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Abstract
We introduce HYDRA, a simple yet effective
multi-head encoder-only architecture for hier-
archical text classification that treats each level
in the hierarchy as a separate classification
task with its own label space. State-of-the-art
approaches rely on complex components like
graph encoders, label semantics, and autore-
gressive decoders. We demonstrate that such
complexity is often unnecessary. Through pa-
rameter sharing and level-specific parameteri-
zation, HYDRA enables flat models to incor-
porate hierarchical awareness without architec-
tural complexity. Experiments on four bench-
marks (NYT, RCV1-V2, BGC, and WOS)
demonstrate that HYDRA always increases the
performance over flat models and matches or
exceeds the performance of complex state-of-
the-art methods. The source code is available
at https://github.com/FKarl/HYDRA

1 Introduction

Hierarchical text classification (HTC) is at the core
of many real-world applications, such as news cate-
gorization, book genre classification, and scientific
indexing, which depend on assigning documents to
categories organized within taxonomies (Zangari
et al., 2024). Recent state-of-the-art approaches in-
creasingly rely on sophisticated architectural com-
ponents. These include graph encoders to capture
hierarchical structure (Wang et al., 2022), seman-
tic label embeddings to model label interdepen-
dencies (Zhou et al., 2025), and autoregressive de-
coders to generate label sequences (Younes et al.,
2024). While these HTC-specific designs achieve
impressive classification performance, they have
high architectural complexity. This reduces practi-
cal applicability and reproducibility. We question
whether such sophisticated components are truly
necessary for effective hierarchical classification.

In this work, we introduce HYDRA (HierarchY
Divided classifieR Architecture), a simple yet effec-
tive method for HTC. HYDRA combines a shared
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Figure 1: Our HYDRA architecture uses multiple clas-
sification heads with a shared embedding to make flat
encoder-only models hierarchically aware without com-
plex modeling. It is trained with k training signals, each
guided by a different level of the hierarchy. Treating
HTC as a multi-task problem effectively incorporates
hierarchical information into flat encoder-only models.

text encoder architecture with distinct classification
heads for each hierarchical level, enabling encoder-
only models like BERT (Devlin et al., 2019) to
integrate structural awareness without adding ar-
chitectural complexity. By treating hierarchical
classification as a multi-task problem, HYDRA
combines parameter efficiency through shared rep-
resentations with level-specific parameterization.
In contrast to state-of-the-art HTC models, HY-
DRA does not require a graph encoder, label se-
mantics, or autoregressive decoder. As shown in
Figure 1, our approach retains the simplicity of
encoder-only models while incorporating hierar-
chical information through level-wise training sig-
nals. Experiments demonstrate that HYDRA in-
creases the performance over a range of strong
encoder-only models and even matches or exceeds
that of more complex state-of-the-art methods on
standard HTC benchmarks (NYT, RCV1-V2, BGC,
and WOS). Our key contributions are:

• A simple but effective multi-head architecture
HYDRA that enables flat models to effectively
leverage hierarchical label information.
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• HYDRA matches or exceeds state-of-the-art
performance on multiple benchmarks without
relying on graph encoders, label semantics, or
autoregressive decoders.

• We propose three different setups of HYDRA:
Local Heads Only, Local Heads + Global
Head, and Local Heads + Nested Head.

Below, we summarize the related work. Sec-
tion 3 provides a problem statement and introduces
our method. The experimental apparatus is de-
scribed in Section 4. An overview of the results
achieved is reported in Section 5. Section 6 dis-
cusses the results, before we conclude.

2 Related Work

2.1 Hierarchical Text Classification
Hierarchical text classification (HTC) addresses the
challenge of assigning documents to labels orga-
nized in taxonomies with multiple levels of granu-
larity. Existing approaches for HTC can be catego-
rized into flat, local, and global approaches (Zan-
gari et al., 2024).

The flat classification approach treats the hi-
erarchical task as a flat multi-label classifica-
tion by discarding the hierarchical information
entirely (Younes et al., 2024). For example,
in news categorization, a flat approach would
treat all categories like “Politics”, “Sports”, and
“Sports/Volleyball” as independent labels, disre-
garding their hierarchical relationships. Despite
considerable advances in HTC, the field has largely
overlooked flat models as standalone approaches.
Most existing works only use BERT as a baseline
without investigating newer and more powerful
encoder-only models (Zhou et al., 2025; Liu et al.,
2025; Wang et al., 2022). While HTC approaches
incorporate encoder-only models within their ar-
chitectures, they typically use them as a compo-
nent in a complex system. This can be the use
of an encoder-only model as underlying encoders
for the graph structure (Jiang et al., 2022), as a
text encoder with a separate graph encoder (Wang
et al., 2022), or paired with an autoregressive de-
coder (Younes et al., 2024). In contrast, we rely
on a single encoder-only model with a loss per
hierarchy level (see Figure 1).

Local methods train independent classifiers per
hierarchy level (Wehrmann et al., 2018; Shimura
et al., 2018) or node (Banerjee et al., 2019). A
local approach might train separate classifiers to

distinguish between “Politics” and “Sports” and to
distinguish between “Volleyball” and “Football”.

