the layer-wise attention from response tokens
to visual tokens in VRM, decline sharply as gen-
eration proceeds: after roughly 300 tokens, visual
attention falls to only 20-30 % of its initial level.
This analysis reveals that VRMs typically lack vi-
sual reflection ability in long-chain reasoning, as
they rarely refer back to visual tokens when per-
forming reflective checking of reasoning process.

Although widely used RL boosts VRMs’ rea-
soning performance, it fails to equip them with
visual reflection capability. Instead, it further rein-
forces over-reliance on previously generated text.
As Figure 2 shows, OpenVLThinker, RL based on
Qwen2.5-VL, exhibits even lower focus and depen-
dence on visual tokens during reasoning than the
base model.

3 Method

In the above analysis, we observe that as the length
of reasoning process increases, VRMs rapidly re-
duce their reliance on and attention to visual in-
formation. This limitation hampers their ability to
perform visual reflection and prevents them from
fully benefiting from "slow thinking" paradigms
like DeepSeek-R1 (Guo et al., 2025a). To ad-
dress this problem, we propose a two-stage strat-
egy for training VRMs. This strategy consists of:
(1) cold-start initialization (Yang et al., 2025¢) on
reasoning data with visual reflection, and (2) rein-
forcement learning with a visual attention-based
reward. In the first stage, we leverage a multi-
modal agent, where LLMs interact with VLMs, to
construct visual reasoning data exhibiting visual
reflection, and use it to perform supervised fine-
tuning (SFT) on the base VLM. The second stage
applies GRPO with the proposed reward function
that explicitly encourages sustained attention to
visual tokens. The related codes can be found at
https://github.com/jian0805/ClearVQA

3.1 Reasoning Data with Visual Reflection
Construction

Existing visual reasoning studies typically rely on
LLMs to perform reasoning directly based on im-
age captions, thereby constructing visual reasoning
data (Liu et al., 2024; Yu et al., 2024; Huang et al.,
2025). The absence of visual modality during rea-
soning makes it impossible for these reasoning data
to exhibit the visual reflection we claimed. Inspired
by recent advances in visual-language agents (Chen
et al., 2023; Zhou et al., 2024), we employ crafted
prompts to guide the interaction between the LLM
and VLM in completing the reasoning task. This
data construction paradigm ensures that visual in-
formation is continuously accessible and repeat-
edly utilized during reasoning, thereby introducing
a visual reflection pattern. The data construction
process is detailed in the following sections.
Visual Reflection Data Construction Based on
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Reasoning Data with
Visual Reflection

Figure 3: A workflow for constructing reasoning data with a visual reflection pattern. LLMs and VLMs perform
reasoning through interaction, ensuring that visual information is continuously acquired and repeatedly utilized,
thereby creating a visual reflection pattern in the reasoning process.

LLM-VLM Interaction. As shown in Figure 3, in
our data construction process, the LLM and VLM
interact by taking on the following three roles: 1)
Visual requester, played by the LLM, which deter-
mines what visual information is needed to answer
the question based on the existing reasoning con-
text and proposes a request to the VLM. During this
process, the CoT output from the VLM is added as
a partial solution to the reasoning context. 2) Vi-
sual responder, played by the VLM, replies to the
request made by the visual requester, revealing vi-
sual information related to the visual question. The
visual description generated by the visual respon-
der is added to the reasoning context. 3) Summa-
rizer, played by the LLM, summarizes the existing
reasoning context after each round of interaction,
generating the final answer. If the generated answer
does not match the ground truth, all outputs from
the summarizer are discarded, and a new round of
interaction begins. Otherwise, the output is added
to the reasoning context, completing the reasoning
process for the visual question.

Post-generation processing. After construct-
ing visual reflection data through LLM and VLM
interactions, we perform the following steps to en-
sure data quality: 1) Non-Reflection Filtering. We
filter out the data where the summarizer produces
the correct answer just after the first interaction.
These samples lack sustained reliance on visual
information, and the reasoning solution does not
exhibit a visual reflection pattern. 2) Cohesion
Enhancement. In the previous data construction
process, the text generated across different VLM-
LLM interaction rounds may lack coherence. We

employ the LLM to process and refine the text into
a cohesive reasoning process. All detailed prompts
are provided in Appendix B.

3.2 Visual Attention Based Reward

Following existing works (Wei et al., 2025; Xiao
et al., 2025; Zhang et al., 2025a), we adopt GRPO,
a rule-based reinforcement learning algorithm, to
enhance the reasoning capabilities of VRMs. Build-
ing on the original reward function, we introduce
a visual attention—based reward to encourage the
model to maintain sustained attention to visual to-
kens throughout the reasoning process while pre-
serving overall performance.

