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Abstract

In recent years, architectural design automation
has made significant progress, but the complex-
ity of open-world environments continues to
make residential design a challenging task, of-
ten requiring experienced architects to perform
multiple iterations and human-computer inter-
actions. Therefore, assisting ordinary users in
navigating these complex environments to gen-
erate and edit residential design is crucial. In
this paper, we present the CARD framework,
which leverages a system of specialized cross-
modal agents to adapt to complex open-world
environments. The framework includes a point-
based cross-modal information representation
(CMI-P) that encodes the geometry and spa-
tial relationships of residential rooms, a cross-
modal residential generation model, supported
by our customized Text2FloorEdit model, that
acts as the lead designer to create standardized
floor plans, and an embedded expert knowl-
edge base for evaluating whether the designs
meet user requirements and residential codes,
providing feedback accordingly. Finally, a 3D
rendering module assists users in visualizing
and understanding the layout. CARD enables
cross-modal residential generation from free-
text input, empowering users to adapt to com-
plex environments without requiring special-
ized expertise.

1 Introduction

With the advancement of modern technology, auto-
mated architectural design has garnered significant
attention(Zeng et al., 2024; Luo and Huang, 2022;
Zeng et al., 2025c), particularly in the realm of res-
idential design, where the demand for efficiency,
error reduction (Gao et al., 2021), and cost mini-
mization is high (Gao et al., 2023). As the most
common form of architecture, residential floor plan
generation has become a focal point in research,
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attracting considerable interest from both academia
and industry (Yin et al., 2025a; Zeng et al., 2025a;
Lazić et al., 2021; Yin et al., 2025c; Zeng et al.,
2025b).

However, the complexity of open-world environ-
ments makes the task of residential design complex,
requiring professional expertise (Weber et al., 2022;
Fan et al., 2023). Typically, homeowners provide
specific requirements, which designers translate
into 3D models. This process involves multiple
iterations and collaborative revisions, consuming
substantial human effort and increasing the com-
plexity for average users to engage freely in the
design process (Bo et al., 2022; Omar et al., 2016).
Addressing this challenge calls for solutions that
assist non-expert users in navigating complex en-
vironments for generating and editing residential
designs at a low cost and with minimal expertise.

In this paper, we introduce CARD, a cross-modal
agent-driven framework that leverages natural lan-
guage input to generate and edit 3D residential
designs. Similar to other LLM-based role-agent
systems (Li et al., 2023b; Park et al., 2023), the
framework includes multiple agents with special-
ized roles—including Product Manager (Demand),
Lead Designer, Auditors (Residential Code and
User Requirements), Assistant Designer, Product
Manager (After-Sales), and 3D Modeler—designed
to adapt to the complexity of open-world environ-
ments. Our system provides a low-threshold, cost-
effective solution for editable and flexible residen-
tial design.

The framework utilizes natural language text for
input and 3D representations for output to ensure
usability for ordinary users. Although developing
such a language-driven tool presents challenges
(Zhang and El-Gohary, 2022), advancements in
deep learning, particularly in multimodal modeling,
have made this approach feasible (Jiang et al., 2023;
Zeng et al., 2022, 2023; Liu et al., 2022). Never-
theless, several hurdles persist. First, collecting
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large-scale multimodal data for training, especially
for both text and residential layout editing, is chal-
lenging (Rahate et al., 2022). Second, multimodal
models are more expensive to train compared to
single-mode models (Huang et al., 2021). Fur-
thermore, existing residential design models often
rely on rigid, homogeneous input formats, limiting
personalization and resulting in inflexible designs.
Finally, we introduce a novel modal decomposi-
tion mechanism to bridge the gap between text
and single-image generative models. This mech-
anism facilitates cost-efficient cross-modal gener-
ation without multimodal datasets by leveraging
a new point-based representation of cross-modal
information, termed CMI-P, and can couple the ge-
ometric shapes and spatial positions of each room
in the residential.

CARD combines residential openness design
with cross-modal agents, including multiple lan-
guage agents and one image agent, using a modular
approach to process information, generate, evalu-
ate, make decisions, summarizes and edit residen-
tial designs, and continuously learn from interac-
tions. To conduct more precise and standardized
residential design generation and editing, we em-
bed existing residential specification documents
and user needs in the evaluation, and some dif-
ferent agents can exchange information to avoid
information bias. In addition, to solve the problem
of biased residential vector information generated
by agents, a cross-modal housing generation model
is designed to normalize the information generated
by the agent, thus avoiding the large deviation prob-
lem caused by long-term multi-agent interaction.
This design provides a good foundation for multi-
round interaction of housing design.

To further verify the effectiveness, adaptability
to complex environments, and interactive capabil-
ities of our approach, we conducted extensive ex-
periments and evaluated it using comprehensive
metrics, as well as a study involving experts and
ordinary users. The results show that our approach
outperforms others in many aspects and lays a solid
foundation for future research.