Research focus has generally shifted toward
global models, with practically all state-of-the-art
models (U et al., 2023; Zhou et al., 2025; Jiang
et al., 2022) adopting global approaches to incorpo-
rate hierarchical information. The global approach
extends the flat classification paradigm by enrich-
ing it with hierarchical information, such as that
“Volleyball” is a subcategory of “Sports”. This can
be done in multiple ways.

For example, HiAGM (Zhou et al., 2020) for-
mulates the label hierarchy as a directed graph and
uses structure encoders to capture label relations.
Building on this idea, HGCLR (Wang et al., 2022)
uses hierarchy-guided contrastive learning to in-
ject hierarchical structure into the text encoder, al-
lowing it to produce hierarchy-aware embeddings.
HALB (Zhang et al., 2024) extends HGCLR by
adding multi-label negative supervision and replac-
ing the classification loss with asymmetric loss
to achieve a hierarchy-aware and label-balanced
model. Addressing label conflicts, DFG (Liu et al.,
2025) introduces a two-stage approach: disentan-
gling label features to eliminate unintended corre-
lations, then selectively reconstructing hierarchical
connections through a GNN-encoded graph. Other
approaches focus on semantic alignment between
texts and labels. HiMatch (Chen et al., 2021) treats
hierarchical classification as a semantic matching
problem, projecting texts and labels into a shared
embedding space and optimizing their alignment
across hierarchy levels. Similarly, HBGL (Jiang
et al., 2022) combines global and local hierarchi-
cal structures by jointly modeling a static global
hierarchy and text-specific local hierarchies using
pre-trained language models.

Contrastive learning techniques are further ex-
plored by HILL (Zhu et al., 2024), which preserves
hierarchical information through an information
lossless contrastive framework that fuses the hi-
erarchy with textual features without degrading
original information. HGBL (Zhang et al., 2025)
further enhances label-text interaction by guiding
the contrastive learning based on the global features
extracted by a BiLSTM (Graves and Schmidhuber,
2005). HJCL (U et al., 2023) uses an instance-
based contrastive loss in combination with label-
based contrastive learning to incorporate the hier-
archical structure. Another contrastive learning ap-
proach is HiSR (Zhou et al., 2025), which generates
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various negative samples to improve the model’s
ability to distinguish between fine-grained labels.

Previous work also explores the use of an au-
toregressive decoder for HTC. Architectures like
Seq2Tree (Yu et al., 2022) extend T5 (Raffel et al.,
2020) by capturing the hierarchical information
using Depth-First Search (Tarjan, 1972) over the
hierarchy. RADAr (Younes et al., 2024) takes a
different approach. It uses RoBERTa as an encoder
and a custom autoregressive decoder. Unlike other
models, RADAr does not explicitly encode the la-
bel hierarchy, demonstrating that explicit hierarchy
encoding is not always necessary.

2.2 Multi-Task Learning

Multi-Task Learning (MTL) (Caruana, 1997) is a
paradigm in which a model is trained to perform
multiple related tasks simultaneously. In neural
networks, this is typically achieved by sharing pa-
rameters in the lower layers while maintaining task-
specific output layers (Zhang et al., 2023). The
main advantages of MTL include improved data
efficiency, reduced risk of overfitting, and the abil-
ity to take advantage of auxiliary information from
related tasks (Crawshaw, 2020).

A key distinction in MTL approaches is between
hard parameter sharing, where multiple tasks share
the same parameters for certain layers, and soft pa-
rameter sharing, where each task has its own param-
eters, but similarity between them is encouraged
via regularization (Chen et al., 2024). Hard sharing
acts as a strong regularizer, while soft sharing of-
fers more flexibility for tasks that are less closely
related. Effective multi-task learning generally re-
quires sufficient relatedness between the compo-
nent tasks and their data distributions (Zhang et al.,
2023).

3 HYDRA: A Hierarchical Multi-Head
Architecture

Current state-of-the-art approaches for hierarchical
text classification do not use local classifiers and
often rely on complex global models that incorpo-
rate graph encoders, label semantics, or autoregres-
sive decoders (see Table 1). However, we question
whether such complexity is truly necessary for ef-
fective HTC. To answer this, we propose HYDRA
(HierarchY Divided classifieR Architecture), a sim-
ple yet effective local model. The key idea behind
HYDRA is to train specialized classifier heads for
each hierarchical level while utilizing hard parame-

Model Local- No Label No Graph No Autoregres-
Classifier? Semantics? Encoder? sive Decoder?

HiAGM ✗ ✓ ✗ ✗

HiMatch ✗ ✗ ✗ ✓

HGCLR ✗ ✗ ✗ ✓

HILL ✗ ✗ ✗ ✓

HBGL ✗ ✗ ✗ ✓

HALB ✗ ✗ ✗ ✓

HGBL ✗ ✗ ✗ ✓

DFG ✗ ✗ ✗ ✓

HJCL ✗ ✗ ✗ ✓

HiSR ✗ ✗ ✗ ✓

Seq2Tree ✗ ✗ ✓ ✗

RADAr ✗ ✓ ✓ ✗

HYDRA (Ours) ✓ ✓ ✓ ✓

Table 1: Model characteristics across key architectural
components. HYDRA distinguishes itself by avoiding
complex components while using local classifiers.

ter sharing for the encoder. By treating HTC as a
multi-task problem, HYDRA leverages parameter
sharing to incorporate hierarchical information into
flat encoder-only models.