Specifically, based on the analyses in Section 2.1
that attention weights on visual tokens rapidly de-
crease as the number of generated tokens increases,
our reward rule follows the principle: For a VRM
reasoning process, VRMs receive a higher reward if
relatively higher attention to visual tokens is main-
tained after generating several tokens. Therefore,
the visual attention based reward is given by

> Attn(n,Tyis)
n>|Tres|/2 :
ifr, =1
_ > Attn(n,Tyis) a
TU - n<|Tres|/2 : (4)
0 ifr, =0

Here, r, is the accuracy reward taking values
from {0, 1}. Refer to function (2), Attn(n, Tyis)
represents the average attention weight of the n-th
response token to the visual tokens (averaged over
all attention heads). |T}.s| denotes the total number
of tokens in a VRM’s reasoning process.
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Model

Math-Reasoning

Multi-Disciplinary

General Hallucination

MathVision MathVista MMMU MMMU-Pro M3CoT HallBench
Closed-Source Vision-Language Models
GPT-40 (Hurst et al., 2024) 30.4 60.0 69.1 519 t74.2 -
GPT-4V (Yang et al., 2023) 22.8 49.9 56.8 41.2 62.6 65.3
Open-Source Vision-Language Models
QwenVL2.5-3B (Bai et al., 2025) 21.2 62.3 512 31.6 55.6 45.1
QwenVL2.5-7B (Bai et al., 2025) 25.1 68.2 1543 36.9 160.5 49.5
InternVL2.5-8B (Chen et al., 2024b) 19.7 63.6 56.0 30.5 415 49.0
InternVL-2.5-38B (Chen et al., 2024b) 322 71.9 57.6 46.0 768.9 -
LLaVA-OneVision-72B (Li et al., 2024a) 30.1 67.5 56.8 31.0 161.5 47.9
Kimi-VL-16B (Team et al., 2025) 214 68.7 55.7 - - -
Open-Source Vision-Language Reasoning Models
TVC-7B (Sun et al., 2025a) 22.7 68.1 - - - -
R1-VL-7B (Zhang et al., 2025a) 24.7 63.5 44.5 - - -
MM-Eureka-7B° (Meng et al., 2025) 26.9 73.0 513 136.7 163.5 47.8
R1-Onevision-7B® (Yang et al., 2025¢) 29.9 64.1 7487 21.6 7531 41.7
OpenVLThinker-7B® (Deng et al., 2025) 253 70.2 52.5 37.3 762.2 423
Ours (Training strategy emphasizing visual reflection)
Reflection-V-3B 27.9 66.3 56.9 38.2 62.9 493
Reflection-V-7B 33.9 73.3 61.3 42.7 71.1 53.9

Table 1: Performance of Reflection-V across various visual reasoning benchmarks, compared to existing VLMs. T indicates
results reproduced by us. ¢ denotes vision-language reasoning Models also based on the Qwen2.5-7B series. Bold and underlined
scores represent the best and second-best performance among open-source models for each benchmark.

Based on the observation shown in Figure 2, we
calculate the visual attention based reward using
the last layer where the attention to visual tokens is
most significant. The overall reward r, in GRPO is
the weighted sum of the accuracy reward r, visual
attention-based reward r,,, and format reward
(Shao et al., 2024), given by

To = Ta+ ATy + Af7y. 5)

Ay and Ay are scaling coefficients set to 0.5 and
0.1, respectively.

4 [Experiments

4.1 Experimental Setup

Implementations. To construct the cold-start data,
we use the open-source VLM Qwen-2.5-VL-72B
(Bai et al., 2025) and a reasoning-capable LLM,
QWQ-32B (Team, 2025), to interactively generate
data. Our method is evaluated using the Qwen-
2.5-VL-7B-Instruct as the base model. During
the cold-start stage, we train for 3 epochs on 2
NVIDIA H100 GPUs. The model, after cold-start
initialization, is subsequently trained using GRPO

with visual attention based reward for 12 epochs
on 8 NVIDIA H100 GPUs, based on the Verl train-
ing framework (Sheng et al., 2024; Zheng et al.,
2025b). For GRPO, 16K reasoning samples are
collected from a diverse multimodal corpus. The
detailed composition of training data is shown in
Appendix C. Train details for cold-start initializa-
tion and GRPO stages is provided in Appendix A.

Benchmarks for Evaluation. We conduct a
comprehensive experimental analysis to assess how
our method improves visual reasoning. To ensure
a well-rounded evaluation, we select widely recog-
nized visual reasoning benchmarks that emphasize
math, multi-disciplinary, and general reasoning
skills. For evaluating math reasoning, we use Math-
Vista (Lu et al., 2023) and MathVision (Wang et al.,
2024a), which are standard tests for visual reason-
ing models. To evaluate performance across mul-
tiple disciplinary such as physics, chemistry, and
computer science, we adopt MMMU and MMMU-
Pro (Yue et al., 2024a,b). M3CoT (Chen et al.,
2024a) is used to assess general reasoning ability,
as it covers a broad range of knowledge-intensive
and commonsense-based reasoning questions. Fur-
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Model MathVision MathVista MMMU MMMU-Pro M3CoT

Reflection-V-3B 27.94 66.30 56.89 38.17 62.95
w/o VAR 26.52 65.60 55.80 36.56 61.79
w/o Cold-Start 24.27 64.20 53.98 34.75 59.55
w/o Cold-Start + VAR 23.60 63.90 53.21 33.97 58.81

Reflection-V-7B 33.71 73.30 61.33 42.71 71.07
w/o VAR 32.47 72.40 60.10 41.95 69.28
w/o Cold-Start 29.01 70.40 58.81 39.06 65.87
w/o Cold-Start + VAR 28.53 69.80 58.03 38.24 64.63

Table 2: Ablation results for cold-start based on visual reflection data and visual attention based reward on

performance improvement. VAR denotes visual attention based reward.