2 Related works

2.1 Agent Framework

Recent research has focused on enhancing the role-
playing and interaction abilities of large language
models (LLMs) as agents, improving their capac-
ity to engage with users and act with greater self-

awareness (Wang et al., 2023b; Shao et al., 2023;
Shanahan et al., 2023; Li et al., 2023a). Other
works explore multi-agent interactions, including
collaboration in task completion (Li et al., 2023b;
Chen et al., 2023; Qian et al., 2023), simulating
daily activities (Lin et al., 2023; Park et al., 2023),
and facilitating debates (Liang et al., 2023; Du
et al., 2023; Chan et al., 2023). Language agents
have also been applied in open-world settings, such
as text-based games (Côté et al., 2019; Hausknecht
et al., 2020) and exploration tasks in Minecraft
(Wang et al., 2023a; Zhu et al., 2023).

2.2 Residential Floor Plan Generation

As AI develops (Ma et al., 2025; Zhang et al.,
2025; Yin et al., 2025b), approaches to residen-
tial floor plan generation have diversified. Recent
approaches to residential floor plan generation typi-
cally fall into three categories: rule-based methods,
GAN-based models, and graph-based techniques.
These methods have made significant progress, but
there are some limitations, such as the low quality
of residential floor plans generated by GAN-based
methods (Huang and Zheng, 2018), and the inputs
for the type of graph are not conducive to compre-
hension and editing by the average user (Aalaei
et al., 2023; Carta, 2022). Recently, text-based
residential image generation models have emerged
(Leng et al., 2023). However, these models re-
quire the construction of language libraries, while
template-based text drivers are less flexible. In ad-
dition, current research on 3D residence focuses on
generating 3D residence based on template-based
text description (Chen et al., 2020), and placing
3D residential objects based on LLM (Feng et al.,
2024; Yang et al., 2024). Due to the high cost of
constructing a language library for residence gen-
eration (Huang et al., 2021), the task of residential
design editing based on free-text is currently in a
blank stage.

3 CARD

The CARD framework aims to facilitate the gen-
eration and editing of residential designs based on
free-text input, enabling non-expert users to navi-
gate the complexities of open-world environments.
The framework structure, as illustrated in Fig. 1,
involves multiple agents, which simulate the com-
plex environments in residential design. These
agents include Product Manager (Demand), Lead
Designer, Auditors (Residential Code and User Re-
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Figure 1: Overview of the CARD Architecture. The language agent is powered by GPT-4, while the “Lead Designer”
agent leverages our custom-designed Text2FloorEdit model.

quirements), Assistant Designer, Product Manager
(After-Sales), and 3D Modeler agents, each playing
distinct roles throughout the design process.

3.1 Overall Framework

The process begins with user input, where users
provide a free-text description of their envisioned
residential design. This input serves as the foun-
dation for the entire design process. The “Product
Manager (Demand)” agent interprets the user’s de-
scription and abstracts it into structured point-based
information. This step ensures that the user’s re-
quirements are transformed into a format suitable
for further processing. The abstracted point infor-
mation is then passed to the “Lead Designer” agent,
who employs a cross-modal residential generation
model, Text2FloorEdit to create a residential floor
plan that meets the specified requirements.

The generated residential floor plan is evalu-
ated by two different Auditor agents. One auditor
ensures that the design complies with residential
codes, while the other auditor verifies that it aligns
with the user’s needs, scoring the outcome accord-
ingly. If both auditors approve the design, the res-
idential design is finalized and rendered in 3D. If
not, the reasons for non-compliance are identified.
In case of rejection, the issues found by the audi-
tors, along with any user edits, are forwarded to the

“Assistant Designer” agent. This agent summarizes
the feedback and outputs a list of modification sug-
gestions, ensuring that both compliance and user
requirements are met.

The modification suggestions are then sent to the
“Product Manager (After-Sales)” agent, who com-
bines these suggestions with the vector information
of the existing structure and outputs a revised set
of structured point information. This step ensures
that any changes are seamlessly incorporated into
the overall design. The modified point information
is returned to the “Lead Designer” agent for further
adjustments. This iterative process continues until
both Auditor agents approve the design. Finally,
the design is clearly visualized for the user through
a “3D Modeler” agent.