3.1 Task Formulation

In hierarchical text classification, the label space is
naturally organized into a hierarchy with multiple
levels. We approach this problem by treating each
level in the hierarchy as a separate classification
sub-task that provides a complementary perspec-
tive on the full classification task. This multi-task
formulation allows us to incorporate hierarchical
awareness into flat models without complex archi-
tectural components. Formally, a sub-task is a tu-
ple sj = (Lj , Lj) consisting of a loss function
Lj and a label subset Lj drawn from the full la-
bel space L at the jth level of the hierarchy. The
training objective of HYDRA is then defined as a
set S = {s1, . . . , sk} with k being the number of
hierarchy levels, forming the sub-tasks that provide
complementary supervision during training. Un-
like traditional multi-task learning, where tasks are
truly separate, our hierarchies represent different
views of the same underlying classification task,
organized at different levels of granularity.

3.2 Architecture Design

HYDRA consists of a pre-trained text encoder
that encodes an input text sequence into a fixed-
dimensional latent representation. We then apply a
learnable linear embedding projection that expands
this embedding by a factor equal to the number of
hierarchy levels. Finally, this is then forwarded to
multiple classification heads.
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Figure 2: Our three proposed architectural setups for HYDRA at the example of classes assigned to a Percy Jackson
fantasy book. All three setups extend on a shared encoder that generates a unified text embedding. The difference
is in how the classification heads are applied: (a) Local Heads Only: Multiple local classification heads , each for
one hierarchy level. (b) Local Heads + Global Head: Adds a global classification head over the full label set to

align representations across levels. (c) Local Heads + Nested Head: The global head takes the aggregated outputs

of the local heads as input rather than the embedding directly.

We propose three different setups for HYDRA,
as illustrated in Figure 2. First, the Local Heads
Only setup (Figure 2a), where each hierarchical
level has its own classifier head. For example, with
a book from the Percy Jackson series, the first level
might classify it as “Children’s Literature”, the sec-
ond level as “Middle Grade”, and the third level as
both “Action&Adventure”, and “Fantasy&Magic”.

Second, we propose a Local Heads + Global
Head setup (Figure 2b) that, in addition to local
heads, trains a global head over the embedding with
the complete label set. This aligns the different lo-
cal representations by providing an additional train-
ing signal across all hierarchy levels. The global
head works on the union of all label sets (e. g.,
{Children, MiddleGrade, Action&Adventure, Fan-
tasy&Magic}).

Third, we introduce a Local Heads + Nested
Head setup (Figure 2c) where we train a head over
the full label set that takes as input the outputs of
the local heads rather than directly from the embed-
ding. This allows for higher-level integration of the
predictions from individual hierarchical levels.

3.3 Training Objective

The foundation of our approach is a deep neural
network encoder F (·; θF ) : X → Rd that maps
input data to a d-dimensional embedding space.
For any input x, the encoder produces an em-
bedding z = F (x; θF ). We consider a dataset
D = {(xi, Yi,1, . . . , Yi,k) | i ∈ [n]} of size n,
where each input xi ∈ X has labels Yi,j ⊆ Lj ⊆ L
across k hierarchical levels. Here, L represents the
complete label space, Lj is the subset of labels for

the j-th hierarchical level, and Yi,j are the specific
labels assigned to input xi at level j.

For the (a) Local Heads Only setup, each hier-
archical level is treated as a distinct classification
task with its own label space. Each hierarchy level
has its own classifier head MLPj implemented as
a two-layer MLP. This MLP takes the shared em-
bedding as input and maps it to the predictions for
the corresponding label set Lj .

The training objective minimizes a weighted
sum of losses across all hierarchical levels:

min
{θj}j∈[k],θF

1

n

∑

i∈[n]
Locali ,

Locali =
∑

j∈[k]
cj · Lj(MLPj(zi);Yi,j)

where θj represents the parameters for the jth

level classifier, and the scalar cj ≥ 0 represents the
level weight.

For the (b) Local Heads + Global Head setup,
we add an additional term to the objective function:

min
{θj}j∈[k],θg ,θF

1

n

∑

i∈[n]
(Locali + Globali) ,

Globali = cg · Lg(MLPg(zi);Yi)

where MLPg represents the global classification
head with parameters θg, Lg is the loss function
of the global classification task, Yi =

⋃
j∈[k] Yi,j

is the complete set of labels for input xi across all
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Dataset Depth #C Labels/doc. #Train #Val #Test

NYT 8 166 7.595.61 23,345 5,834 7,292
RCV1-V2 4 103 3.241.40 20,834 2,315 781,265
BGC 4 146 3.011.41 58,715 14,785 18,394
WOS-46985 2 141 2.000.00 30,070 7,518 9,397

Table 2: Characteristics of the HTC datasets. #C refers
to the number of classes. We also report the average
number of labels per document with standard deviation.

hierarchies, and cg ≥ 0 is the importance weight
for the global task.