Model MathVision MathVista MMMU MMMU-Pro M3CoT
Reflection-V-3B 27.96 66.30 56.89 38.17 62.95
VR SFT — Cap&R SFT 25.04 63.90 54.22 33.59 60.41
Reflection-V-7B 33.88 73.30 61.33 42.71 71.07
VR SFT — Cap&R SFT 29.31 69.00 58.41 37.95 66.25

Table 3: Comparative results of cold-start initialization using data with visual reflection pattern and mage caption-
based reasoning data on visual reasoning performance improvement.

thermore, we use HallBench (Guan et al., 2024)
to quantify the extent of visual hallucinations in
VLMs or VRMs.

4.2 Main Result

We evaluate the performance of our model,
Reflection-V, on visual reasoning benchmarks
across three categories: math, multi-disciplinary,
and general, as shown in Table 1. The results in-
dicate that our model significantly outperforms
Qwen2.5-VL (Bai et al., 2025) base model and
other open-source models of similar scale in rea-
soning capability. Even compared to existing
vision-language reasoning models based on RL,
Reflection-V-7B achieves a notable margin of im-
provement.

Notably, Reflection-V-7B reaches comparable
or even superior performance compared to some
widely used, large-scale closed-source and open-
source VLMs. For instance, on MathVision and
MathVista, Reflection-V-7B outperforms GPT-40
and InternVL-2.5-38B (Chen et al., 2024b). On
MMMU and M3CoT, Reflection-V-7B surpasses
InternVL-2.5-38B and LLaVA-OneVision-72B (Li
et al., 2024a), and is comparable to GPT-40 (Hurst
et al., 2024). On MMMU-Pro, Reflection-V-7B
outperforms LLaVA-OneVision-72B and GPT-4V
(Yang et al., 2023), while being comparable to
InternVL-2.5-38B. In contrast to existing vision-

language reasoning models, which show improved
math reasoning but a decline in multi-disciplinary
and general reasoning capabilities, Reflection-V
demonstrates improvements across all three cat-
egories. Additionally, experimental results show
that the proposed method is effective across models
of different scales.

Surprisingly, thanks to "visual reflection" we
proposed, Reflection-V exhibits significantly fewer
visual hallucinations. Specifically, Compared to
the Qwen2.5-VL base model, Reflection-V shows
a significantly higher all accuracy (aAcc) (Guan
et al., 2024) on HallBench. This result suggests
that, due to sustained focus on visual information,
the visual hallucinations commonly observed in
VRMs are notably suppressed. In contrast, other
VRMs experience even more severe visual halluci-
nations than the base model. This can be attributed
to the fact that, as mentioned earlier, VRMs strug-
gle to maintain sustained attention to visual infor-
mation as more textual tokens are generated during
reasoning.

4.3 Ablation Study

We ablate the cold-start and visual attention based
reward components of our method to evaluate the
impact of each design on enhancing visual reason-
ing capabilities of VRMs. Experimental results in
Table 2 demonstrate that both components signifi-
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Model MathVision MathVista MMMU MMMU-Pro M3CoT
Reflection-V-3B (Qwen2.5-VL/QWQ cold start) 27.9 66.3 56.9 38.2 62.9
Reflection-V-3B (InternVL3/Qwen3 cold start) 27.1 67.6 58.0 36.4 64.2

Table 4: Performance comparison between cold-start data constructed with InternVL3/Qwen3 and Qwen2.5-
VL/QWQ. In this experiment, InternVL3-38B, Qwen3-32B, and Qwen2.5-VL-72B are employed.
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Figure 4: Attention weights (last layer) on visual tokens and visual dependency measure of Reflection-V-7B on
MMMU benchmark, compared to OpenVLThinker-7B and Qwen2.5VL-7B. The shown attention weights represent
the mean value across all samples. Visual dependency measure quantifies the difference in probability distributions
for next token prediction based on generated tokens, before and after discarding visual tokens. The light-green,
light-blue, and light-red bands represent the confidence intervals of the visual dependency measure for Reflection-V-
7B, Qwen 2.5-VL-7B, and OpenVLThinker-7B, respectively.

cantly improve VRM’s performance. Notably, cold-
start yields a particularly substantial performance
gain. This indicates that emphasizing the continu-
ous reliance and repeated utilization of visual infor-
mation in SFT data significantly improves visual
reasoning performance. Furthermore, with cold-
start, the performance improvement from visual
attention based reward becomes more pronounced.
We believe this occurs because cold-start, based
on visual reflection data, guides VRMs in how to
increase their attention to visual information.

