
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 9320–9340
November 4-9, 2025 ©2025 Association for Computational Linguistics

DrDiff: Dynamic Routing Diffusion with Hierarchical Attention for
Breaking the Efficiency-Quality Trade-off

Jusheng Zhang1, Yijia Fan1, Kaitong Cai1, Zimeng Huang1,
Xiaofei Sun2, Jian Wang3, Chengpei Tang1, Keze Wang1,†

1Sun Yat-sen University 2Alibaba Group 3Snap Inc

†Corresponding author: kezewang@gmail.com

Abstract

This paper introduces DrDiff, a novel frame-
work for long-text generation that overcomes
the efficiency-quality trade-off through three
core technologies. First, we design a dynamic
expert scheduling mechanism that intelligently
allocates computational resources during the
diffusion process based on text complexity,
enabling more efficient handling of text gen-
eration tasks of varying difficulty. Second,
we introduce a Hierarchical Sparse Attention
(HSA) mechanism that adaptively adjusts atten-
tion patterns according to a variety of input
lengths, reducing computational complexity
from O(n2) to O(n) while maintaining model
performance. Finally, we propose a Seman-
tic Anchor States (SAS) module that combines
with DPM-solver++ to reduce diffusion steps,
significantly improving generation speed. Com-
prehensive experiments on various long-text
generation benchmarks demonstrate the supe-
riority of our DrDiff over the existing SOTA
methods.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020a; Touvron et al., 2023;
OpenAI, 2024) have demonstrated remarkable ca-
pabilities in knowledge encoding and contextual un-
derstanding during their pretraining phase, achiev-
ing significant success across a variety of natural
language processing tasks. However, despite these
advanced abilities, LLMs encounter substantial bot-
tlenecks when generating ultra-long texts (e.g., ex-
ceeding 10,000 tokens) (Krishna et al., 2023; Liu
et al., 2024). These challenges primarily manifest
in maintaining long-range coherence, managing
quadratically increasing computational complex-
ity, and ensuring contextual consistency (Bai et al.,
2024b; Liu et al., 2024; Wu et al., 2025). While di-
rectly fine-tuning on long sequences might appear
as a straightforward solution, this method demands

prohibitive computational resources and proves dif-
ficult to optimize effectively for documents span-
ning tens of thousands of tokens or more.

To address these challenges, the academic com-
munity has proposed various methods to enhance
the efficiency and effectiveness of LLMs in process-
ing long sequences. These can be broadly catego-
rized into two main types: (1) approaches based on
optimizing the attention mechanism, such as sparse
attention (e.g., Longformer (Beltagy et al., 2020),
etc. (Bertsch et al., 2023; Kitaev et al., 2020; Child
et al., 2019a)), which reduce complexity by mod-
ifying the attention computation pattern; and (2)
explorations into emerging generation paradigms
tailored for long sequences, for instance, applying
diffusion models (Tang et al., 2023; Becker et al.,
2025) to text generation or specifically optimiz-
ing LLM training and inference strategies (Chen
et al., 2023) for extended contexts. Although these
methods have achieved certain progress in specific
scenarios, they typically employ relatively fixed re-
source allocation and information processing flows
when handling extremely long sequences. Neither
the fixed sparse patterns of sparse attention nor
the generally consistent iterative approach through-
out the denoising process in diffusion models ade-
quately considers the heterogeneous requirements
of different text generation stages or varying text
segments, thereby limiting their adaptability.

This inherent “fixedness” becomes particularly
pronounced in scenarios involving ultra-long text
generation (e.g., over 10,000 tokens), directly lead-
ing to three critical, yet unresolved, limitations:
(1) Decay of Long-Range Feature Representation:
As sequence length increases, the model strug-
gles to compress and retain historical information,
causing early-input semantic features to progres-
sively decay or “dilute.” This degradation in fea-
ture quality critically impairs the model’s ability
to capture long-range dependencies and is a pri-
mary cause of content repetition and logical inco-

9320

herence in long-text generation. (2) Suboptimal
computational resource allocation: Applying a uni-
form computational intensity to all text segments
or generation stages results in resource wastage
on structurally simple or information-sparse parts,
while potentially providing insufficient computa-
tional power for complex or critical semantic junc-
tures, ultimately impacting overall efficiency and
performance. (3) Significant degradation in gener-
ation quality with increasing length: As sequence
length drastically increases, models often struggle
to maintain a unified narrative thread, exhibiting
a higher tendency for content repetition, logical
discontinuities, and even “forgetting” important
information generated earlier. Consequently, ex-
isting methods find it challenging to achieve an
ideal balance among efficiency, dynamic resource
scheduling, and high-quality long-text generation.

To tackle these fundamental issues, we move
beyond attempting localized improvements on ex-
isting fixed architectures and propose DrDiff, a
novel dynamic generation framework. DrDiff’s
core principle is the dynamic adjustment of its in-
ternal processing mechanisms. To avoid sacrific-
ing efficiency through indiscriminate complexity
increases, we introduce a strategy that combines
Hierarchical Sparse Attention (HSA) with a dy-
namically routed diffusion mechanism. The central
idea of HSA is to adaptively select and combine
different attention patterns (local, dilated, global)
based on the current text length and content char-
acteristics, ensuring effective dependency capture
at various scales while optimizing computational
complexity from O(N2) to nearly O(N). Further-
more, we deeply integrate this dynamic attention
mechanism with the denoising process of diffu-
sion models. Through Dynamic Expert Scheduling
(DES), the model can allocate different computa-
tional resources (i.e., expert networks) to text seg-
ments or generation steps of varying complexities.
Additionally, semantic anchor state guidance is
employed to optimize diffusion paths and attention
allocation, which, combined with efficient solvers
such as DPM-solver++, further enhances genera-
tion efficiency. Essentially, this design ensures that
computational resources and attention focus are in-
telligently allocated based on real-time demands,
rather than adhering to predefined patterns. Specif-
ically, DrDiff introduces three key innovations:

• Dynamic Hierarchical Sparse Attention:
Adaptively selects different attention mecha-

nisms based on text complexity and length,
significantly enhancing long-range depen-
dency modeling capabilities while reducing
computational complexity.

• Dynamic Expert Scheduling and Diffu-
sion: Dynamically allocates computational
resources during the generation process, ef-
ficiently integrating dynamic attention with
diffusion models to improve generation qual-
ity and efficiency.

• Semantic Anchor State Optimized Infer-
ence Path: Leverages a semantic anchor
mechanism to optimize diffusion paths and
attention allocation, further improving the co-
herence and efficiency for ultra-long text gen-
eration.

2 Related Work

Long-Text Generation and Transformer Ar-
chitecture. Since its introduction, the Trans-
former (Raffel et al., 2023; Brown et al., 2020b; Tay
et al., 2022a; Dai et al., 2019; Wang et al., 2020;
Child et al., 2019b; Zhang et al., 2025b,a) archi-
tecture has demonstrated remarkable performance
in natural language processing (NLP) tasks, par-
ticularly in long-text generation (Bai et al., 2024c;
Guan et al., 2021). However, despite its advan-
tages in maintaining textual coherence and contex-
tual consistency, its computational complexity of
O(n2) (Child et al., 2019b; Beltagy et al., 2020)
when handling extremely long sequences presents
severe computational resource bottlenecks (Ashk-
boos et al., 2024; Chamberlain et al., 2008). More
recently, researchers have explored various opti-
mization techniques to enhance the efficiency and
quality of Transformers in long-text generation,
e.g., models such as BERT and GPT perform excep-
tionally well in generating short to medium-length
texts. However, their performance significantly de-
grades when handling generation tasks exceeding
10,000 tokens, limiting their practical applicability.
Sparse Attention Mechanisms. To improve the
efficiency of Transformers (Vaswani et al., 2023) in
processing long sequences, sparse attention mecha-
nisms have emerged as effective solutions (Child
et al., 2019c; Lan et al., 2020; Tay et al., 2022b;
Clark et al., 2020; Chen et al., 2021; Rasooli and
Tetreault, 2015). Longformer, for example, re-
stricts each token’s attention span to a local neigh-
borhood, reducing the computational complexity

9321

Figure 1: The Hierarchical Sparse Attention (HSA) mechanism dynamically adjusts attention patterns for texts of
different lengths: using dense attention for short texts within 512 tokens, local + sparse dilated attention combination
for 512–4K, sparse dilated + global attention for 4K–8K texts, and global attention with larger windows for texts
above 8K. This hierarchical strategy reduces computational complexity from O(n2) to O(n) while maintaining
model performance.

from O(n2) to O(nw) (Vaswani et al., 2023),
where w represents the window size. BigBird (De-
vlin et al., 2019) further integrates local attention,
random attention, and global attention, maintain-
ing linear complexity while capturing global de-
pendencies more effectively. Although sparse at-
tention enhances long-text processing efficiency,
these methods still struggle to model global se-
mantic dependencies and maintain coherence as
sequence length increases. Prior studies (Gao et al.,
2024; Tang et al., 2024) have introduced hierar-
chical attention structures and dynamic (Shazeer
et al., 2017) attention patterns to strengthen sparse
attention’s capability, providing new avenues for
improving long-text generation quality.