For the (c) Local Heads + Nested Head setup,
the objective function becomes:

min
{θj}j∈[k],θn,θF

1

n

∑

i∈[n]
(Locali + Nestedi) ,

Nestedi = cn · Ln(MLPn([oi,1, . . . , oi,k]);Yi) .

Here oi,j = MLPj(zi) represents the output of
the jth local head for input xi, MLPn is the nested
head with parameters θn that takes as input the
concatenated outputs oi,j of all local heads, and
cn ≥ 0 is the importance weight for the nested
classification task.

4 Experimental Apparatus

4.1 Datasets
For hierarchical text classification (HTC), we em-
ploy four widely used benchmark datasets as pre-
sented in Table 2. The New York Times Annotated
Corpus (NYT) (Sandhaus, 2008) features news ar-
ticles with an 8-level hierarchy. RCV1-V2 (Lewis
et al., 2004) consists of Reuters news articles with
a 4-level hierarchy of topic categories. The Blurb
Genre Collection (BGC) (Aly et al., 2019) con-
sists of English book blurbs annotated with multi-
label genres organized in a 4-level hierarchy. WOS-
46985 (WOS) (Kowsari et al., 2017) contains sci-
entific abstracts from the Web of Science with a
2-level hierarchy of research areas and sub-areas.

4.2 Procedure
We train and evaluate a wide range of differ-
ent flat classifier models. These include BERT-
base (Devlin et al., 2019), BERT-large (Devlin
et al., 2019), RoBERTa-base (Liu et al., 2019),
DeBERTa-base (He et al., 2021), DeBERTaV3-
base (He et al., 2023), ModernBERT-base (Warner
et al., 2024), and unLLama-7B (Li et al., 2023).

Each model is trained as a flat classifier over the
entire label set to establish strong baselines.

For HYDRA, we select RoBERTa-base as the en-
coder, as it demonstrated the strongest performance
among the flat models in preliminary experiments.
We use the same encoder in all our three setups:
(a) Local Heads Only, (b) Local Heads + Global
Head, and (c) Local Heads + Nested Head. In addi-
tion, for setups with a global head, we separately
evaluate a variant using only the local heads versus
using only the global head.

All experiments are run five times with fixed
seeds to ensure reproducibility, and we report the
average performance along with the standard devi-
ation. Due to computational constraints and long
training times, unLLama was only trained once
per dataset. All experiments were performed on a
single NVIDIA H100 GPU with 80GB of memory.

4.3 Hyperparameter Optimization

We conduct a hyperparameter optimization using
grid search for the flat baseline models, exploring
learning rates of {2 · 10−5, 3.5 · 10−5, 5 · 10−5, 8 ·
10−5} and the threshold λ of {0.3, 0.5} as deci-
sion boundary which labels to include as HTC is
a multi-label classification task. Based on vali-
dation performance, we select a learning rate of
3.5 · 10−5 and λ = 0.5 for all models except Mod-
ernBERT, which performed best with a learning
rate of 8 · 10−5. Models are trained for 50 epochs,
with early stopping to prevent overfitting. For un-
LLaMA, we adopt the hyperparameters reported
by Li et al. (2023), specifically a learning rate of
8 · 10−5, λ = 0.5, LoRA rank of r = 12, and
max pooling. For HYDRA, we use the same hyper-
parameters as for RoBERTa-base and assign each
loss component equal importance, i. e., cj = 1 for
j ∈ [k]. We use Binary Cross-Entropy (BCE) as
the loss function for all heads.

4.4 Metrics

Following previous work, we report micro- and
macro-F1 scores, which are commonly used in
multi-label and hierarchical classification settings.
The micro F1 score aggregates contributions of
all classes to compute the average performance,
reflecting overall classification effectiveness. In
contrast, the macro F1 score computes the metric
independently for each class and then averages the
results, giving equal weight to all classes.
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Model NYT RCV1-V2 BGC WOS ProvenanceMicro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Flat Baselines
BERT-base 79.070.22 67.630.42 86.380.23 67.891.42 81.440.37 64.600.74 86.190.11 80.230.20 Own experiment
BERT-large 80.690.08 70.270.39 87.400.11 70.150.39 81.940.35 65.390.25 86.660.31 80.800.38 Own experiment
RoBERTa-base 81.470.15 71.450.45 87.300.10 68.601.40 81.520.26 64.130.55 86.350.15 80.160.13 Own experiment
DeBERTa-base 81.210.17 71.330.26 87.240.18 69.660.52 81.280.18 63.850.24 86.820.11 80.850.48 Own experiment
DeBERTaV3-base 79.960.20 67.300.23 86.770.18 67.491.87 81.520.16 63.411.13 86.580.24 80.410.69 Own experiment
ModernBERT-base 79.830.53 68.990.54 86.200.42 67.430.66 81.290.23 63.000.53 86.150.33 80.340.22 Own experiment
unLLama-7B (LoRa) 77.20 61.68 84.45 61.42 76.29 45.43 84.13 74.32 Own experiment

Hierarchical Classification Methods (SOTA)
BERT+HiAGM 78.64 66.76 85.58 67.93 78.62 62.98 86.04 80.19 Wang et al. (2022)1