We conduct a further ablation to validate the su-
periority of emphasizing visual reflection pattern
in cold-start data. Specifically, we replace the rea-
soning data containing visual reflection patterns
with image caption-based reasoning data (derived
from the same origin data) during cold-start ini-
tialization, then compare their performance across
benchmarks. As shown in Table 3, our method
outperforms the "caption then reasoning" data con-
struction paradigm by a significant margin. This
result also illustrates that the improved visual rea-
soning performance originates not from distilling

high-quality data from larger models but rather
from the intentional incorporation of visual reflec-
tion patterns in constructed data.

Besides, We conducted additional experiments
to analyze whether the proposed cold-start data con-
struction method exhibits any bias toward specific
model families. Specifically, we replaced the VLM
and LLM used for constructing cold-start data with
InternVL3-38B (Zhu et al., 2025) and Qwen3-32B
(Thinking mode) (Yang et al., 2025a), and com-
pared the results with those from constructing cold-
start data using Qwen2.5VL-72B and QWQ-32B.
The results are shown in Table 4. The experimental
findings indicate that the performance gap between
InternVL3/Qwen3 and Qwen2.5-VL/QWQ in con-
structing cold-start data is minimal. This suggests
that our cold-start data construction method does
not exhibit any bias toward specific model families.

To further validate that the proposed method
improves performance by achieving the claimed
visual reflection, we present further analyses below.
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([ nput | OpenVLThinker-78

Fig. 1

Question: Find the Fourier series for the
sawtooth waveform shown in the image.

<think>\n The sawtooth waveform can be represented as a Fourier series, which is a sum of sine waves. The general form of the
Fourier series for a function f(t) is given by: f(£) = ag + Yneq (an cos (222L) + b, sin (222)) Forl  Sawtooth wave| the
coefficients (a,) are zero because the wave is an odd function, and coefficients b, can be Ealculated Using the formula -20

for Fourier series coefficients for an odd function: _ For the sawtooth wave, the period T' = 27,

and the function f(t) is: f(t) = 2 for — <t < 7 ... &/thinks “AnswersD</Answers

-25

Options:

Reflection-V-7B

(A) —2[sint + §sin25 + T sin3t+...]

(8) —2[sint + +sin30 + +sin3t-+...]

<think>\n To determine the correct Fourier series, we first analyze its periodicity: The [iage SHoWS The Waveronm repeating
BV8R) T°= 27 The Fourier series for a periodic function f(t) with period T is given by: 3
For a sawtooth waveform, the fundamental frequency is fo = % = % so wg = 1. The coefficients ¢, are determined

by the function integral over one period. The Fourier series starting at — with a slope of 1 is: Z:‘;LMW_

0 inwot _ 2
e 00 Cn€", Where wg = T

(=1)m2

-——sin(nt).

(;—0T) 44B12M UoLLUBLLY [DNSIA

Visual Aha Moment!

. q -5
(€) —2[sint + +sin25 + §sin3t-+...] [ngis_chg_ck_fhg_lmggg_qggm.}rhe image shows a sawtooth waveform with a period of 2, as indicated by the
horizontal axis labels (0, 7, 27, 37, ...). The waveform starts at — and increases linearly to 0 at \(t = \pi\), then decreases
(D) —2[sint + %sin25 + %sinStJr. p back to —7 at ¢ = 2, and repeats ... ¢/think> _ Q 0

Figure 5: Our model, Reflection-V, exhibits the visual reflection capacity that we claim, in contrast to other RL-based
visual reasoning models. The background color of tokens in the figure indicates the magnitude of the visual attention
weight. This visual reflection capacity is demonstrated by the recheck and attention to visual tokens again that
appear alongside "Aha moment", like "Let’s check the image again".

4.4 Analyses

In Section 2, we demonstrate that existing VRMs
struggle with visual reflection through three met-
rics: visual attention weight, and visual dependency
measure. Based on these metrics, in this subsection,
we analyze whether the performance improvement
of Reflection-V genuinely stems from the training
strategy that emphasizes visual reflection.

Our method leads to more sustained visual
attention and dependence. We compare the at-
tention weight of response tokens to visual tokens
for Reflection-V and OpenVLThinker-7B of the
same scale, at different generated tokens. We find
that, in the middle and deep transformer layers,
Reflection-V exhibits significantly higher attention
weights to visual tokens than OpenVLThinker, the
model also trained through SFT cold-start initializa-
tion and GRPO, based on Qwen2.5-VL, as shown
in Figure 4. As the number of generated tokens
increases, the decrease in attention weight to vi-
sual tokens is slower in Reflection-V-7B than in
OpenVLThinker-7B. Furthermore, to investigate
whether the proposed method enhances VRMs’ re-
liance on visual information, we compare the visual
dependency measure, as referred to in equation (3),
of Reflection-V and OpenVLThinker at different
generated tokens, as shown in Figure 4. The re-
sults indicate that, benefiting from the emphasis on
visual reflection, Reflection-V significantly miti-
gates the diminishing of dependence on visual in-
formation as generated tokens increase, compared
to OpenVLThinker. To sum up, Reflection-V ex-
hibits more sustained reliance on visual informa-
tion. Experimental results also show that this fea-

ture enhances visual reasoning accuracy.