3.2 Initial Generation

Step 1: The “Product Manager (Demand)” agent
first interprets the user’s natural language input
and outputs a set of structured, templated point-
based requirements (see Appendix Fig. 5). The
information flow of the initial generation phase is
illustrated in Fig. 2a).
Step 2: We designed the Text2FloorEdit model
to function as the “Lead Designer” agent, tasked
with generating a practical and well-laid-out res-
idential floor plan based on these preliminary re-
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quirements. The Text2FloorEdit is composed of
four main components: 1) CMI-P, 2) The Residen-
tial Layout Generation Network (RL-Net), which
generates residential layouts to enhance model flex-
ibility, 3) The Window, Door, and Wall Generation
Network (WD-Net), which generates comprehen-
sive residential floor plans, reducing model train-
ing costs, and 4) the Vector Extraction Module.
First, the Information Conversion Module trans-
forms the structured point-based information out-
put by the “Product Manager (Demand)” agent into
image-based information. The resulting image is
processed by RL-Net to facilitate the generation
of the residential layout, and the final residential
floor plan is produced through WD-Net. Finally,
the vector information is extracted.
CMI-P: Traditional graph-based language parsers
struggle to capture room shapes (Aalaei et al.,
2023; Carta, 2022). To address this, we devel-
oped CMI-P, a cross-modal representation that effi-
ciently conveys input across both modalities, sig-
nificantly reducing training costs. It converts point
data into image data for generation and back into
point data for editing. Unlike methods such as
LayoutGPT(Feng et al., 2024) and Holodeck(Yang
et al., 2024), which only attempted to use text co-
ordinates to represent rectangular boxes, our CMI-
P explores the text-based representation of more
complex polygonal boxes, which better aligns with
real-world residential rooms.
RL-Net: We utilize a diffusion model (Ho et al.,
2020) as the foundation of RL-Net. First, we de-
fine the model’s input formats, setting it to six-
channel images representing the outer contour
(white boundary), living room (gray block), bed-
room (yellow block), bathroom (blue block), bal-
cony (green block), and kitchen (pink block). To
enhance the flexibility of the design, we adopt
multiple formats for the input, as shown in Fig.
2 b). Specifically, when the right-hand image is
zero-valued, it indicates a fixed size input (based
on the left image’s dimensions); conversely, when
the left image is zero-valued, it denotes a random
size input, allowing the model to infer dimensions
based on context. Additionally, room shapes are
represented either as polygons for precise geometry
or rectangles for vague approximations. For each
instance, one of the five input configurations de-
scribed above is randomly selected and used as the
input to RL-Net. The RL-Net output is a residential
layout. To enhance feature relevance (Guo et al.,
2022), we designed the Multi-Scale Fusion De-

Figure 2: a) Information flow of the initial generation
phase. b) 5 input formats and MFDA module.

redundant Attention (MFDA) module, as shown in
Fig. 2b). We chose strip convolution for feature
fusion, considering that most residential layouts are
horizontal and vertical, in order to reduce training
costs.
WD-Net: To generate a comprehensive residential
floor plan, WD-Net refines the output from RL-
Net by adding doors, windows, and walls in their
appropriate positions. Specifically, WD-Net takes
the residential layout as input and produces a resi-
dential floor plan with doors, windows, and walls.
Two primary challenges arise: 1) RL-Net is trained
with low-resolution images (e.g., 64x64) to mini-
mize training costs, but rendering these outputs in
3D poses difficulties. 2) Using higher-resolution
images (e.g., 256x256) from datasets like RPLAN
(Wu et al., 2019) improves edge recognition but
significantly increases training costs. To balance
these challenges, we introduce WD-Net with a res-
olution fine-tuning strategy. This process tackles
two key subtasks: 1) capturing the spatial distribu-
tion of doors, windows, and walls, and 2) refining
the edges of the floor plans.

We first pre-train the diffusion model using
64×64 resolution images to capture positional rela-
tionships efficiently. Afterward, we fine-tune this
pre-trained model with 256×256 images to capture
detailed edge features. This strategy significantly
reduces the training time and overall costs while
achieving higher-resolution outputs for more accu-
rate 3D renderings.
Vector Extraction Module: This module extracts
vectorized data from the generated residential floor
plan. This is crucial for preserving the geometric
details of the generated residential floor plan for
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subsequent iterative editing. Image segmentation
techniques are first used to detect different room
types, which are then classified according to prede-
fined room categories. Their boundary points are
extracted and reconstructed into vector data. We
also use the Douglas-Peucker algorithm (Douglas
and Peucker, 1973) to ensure the accuracy of the
extracted vector information.

3.3 Auditors Agent
Auditor (Residential Code): Auditor (Residen-
tial Code): We use a Retrieval-Augmented Gen-
eration (RAG) method (Lewis et al., 2020) to al-
low the auditor to retrieve relevant regulatory in-
formation from a pre-built database (e.g., build-
ing codes, safety regulations) and generate context-
aware evaluations. This approach incorporates key
standards such as the General Code for Fire Pro-
tection in Buildings (GB 55037-2022), the Code
for Residential Buildings (GB 50368—2005), and
the China Architectural Design Data Set, Volume
2, Residential (Third Edition) to ensure the design
aligns with the latest architectural and safety reg-
ulations. Step 1: Query Construction: Once the
initial residential floor plan is generated, the audi-
tor formulates queries based on key design aspects
that require verification (e.g., room types, func-
tionality, location). These queries are sent to the
RAG model for targeted information retrieval. Step
2: Retrieval from the Code Database: The RAG
model retrieves relevant data from a residential
building code database, including fire protection
guidelines from GB 55037-2022 and residential
standards from GB 50368—2005. The China Ar-
chitectural Design Data Set serves as an additional
resource to enhance design accuracy. Step 3: Con-
textual Validation: The retrieved codes are cross-
referenced with the design elements. The auditor
checks compliance by comparing parameters like
room dimensions and spacing with the regulations,
ensuring the design meets the required standards,
such as fire protection and room size limits. Step 4:
Decision: The results of the comparison determine
whether the design complies with residential codes.
If any violations are found, feedback is provided,
highlighting necessary modifications. The design
is refined iteratively until it fully meets the relevant
standards.
Auditor (User Requirements): This process fol-
lows a similar RAG-based approach. Using the
RAG model, the auditor retrieves information from
a User Requirements Database, which is built from