BERT+HiMatch — — 86.33 68.66 79.23 62.62 86.70 81.06 Liu et al. (2025)
HGCLR 78.86 67.96 86.49 68.31 79.36 63.64 87.11 81.20 Wang et al. (2022)1

HILL 80.47 69.96 87.31 70.12 — — 87.28 81.77 Zhu et al. (2024)
HBGL 80.47 70.19 87.23 71.07 — — 87.36 82.00 Jiang et al. (2022)
HBGL+RoBERTa 79.89 70.57 87.52 70.52 — — 87.66 81.96 Younes et al. (2024)
HALB 79.56 69.28 86.94 69.32 — — 87.45 82.04 Zhang et al. (2024)
DFG — — 87.44 70.37 81.17 66.13 87.42 82.27 Liu et al. (2025)
HJCL 80.520.28 70.020.31 87.040.24 70.490.32 81.300.29 66.770.37 — — U et al. (2023)
HiSR 80.32 70.11 87.59 70.72 — — 87.52 82.04 Zhou et al. (2025)
Seq2Tree — — 86.88 70.01 79.72 63.96 87.20 82.50 Yu et al. (2022)
RADAr 79.840.07 68.640.28 87.230.05 69.640.12 — — 87.170.04 81.840.08 Younes et al. (2024)

HYDRA (Ours)
(a) Local Heads Only

RoBERTa-base 81.690.22 72.110.34 87.300.20 69.361.12 81.650.40 64.231.09 86.900.22 81.180.33 Own experiment
(b) Local Heads + Global Head

RoBERTa-base (Local Heads) 81.910.07 72.740.23 87.670.09 70.580.44 81.940.53 65.470.89 86.830.16 81.160.30 Own experiment
RoBERTa-base (Global Head) 81.960.06 72.350.22 87.790.11 70.080.76 82.140.44 65.400.76 86.910.18 81.220.40 Own experiment

(c) Local Heads + Nested Head
RoBERTa-base (Local Heads) 81.870.31 72.430.41 87.730.19 71.120.24 82.180.36 66.010.66 86.900.12 81.140.24 Own experiment
RoBERTa-base (Nested Head) 81.820.29 72.100.63 87.720.19 70.570.37 82.170.28 66.170.64 86.830.11 81.080.27 Own experiment

Performance Gains
HYDRA vs. RoBERTa-base +0.49 +1.29 +0.49 +2.52 +0.66 +2.04 +0.56 +1.06
HYDRA vs. Best Baseline +0.49 +1.29 +0.20 +0.05 +0.24 -0.60 -0.75 -1.28

1 The BGC results for these models are as reported by Liu et al. (2025).

Table 3: Results on four common HTC datasets. For our experiments, we report the mean and standard deviation
over five runs. Bold entries denote the overall best result and underlined entries denote the best baseline.

5 Results

Our results are presented in Table 3, which shows
the effectiveness of HYDRA in various datasets.
The benefits of our multi-head architecture are
demonstrated by the performance gains, which are
especially noticeable compared to flat models and
more complex hierarchical methods.

Flat Models Our experiments reveal strong re-
sults from flat encoder-only models in most
datasets. RoBERTa-base outperforms many spe-
cialized hierarchical models on the NYT dataset,
achieving the highest scores with a micro-F1 of
81.47 and macro-F1 of 71.45 among the baseline
models. Similarly, BERT-large delivers the best
baseline micro-F1 performance of 81.94 on the
BGC dataset. This indicates that even without ex-
plicit architectural elements for hierarchy modeling,
pre-trained language models already provide good
results. However, their performance on the WOS
dataset is less competitive. In particular, unLLama-
7B consistently performs worse than smaller mod-
els on all datasets, even though it is the largest
model evaluated.

HYDRA with Only Local Heads The simplest
HYDRA setup using only level-specific classifi-
cation heads has already demonstrated consistent
improvements over the flat model baselines. The
gains over the strong flat RoBERTa-base are partic-
ularly notable for macro-F1 scores, with improve-
ments of +0.66 on NYT, +0.76 on RCV1-V2, +0.10
on BGC, and +1.02 on WOS.

HYDRA with Local and Global Heads Adding
a global head further enhances the performance
across all datasets. When evaluated on the
local heads, the Global Head setup achieves
micro/macro-F1 improvements of +0.22/+0.63 on
NYT, +0.37/+1.22 on RCV1-V2, +0.29/+1.24 on
BGC, and -0.07/-0.02 on WOS compared to the
Local Heads Only setup. When using the global
head for inference, the performance is comparable
to using only the local heads. The Nested Head
setup further improves results on RCV1-V2 and
BGC while maintaining comparable performance
on NYT and WOS.

Summary HYDRA consistently improves on the
base RoBERTa model across all datasets, with
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micro/macro-F1 gains of +0.49/+1.29 on NYT,
+0.49/+2.52 on RCV1-V2, +0.66/+2.04 on BGC,
and +0.56/+1.06 on WOS. Compared to the best
baseline/SOTA models, HYDRA achieves improve-
ments of +0.49 micro-F1 and +1.29 macro-F1 on
NYT and small improvements of +0.20 micro-F1
and +0.05 macro-F1 on RCV1-V2 and +0.24 micro-
F1 on BGC. HYDRA performs below the best base-
line on WOS by -0.75 micro-F1 and -1.28 macro-F1
and BGC macro-F1 by -0.60.