Better performance, sustained visual atten-
tion, and reliance all originate from visual re-
flection. As discussed earlier, the proposed method
improves visual reasoning performance while main-
taining visual attention and dependency during rea-
soning. Figure 5 presents a comprehensive example
demonstrating that these gains are indeed due to
the model’s visual reflection ability. In this exam-
ple, Reflection-V actively verifies and refines its
reasoning by rechecking the visual input. When
textual “Aha moments” like “Let’s check the im-
age again” appear, the visual attention weight rises
sharply during next-token prediction, representing
the true “aha moment” in visual reasoning. As
Figure 5 shows, visual reflection capacity enables
Reflection-V to reveal critical visual information
absent from the reasoning context, thereby infer-
ring the correct answer. Additionally, Figure 4
shows that the upper bound of the confidence inter-
val for visual dependency measure shows virtually
no decline with increasing generated tokens. This
suggests that during reasoning, as the number of
generated tokens increases, Reflection-V maintains
consistent dependency on visual tokens throughout
the generation process. The observed decline in av-
erage visual dependency measure stems from the re-
duced frequency of visual reflection as the number
of generated tokens increases. This phenomenon
aligns with the re-emergent, image-focused atten-
tion derived from visual reflection, which is ob-
served in Figure 4. These results demonstrate that,
when Reflection-V engages in visual reflection, it
maintains the same level of focus and reliance on
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visual tokens as at the start of reasoning.

5 Related Works

Visual Reasoning model. Large VLMs typically
project inputs from non-text modalities into tex-
tual representations that LLMs can process (Guo
et al., 2025b; Li et al., 2025; Zhang et al., 2025c¢),
achieving strong performance in vision understand-
ing (Bai et al., 2025; Zhang et al., 2025b). The
advancement of LL.Ms has redefined state-of-the-
art performance across a vast landscape of tasks
(Yang et al., 2024; Wang et al., 2024b). Motivated
by recent advances in LLM domain (Zhang et al.,
2024b; Zheng et al., 2025a; Dai et al., 2025; Sun
et al., 2025b), researchers enhance Large VLMs
reasoning with step-level reasoning SFT datasets
(Xu et al., 2024; Cheng et al., 2025) and RL (Yang
et al., 2025e; Wang et al., 2025; Chu et al., 2025;
Chung et al., 2025; Yang et al., 2025b). However,
as discussed earlier, these trained VRMs typically
struggle with visual reflection, leading VRMs to
reason without visual grounding after many tokens
are generated.

Visual forgetting alleviation. Consistent with
visual reflection that we claim, some recent studies
emphasize alleviating forgetting visual cues dur-
ing long-chain inference. M3ID (Favero et al.,
2024) employs mutual information decoding to am-
plify image influence while weakening linguistic
priors, thereby promoting continuous reliance on
visual cues. But diminishing linguistic priors low-
ers performance on complex reasoning tasks (Bit-
ton Guetta et al., 2024; Zhang et al., 2024a). TVC
(Sun et al., 2025a), a concurrent work, periodically
replays visual tokens during inference to reuse vi-
sual cues, but it cannot flexibly invoke visual re-
flection when required. Distinct from these works,
we embed visual reflection capability into VRMs
based on data generated by LLM-VLM interaction,
and reinforce this capability during RL. As a result,
the trained VRMs can actively refine their reason-
ing based on the visual input when needed.

6 Conclusion

In this paper, we propose that the true “aha mo-
ment” in visual reasoning arises when a model
engages in visual reflection—that is, when it ac-
tively verifies and refines its reasoning based on
the visual input. Through quantitative studies, we
reveal that existing VRMs struggle with such vi-
sual reflection. Therefore, to address this critical

challenge, we propose a two-stage training strategy
combining LLM-VLM interaction-driven reflective
reasoning patterns with visual attention based RL.
This training strategy significantly improves perfor-
mance across multiple benchmarks. Experiments
confirm that such improvement is derived from sus-
tained visual attention and reliance, demonstrating
the effectiveness of visual reflection. This work
establishes a foundation for integrating visual re-
flection into VRMs, narrowing the gap between
visual and text-only reasoning on complex tasks.