Application of Diffusion Models in Text Genera-
tion. Diffusion models (Ho et al., 2020; Yuan et al.,
2023) have shown great potential in structured text
generation (Lin et al., 2023; Xu et al., 2025; Mir-
beygi and Beigy, 2025), leveraging an iterative
denoising process to produce high-quality (Nichol
and Dhariwal, 2021), complex text while captur-
ing fine-grained semantics (Beltagy et al., 2020).
However, in the long-sequence generation, they
suffer from slow convergence and high training
costs, especially when handling sequences exceed-
ing 10,000 tokens, where computational demands
escalate sharply, reducing efficiency. Ensuring sta-
bility and quality control in long-text generation
remains challenging. Researchers have proposed
various optimizations, such as DiffSeq (Gong et al.,
2023), which significantly improve efficiency and
quality. Yet, a key challenge persists: enhancing
coherence and semantic consistency while mini-
mizing computational costs. To achieve this, we
propose our DrDiff framework, which integrates

dynamic sparse diffusion routing and hierarchical
attention mechanisms to fundamentally improve
efficiency and quality in long-text generation.

3 Methodology

3.1 Framework Overview
DrDiff is architected as a diffusion model-based
framework for text generation, designed to tackle
the aforementioned challenges inherent in produc-
ing ultra-long texts. As illustrated in Figure 2, an
input text sequence, denoted as x, is first tokenized
and processed through an embedding layer to yield
an initial token embedding sequence Z0 ∈ RN×d,
where N is the sequence length and d is the embed-
ding dimension.

The forward process of the diffusion model is
defined as a Markov chain that gradually introduces
Gaussian noise to Z0 over T steps:

q(Zt | Zt−1) = N
(
Zt;

√
1 − βtZt−1︸ ︷︷ ︸

attenuated previous state

, βtI︸︷︷︸
injected noise variance

)
(1)

where t ∈ {1, ..., T}, and βt ∈ (0, 1) are prede-
fined noise schedule parameters. Using αt = 1−βt
and ᾱt =

∏t
s=1 αs, the noisy state Zt at any

timestep t can be directly derived from Z0:
Zt =

√
ᾱtZ0︸ ︷︷ ︸

original data component

+
√
1− ᾱtϵ︸ ︷︷ ︸

cumulative noise component
(2)

where ϵ ∼ N (0, I). The reverse denoising pro-
cess involves learning a neural network ϵθ(Zt, t),
parameterized by θ, to predict the noise ϵ added at
timestep t given Zt. The core innovation of DrDiff
lies within its denoising network ϵθ, which deeply
integrates Hierarchical Sparse Attention (HSA), a
Dynamic Routing Diffusion mechanism based on
Mixture of Experts (MoE), and employs Seman-
tic Anchor States (SAS) for explicit path guidance

9322

Z0 Zt Zt-1 ZT

... ...Tokenization

Input Text Word Embeddings Pure Noise

qθ(z |z)t t-1

qθ(z |z)t t-1

MoE

Router *

Forward Process Reverse Process Gaussian Noise * Welghted Sum

HSA
FFN2

FFN1

FFNn

*

...

Figure 2: This diagram illustrates the diffusion process in text generation, transforming input text through tokeniza-
tion into word embeddings (Z0), then following a forward process that gradually adds Gaussian noise to create
pure noise (Zt). The reverse process uses a denoising model with qϕ(Zt|Zt−1) transitions to reconstruct the text,
enhanced by a Mixture-of-Experts (MoE) architecture with a Router directing computation to specialized FFN
experts, and incorporating Hierarchical Sparse Attention (HSA) for efficient processing of varying text lengths.

and optimization. These components operate syn-
ergistically to achieve efficient and high-quality
generation of ultra-long sequences.

3.2 Hierarchical Sparse Attention (HSA)
To overcome the O(N2) computational bottleneck
of standard self-attention and to dynamically adapt
to the dependency modeling requirements of texts
with varying lengths, DrDiff incorporates Hierar-
chical Sparse Attention (HSA) within the Trans-
former modules of its denoising network ϵθ. The
central concept of HSA is the dynamic construc-
tion of a sparse attention mask MHSA(N) based
on the input sequence length N , which dictates the
scope of attention computations. As depicted in
Figure 1, standard self-attention is computed as
Attention(Q,K, V) = softmax

(
QKT
√
dk

)
V . HSA

modifies the attention scores (prior to softmax) us-
ing the mask:

SHSA
ij =





QiK
T
j√

dk
if (MHSA(N))ij = 1

−∞ if (MHSA(N))ij = 0

(3)

The construction strategy for MHSA(N) hier-
archically combines several base sparse patterns,
with its parameters (such as window size w, dila-
tion rate δ, number/proportion of global nodes, and
length thresholds N1, N2, N3) determined through
analysis of target task data characteristics and pre-
liminary hyperparameter tuning. This strategy un-
folds as follows: for short sequences (N ≤ N1),
dense attention (MHSA(N) = Mdense) is em-
ployed to capture all local details; for medium
sequences (N1 < N ≤ N2), a combination of
local attention with a fixed window w1 and dilated
attention with a dilation rate δ1 (MHSA(N) =
M local(w1) ∨Mdilated(δ1)) is used to effectively
cover short to medium-range dependencies; for

longer sequences (N2 < N ≤ N3), dilated at-
tention with a larger dilation rate δ2 is combined
with global attention based on a pre-selected set of
global nodes G1 (e.g., tokens selected at regular
intervals or based on learnable importance scores)
(MHSA(N) = Mdilated(δ2) ∨Mglobal(G1)); and
for ultra-long sequences (N > N3), the mechanism
primarily relies on global attention (MHSA(N) =
Mglobal(G2,Wg(N))), where the global node se-
lection strategy G2 may be more dynamic (e.g.,
based on saliency from previous layer outputs),
and its effective “window size” or attention span
Wg(N) employs a dynamic scaling strategy, such
as Wg(N) = min(N, c · N/ logN) or another
smooth growth function, to adapt to inputs of ar-
bitrary length and ensure global information cap-
ture. The innovation of HSA, distinct from existing
fixed sparse patterns, lies in its hierarchical, length-
based dynamic pattern switching and parameter
adjustment logic, coupled with an adaptive scal-
ing mechanism for the global attention range in
ultra-long sequences. This approach significantly
reduces the average computational complexity, ap-
proaching linear complexity, while retaining the
ability to capture critical long-range dependencies.

3.3 Dynamic Routing Diffusion

To address the heterogeneous computational re-
quirements of different stages and content segments
during text generation, DrDiff incorporates a Dy-
namic Routing Diffusion mechanism based on Mix-
ture of Experts (MoE) within the Feed-Forward
Network (FFN) components of its ϵθ Transformer
modules. The input hidden state ht (from the HSA
layer) is routed to one or more expert networks for
processing.

Routing Decision. A routing network Rgate,

9323

typically a small MLP, computes logits s(ht) for
each of the M experts based on ht. We posit that ht,
having been processed by HSA, already encodes
the complexity and dependency characteristics of
the current context, enabling the routing network to
learn a mapping from these features to an optimal
selection of experts.

s(ht) = [s1(ht), . . . , sM (ht)] = Wgate · StopGradient(ht) + bgate︸ ︷︷ ︸
raw logits for expert selection

(4)
DrDiff employs Top-k sparse gating (where k is
typically 1 or 2) to select experts. The gating
weight Gj(ht) for expert j is:

Gj(ht) =





exp(sj(ht))∑
l∈TopK(s(ht))

exp(sl(ht))
if expert j ∈ TopK(s(ht))︸ ︷︷ ︸

k experts selected based on logits

0 otherwise

(5)
Expert Networks & Specialization. There are

M expert networks {Ej}Mj=1 operating in parallel.
A key innovation in DrDiff is the differentiated
design of these expert networks to promote func-
tional specialization. This includes: i) capacity dif-
ferences, where some experts employ FFNs with
smaller dimensions (e.g., 0.5 times the standard
FFN dimension) to process simpler or repetitive
text segments more economically; ii) optionally,
structural differences or task-specific fine-tuning,
where some experts might feature slightly different
activation functions or layer normalization strate-
gies, or even undergo preliminary, lightweight fine-
tuning on specific sub-tasks (such as syntactic gen-
eration or content generation for particular topics)
during a pre-training phase to enhance their sensi-
tivity to certain input types. Each activated expert
Ej processes the input ht as follows:

Oj(ht) = Ej(ht) = W
(j)
2 ReLU

(
first linear transform & activation︷ ︸︸ ︷

W
(j)
1 ht + b

(j)
1

)

︸ ︷︷ ︸
second linear transform

+ b
(j)
2

(6)
Output Integration & Load Balancing. The final
output of the MoE layer is h′t =

∑M
j=1Gj(ht) ·

Oj(ht). During training, an auxiliary load balanc-
ing loss Laux = λaux

∑M
j=1 fj ·Pj (where fj is the

fraction of tokens dispatched to expert j and Pj is
the routing probability for expert j) is introduced to
ensure all experts are sufficiently trained. Through
this mechanism, the MoE learns to dynamically
allocate computational load to the most suitable
experts based on input features (which serve as
implicit “complexity” signals), thereby avoiding
the inefficient computation characteristic of fixed
structures that treat all inputs uniformly.