the user’s initial input, interactive inputs during
the editing process, and personalized case studies
from previous users. The retrieved requirements
and preferences are then compared with the gener-
ated design. This comparison can be expressed as a
similarity or distance function, see Appendix B. In
the final decision phase, judgments are made based
on the similarity score. If the design is flagged as
non-compliant, feedback is generated for further
editing and revision.

3.4 3D Modeler Agent

To visualize residential floor plans, we developed a
3D residential renderer system. This renderer trans-
forms a residential floor plan into a 3D residential
design, allowing users to visualize the details and
overall ideas of the floor plan from a spatial per-
spective. Details in Appendix C. To ensure a uni-
form visual experience, a virtual camera is placed
above a specific corner of each rendered 3D resi-
dential design model. Besides, the viewing angle
can be manually adjusted, allowing users to rotate
and view the model from different directions. This
part is an engineering development effort, and the
code will be open-sourced for community use.

4 Experiment

4.1 Experimental Settings

Datasets: The “Lead Designer” Agent is a model
designed by ourselves. We used the residential
floor plan dataset generated by the RPLAN toolbox
(Wu et al., 2019). To reduce the training overhead,
we down-sampled the original 256×256 images
to 64×64 resolution. The datasets were divided
into training, and test sets containing 70126, and
11000 plan images, respectively. Given the lim-
ited number of residential design categories, we
selected 300 - 1000 samples from the common 20
categories for the test set based on the category
distribution.
Implementation Details: Our editable residential
design generation task based on free-text has no
comparable methodology. Therefore, simplified
versions of our proposed network were compared.

We first compared the models based on differ-
ent input conditions: 1) Non-text input: We chose
HouseDiffusion(Shabani et al., 2023), House-
GAN++(Nauata et al., 2021), Graph2Plan(Hu et al.,
2020), Building Floor Plan (BFP)(Wan et al.,
2022), and CycleGAN(Li, 2023) models, where
we chose FID(Heusel et al., 2017), PSNR(Huynh-
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Figure 3: Qualitative analysis results of the model on multiple studies.

Thu and Ghanbari, 2008), and SSIM(Wang et al.,
2004) metrics. 2) Template-text input: We chose
Tell2Design(Leng et al., 2023) model, where we
chose the FID, Micro IoU(Leng et al., 2023), and
Macro IoU metrics(Leng et al., 2023). 3) Free-text
input: We choose LayoutGPT(Feng et al., 2024)
and Holodeck(Yang et al., 2024), where we chose
FID, PSNR, and SSIM metrics. Since the Graph
Edit Distance(GED)(Abu-Aisheh et al., 2015) met-
ric is primarily used to assess the consistency of
model-generated results based on graph input, and
our model is based on room blocks or text input,
we did not use the GED metric. Specifically, for
our model, the inputs in the cases of non-text input
and text input are six-channel room blocks and text
input respectively. Additionally, to evaluate the
adaptability of our architecture to complex environ-
ments, we provided a multi-round iteration exam-
ple. Finally, we used experts and ordinary users to
comprehensively evaluate the effectiveness of the
model generation. We invited experts to compare
and evaluate actual images with model-generated
images. To ensure fairness, all the trainable models
mentioned above are trained and tested on RPLAN.
We unify the room colors in the generated results
of each model and do not change the residential
layout. We trained the model on a single NVIDIA
A100 GPU with a batch size of 128.

4.2 Model Comparison Study

Non-text input: The first step is a qualitative com-
parison. As shown in Fig 3a), these results re-
veal that our model perfectly reproduces the se-
mantic information and functional layout of the ac-
tual images. Housediffusion, House-GAN++ and
Graph2Plan generate better structures using graph
information, but are unable to specify room sizes
and shapes and lack some flexibility. Moreover, the

Table 1: Test results of our model and various baseline
models on the test set of the RPLAN dataset.

Method FID ↓ PSNR ↑ SSIM ↑
CycleGAN 134.79 50.4 0.72

BFP 71.39 56.3 0.95
Graph2Plan 32.45 62.8 0.95

HouseGAN++ 34.06 61.2 0.99
HouseDiffusion 28.72 61.7 0.99

Ours 8.41 86.1 0.99

BFP and CycleGAN models exhibit generation in-
stability problems. In addition, we performed quan-
titative comparisons, as shown in Table 1. Com-
pared with the Baseline model, our model performs
optimally in FID, PSNR, and SSIM indicators.