Limitations

Firstly, due to computational constraints, we could
not conduct experiments like GRPO with models
larger than 7B parameters. Thus, we limited our
exploration to the 3B and 7B parameter scales. Sec-
ondly, our cold-start initialization (based on con-
structed reasoning data with visual reflection pat-
tern), reinforcement learning (with visual attention
based reward), and evaluation presently involve
relatively limited categories of visual-language
datasets. In future work, we plan to include a wider
range of visual-language datasets covering diverse
problem types to further evaluate the generalization
ability of the proposed method.
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Hyper-parameters Value
Epoches 3
Batch size 8
Warmup ratio 0.1
Gradient accumulation 4
Learning rate scheduler | Cosine
GPUs 2
Optimizer AdamW

Table 5: The hyperparameters used during cold-start
initialization using the constructed data with visual re-
flection pattern.

Hyper-parameters Value
Hyper-parameters 12
Batch size 512
Micro Batch size 8
Warmup False
Rollout 16
Rollout Temperature 1.0
Rollout Top-P 0.99
Freeze Vision Tower True
KL divergence coefficient | 1 x 1072
Learning rate 5x 1076
Weight Decay 1x 1072
GPUs 8
Optimizer AdamW
Framework Verl

Table 6: The hyper-parameters used during GRPO with
visual attention based reward.

A Implementation Details and
Hyperparameters

During supervised fine-tuning (SFT), we set the
learning rate to le >, apply a cosine scheduler with
a 0.1 warm-up ratio, use BF16 mixed precision,
adopt a batch size of 8, and train for 3 epochs. In
the reinforcement-learning (RL) phase, we limit
both prompts and responses to 2048 tokens and
apply KL divergence with a coefficient of le 2.
Each training step processes 512 questions with
16 rollouts per question; rollout sampling uses a
temperature of 1.0 and a top-p of 0.99. For valida-
tion, we evaluate with the pass@ 1 metric and set
the sampling temperature to 0.5. Detailed hyperpa-
rameters are shown in Table 5 and Table 5.

B Prompts

Prompt Templates of Visual Requester

You currently need to address the
following question: <question>
The information you need is in
an image, but you can’t see the
image right now. At the same time,
you’re not capable of complex
reasoning.

However, you can <can consult
the following two Vision Expert
for help. You can ask him a single

question for information in the
picture, for example, you could
ask him, "What color is the bird

in the picture?”

Use the following format:
{’Thought’: ’analyze the problem
here.’, ’Question’:’Questions you
want to ask the Vision EXPERT’}

<split>

And the information you
currently is as follows:
<info>

know

Prompt Templates of Visual Responder

Please answer my question 1in
a tone that provides a concise

description of the image. If it
is a yes/no question, focus on
describing the relevant visual

information,
with yes/no.

avoiding answering

Question:
<question>

Prompt Templates of Summarizer

The following is the available
information:

<info>
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Please solve the
problems step by step:
<question>

following

Use the following format:
Thought: Conduct an analysis
before you give me an answer.
Final Answer: "The final answer
you get when you have finished
reasoning.”

Prompt Templates of Cohesion Enhance-

ment

Below is the reasoning steps for
the question <Question>, but there
are some disjointed parts marked
with "...". Please fill in the
gaps to improve coherence. You can
use some connecting phrases such
as "Let’s double check,” "Let’s
check the image again,” and "To
sum up,” and "Wait".

Use the following format:
"Thought’: ’Reasoning steps’,
’Final answer’:’\boxed{...}’

The final answer (only choice
like A, B, C, D) MUST BE put in
\boxed{}.

The reasoning steps is:

nnn

<Reasoning>

nnn

Prompt Templates of RL Training and

Evaluation

You FIRST think  about the
reasoning process as an internal
monologue and then provide the
final answer.

The reasoning process MUST BE
enclosed within <think> </think>
tags. The final answer MUST BE put
in \boxed{}.

Qustion:

Table 7: Detailed composition of the datasets used to
construct reasoning data with visual-reflection pattern
for cold-start initialization.

Datasets Samples
AI2D (Kembhavi et al., 2016) ~ 0.5K
A-OKVQA (Marino et al., 2019) ~ 0.5K

M3CoT (train set) (Chen et al., 2024a) ~ 1.0K
CLEVR-Math (Johnson et al., 2017) ~ 0.5K
ScienceQA (Masry et al., 2022) ~ 0.5K
TextVQA (Singh et al., 2019) ~ 0.2K

Table 8: Detailed composition of the datasets used to
conduct GRPO.

Datasets Samples
Geo3K (Lu et al., 2021) ~ 2.1K
AI2D (Kembhavi et al., 2016) ~ 1.5K
TextVQA (Singh et al., 2019) ~ 0.8K
M3CoT (train set) (Chen et al., 2024a) ~ 3.0K
MathVerse (Zhang et al., 2024a) ~ 2.5K
Super-CLEVR (Li et al., 2023) ~ 0.5K
MathV360K (Shi et al., 2024) ~ 1.0K
A-OKVQA (Marino et al., 2019) ~ 0.5K
ScienceQA (Schwenk et al., 2022) ~ 0.5K
ChartQA (Masry et al., 2022) ~ 1.0K
ArxivQA (Li et al., 2024b) ~ 1.0K
EMMA (Hao et al., 2025) ~ 1.6K

C Data Resources

We collect data from a large multimodal corpus for
(1) constructing reasoning data with visual reflec-
tion pattern (cold-start initialization stage) and (2)
GRPO training, as summarized in Tables X and Y.