3.4 Semantic Anchor States Guided
Optimization and Efficient Inference

To further optimize the generation path for ultra-
long texts, enhance global coherence, and acceler-
ate inference, DrDiff introduces Semantic Anchor
States (SAS), denoted as Ẑtk , for explicit guidance
at specific intermediate denoising timesteps tk (e.g.,
tk ∈ {T/4, T/2, 3T/4}, chosen based on a con-
ceptual division of typical text generation phases).
The core innovation of SAS lies in its target defini-
tion and acquisition mechanism.

Construction of SAS Targets Ẑtk . We explore
methods such as the following for constructing
SAS targets: SAS is based on simplified repre-
sentations, where for a given Z0, a core seman-
tic summary Summ(Z0) is extracted using a pre-
trained, lightweight summary generation model or
a topic model. Ẑtk is then defined as the ideal
noisy state corresponding to this summary informa-
tion at timestep tk: Ẑtk =

√
ᾱtkE(Summ(Z0)) +√

1− ᾱtkϵ
′, where E is an embedding function.

This form of SAS guides the model to first generate
a structure compliant with the summary, and op-
tionally, a more complex SAS based on clustering,
which involves feature extraction and clustering
of noisy states q(Ztk |Z0) from a large corpus of
real texts at various timesteps tk. The centroid of
each cluster can serve as an SAS target, guiding
the generation process towards typical regions of
the data manifold.

SAS-guided Training Objective. In addition
to the standard diffusion loss Ldiffusion, an SAS
guidance loss LSAS is incorporated:

Ldiffusion = Et, Z0, ϵ

∥∥∥∥∥∥∥
ϵ︸︷︷︸

target noise

− ϵθ(Zt, t)︸ ︷︷ ︸
model’s predicted noise

∥∥∥∥∥∥∥

2

(7)

To compute LSAS , we estimate the state Z̃θ
tk
(Zt)

that the model would generate at the target timestep
tk, given the current state Zt and the model’s pre-
dicted noise ϵθ(Zt, t). This can be achieved by
first estimating Z̃0 through a one-step deterministic
reverse process (e.g., DDIM/DDPM):

Z̃0(Zt, ϵθ) =
1√
ᾱt

(
Zt −

√
1 − ᾱt ϵθ(Zt, t)

)
(8)

and then applying the forward diffusion process to
reach tk:

Z̃
θ
tk

(Zt) =
√

ᾱtk
Z̃0(Zt, ϵθ) +

√
1 − ᾱtk

ϵ
′ (9)

The SAS loss is then defined as:
LSAS =

KSAS∑

k=1

λSAS,k · || Z̃θ
tk
(Zt)︸ ︷︷ ︸

model’s predicted state at tk

− Ẑtk︸︷︷︸
desired semantic anchor state at tk

||2

(10)

9324

This explicit path guidance is a key differentiator
of DrDiff from traditional diffusion models, as it
constrains the generation trajectory to align with
pre-defined structural information at critical inter-
mediate junctures.

Combination with Efficient ODE/SDE
Solvers. The denoising path guided by SAS is
generally smoother and more “goal-oriented,”
reducing the stochasticity and complexity of
the diffusion trajectory. This facilitates the
effective operation of efficient numerical Ordi-
nary Differential Equation (ODE) / Stochastic
Differential Equation (SDE) solvers, such as
DPM-Solver++ (Lu et al., 2025), which treat the
discrete denoising steps as solving an ODE/SDE
of the form dZt = f(Zt, t)dt+ g(t)dWt. Specifi-
cally, a smoother path may imply better Lipschitz
properties for the function f(Zt, t), or a more
consistent evolution of the model’s prediction ϵθ
with respect to t. This allows the solver to employ
larger integration steps, thereby significantly
reducing the number of sampling steps S ≪ T
while maintaining or even enhancing generation
quality and coherence.

4 Experiments

The evaluation consists of four main experimental
categories. (1) Natural Language Understanding
(NLU): We test DrDiff on the LongBench to evalu-
ate its ability to understand and process language
in long text effectively. (2) Long-Text Generation
and Question Answering: We assess DrDiff’s
performance on multi-hop and long-form question-
answering tasks, as well as its ability to generate
coherent and structured long texts. (3) Long-Text
Summarization: We evaluate DrDiff’s summa-
rization capabilities on datasets such as Arxiv and
Alpaca, focusing on its ability to condense long
documents while preserving key information. (4)
Mixture-of-Experts (MoE) Expert Count Im-
pact: We investigate how different numbers of
MoE experts affect DrDiff’s performance across
datasets like Arxiv, HotpotQA, Commonsense Con-
versation, and QQP. Additionally, we conduct abla-
tion studies and hyperparameter sensitivity analy-
ses to validate the contributions of different com-
ponents in DrDiff’s architecture. We also perform
long-text stress testing to examine the model’s abil-
ity to handle extremely long sequences and evalu-
ate the impact of different diffusion strategies on
model performance (see Appendix A.4 and A.6 for

more details). All experiments are conducted on
NVIDIA A100 GPUs, and the specific hyperparam-
eter settings are in Appendix A.1.

4.1 Natural Language Understanding
Experimental Setting. To comprehensively eval-
uate DrDiff, particularly its ability to handle di-
verse tasks and long sequences, we assessed it on
the LongBench (Bai et al., 2024a). LongBench
encompasses a variety of challenging tasks, includ-
ing single-document question answering, multi-
document question answering, long in-context
learning, long dialogue, code repository analy-
sis, and long structured data processing. Several
strong baseline models are included: GPT-4o (Ope-
nAI, 2024), Qwen2.5-72B (Qwen, 2024), LLaMA-
3.1-70B (LLAMA3, 2024), Longformer (Beltagy
et al., 2020), Qwen2.5-7B (Qwen, 2024), LLaMA-
3.1-8B (LLAMA3, 2024), and DiffuSeq (Gong
et al., 2023). Given the substantial size of GPT-4o,
Qwen2.5-72B, and LLaMA-3.1-70B, we utilized
the OpenRouter API for inference. Other models
were run locally on NVIDIA A100 GPUs. We re-
port the overall accuracy on the LongBench, as
well as the performance breakdown across differ-
ent difficulty levels (Easy, Hard), sequence lengths
(Short, Medium, Long), and task types.
Comparisons and Analyses. The results of our
evaluation on the LongBench are presented in Ta-
ble 1. As shown in Table 1, DrDiff, with approxi-
mately 220M active parameters, achieves an over-
all score of 33.5% on LongBench, surpassing sev-
eral competitive baselines including LLaMA-3.1-
70B (32.1%), Longformer (31.0%), and DiffuSeq
(29.5%). Notably, DrDiff demonstrates particular
strengths in handling long sequences (35.6%), dia-
logue (38.7%), and structured data (34.6%). While
it lags behind the significantly larger models like
GPT-4o and Qwen2.5-72B, its competitive perfor-
mance with a much smaller parameter count high-
lights its efficiency. Table 4 also provides a detailed
breakdown of performance across different task
types, where DrDiff exhibits strong performance in
long dialogue (38.7%) and long structured data pro-
cessing (34.6%), indicating its capability in man-
aging complex, extended inputs in these domains.
Its performance in single-document QA (31.6%),
multi-document QA (32.4%), long in-context learn-
ing (32.5%), and code repository analysis (29.1%)
is also competitive with the other smaller baseline
models. These results collectively underscore the
effectiveness and lightweight nature of the DrDiff

9325

Table 1: Model Performance Comparison on LongBench.

Model Overall (%) Easy (%) Hard (%) Short (%) Medium (%) Long (%)

GPT-4o 51.9 61.4 47.1 53.9 55.2 40.7
Qwen2.5-72B 42.6 43.2 42.3 48.1 37.6 43.9
LLaMA-3.1-70B 32.1 32.8 31.7 41.6 27.9 24.6
Longformer 31.0 30.4 29.2 32.5 31.7 30.8
Qwen2.5-7B 30.5 31.2 30.1 41.1 24.7 24.6
LLaMA-3.1-8B 30.5 31.2 30.1 35.5 28.4 26.4
DiffuSeq 29.5 30.2 28.8 34.5 27.0 25.0

DrDiff (ours) 33.5 31.7 29.8 35.5 32.4 35.6

architecture for handling a diverse range of long-
context tasks.