Template-text input: To evaluate our text-based
residential layout generation architecture, we com-
pared it with state-of-the-art text-generated res-
idential layout models, as shown in Fig. 3b).
While other models are trained on multimodal
datasets consisting of image-text pairs, our model
is trained under zero-shot conditions without using
any paired image-text data for supervision. Our
model generates residential floor plans that do not
exceed the overall contour boundary because of the
format input of the outer contour. It also captures
the spatial topological relationships and area char-
acteristics of each room. In addition, in Table 2
quantitative results show that the FID, Micro IoU,
and Macro IoU metrics of our model are 30.5%,
15.6%, and 6.0% higher, respectively, than those
of the second-best model. The above results show
that our model can perform flexible cross-modal
generation with zero explicit multimodal training
data, demonstrating its ability to generalize across
modalities without paired examples.
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Table 2: Quantitative results from the template-text in-
put.

Method FID ↓ Micro IoU ↑ Macro IoU ↑
Tell2Design 11.01 0.77 0.67

Our 7.65 0.89 0.71

Table 3: Quantitative results from the free-text input.

Method FID ↓ PSNR ↑ SSIM ↑
LayoutGPT 30.8 58.4 0.95
Holodeck 21.2 60.9 0.99

Ours 11.4 64.7 0.99

Free-text input: To evaluate the superiority of our
CARD architecture in generating residential de-
signs, we compared our model with the LLM-based
LayoutGPT and Holodeck models, which also uti-
lize free-text descriptions. The qualitative results
are shown in Fig. 3c). The experimental results
indicate that although LayoutGPT and Holodeck
primarily focus on the selection and placement of
objects within the residence, their performance in
generating residential layout is not as effective as
our model. In addition, the quantitative results pre-
sented in Table 3 demonstrate that the residential
designs generated by our model, based on free-text
descriptions, have distinct advantages in meeting
both residential specifications and user needs.

4.3 CARD Adaptability Study

To evaluate the adaptability of the CARD frame-
work to complex open-world environments, we
assessed the model from three aspects: generation
accuracy, generation diversity, and iterative editing.
Generation Accuracy: We evaluated generation
accuracy from two perspectives: text description
and residential code compliance, as shown in Fig.
4a). Our model precisely captured free-text descrip-
tions and generated reasonable residential designs.
Even with strict requirements like “the balcony
is located on the south side adjacent to the living
room, with a depth greater than 1.5 meters,” it pro-
duced accurate designs. Additionally, we set a
similarity threshold of 0.7 for residential specifi-
cations, and the outputs exceeded this benchmark,
highlighting the model’s reliability.
Generation Diversity: To assess the impact of
vague text descriptions, we conducted a generation
diversity experiment, with qualitative results shown
in Fig. 4b). For quantitative evaluation, we gener-
ated 1000 images for three case(“One/Two/Three

Table 4: Human expert test results for our model vs.
real images.

Generation Real images All
Precision 54.4% 45.6% 100

Truth 50% 50% 100

bedroom, one living room, one kitchen, one toi-
let, one balcony”). The results had 105, 192, and
161 residential layout types, distinguished by differ-
ent graph features. Notably, only LayoutGPT and
Holodeck can accept such free-text input, but these
models are unable to generate doors and windows,
making it impossible to calculate the number of
residential layout types based on room connectivity
features. Therefore, here we only perform quantita-
tive evaluation for our model. The results show that
when the text description was imprecise, our model
generated various residential designs that adhered
to the description, offering diverse outcomes for
users to choose from. This demonstrates that even
with imprecise free-text input, our model main-
tained a high level of generation quality. Notably,
at each iteration, the “Lead Designer” agent can
generate diverse residential floor plans, providing
users with a variety of options to choose from.
User Iterative Editing Example: If the generated
results do not fully meet the user’s needs, our model
allows for editing of the residential design in multi-
ple ways. As shown in Fig. 4c), users were able to
make precise edits to the given residential designs.
Additionally, the model could adjust the residential
design based on recommendations from the “Resi-
dential Code Auditor” agent, such as “making the
structure more rectangular overall.” Furthermore,
users could manually modify the inputs and outputs
of RL-Net to make precise edits to the residential
design. Users can iteratively edit the residential de-
sign until it satisfies their requirements. Finally, we
tested agent efficiency by setting thresholds at 0.7,
0.8, and 0.9, and evaluated 100 groups. The sys-
tem averaged 1.8, 3.1, and 4.9 iterations for output,
with each iteration taking 70.6 seconds on average.
Appendix E for more examples.

4.4 CARD User Study

Expert and User Evaluation: Given the similar-
ity of many residential floor plans in the RPLAN
dataset, there may be some feature leakage. There-
fore, we invited experts and ordinary users to cre-
ate 100 residential description manually (includ-
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Figure 4: Results of a study on the model’s adaptability in a complex open-world environment.