D Supplementary Experiments

Broader evaluation of Reflection-V’s capabil-
ity of sustained visual attention. Beyond the
MMMU results reported in the main text, Fig-
ures 6 and 7 evaluate Reflection-V-7B on three
additional visual-reasoning benchmarks spanning
mathematical, multi-disciplinary, and general do-
mains. Figure 6 traces last-layer attention from re-
sponse tokens to visual tokens over 500 generated
tokens: Reflection-V-7B consistently launches with
higher visual-attention strength than Qwen2.5VL-
7B and—crucially—decays far more slowly, re-
taining about 30%—40% of its initial level where
baselines sink below 10%. This advantage extends
to other VRMs such as OpenVLThinker-7B, whose
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OpenVLThinker-7B and Qwen2.5VL-7B. The shown attention weights represent the mean value across all samples.

Generated Tokens

E = Average VDM Qwen2.5VL — = Average VDM Qwen2.5VL — = Average VDM Qwen2.5VL
g —— Average VDM VL-Reflection g = Average VDM VL-Reflection }; = Average VDM VL-Reflection
< 104 VDM Confidence Interval Qwen2.5-VL = 104~ VDM Confidence Interval Qwen2.5-VL 8 10l VDM Confidence Interval Qwen2.5-VL
g VDM Confidence Interval VL-Reflection g VDM Confidence Interval VL-Reflection| é VDM Confidence Interval VL-Reflection|
2 T T T T 5 T ; 1 ® T T T
®» 084 5 084 5 084
@ @
5'! S S
g 3 =
= 06 . 0.6 > 064
> Q 9
9 < <
< X °
S 04 £ 04+ S 04+
] 8 3
a Q Q
O fa] o
2 0.2 4 5 024 g 0.2
S 2 2
2 > " > i i :
> 00 f f i i 0.0 i i i 00 i i i i
[¢] 100 200 300 400 500 0 100 300 400 500 0 100 200 300 400 500

Generated Tokens

Generated Tokens
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and Qwen2.5VL-7B. Visual dependency measure quantifies the difference in probability distributions for next token
prediction based on generated tokens, before and after discarding visual tokens.

cold-start and RL stages, as noted earlier, further
erode visual attention and dependency; Reflection-
V therefore surpasses these models as well. Figure
7 reports the Visual Dependency Measure (VDM):
the upper bound of Reflection-V’s confidence inter-
val remains nearly flat across all tasks, indicating
sustained reliance on visual evidence, while the
baselines exhibit a pronounced downward trend.
These supplementary findings demonstrate that
Reflection-V maintains robust visual attention and
dependency across diverse reasoning scenarios,
substantiating its superior visual-reflection capa-
bility.

Scaling experiment of the proposed method.
We further conduct a scaling experiment on the
MS-SWIFT framework (Zhao et al., 2024), lever-
aging LoRA as an efficient training technique on
InternVL3-14B. The number of GRPO training
epochs is also set to 12. The evaluation results on
several visual reasoning benchmarks are shown in
Table A. These results demonstrate that our method
significantly outperforms GRPO, which solely re-
lies on textual output-based reward. This exper-
iment demonstrates that our approach can effec-
tively scale to larger models and enhance their vi-

sual reasoning capabilities.

E Case Study
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Model Math-Reasoning Multi-Disciplinary  General

MathVision MathVista MMMU MMMU-Pro M3CoT

Closed-Source Vision-Language Models

GPT-40 (Hurst et al., 2024) 30.4 60.0 69.1 51.9 1742
GPT-4V (Yang et al., 2023) 22.8 49.9 56.8 41.2 62.6

Open-Source Vision-Language Models

QwenVL2.5-3B (Bai et al., 2025) 21.2 62.3 512 31.6 55.6
QwenVL2.5-7B (Bai et al., 2025) 25.1 68.2 1543 36.9 160.5
InternVL-2.5-38B (Chen et al., 2024b) 32.2 71.9 57.6 46.0 168.9
InternVL3-14B (Chen et al., 2024b) 35.9 73.8 64.1 48.9 70.1

Open-Source Vision-Language Reasoning Models

MM-Eureka-7B® (Meng et al., 2025) 26.9 73.0 51.3 36.7 163.5
R1-Onevision-7B® (Yang et al., 2025¢) 29.9 64.1 t48.7 21.6 53.1
OpenVLThinker-7B° (Deng et al., 2025) 25.3 70.2 525 373 f62.2

Ours (Training strategy emphasizing visual reflection)

InternVL3-14B (GRPO) 38.3 75.6 66.9 51.3 73.4
Reflection-V (InternVL3-14B) 39.8 76.8 68.7 53.5 78.1

Table 9: Performance of the proposed approach when scaled to 14B parameters (InternVL3-14B).
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/ E Question: The elliptical orbit of a planet around The\
Sun is shown on the diagram. Which of the following
statements is true?