Our results demonstrate that our simple multi-
head approach HYDRA is competitive with much
more complex hierarchical classification methods.

6 Discussion

The experimental results demonstrate that HYDRA
provides a simple but effective approach to hierar-
chical text classification. Our findings challenge
the idea that sophisticated architectural elements
are required to achieve state-of-the-art performance
on hierarchical classification tasks. In this section,
we discuss our results, present ablation studies, and
suggest directions for future work.

6.1 Key Scientific Insights

Flat Models Our experiments reveal that flat
encoder-only models are surprisingly strong base-
lines for hierarchical text classification, often out-
performing specialized hierarchical methods. This
strength may be partially explained by the rigor-
ous hyperparameter optimization performed versus
relying on numbers reported in the literature. Exist-
ing HTC methods compare themselves only against
a BERT-base model, rather than using stronger
encoder-only models. The performance of models
like RoBERTa and BERT-large suggests that pre-
trained language models are already strong HTC
classifiers. The poor performance of unLLama-7B,
despite its much larger parameter count, is particu-
larly interesting. This may be attributed to several
factors, including differences in pre-training objec-
tives, the challenges of fine-tuning large models
with limited data, and the potential mismatch be-
tween the generative capabilities of LLMs and the
discriminative nature of classification tasks.

HYDRA with Only Local Heads The consis-
tent improvements achieved by HYDRA with only
local heads confirm our hypothesis. Treating hier-
archical levels as distinct but related tasks can en-
hance performance without additional architectural
complexity. The strong improvements in macro-F1

Model WOS
Micro-F1 Macro-F1

Local Heads Only
RoBERTa-base 86.370.18 85.790.15

Local Heads + Global Head
RoBERTa-base (Local Heads) 87.110.07 86.530.10
RoBERTa-base (Global Head) 84.350.18 77.720.39

Local Heads + Nested Head
RoBERTa-base (Local Heads) 86.900.20 86.280.18
RoBERTa-base (Nested Head) 85.350.47 79.130.48

vs. Multi-label HYDRA +0.20 +5.31
vs. Best Baseline -0.55 +4.03

Table 4: Performance of HYDRA on the WOS dataset
using single-label classifiers. By adapting the classifica-
tion heads HYDRA achieves far better Macro-F1 scores.
Bold entries denote the best result.

scores suggest that HYDRA’s multi-task formula-
tion is especially beneficial for less frequent classes,
which often correspond to more specific labels in
lower hierarchy levels. By providing explicit super-
vision at each level, HYDRA learns more robust
representations for these challenging instances.

HYDRA with Local and Global Heads Adding
a global head to HYDRA further enhances perfor-
mance across most datasets. This improvement
shows that the global head encourages the shared
representation to capture beneficial information at
all hierarchical levels by regularizing it. The level-
specific signals from the local heads are effectively
aided by an extra training signal from the global
head. The nested head setup demonstrates that
the use of the output of local heads for global pre-
diction can be effective for certain datasets (i. e.,
RCV1-V2 and BGC). While training with addi-
tional heads introduces a small computational over-
head, the cost of these lightweight MLPs is mini-
mal compared to the performance gains. For details
on model size and runtime, see Appendix A. Ad-
ditionally, for inference, it is possible to use either
only the local heads or only the global head, which
reduces HYDRA to a flat classifier. Using only
the global head still outperforms all flat baselines.
Thus, HYDRA benefits from the better represen-
tations learned during training and yields better
inference efficiency.

HYDRA’s Performance on WOS While HY-
DRA improves the flat RoBERTa model on WOS
it is not as strong as other baseline models. This
performance difference comes from a unique char-
acteristic of the WOS dataset, which contains ex-
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Model NYT RCV1-V2 BGC WOS
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

HYDRA w/ Nested Head 81.870.31 72.430.41 87.730.19 71.120.24 82.180.36 66.010.66 86.900.12 81.140.24
HYDRA w/ Global Head 81.910.07 72.740.23 87.670.09 70.580.44 81.940.53 65.470.89 86.830.16 81.160.30

HYDRA w/ local heads only 81.690.22 72.110.34 87.300.20 69.361.12 81.650.40 64.231.09 86.900.22 81.180.33

w/o shared encoder 79.870.87 69.081.77 86.470.70 67.501.10 74.845.75 41.9018.01 86.110.35 80.460.53
w/o embedding projection 81.620.04 72.050.12 87.290.22 69.211.09 81.190.35 64.000.71 86.580.36 80.850.50
w/o multiple heads (RoBERTa-base) 81.470.15 71.450.45 87.300.10 68.601.40 81.520.26 64.130.55 86.350.15 80.160.13

Table 5: Ablation study of HYDRA’s components. Every component contributes to HYDRA’s performance, and
incorporating a global head during training yields further improvements. Bold entries denote the best result.

actly one label per hierarchy level, i. e., two labels
per document. This makes multi-label classifiers
suboptimal for this dataset.