Table 5: Consistency and rationality test.

Method Consistency↑ Rationality↑
CARD 87.8 81.4

Tell2Design 77.6 72.3
Holodeck 62.3 56.8

LayoutGPT 31.8 12.4

ing free-text input and manually constructed im-
ages) and generate residential floor plans using our
model, which were then mixed for the experts to
judge. The results are shown in Table 4. The ac-
curacy of our model generation is 54.4%, which
higher than the 45.6% accuracy of the actual im-
ages. Therefore, the residential floor plan generated
by the CARD framework is very accurate and simi-
lar to real residential floor plans, proving correct-
ness and authenticity of the generated residential
floor plans. We present the generated results for the
User tests in Fig. 3d), which shows that our model
creates a complete residential floor plan when the
user specifies different types of inputs. Moreover,
the model ensures the high stability and quality of
the generated image while generating a complete
residential floor plan. These results demonstrate
the high flexibility of our model for various inputs.

Consistency and Rationality: We used expert
scoring to assess. A total of 37 experts and users

were invited, and each person conducted 10 tests.
The final result is the average value calculated from
these tests. Experts determine the input conditions
for each model based on their design requirements,
and the models generate floor plans based on these
inputs. Consistency are rated by the experts who
provide the input, while a separate group of ex-
perts rated layout rationality. The scoring criteria
are as follows: 60=passing, 70=medium, 80=good,
90=excellent. As shown in Table 5, the consistency
score reached 88, indicating excellent alignment
with user requirements, while the rationality score
was 81, demonstrating good adherence to practi-
cal and logical design principles. The results indi-
cate that our model outperforms existing models in
terms of consistency and rationality in generation.

5 Conclusion

In this work, we proposed the CARD framework,
a language-based agent system designed for the
generation and editing of residential floor plans
in complex open-world environments. CARD en-
ables non-expert users to engage in residential de-
sign without the need for specialized knowledge.
This work advances the integration of cross-modal
agents and language-driven design tools in the ar-
chitectural domain, and demonstrates the potential
of LLM-based agent frameworks in domains lack-
ing paired image-text data, such as architecture.
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7 Limitations

We identified and summarized several failure cases:

1. Infinite Loop at High Thresholds: We
observed that when the threshold is set
above 0.96, the CARD system often becomes
trapped in an infinite generation loop. We
attribute this issue to the limitations of the
LLM in analyzing residential layouts and its
tendency toward hallucination.

2. Abstract User Requirements: When user in-
puts are overly abstract, the consistency score
tends to be significantly lower. For example,
the input “I desire a living space that tran-
scends the boundaries of conventional design.
It should be a nebulous realm where func-
tionality melds with the abstract, where light
dances in unpredictable patterns, and where
each nook whispers a cryptic tale.” yields a
consistency score of only 71.4. We believe
this is due to a dimensional mismatch—where
the semantic requirements imply a 3D spatial
conception that exceeds the representational
capacity of our 2D layout generation model.
Additionally, LLMs often struggle to interpret
such abstract or poetic descriptions.

3. Unrealistic or Unconventional Room Con-
figurations: In cases where the user requests
an excessive number of rooms (e.g., ten bed-
rooms) or illogical configurations (e.g., three
bathrooms without any bedrooms), the Prod-
uct Manager (Demand) agent is generally
able to parse the input and generate point-
based specifications accordingly. However,
the Text2FloorEdit model, trained on the
RPLAN dataset, lacks exposure to such atypi-
cal cases and thus defaults to generating floor
plans that conform to conventional residential
design standards.

4. Missing Physical Simulation Metrics: In
addition, the current version of the CARD
system does not account for physical simula-
tion metrics such as building energy consump-
tion, daylighting performance, or construction
costs. These metrics could be readily incor-
porated into the existing CARD framework

by integrating them into the “Auditors” agent
module. Therefore, we believe that CARD
can serve not only as a standalone generative
system but also as an extensible foundational
framework for integrated, performance-aware
architectural design.

8 Potential Risks

The CARD framework brings promising capabil-
ities for accessible residential design, but also en-
tails risks related to misuse, bias, and privacy.

1. Misinformation and Misuse: As CARD en-
ables natural language-driven residential de-
sign generation, there is a risk that unqual-
ified users could misuse the system to pro-
duce building layouts that appear valid but
violate essential architectural, structural, or
safety standards if the system is used with-
out proper oversight. To mitigate this, CARD
incorporates code auditors and embedded reg-
ulation checks; however, ensuring compliance
across diverse global building codes remains
a challenge and warrants ongoing refinement.

2. Bias in Training Data and Design Norms:
The training data and evaluation criteria used
in the framework may reflect cultural or so-
cioeconomic biases, favoring particular hous-
ing styles, spatial configurations, or regional
norms. This could lead to overrepresenta-
tion of certain types of residences while un-
derrepresenting others, potentially excluding
marginalized groups or non-mainstream living
arrangements. Future work could explore the
inclusion of more diverse datasets and adap-
tive feedback mechanisms.