4.2 Natural Language Generation and
Question Answering

Experimental Setting. We evaluate model per-
formance on long text generation and QA using
five datasets: WikiHop (Welbl et al., 2018), Triv-
iaQA (Joshi et al., 2017), OntoNotes, Hyperpar-
tisan News Detection (Yang et al., 2018), and
HotpotQA (Yang et al., 2018). These datasets
are chosen to assess the model’s ability to gen-
erate coherent, lengthy responses and to answer
complex, multi-hop questions. We compare our
DrDiff with nine baselines, i.e., GPT-4o (Ope-
nAI, 2024), Qwen2.5-72B (Qwen, 2024), LLaMA-
3.1-70B (LLAMA3, 2024), Longformer (Beltagy
et al., 2020), LLaMA-3-8B (LLAMA3, 2024),
DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI,
2025), GPT-2 Large (Radford et al., 2019), Dif-
fuSeq (Gong et al., 2023), and LLaMA-2-7B
(LLAMA2, 2023), each of which is fine-tuned
on respective training splits using standard pro-
tocols. These models include state-of-the-art and
open-source models of various sizes, and models
similar to ours that specifically address long text
problems. All experiments run under controlled
hardware with fixed random seeds for reproducibil-
ity, reporting the highest test-set scores per model.
Comparisons and Analyses. As shown in Ta-
ble 2, DrDiff demonstrates strong performance
in natural language generation and question an-
swering tasks. While state-of-the-art models like
GPT-4o and Qwen2.5-72B lead in overall scores,
DrDiff achieves competitive results, scoring 76.2%
accuracy on WikiHop, 82.1% F1 on TriviaQA,
82.4% F1 on OntoNotes, 95.0% F1 on Hyperpar-
tisan, and 68.0% Joint F1 on HotpotQA. Notably,
these results place DrDiff ahead of other signifi-
cant models such as LLaMA-3.1-70B (77.5% av-

erage) and Longformer (77.0% average). For in-
stance, Longformer achieved 74.6% on WikiHop,
74.1% on TriviaQA, and 78.4% on OntoNotes. Fur-
thermore, DrDiff outperforms other models like
LLaMA-3-8B, DeepSeek-R1-Distill-Qwen-1.5B,
LLaMA-2-7B, DiffuSeq, and GPT-2 Large across
these datasets.

4.3 Number of Experts in MoE

Experimental Setting. This experiment aims to
fairly evaluate the inference performance of the
Mixture-of-Experts (MoE) (Shazeer et al., 2017)
compared to single-model baselines. We use
the Arxiv dataset and measure performance using
BLEU, ROUGE-L, and BERTScore to assess text
quality. For a balanced comparison, the single-
model baseline has 160M parameters. Our MoE
structure consists of smaller expert models, each
with 20M parameters. We design three MoE con-
figurations with varying total numbers of experts:
2 experts (resulting in 40M total parameters), 4 ex-
perts (80M total parameters), and 8 experts (160M
total parameters). It is crucial to distinguish be-
tween “total parameters” (which scale with the
number of experts in a configuration) and “active
parameters” (the parameters engaged during a sin-
gle inference pass). To maintain consistency and
fairness in computational cost across these config-
urations, we activate a fixed number of 2 experts
(thus, 2 experts × 20M parameters/expert = 40M
active parameters) per inference. This ensures that
while the model’s capacity (total parameters) varies,
the computational load per inference (active param-
eters) remains comparable. Beyond performance
metrics, we also record inference time and trainable
parameters to analyze computational efficiency and
scalability. These additional measurements help as-
sess the trade-offs between overall model size (total
parameters), inference speed, and output quality.
Comparisons and Ablation Studies. Figure 3

9326

Table 2: Performance on natural language generation and question answering tasks. Evaluation is conducted on five
datasets: WikiHop (multi-hop QA), TriviaQA (open QA), OntoNotes (coreference resolution), Hyperpartisan News
Detection (long document classification), and HotpotQA (distractor setting, joint F1). The scores (accuracy or F1,
as appropriate) are reported with standard deviations, and the final column shows the average across all tasks.

Method WikiHop TriviaQA OntoNotes Hyperpartisan HotpotQA Avg Score
(Acc.) (F1) (F1) (F1) (Joint F1)

GPT-4o 77.2±0.6 82.9±0.5 83.3±0.6 95.6±0.5 69.2±0.7 81.6±0.6
Qwen2.5-72B 76.8±0.7 82.5±0.6 82.9±0.7 95.3±0.6 68.8±0.8 81.3±0.7
LLaMA-3.1-70B 73.0±0.7 78.5±0.6 79.0±0.7 92.0±0.6 65.0±0.8 77.5±0.7
Longformer 74.6±0.7 74.1±0.9 78.4±0.7 93.8±0.6 63.9±0.7 77.0±0.7
LLaMA-3-8B 69.8±0.7 69.5±0.5 74.1±0.6 84.7±0.7 59.8±0.8 71.6±0.6
DeepSeek-R1-Distill-Qwen-1.5B 67.5±0.6 71.4±0.7 73.2±0.5 79.8±0.6 61.3±0.6 70.6±0.6
LLaMA-2-7B 59.2±0.7 64.8±0.6 69.5±0.7 77.4±0.6 54.2±0.7 65.0±0.6
DiffuSeq 64.1±0.6 54.3±0.7 61.2±0.6 84.3±0.7 49.6±0.6 62.7±0.6
GPT-2 Large 49.8±0.5 39.6±0.7 48.3±0.8 69.5±0.6 34.7±0.5 48.4±0.6
DrDiff (ours) 76.2±0.8 82.1±0.6 82.4±0.7 95.0±0.7 68.0±0.8 78.6±0.7

Figure 3: The figure above shows the changes in model training parameters and inference time after setting different
experts. The figure below shows the changes in score indicators on the Arxiv dataset after setting different numbers
of experts.

illustrates trends in model configuration and per-
formance. The upper chart shows that as the total
number of available experts increases from 1 to 8 in
DrDiff (leading to an increase in total model param-
eters), the active parameters per inference remain
constant at 40M, due to our strategy of activating
a fixed K=2 experts. Concurrently, inference time
drops from 2.30s to 1.95s. The lower chart indi-
cates that performance metrics (BLEU, ROUGE-L,
BERTScore) improve with more total experts up
to 8 but decline slightly at 12, suggesting diminish-
ing returns on increasing model capacity beyond
a certain point. DrDiff significantly reduces active
parameters and inference time compared to dense
models of similar total capacity, while maintain-
ing competitive performance, demonstrating that
the MoE framework efficiently allocates computa-
tional resources. The 8-expert model (with 160M
total parameters, but still 40M active parameters
per inference) achieves the best balance between
efficiency and quality. To further analyze DrDiff’s
components, we conducted an ablation study by

modifying sparse attention, diffusion steps, and
attention window sizes in Table 5. The baseline
model integrates sparse attention with DiffuSeq.
Detailed descriptions of these experiments are pro-
vided in Appendix A.3 and A.8.

5 Conclusion

This paper introduces DrDiff, a novel frame-
work that addresses long-text generation challenges
through dynamic routing diffusion with Hierarchi-
cal Attention. Our results show that DrDiff outper-
forms existing methods in both computational effi-
ciency and generation quality. The dynamic expert
scheduling mechanism reduces computational com-
plexity from O(n2) to O(n) while preserving text
coherence, enabling more efficient long-sequence
processing. Additionally, Hierarchical Sparse At-
tention effectively handles sequences up to and be-
yond 8K tokens, ensuring robustness across tasks.
A key innovation is semantic anchor guidance,
which optimizes diffusion by accelerating genera-
tion time without compromising quality. This tech-

9327

nique balances efficiency and fidelity, making the
model well-suited for real-world long-text applica-
tions. DrDiff is a promising solution for scientific
writing, creative generation, and summarization.

Future work will extend sequence length, en-
hance adaptability, and refine domain-specific co-
herence. Moreover, we plan to deepen the theoreti-
cal analysis of dynamic routing and diffusion pro-
cesses, and explore multi-modal extensions (e.g.,
integrating visual or structured data) to further
broaden DrDiff’s applicability. We also conduct
large-scale user studies to validate the framework
in practical real-world scenarios and assess its per-
formance across diverse application contexts.

Limitations

Despite the promising results achieved by DrDiff,
several important limitations deserve attention and
point to directions for future research:

Limited Exploration of Extreme-Length
Texts: While our framework shows improvements
in handling sequences up to 8K tokens, the ex-
ploration of even longer texts (e.g., >20K tokens)
remains limited. The current architecture’s effec-
tiveness for extreme-length document generation
needs further investigation, as the complexity of se-
mantic dependencies and memory constraints may
introduce unforeseen challenges at such scales.

Theoretical Foundation: Although empirical
results demonstrate the effectiveness of our dy-
namic routing mechanism, the theoretical under-
pinnings of why this approach works well for long-
text generation lack rigorous mathematical proof.
Specifically, the convergence properties of the dif-
fusion process under dynamic expert scheduling
and the optimal balance between different attention
patterns require more thorough theoretical analysis.