We conducted additional experiments to further
investigate this observation. We modified HYDRA
by replacing its local multi-label classifier with
a single-label classifier. This adaptation ensures
strict single-label predictions at each hierarchy
level and highlights the modularity of HYDRA.
Its classification heads can be trivially swapped to
match dataset-specific requirements. As shown in
Table 4, this modification improves Macro-F1 from
81.22 to 86.53 (+5.31), surpassing Seq2Tree, the
best state-of-the-art HTC model by +4.03 Macro-
F1. Interestingly, in this experiment, a global head
improves the local heads but does not yield good
results on its own. This is due to the fact that the
global head is still a flat multi-label classifier.

6.2 Ablation study

Our ablation study of HYDRA’s components is
presented in Table 5. The shared encoder is the
most critical component, with performance drop-
ping drastically when using separate encoders for
each hierarchy level (e. g., -1.82 micro-F1 and -
3.03 macro-F1 on NYT). This demonstrates the
importance of parameter sharing, which allows the
model to learn common representations that bene-
fit all hierarchy levels. The embedding projection
layer also contributes to performance, though to a
lesser extent. Removing this component results in a
moderate performance decrease across all datasets
(e. g., -0.46 micro-F1 and -0.23 macro-F1 on BGC),
suggesting that additional shared parameters af-
ter the embedding help to capture level-specific
features. Among the different HYDRA variants,
adding a global or nested head generally provides
further performance improvements. The nested
head setup proves especially effective for RCV1-
V2 and BGC, while the global head setup performs
slightly better on NYT. These performance gains

come with minimal additional computational cost
during training, but for inference, the model can
rely solely on local heads.

6.3 Future Work and Impact
Future research on HYDRA may investigate adap-
tive weighting schemes for hierarchical levels dur-
ing training, potentially improving performance
on imbalanced hierarchies. Rather than assigning
equal importance to each level, weights could be
adjusted based on validation performance or uncer-
tainty estimates, optimizing the balance between
level-specific and overall classification accuracy.
These applications would test the scalability of our
approach to very deep and broad hierarchies not
covered by current benchmarks. Another promis-
ing direction is to explore the combination of local
and global heads for inference. This could be done
by applying ensemble learning techniques, such as
averaging the logits of both heads, to potentially
further improve classification performance.

By demonstrating that simple architectures can
achieve state-of-the-art results, this work encour-
ages a shift toward less sophisticated and more in-
terpretable approaches in hierarchical text classifi-
cation. Architectural simplicity makes hierarchical
classification more accessible to researchers and
practitioners who do not have expertise in complex
architectures.

7 Conclusion

We introduced HYDRA, a simple yet effective
multi-head encoder-only architecture for hierarchi-
cal text classification that treats each level in the hi-
erarchy as a separate classification task. Our exper-
iments on four standard benchmarks demonstrate
that this approach matches or exceeds the perfor-
mance of more complex state-of-the-art methods
without requiring graph encoders, label semantics,
or autoregressive decoders. By showing that hier-
archical awareness can be effectively incorporated
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into flat encoder-only models through a multi-task
formulation, our work opens new possibilities for
accessible hierarchical classification.

Limitations

While HYDRA offers a simpler and more efficient
approach to hierarchical text classification, sev-
eral limitations must be recognized. Our method
assumes a fixed pre-defined hierarchy, making it
less suitable for dynamic taxonomies that evolve
over time without retraining. Although HYDRA
matches or exceeds state-of-the-art performance
on standard benchmarks, there may be domains
or extremely complex hierarchies where more so-
phisticated architectural components provide ben-
efits that our multi-head approach cannot capture.
Furthermore, the current implementation treats
each hierarchical level independently during in-
ference, potentially leading to inconsistent predic-
tions across levels. However, this also applies to
most other models and can be solved with post-
processing using the hierarchy. Finally, while we
demonstrate HYDRA’s effectiveness across mul-
tiple benchmarks, its performance on extremely
large-scale hierarchies with thousands of classes
remains to be explored in future work.

Ethical Considerations

While text classification has a broad spectrum of
application domains ranging from recommender
systems and information retrieval to tasks such as
sentiment analysis, e-commerce, advertising, and
news classification (Zangari et al., 2024), we be-
lieve that no specific societal consequences require
immediate emphasis in the context of this work.
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Supplementary Material

A Efficiency of HYDRA

This section discusses the number of parameters for
both HYDRA and compared HTC models, as well
as the training time per epoch for HYDRA across
all datasets. Table 6 lists the parameter counts of
the HTC models included in our comparison. If the
number of parameters is available in the literature,
we report those values. In cases where this infor-
mation is not available, we measure the parameter
counts by running the respective model source code
on the NYT dataset. For models lacking both pub-
lished parameter counts and accessible code, we
indicate that it is unavailable. Table 7 shows the pa-
rameter counts for the flat RoBERTa model and the
three HYDRA setups. The parameter count varies
based on dataset characteristics, particularly the
number of hierarchical levels and classes per level.
Even in the most complex case (NYT with 8 hierar-
chical levels), HYDRA with Local Heads + Global

Model Parameters Provenance

RoBERTa 126M Measured
BERT + HiAGM 143M (Huang et al., 2022)
BERT + HiMatch 153M (Huang et al., 2022)
HGCLR 129M (Zhu et al., 2024)
HILL 117M (Zhu et al., 2024)
HBGL 110M Measured
HALB 120M Measured
HGBL — Unavailable
DFG 131M Measured
HJCL 241M Measured
HiSR 116M Measured
Seq2Tree — Unavailable

Table 6: Parameter counts for models compared in this
work. “Measured” indicates that the values are obtained
by running the model source code on the NYT dataset.