3. Privacy Concerns and Data Security: If
future versions of CARD are deployed in a
cloud-based service, user-generated prompts
and design preferences may contain sensitive
personal or proprietary information. Adequate
encryption, access controls, and responsible
data handling policies must be adopted to pro-
tect user privacy.

9 Ethical Concerns

We do not anticipate immediate ethical or societal
impacts arising from our work. However, as an
engineering application based on LLMs for text
interpretation, we recognize that CARD could be
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affected by various types of hallucinations inher-
ent in LLMs. We therefore urge researchers and
practitioners to use our proposed framework mind-
fully, particularly when deploying such LLM-based
agents in real-world applications.
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A Experimental Settings

Comparison Methods: We generated residential
floor plans and compared them with those obtained
using baseline approaches. Our editable residential
design generation task based on free-text has no
comparable methodology. Therefore, simplified
versions of our proposed network were compared.
We compared both residential floor plans and mul-
timodal residential layout generation.

To evaluate the residential floor plan generation,
we compared our model with the Graph2Plan(Hu
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et al., 2020), Building Floor Plan (BFP)(Wan
et al., 2022), and CycleGAN(Li, 2023) models.
Graph2Plan is popular because of its compelling
features and advantages. This model uses a GNN
to process and learn the spatial topological relation-
ship of residential floor functions to generate more
stable residential floor plans. BFP is a residential
floor plan generation model based on the Pix2Pix
network(Isola et al., 2017), and we reproduced it
according to the published description using the
conventional Pix2Pix network. The CycleGAN
model, by contrast, is realized by adversarial train-
ing with unpaired image transformations.

To evaluate the multimodal residential lay-
out generation, we compared our model with
the Tell2Design(Leng et al., 2023) models.
Tell2Design is an optimal multimodal generation
model for generating residential layout maps from
text. It is based on the Sequence2Sequence model,
which generates residential layout diagrams using
linguistic guidance.
Evaluation Metrics: To compare generated resi-
dential floor plans, we used the FID(Heusel et al.,
2017), PSNR(Huynh-Thu and Ghanbari, 2008),
and SSIM(Wang et al., 2004) metrics. FID mea-
sures the similarity between generated images that
calculates the statistical distance between the distri-
butions of the actual and generated images. PSNR
measures image reconstruction quality that eval-
uates the fidelity of an image by calculating the
mean squared error between the original and recon-
structed images. SSIM evaluates structural similar-
ity, which objectively assesses the realism of the
image and its fidelity.

In the multimodal residential layout generation
comparison task, we used the FID, Micro IoU, and
Macro IoU metrics(Everingham et al., 2010). Mi-
cro IoU evaluates the degree of overlap between
the predicted and actual labels by calculating the
ratio of the intersection and concatenation of all
categories. In contrast, Macro IoU calculates the
IoU of each type and averages it. Values closer
to 1indicate a more complete overlap between the
predicted and actual labels.
User Test: In addition, we used human experts
and ordinary users to comprehensively evaluate the
effectiveness of the model generation. For the re-
mainder of this paper, we will refer to them as users.
We invited users to compare and evaluate actual
images with model-generated images. Specifically,
we mixed the model-generated images with actual
images and asked the users to select the authentic

images. The final average score given by several
users was used to measure the effectiveness of the
model generation. Because the random correctness
rate was 0.5, the results generated by the model
may confuse the users. Details of the user’s evalua-
tion setup are in the following.

Many evaluation metrics have been proposed to
evaluate the effectiveness of models comprehen-
sively and accurately. However, these metrics can-
not perfectly replace human subjective evaluations.
Therefore, this study adopted the user evaluation
method used in the Turing test to comprehensively
evaluate the effectiveness of the model. This in-
volved users who identify real FPs among a mixed
collection of real plans and plans generated by our
model. Specifically, 20 users were invited to partic-
ipate in the user review. The users included regis-
tered architects, graduate architecture students, and
ordinary users, who were first requested to provide
five sets of input so that our model could gener-
ate floor plans, where each set of inputs had to be
in the form of a bounding box to avoid the bias
caused by human inputs. The dataset consisted of
200 FPs comprising 100 real and 100 generated
samples. For each experiment, we randomly se-
lected ten samples, which included five real and
five generated samples. We subsequently combined
the generated and real images and presented them
in a shuffled order to the users. The users had to
identify the five real images in each set. Each user
performed this task for five sets, i.e., in total re-
viewing 50 plans and selecting 25. (We remove
the plans developed by the users themselves for
each user during the assessment phase to avoid the
users recognizing that the plans were developed by
themselves). Since our task involved choosing five
samples from a pool of ten, the randomized cor-
rectness rate was 0.5, i.e., meaning that the model
generated results that confused the users. Lower
precision and recall values indicate greater diffi-
culty in distinguishing between the generated and
real images. Hence, we utilized precision evalua-
tions provided by multiple users to assess the ef-
fectiveness of the generated images. Based on this,
the strengths and weaknesses of the generated mod-
els were evaluated more comprehensively. This
subjective evaluation method allows the generation
results to be intuitively measured from human per-
spectives and provides a powerful means to assess
model performance.
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Figure 5: Generate residential floor plans through free text.