Limited Interpretability: The current version
of DrDiff operates largely as a black box, particu-
larly in its expert scheduling decisions. The lack of
interpretability in how the model allocates compu-
tational resources and switches between different
attention patterns makes it challenging to diagnose
potential failure cases or optimize the model for
specific applications.

Resource Consumption Trade-offs: While
our approach reduces computational complexity,
the multi-expert architecture introduces additional
memory overhead. The balance between compu-
tational efficiency and memory usage requires fur-
ther optimization, especially for deployment in

resource-constrained environments.
Domain Adaptability: Our evaluation primarily

focused on general-domain text generation. The
framework’s effectiveness in specialized domains
(e.g., scientific papers, legal documents) where
strict formatting or domain-specific knowledge is
required remains to be thoroughly validated.

These limitations highlight several promising
directions for future research, including developing
more robust theoretical frameworks for long-text
generation, improving model interpretability, and
exploring more efficient architectures for extreme-
length text generation. Addressing these challenges
will be crucial for advancing the field of long-text
generation and expanding its practical applications.

Acknowledgments

This work was supported in part by the National
Natural Science Foundation of China (NSFC) un-
der Grant 62276283, in part by the China Meteo-
rological Administration’s Science and Technol-
ogy Project under Grant CMAJBGS202517, in
part by Guangdong Basic and Applied Basic Re-
search Foundation under Grant 2023A1515012985,
in part by Guangdong-Hong Kong-Macao Greater
Bay Area Meteorological Technology Collabora-
tive Research Project under Grant GHMA2024Z04,
in part by Fundamental Research Funds for the
Central Universities, Sun Yat-sen University un-
der Grant 23hytd006, and in part by Guangdong
Provincial High-Level Young Talent Program un-
der Grant RL2024-151-2-11.

References
Saleh Ashkboos, Iman Mirzadeh, Keivan Alizadeh, Mo-

hammad Hossein Sekhavat, Moin Nabi, Mehrdad
Farajtabar, and Fartash Faghri. 2024. Computational
bottlenecks of training small-scale large language
models. Preprint, arXiv:2410.19456.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024a. LongBench: A bilingual, mul-
titask benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119–3137, Bangkok, Thailand.
Association for Computational Linguistics.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng,
Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. 2024b. Longwriter: Unleashing 10,000+
word generation from long context llms. Preprint,
arXiv:2408.07055.

9328

https://arxiv.org/abs/2410.19456
https://arxiv.org/abs/2410.19456
https://arxiv.org/abs/2410.19456
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://arxiv.org/abs/2408.07055
https://arxiv.org/abs/2408.07055

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng,
Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. 2024c. Longwriter: Unleashing 10,000+
word generation from long context llms. Preprint,
arXiv:2408.07055.

Philipp Becker, Abhinav Mehrotra, Ruchika Chavhan,
Malcolm Chadwick, Luca Morreale, Mehdi Noroozi,
Alberto Gil Ramos, and Sourav Bhattacharya. 2025.
Edit: Efficient diffusion transformers with linear com-
pressed attention. Preprint, arXiv:2503.16726.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
Preprint, arXiv:2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew R. Gormley. 2023. Unlimiformer: long-
range transformers with unlimited length input. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020a. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020b. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Jon Chamberlain, Massimo Poesio, and Udo Kr-
uschwitz. 2008. Addressing the resource bottleneck
to create large-scale annotated texts. In Semantics in
Text Processing. STEP 2008 Conference Proceedings,
pages 375–380. College Publications.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and
Asli Celikyilmaz. 2023. Walking down the mem-
ory maze: Beyond context limit through interactive
reading. Preprint, arXiv:2310.05029.

Yafeng Chen, Zhihao Lan, Jensen Li, and Jie Zhu. 2021.
Topologically protected second harmonic genera-
tion via doubly resonant high-order photonic modes.
Physical Review B, 104(15).

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019a. Generating long
sequences with sparse transformers. URL
https://openai.com/blog/sparse-transformers.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019b. Generating long sequences with
sparse transformers. Preprint, arXiv:1904.10509.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019c. Generating long sequences with
sparse transformers. Preprint, arXiv:1904.10509.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
Preprint, arXiv:2003.10555.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond a
fixed-length context. Preprint, arXiv:1901.02860.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao,
Hayden Kwok-Hay So, Ting Cao, Fan Yang, and
Mao Yang. 2024. Seerattention: Learning intrin-
sic sparse attention in your llms. arXiv preprint
arXiv:2410.13276.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2023. Diffuseq: Sequence
to sequence text generation with diffusion models.
Preprint, arXiv:2210.08933.

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wen-
biao Ding, and Minlie Huang. 2021. Long text gener-
ation by modeling sentence-level and discourse-level
coherence. Preprint, arXiv:2105.08963.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Preprint,
arXiv:2006.11239.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

Kalpesh Krishna, Erin Bransom, Bailey Kuehl, Mohit
Iyyer, Pradeep Dasigi, Arman Cohan, and Kyle Lo.
2023. Longeval: Guidelines for human evaluation of
faithfulness in long-form summarization. Preprint,
arXiv:2301.13298.

9329

https://arxiv.org/abs/2408.07055
https://arxiv.org/abs/2408.07055
https://arxiv.org/abs/2503.16726
https://arxiv.org/abs/2503.16726
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/W08-2230/
https://aclanthology.org/W08-2230/
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2310.05029
https://doi.org/10.1103/physrevb.104.155421
https://doi.org/10.1103/physrevb.104.155421
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2105.08963
https://arxiv.org/abs/2105.08963
https://arxiv.org/abs/2105.08963
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://openreview.net/forum?id=rkgNKkHtvB
https://arxiv.org/abs/2301.13298
https://arxiv.org/abs/2301.13298

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2020. Albert: A lite bert for self-supervised
learning of language representations. Preprint,
arXiv:1909.11942.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu,
Zhihao Fan, Chen Lin, Nan Duan, and Weizhu Chen.
2023. Text generation with diffusion language mod-
els: A pre-training approach with continuous para-
graph denoise. Preprint, arXiv:2212.11685.

Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen
Chu. 2024. Longgenbench: Long-context genera-
tion benchmark. Preprint, arXiv:2410.04199.

LLAMA2. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

LLAMA3. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. 2025. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic
models. Machine Intelligence Research, pages 1–22.

Mohaddeseh Mirbeygi and Hamid Beigy. 2025. Prompt
guided diffusion for controllable text generation. In
Proceedings of the Tenth Workshop on Noisy and
User-generated Text, pages 78–84, Albuquerque,
New Mexico, USA. Association for Computational
Linguistics.

Alex Nichol and Prafulla Dhariwal. 2021. Improved
denoising diffusion probabilistic models. Preprint,
arXiv:2102.09672.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Qwen. 2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
Computing Research Repository, arXiv:1503.06733.
Version 2.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
Preprint, arXiv:1701.06538.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. Quest: query-
aware sparsity for efficient long-context llm inference.
ICML’24. JMLR.org.

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Ziqiang Cao, and Min Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! Preprint, arXiv:2305.04465.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022a. Efficient transformers: A survey.
Preprint, arXiv:2009.06732.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022b. Efficient transformers: A survey.
Preprint, arXiv:2009.06732.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. Preprint, arXiv:2006.04768.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.
2018. Constructing datasets for multi-hop reading
comprehension across documents. Transactions of
the Association for Computational Linguistics.

Tong Wu, Junzhe Shen, Zixia Jia, Yuxuan Wang, and
Zilong Zheng. 2025. From hours to minutes: Loss-
less acceleration of ultra long sequence generation
up to 100k tokens. Preprint, arXiv:2502.18890.

Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie,
Yilun Xu, Jure Leskovec, Stefano Ermon, and Arash
Vahdat. 2025. Energy-based diffusion language mod-
els for text generation. Preprint, arXiv:2410.21357.

Zhiyu Yang, Wenhan Xiong, Mo Yu, and William Yang
Wang. 2018. Hotpotqa: A dataset for diverse, ex-
plainable multi-hop question answering. In EMNLP.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2023. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. Preprint,
arXiv:2212.10325.

Jusheng Zhang, Yijia Fan, Kaitong Cai, and Keze
Wang. 2025a. Kolmogorov-arnold fourier networks.
Preprint, arXiv:2502.06018.

9330

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2212.11685
https://arxiv.org/abs/2212.11685
https://arxiv.org/abs/2212.11685
https://arxiv.org/abs/2410.04199
https://arxiv.org/abs/2410.04199
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2025.wnut-1.9/
https://aclanthology.org/2025.wnut-1.9/
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2303.08774
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1503.06733
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2305.04465
https://arxiv.org/abs/2305.04465
https://arxiv.org/abs/2305.04465
https://arxiv.org/abs/2305.04465
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2502.18890
https://arxiv.org/abs/2502.18890
https://arxiv.org/abs/2502.18890
https://arxiv.org/abs/2410.21357
https://arxiv.org/abs/2410.21357
https://arxiv.org/abs/2212.10325
https://arxiv.org/abs/2212.10325
https://arxiv.org/abs/2502.06018

Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan
Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao,
Jian Wang, and Keze Wang. 2025b. Kabb:
Knowledge-aware bayesian bandits for dynamic ex-
pert coordination in multi-agent systems. Preprint,
arXiv:2502.07350.