Head adds only about 10 M parameters over the
flat baseline. The Nested Head setup consistently
requires fewer parameters than the Global Head
setup since the number of classes in our datasets is
always less than the embedding size, making the
nested head smaller than the global head.

Table 8 compares the training time per epoch
across all models and datasets. The additional
computational cost of HYDRA is negligible, with
an increase of only 1-6 seconds per epoch com-
pared to the flat baseline. This minimal overhead
comes from the lightweight nature of the classifi-
cation heads, which are simple two-layer MLPs
that require only minimal computational resources.
These efficiency results demonstrate that HYDRA
achieves superior hierarchical classification perfor-
mance with minimal additional computational cost.

B DeBERTa as an Alternative Encoder

To test the generalizability of HYDRA’s architec-
ture across different pre-trained language mod-
els, we conducted additional experiments using
DeBERTa-base as the encoder. Table 9 presents
the performance of HYDRA using DeBERTa-base
compared to RoBERTa-base. The results demon-
strate that HYDRA’s multi-head approach effec-
tively improves hierarchical text classification re-
gardless of whether RoBERTa or DeBERTa is used
as the encoder. Consistent with our main findings,
all HYDRA setups outperform the respective flat
baseline models. This further supports our finding
that treating hierarchical levels as distinct but re-
lated tasks enhances performance without requiring
complex architectural components. Notably, while
RoBERTa-base generally outperforms DeBERTa-
base, DeBERTa shows competitive performance.
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Model NYT RCV1-V2 BGC WOS

Flat RoBERTa 126M 126M 126M 126M
HYDRA w/ Local Heads Only 134M 130M 130M 127M
HYDRA w/ Local Heads + Global Head 136M 131M 131M 129M
HYDRA w/ Local Heads + Nested Head 135M 130M 130M 128M

Table 7: Parameter counts in millions for RoBERTa-base and HYDRA across all datasets, demonstrating the
minimal parameter overhead introduced by HYDRA.

Model NYT RCV1-V2 BGC WOS

Flat RoBERTa 324.354.42 285.941.96 804.111.42 413.610.56
HYDRA w/ Local Heads Only 330.601.36 288.862.24 809.521.01 414.770.65
HYDRA w/ Local Heads + Global Head 330.390.97 288.592.70 810.361.07 416.041.00
HYDRA w/ Local Heads + Nested Head 330.070.97 288.781.73 809.740.91 415.910.80

Table 8: Training time per epoch in seconds for RoBERTa-base and HYDRA across 5 runs, reporting mean and
standard deviation. HYDRA shows only marginal computational overhead compared to a flat RoBERTa.

Model NYT RCV1-V2 BGC WOS
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Local Heads Only
RoBERTa-base 81.690.22 72.110.34 87.300.20 69.361.12 81.650.40 64.231.09 86.900.22 81.180.33
DeBERTa-base 81.280.24 71.530.37 87.250.12 69.820.25 80.910.27 63.370.51 86.820.30 80.880.11

Local Heads + Global Head
RoBERTa-base (Local Heads) 81.910.07 72.740.23 87.670.09 70.580.44 81.940.53 65.470.89 86.830.16 81.160.30
RoBERTa-base (Global Head) 81.960.06 72.350.22 87.790.11 70.080.76 82.140.44 65.400.76 86.910.18 81.220.40
DeBERTa-base (Local Heads) 81.260.27 71.570.41 87.070.25 69.330.59 81.130.25 63.890.52 86.690.19 81.090.22
DeBERTa-base (Global Head) 81.450.23 71.340.44 87.230.21 68.182.01 81.260.23 63.530.72 86.750.15 81.170.17

Local Heads + Nested Head
RoBERTa-base (Local Heads) 81.870.31 72.430.41 87.730.19 71.120.24 82.180.36 66.010.66 86.900.12 81.140.24
RoBERTa-base (Nested Head) 81.820.29 72.100.63 87.720.19 70.570.37 82.170.28 66.170.64 86.830.11 81.080.27
DeBERTa-base (Local Heads) 81.580.24 72.070.28 87.180.13 69.600.47 81.260.18 64.130.53 86.740.12 81.350.13
DeBERTa-base (Nested Head) 81.530.25 71.640.28 87.150.14 68.850.76 81.200.20 63.730.37 86.670.14 81.210.16

Table 9: Comparison of RoBERTa-base and DeBERTa-base as encoders for HYDRA. All scores are presented as
mean and standard deviation over five runs. Bold entries indicate the best performance for each metric across all
setups.
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