B RAG

This process follows a similar RAG-based ap-
proach. Using the RAG model, the auditor retrieves
information from a User Requirements Database,
which is built from the user’s initial input, interac-
tive inputs during the editing process, and personal-
ized case studies from previous users. The retrieved
requirements and preferences are then compared
with the generated design. This comparison can be
expressed as a similarity or distance function, as
represented by Eq. 1. In the final decision phase,
judgments are made based on the similarity score
S(D,U). If the design is flagged as non-compliant,
feedback is generated for further editing and revi-
sion.

S(D,U) =

n∑

i=1

ωi · sim (di, ui) (1)

where: D represents the design features, and U
represents user requirements. ωi is a weight that re-
flects the importance of requirement i. sim (di, ui)
is a similarity function that measures how closely
design feature di matches user requirement ui.

C 3D Modeler Agent

To visualize residential floor plans, we developed a
3D residential renderer system. This renderer trans-
forms a residential design plan into a 3D residential
design, allowing users to visualize the details and
overall ideas of the floor plan from a spatial per-
spective.

Figure 6: 3D model generation and rendering to trans-
form 2D residential design drawings into 3D residential
designs.

This 3D rendering system receives the 256×256
resolution complete residential planes output from
RL-Net as input, and the output is a 3D represen-
tation of the residential planes, i.e., 3D residential
deisgns. The rendering result is shown in Fig. 6. In
this system, we first carefully separate the semantic
blocks in the floor plan, i.e., separate the individual
color blocks and then use them to generate walls.
The default heights of walls, doors, and windows
are 2.85 m, 2 m, and 1.2 m, respectively (these val-
ues can be adjusted). To enhance the realism and
personalization of the rendered model, we designed
a material-rendering system to customize it. Users
can choose from several preset materials and adjust
their color, transparency, and other attributes.

To ensure a uniform visual experience, a virtual
camera is placed above a specific corner of each
rendered 3D residential design model. Besides, the
viewing angle can be manually adjusted, allowing
users to rotate and view the model from different
directions.
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Table 6: Comparison of the model’s results under the
same input conditions.

Functional partition BGR Range
walls [0, 0, 245] ∼[10, 10, 255]
doors [245, 0, 0] ∼[255, 10, 10]

windows [0, 128, 0] ∼[10, 138, 10]
Living room [225, 235, 240] ∼[235, 245, 250]

bedroom [165, 240, 245] ∼[175, 250, 255]
kitchen [210, 210, 230] ∼[220, 220, 240]
toilet [245, 227, 200] ∼[255, 237, 210]

balcony [130, 210, 202] ∼[140, 220, 212]

D Parameterize the Generated Floor
Plans

In this system, the OpenCV library in Python is
utilized to extract semantic information from resi-
dential floor plans. The process begins with color
normalization, where specific BGR value ranges
are defined for various elements, such as rooms,
doors, and windows. These BGR values are de-
tailed in Table 6. Using these predefined color
ranges, the system identifies and isolates the corre-
sponding semantic blocks within the floor plan.

The first step in the process is color normaliza-
tion, where pixel values for each element (e.g.,
room, door, window) are mapped to specific ranges.
The OpenCV inRange() function is used to create
a mask for each element based on these predefined
BGR ranges, enabling the extraction of regions
corresponding to different parts of the floor plan.

Once the color information is extracted, the next
step involves vectorization. The system converts
the color-processed floor plans into vector represen-
tations, providing a more structured layout. This is
achieved through contour detection and the extrac-
tion of paths from the floor plan using the findCon-
tours() function. These contours are subsequently
stored as SVG paths, representing the floor plan
elements in a vectorized format. An example is
shown in Fig. 7.

This process facilitates accurate feature extrac-
tion and conversion of floor plan images into a
structured vector format, enabling downstream
tasks such as floor plan generation and optimiza-
tion.

E CARD 3D Generation and editing
Studies

We expanded the generation diversity experiment
results, as shown in Fig. 8.
Editing Precision: When the user wants to make
individualized edits to the generated 3D residential

design that are difficult to describe in words, the
user can make precise editing changes to the 3D
residential design by manually adjusting the inputs
and outputs of RL-Net.

The above results show that our model is ro-
bust to a variety of free text conditions on both the
generation and editing tasks. Meanwhile, the ex-
periment verifies that the model can manually and
flexibly edit and modify the residential design at
all task steps and generate modified high-quality
residential diagrams.
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Figure 7: Example of parameterized results.

Figure 8: Diversity of the generated results of our model, which generates multiple 3D residential designs based on
the same linguistic description.
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