A Appendix

Contents

A.1 Hyperparameter Settings 12
A.2 Hierarchical Attention Mode

Switching Strategy, HAMSS . . . 12
A.2.1 Dense Mode (MD) 13
A.2.2 4K Mode (M4K) 13
A.2.3 8K Mode (M8K) 13
A.2.4 16K+ Mode (M16K+) . . 13
A.2.5 Mode Switching Decision

Function 14
A.2.6 Parameter Selection Ratio-

nale and Tuning for HSA
Modes 14

A.2.7 Mode Switching Decision
Function Fϕ Explained . . 15

A.3 Ablation Study 15
A.4 Long Text Stress Resistance Exper-

iment 15
A.4.1 Experimental Setup 15
A.4.2 Experimental Results . . . 16

A.5 Computational Complexity Analysis 16
A.5.1 Computational Complex-

ity Comparison 16
A.5.2 Computational Resource

Consumption Comparison 16
A.6 Impact of Different Settings of Dif-

fusion 17
A.6.1 Experimental setup 17
A.6.2 Experimental Results . . . 17

A.7 Semantic Anchor State Guidance
(SAS) Weight Tuning and Impact . 18

A.8 Extended Ablation Study on HSA
and DES 19

A.9 Training Datasets 20

A.1 Hyperparameter Settings

The unified hyperparameter settings for all experi-
ments are shown in Table 3. Note that for the batch
size and epoch setting, we follow the official test
configurations for different datasets.

A.2 Hierarchical Attention Mode Switching
Strategy, HAMSS

To achieve an adaptive balance between compu-
tational efficiency and modeling capability for se-
quence length, DrDiff employs the Hierarchical
Attention Mode Switching Strategy (HAMSS).
The core idea of HAMSS is to dynamically se-
lect the optimal attention mode based on the input

9331

https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350

Hyperparameter Value

Transformer Layers 12
Attention Heads per Layer 12
Sparse Attention Mechanism Hierarchical Sparse Attention
MoE Strategy Multiple Expert Networks per Layer, Dynamic Selection via Gating Mechanism
Diffusion Steps 2048, Square Root Noise Scheduling
DPM-Solver++ Integration Integrated to Reduce Diffusion Steps and Improve Generation Speed
Batch Size Determined by different datasets
Epoch Determined by different datasets
Learning Rate 1e-4
Warm-up Steps 5000
Weight Decay 0.01
Optimizer AdamW
Max Sequence Length 512
Gradient Clipping 1.0
Dropout Rate 0.1
Expert Size per Expert in MoE 20M
Experts per Layer 2, 4, or 8 (depending on experiment configuration)
Framework PyTorch

Table 3: Hyperparameter Settings for All Experiments

sequence length, ensuring high-quality text genera-
tion while maintaining efficient computation.

HAMSS consists of four attention modes:

H = (MD,M4K ,M8K ,M16K+)

Each mode M∗ is composed of five elements:

M∗ = ⟨Ψ∗,Ω∗, C∗,G∗, T∗⟩

A.2.1 Dense Mode (MD)
Activation Condition: Input sequence length n ≤
512. Neighborhood Definition:

ND(i) = {1, 2, . . . , n}, ∀i ∈ {1, . . . , n}

The attention weight matrix AD ∈ Rn×n satisfies:

A
(i,j)
D = Softmax

(
QiK

⊤
j√
d

)
, ∀(i, j)

Computational Complexity:

CD(n) = O(n2)︸ ︷︷ ︸
attention computation

+ O(n2d)︸ ︷︷ ︸
storage overhead

A.2.2 4K Mode (M4K)
Activation Condition: 512 < n ≤ 4,096.
Structural Parameters: Local window width
w4K = 256, global token count m =
⌈√n⌉. Hybrid Neighborhood Definition:
N4K(i) = {j | max(1, i− w4K) ≤ j ≤ min(n, i+ w4K)}︸ ︷︷ ︸

Local Window

∪ Tglobal︸ ︷︷ ︸
Global Token Set

Attention Weight Calculation:

A
(i,j)
4K =





exp(QiK
⊤
j /

√
d)

∑
k∈N4K (i) exp(QiK⊤

k /
√
d)
, j ∈ N4K(i)

0, otherwise

Computational Complexity:

C4K(n)=O(n · (2w4K +m))︸ ︷︷ ︸
dynamic sparse computation

+ O(nmd)︸ ︷︷ ︸
cross-window communication

When m = Θ(
√
n), C4K(n) = O(n3/2).

A.2.3 8K Mode (M8K)
Activation Condition: 4,096 < n ≤ 8,192.

Topological Parameters: Dilated window
width w8K = 512, stride s = 4, hierarchical dila-
tion factor dl = 2⌊l/L⌋.

Dilated Neighborhood Generation:
N (l)

8K(i) =

{
i+ k · s · dl

∣∣∣∣ k ∈ Z, |k| ≤ w8K
2sdl

}
∩ {1, . . . , n}

Fractal Attention Weights:

A
(l,i,j)
8K =

exp

(
Q
(l)
i

K
(l)⊤
j√
d

)

∑

k∈N (l)
8K

(i)

exp

(
Q
(l)
i

K
(l)⊤
k√
d

) · I
(
j ∈ N (l)

8K(i)
)

Complexity Analysis:

C8K(n) =

L∑

l=1

O

(
nw8K

sdl

)
= O(n log n)

A.2.4 16K+ Mode (M16K+)
Activation Condition: n > 8,192.

Extreme Parameters: Super-window width
w16K = 1024, meta-stride smeta = 8, key token
ratio ρ = 0.05.

Hierarchical Attention Architecture:

N16K+(i) =

{
i+ ksmeta | k = − w16K

2smeta
, . . . ,

w16K

2smeta

}

︸ ︷︷ ︸
Sparse Local

∪
{⌊

n · m
M

⌋
| m = 1, . . . , ⌈ρn⌉

}

︸ ︷︷ ︸
Semantic Anchors

9332

Hybrid Attention Weights:

A
(i,j)
16K+ = α ·A(i,j)

local + (1− α) ·A(i,j)
global

where α = σ(β ·(j−i)) is a position-aware mixing
coefficient, and β is a learnable parameter. Linear
Complexity Proof:

C16K+(n) =
O

(
n ·
(
w16K

smeta
+ ρn

))

= O(n) (when ρ = O(1/n))

A.2.5 Mode Switching Decision Function
Mode switching is achieved via the decision net-
work Fϕ : Rd → [0, 1]4:

[πD, π4K , π8K , π16K+]
⊤ = Softmax(Fϕ(h̄))

where h̄ = 1
n

∑n
i=1 hi is the average sequence

feature. The final active mode is:

Mactive = argmax
∗

(π∗ · I(n ∈ Ω∗))

This strategy ensures the model achieves an op-
timal trade-off on the Pareto frontier, satisfying:

∀n, ∃M∗ ∈ H,

C∗(n)
CD(n)

≤ ϵ(n),

Perf(M∗) ≥ γ · Perf(MD).

A.2.6 Parameter Selection Rationale and
Tuning for HSA Modes

The Hierarchical Sparse Attention (HSA) mecha-
nism is designed to dynamically adapt the attention
strategy based on input sequence length n, balanc-
ing computational efficiency with modeling capa-
bility. The specific parameters for each attention
mode—including length thresholds (N1, N2, N3),
window sizes (w), dilation rates (δ), and the config-
uration of global nodes—were determined through
a combination of factors, as outlined below:

Length Thresholds (N1 = 512, N2 =
4096, N3 = 8192): These thresholds were estab-
lished by analyzing typical sequence length distri-
butions encountered in our target long-text gener-
ation benchmarks (e.g., Arxiv). N1 = 512 was
chosen as a common maximum length for standard
dense attention models, beyond which quadratic
complexity becomes prohibitive. The transitions
at N2 = 4K and N3 = 8K correspond to points
where different sparse attention strategies offer
demonstrably better trade-offs. These were refined

based on preliminary experiments observing per-
formance shifts and computational costs when ap-
plying simpler fixed sparse patterns to these length
categories. The aim was to align mode switches
with points where a more specialized attention pat-
tern (e.g., incorporating more global attention for
4K − 8K, or a more aggressive sparse pattern for
16K+) becomes beneficial. Mode-Specific Param-
eters (e.g., w4K , w8K , w16K+,m, s, ρ): General
Principle: The parameters within each mode (de-
tailed in Appendix A.2.1-A.2.4) were selected to
optimize the balance between capturing sufficient
contextual information (local, dilated, global) and
adhering to a near-linear computational complexity
budget for that length category. Window Sizes (w):
Local window sizes (e.g., w4K = 256, w8K =
512, w16K+ = 1024) were chosen to be large
enough to capture meaningful local dependencies
relevant to text generation tasks. These were in-
formed by common practices in prior work on
sparse attention (e.g., Longformer, BigBird) and ad-
justed through pilot experiments on validation sets
to ensure good performance without excessive com-
putation. Dilation Rates (δ) and Strides (s): For
modes like M8K , dilation rates and strides were
configured to expand the receptive field efficiently,
allowing the model to attend to more distant tokens
without incurring the cost of a fully dense or very
large local window. The hierarchical dilation factor
(dl = 2⌊l/L⌋) ensures multi-scale context aggrega-
tion. Global Node Configuration: The number of
global tokens in M4K (m = ⌈√n⌉) and the key
token ratio in M16K+ (ρ = 0.05) were designed
to provide essential global context. The