Choices:
A (A) the eccentricity of the orbit is less thatn zero
(B) the eccenftricity of the orbit is greater than 1
(C) the sun might be at point C
(D) the sun might be at point D
(E) the sun might be at point B
<think>
To determine the correct answer, I need to identify the location of the Sun (likely one
of the labeled points) in the elliptical orbit diagram. The Sun must be at one of the
ellipse’s foci. The diagram shows an ellipse with labeled points A, B, C, D, and E. The foci
of an ellipse are two fixed points inside the ellipse such that the sum of the distances
from any point on the ellipse to the two foci is constant. In the diagram:

- Point **A** is located on the ellipse.
- Points **B**, **C** and **D** are inside the ellipse.
- Point **E** is outside the ellipse.

— The image show that point **B** is on the major axis of the

ellipse. For an ellipse, the foci are always located along the major axis, and the major axis
is the longest diameter of the ellipse. The major axis passes through the center of the
ellipse and connects the two farthest points on the ellipse.

To sum up, the Sun must be at one of the ellipse’s foci. Since the major axis passes
through both foci and the major axis is indicated by points A and B, the foci must lie
along this axis. Point **B** is on the major axis but inside the ellipse, so it cannot be a
focus. Points **C** and **D** are also inside the ellipse and not on the major axis, so
they cannot be foci. Point **A** is on the ellipse and on the major axis, but if it were a
focus, the ellipse would degenerate, which is impossible. Thus, the foci must be at points
**B**'s mirror image positions on the major axis, which are not explicitly labeled but
implied to exist at the ellipse's ends along the major axis. Since the question asks for the
location of the Sun, which must be at one of the foci, and the diagram's major axis
passes through point **B** (even though it is not a focus), the correct answer is the
labeled point **B**, as it lies on the major axis where the foci are located.

</think>
&boxed{E} a /
C] Visual C] Aha Final
Information Moment Answer

Figure 8: Case study 1 for our model, Reflection-V, performs visual reflection during visual reasoning. In this case,
based on rechecking the image, Reflection-V reveals key visual information which is not in the generated reasoning
context, therefore finally infers the correct answer.
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A

Presynaptic
Neuron

e e®

Question: In the figure above, where does the
neurotransmitter dopamine have its effect?

[ L N Choices: (A) A, (B) B, (C) C, (D) D, (E) E

Postsynaptic
Neuron

<think>
To determine where dopamine has its effect, I need to identify the receptor sites on the
postsynaptic neuron, which are likely labeled in the figure. In the image:

Thus, the label **E** represents the receptor sites on the postsynaptic neuron.

The label **E** in the figure is shown on the surface of the postsynaptic neuron.

To sum up, the receptor sites (E) are the final point of action for dopamine.The
neurotransmitter dopamine binds to receptor sites on the postsynaptic neuron to produce
its effect. From the information provided, label E is described as black structures on the
postsynaptic neuron that face the synaptic cleft (labeled D). Neurotransmitters (likely
dopamine) are shown in the synaptic cleft (D), and their binding to the receptor sites on
the postsynaptic neuron (labeled E) is implied. Since dopamine binds to these receptor
sites to initiate the effect, E represents the site of action for dopamine. The other labels
(A, B, C, D) are associated with structural or functional elements of the synaptic region
but are not explicitly described as receptor sites.

Final Answer:The neurotransmitter dopamine has its effect at label **E**.

</think> Q
@oxed{E} /
- Visual - Aha Final
Information Moment Answer

Figure 9: Case study 2 for our model, Reflection-V, performs visual reflection during visual reasoning. In this case,
based on rechecking the image, Reflection-V reveals key visual information which is not in the generated reasoning
context, therefore finally infers the correct answer.
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/ Question: Which of the following best explains the
- extent of the Han dynasty as shown in this picture?

Choices:

(A) The Han dynasty faced few geographical
challenges, which allowed for rapid expansion.

(B) The Han dynasty established cities as centers
e for religious rituals and sacrificial ceremonies.
= (C) The Han dynasty imposed political unity where
T there had previously been competing states.

(D) The Han dynasty failed to expand borders of
previous Chinese dynasties.

<think>

To determine the extent of the Han dynasty as shown in the image, key factors include
the geographic reach, urban centers, or territorial expansions compared to previous
dynasties... The image depicts a map of ancient China, showing the extent of the Han
dynasty. The map includes several key features:

Overall, the map visually represents the territorial expansion and administrative centers
of the Han dynasty, highlighting significant geographical and political changes compared
to previous Chinese dynasties...

...Final Answer:C

</think>

Qboxed{C} Q /
- Visual - Aha Final
Information Moment Answer

Figure 10: Case study 3 for our model, Reflection-V, performs visual reflection during visual reasoning. In this case,
based on rechecking the image, Reflection-V reveals key visual information which is not in the generated reasoning
context, therefore finally infers the correct answer.
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