√
n scaling

offers a compromise for medium-length sequences,
while a small fixed ratio for ultra-long sequences
ensures scalability. The selection of which tokens
become global (e.g., regularly spaced, learnable
importance) was based on simplicity and effective-
ness observed in initial trials. Preliminary Tuning:
While an exhaustive grid search over all HSA pa-
rameters would be computationally prohibitive, the
final parameter values were arrived at through an it-
erative process. This involved setting initial values
based on literature and theoretical considerations,
followed by a series of preliminary experiments on
a subset of the data or tasks to observe their im-
pact on perplexity, generation quality, and computa-
tional throughput. Adjustments were then made to
refine the balance for the overall DrDiff framework.
The goal was to find a robust set of parameters that
generalizes well across the targeted long-text sce-

9333

Table 4: Task Type Breakdown Performance on LongBench. This table shows the performance of different models
across various task types, including Single-Document QA, Multi-Document QA, Long ICL, Long Dialogue, Code
Repo, Long Structured tasks, along with their average performance.

Model Single-Doc QA Multi-Doc QA Long ICL Long Dialogue Code Repo Long Structured Average

GPT-4o 65.3 63.8 58.9 62.4 60.1 58.5 51.9
Qwen2.5-72B 44.8 43.7 42.0 43.0 41.3 40.7 42.6
DrDiff (ours) 31.6 32.4 32.5 38.7 29.1 34.6 33.5
LLaMA-3.1-70B 34.0 32.9 32.3 32.5 30.2 30.6 32.1
Longformer 31.3 31.0 30.4 36.0 28.5 27.9 30.9
Qwen2.5-7B 32.0 30.5 29.0 32.5 31.5 28.5 30.7
LLaMA-3.1-8B 31.5 29.0 28.5 32.0 31.0 30.5 30.4
DiffuSeq 31.2 28.2 28.8 29.5 27.0 28.8 28.9

narios rather than fine-tuning for a single specific
dataset. The parameters detailed in Appendix A.2
represent the outcome of this design and prelimi-
nary tuning process, aimed at achieving a practical
and effective hierarchical attention strategy.

A.2.7 Mode Switching Decision Function Fϕ

Explained

As introduced in Appendix A.2.5, the mode switch-
ing in the Hierarchical Sparse Attention (HSA)
mechanism is guided by the sequence length n and
facilitated by a decision network Fϕ.

Role and Input/Output: The decision network
Fϕ takes the average of the token hidden states for
the input sequence, h = 1

n

∑n
i=1 hi, as its input.

This average hidden state h ∈ Rd serves as a con-
densed representation of the overall characteristics
of the current sequence. Fϕ outputs a probability
distribution [πD, π4K , π8K , π16K+]

⊤ over the four
predefined attention modes via a Softmax function.
Each π represents the learned preference for mode
M.

Architecture of Fϕ: The specific architecture
of Fϕ is designed to be lightweight to minimize
overhead. In our implementation, Fϕ is a small
Multi-Layer Perceptron (MLP). For instance, it can
consist of one or two fully connected hidden layers
with a non-linear activation function (e.g., ReLU),
followed by the final linear layer that produces log-
its for the Softmax function. The exact dimensions
of these hidden layers are kept small (e.g., a frac-
tion of the main model’s hidden dimension d) to
ensure efficiency. Training and Interaction with
Length Thresholds: The parameters of the Fϕ

network are trained end-to-end as part of the over-
all DrDiff model optimization. This allows Fϕ

to learn a mapping from sequence characteristics
(h) to appropriate attention modes, guided by the
main task loss (e.g., the diffusion model’s denois-

ing objective). It is important to note the interplay
between the learned probabilities π∗ from Fϕ and
the predefined length-based activation conditions
I(n ∈ Ω∗) (where Ω∗ is the valid length range for
mode M∗). The final active mode is selected as
Mactive = arg maxM∗∈H(π∗ · I(n ∈ Ω∗)). In prac-
tice, for sequences falling squarely within a prede-
fined length bracket Ω∗, the I(n ∈ Ω∗) term often
plays a decisive role, ensuring the mode designed
for that length is chosen. The learned component
Fϕ can be particularly influential for sequences
near the boundaries of these length thresholds, po-
tentially learning to enable smoother transitions or
making more nuanced choices if sequence charac-
teristics (captured by h) suggest a deviation from
the default length-based rule. However, the primary
driver for mode selection remains the explicitly de-
fined length ranges, with Fϕ offering a mechanism
for learned refinement within this framework. The
objective of this design is to combine the robustness
of rule-based length thresholds with the potential
adaptability of a learned decision mechanism, en-
suring that HSA selects an appropriate and efficient
attention pattern for any given input sequence.

A.3 Ablation Study

As shown in Table 5, the study includes various
configurations such as removing sparse attention,
altering the diffusion steps, and changing the at-
tention window sizes to evaluate their impact on
performance metrics like BLEU, ROUGE, and
BERTScore.

A.4 Long Text Stress Resistance Experiment

A.4.1 Experimental Setup
This experiment evaluates the performance and sta-
bility of DrDiff in generating and summarizing
long texts ranging from 8K to 30K tokens. The
dataset includes 1,000 samples per length category

9334

Configuration Attention
Type

Diffusion
Steps

Window
Size BLEU/ROUGE/BERTScore

Baseline (Full Model) Sparse 2048 512 75.41/58.96/71.89
No Sparse Attention Standard 2048 512 72.52/56.68/68.41

Reduced Diffusion Steps Sparse 1024 512 73.11/56.97/69.26
Increased Diffusion Steps Sparse 4096 512 74.71/57.32/70.20

Smaller Window Size Sparse 2048 256 73.80/57.79/69.65
Larger Window Size Sparse 2048 1024 74.40/58.52/69.92

Table 5: Ablation study results comparing different configurations of the DrDiff model on the Arxiv dataset.

(15K, 30K, tokens) from three sources: Project
Gutenberg (public domain e-books), PubMed Cen-
tral (biomedical papers), and Wikipedia Long Arti-
cles. Texts are preprocessed by removing special
characters, HTML tags, and incomplete sentences,
then truncated or split to fit the model’s maximum
input size (5,000 tokens). The experimental tasks
focus on long text generation (maintaining coher-
ence and logical flow) and summarization (com-
pressing information while preserving semantics).
Evaluation metrics include ROUGE scores (n-gram
overlap), BERTScore (semantic similarity), and
perplexity (model adaptability).

A.4.2 Experimental Results

Description of Experimental Results The exper-
imental results for DrDiff on long text genera-
tion and summarization are presented in Table 4.
The model was evaluated across four text lengths:
8,000, 16,000, 24,000, and 30,000 tokens. The met-
rics used include ROUGE-1, ROUGE-2, ROUGE-
L, BERTScore, and Perplexity. The results show
that the model’s performance in terms of ROUGE
and BERTScore decreases as the text length in-
creases, while Perplexity exhibits a downward
trend, indicating improved adaptability to longer
texts. Analysis of Experimental Results A key ob-
servation from the results is that 16,000 tokens
act as a critical threshold for DrDiff. Specifically,
ROUGE-1 drops sharply from 80.5 at 8,000 to-
kens to 71.8 at 16,000 tokens, while BERTScore
decreases from 0.93 to 0.82 over the same range.
However, beyond 16,000 tokens, the decline in
ROUGE-1 slows significantly (e.g., from 71.8
at 16,000 tokens to 70.9 at 30,000 tokens), and
ROUGE-L remains relatively stable at around 70.
Additionally, Perplexity decreases from 30.8 at
8,000 tokens to 27.1 at 30,000 tokens, suggest-
ing that the model adapts better to longer se-
quences. Despite these improvements, the drop
in BERTScore to 0.78 at 30,000 tokens indicates a
risk of information loss in ultra-long texts. These

findings highlight the need for further optimization,
such as adopting sparse attention mechanisms or
hierarchical generation strategies, to enhance the
model’s performance on tasks involving very long
texts.

A.5 Computational Complexity Analysis
In this section, we analyze the GPU time consump-
tion and memory usage trends of DrDiff across
different sequence lengths (512–16K tokens) and
compare them with Longformer and DiffuSeq. All
experiments were conducted on an A100 GPU,
though specific values may vary depending on hard-
ware configurations, optimization strategies, and
batch sizes.

A.5.1 Computational Complexity
Comparison

Table 6 summarizes the training and inference com-
plexity of DiffuSeq, Longformer, and DrDiff, along
with their respective attention mechanisms.

From the results, we observe the following key
insights:

• DrDiff and Longformer are significantly more
efficient for long-text tasks (16K+ tokens)
compared to DiffuSeq.

• DrDiff employs the HSA (Hierarchical Sparse
Attention) mechanism, completely avoiding
O(n2) computations, whereas Longformer
still requires global attention (O(n2)) for cer-
tain tokens.

• While Longformer is well-suited for classifi-
cation and question-answering (QA) tasks, its
applicability to generative tasks, such as those
handled by DrDiff, remains limited due to its
attention constraints.

A.5.2 Computational Resource Consumption
Comparison

Table 7 presents the training time comparison for
different sequence lengths among DiffuSeq, Long-
former, and DrDiff. The results indicate that DrDiff

9335

10000 15000 20000 25000 30000
Text Length

60

65

70

75

80

85

RO
UG

E-
1

80.50

71.80
70.60 70.90

ROUGE-1

10000 15000 20000 25000 30000
Text Length

60

65

70

75

80

85

RO
UG

E-
2

70.10

64.50 64.80
63.50

ROUGE-2

10000 15000 20000 25000 30000
Text Length

60

65

70

75

80

85

RO
UG

E-
L

77.90

70.20 70.80 69.90

ROUGE-L

10000 15000 20000 25000 30000
Text Length

0.75

0.80

0.85

0.90

0.95

1.00

BE
RT

Sc
or

e

0.93

0.82
0.81

0.78

BERTScore

10000 15000 20000 25000 30000
Text Length

26

28

30

32

34
Pe

rp
le

xi
ty

30.80

28.10
27.20 27.10

Perplexity

Performance of DrDiff on Long Text Generation and Summarization

Figure 4: Performance metrics across different text lengths. As text length increases from 8,000 to 30,000 tokens,
we observe a general decline in most evaluation metrics. ROUGE-1 drops from 80.5 to 70.9, ROUGE-L decreases
from 77.9 to 69.9, and BERTScore shows the most significant reduction from 0.93 to 0.78. Perplexity improves
slightly with longer texts, decreasing from 30.8 to 27.1, indicating better language modeling with increased context.
These results suggest a trade-off between text length and summarization quality, with optimal performance at shorter
text lengths for most metrics.

exhibits competitive efficiency, particularly for
long sequences.

From the results, we observe that for short se-
quences (≤ 4K), DrDiff requires slightly more
training time than Longformer. This can be at-
tributed to Longformer’s local attention mecha-
nism, which effectively optimizes computations for
shorter sequences. However, for extremely long
sequences (≥ 16K), DrDiff demonstrates supe-
rior efficiency. Specifically, DrDiff achieves a 56%
reduction in training time compared to DiffuSeq
and is 9%–10% faster than Longformer for longer
sequences.

It is worth noting that DiffuSeq fails to process
sequences of length 32K on an A100 GPU due to
excessive computational requirements, making it
infeasible under our experimental constraints.

A.6 Impact of Different Settings of Diffusion
A.6.1 Experimental setup
This experiment investigates the impact of differ-
ent diffusion steps and noise schedules on the F1
score for the TriviaQA task, aiming to identify the
optimal configuration that maximizes performance
while maintaining computational efficiency. Using

the TriviaQA dataset, the experiment evaluates the
F1 score for diffusion steps ranging from 512 to
8192 and for different noise schedules (linear, expo-
nential, cosine, and square root) at 2048 diffusion
steps.

The motivation for this experiment stems from
the need to optimize the performance of diffusion
models on question-answering tasks like TriviaQA.
Diffusion models rely on a series of diffusion steps
and noise schedules to generate high-quality out-
puts, but the impact of these parameters on per-
formance is not well understood. By systemati-
cally evaluating different configurations, this exper-
iment aims to provide insights into how diffusion
steps and noise schedules affect the model’s abil-
ity to generate accurate answers. The findings can
guide the selection of optimal parameters for simi-
lar tasks, improving the efficiency and effectiveness
of diffusion models in real-world applications.

A.6.2 Experimental Results

Figure 5(left) presents the F1 score comparison
across different noise schedules for the TriviaQA
task using the DrDiff model. The results show
that the cosine noise schedule achieves the highest

9336

Model Training Complexity Inference Complexity Attention Mechanism

DiffuSeq O(T × n2 × d) O(T ′ × n2 × d) Global Attention (O(n2))
Longformer O(n× w × d) O(n× w × d) Local Sliding Window (O(n)) + Partial Global (O(n2))
DrDiff O(T× n× d) O(T′ × n× d) HSA (O(n) for 16K+)

Table 6: Computational complexity comparison of DiffuSeq, Longformer, and DrDiff. This table presents the
theoretical training and inference complexity of each model as a function of sequence length (n), hidden dimension
(d), and the number of diffusion steps (T for training, T ′ for inference). w represents the window size for
Longformer’s local attention mechanism. DrDiff introduces the Hierarchical Sparse Attention (HSA) mechanism,
which eliminates the quadratic dependency for long sequences (≥ 16K), achieving O(n) complexity. In contrast,
Longformer still applies global attention to certain tokens, leading to partial O(n) computation. These results
demonstrate that DrDiff is better suited for long-text generation tasks, whereas Longformer is more optimized for
classification and QA tasks.

Sequence Length DiffuSeq (T=2000) Longformer DrDiff (T=2048) DrDiff vs. DiffuSeq DrDiff vs. Longformer
512 90 40 55 ↓ 39% ↑37%
1K 180 80 110 ↓ 39% ↑37%
4K 720 320 400 ↓ 44% ↑25%
16K 2900 1400 1280 ↓ 56% ↓9%
32K – 5800 5200 – ↓10%

Table 7: Training time comparison (seconds per 1K samples) on an A100 GPU. The table reports the average
training time required for different sequence lengths (n) across three models: DiffuSeq, Longformer, and DrDiff. T
and T ′ represent the number of diffusion steps used during training and inference, respectively. The “DrDiff vs.
DiffuSeq” and “DrDiff vs. Longformer” columns indicate the relative speed improvement or slowdown of DrDiff
compared to DiffuSeq and Longformer, respectively. A negative percentage (↓) indicates a reduction in training
time, while a positive percentage (↑) indicates an increase. For sequence length 32K, DiffuSeq could not run due to
excessive memory requirements (denoted as “–”). The results show that while Longformer is slightly faster for
short sequences (≤ 4K), DrDiff outperforms both DiffuSeq and Longformer for long sequences (≥ 16K).

F1 score of 81.9, followed by the exponential and
square root schedules with F1 scores of 80.7 and
80.3, respectively. The linear schedule performs
the worst, with an F1 score of 78.6. Figure 5(right)
illustrates the relationship between the number of
diffusion steps and the F1 score. The F1 score
increases from 74.1 at 512 steps to 78.4 at 1024
steps, reaches the highest value of 81.9 at 2048
steps, and then declines to 80.2 at 4096 steps and
79.8 at 8192 steps.

The experimental results indicate that the num-
ber of diffusion steps and the choice of noise sched-
ule significantly impact the performance of the
DrDiff model on the TriviaQA task. The F1 score
improves with an increase in diffusion steps up to
2048, suggesting that a moderate number of steps
helps in effectively reducing noise and enhancing
answer quality. However, further increasing the
number of steps beyond 2048 leads to a decline
in performance, possibly due to over-denoising,
which results in the loss of critical information.
Among the noise schedules, the cosine schedule
outperforms the others, achieving the highest F1
score. This suggests that the cosine schedule is
more effective in balancing the trade-off between

noise reduction and information retention, making
it particularly suitable for the TriviaQA task. The
linear schedule, on the other hand, performs poorly,
likely because it fails to adequately preserve critical
information during the denoising process. These
findings provide valuable insights for optimizing
the diffusion process in our model, highlighting
the importance of selecting appropriate diffusion
steps and noise schedules to maximize performance
while maintaining computational efficiency.

A.7 Semantic Anchor State Guidance (SAS)
Weight Tuning and Impact

We assess the effect of the LSAS loss weight
λSAS,k ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 1.0} on genera-
tion quality (ROUGE-1/2/L, BERTScore) and di-
versity (text entropy, BLEU coefficient of vari-
ation) using the Arxiv dataset (500 documents,
8K–16K tokens). Our DrDiff model with HSA
and DES is fine-tuned for 1 epoch (learning rate
1e-4) with 2048 diffusion steps and square-root
noise scheduling. Weights are consistent at tk ∈
{T/4, T/2, 3T/4}. Metrics are averaged over 3
runs with a fixed random seed, see Figure 6.

Procedure: Extract 500 documents (8K–16K

9337

Linear Exponential Cosine Sqrt
Noise Schedule

77

78

79

80

81

82

83

F1
 S

co
re

78.6

80.7

81.9

80.3

F1 Score Comparison Across Different Noise Schedules

512 1024 2048 4096 8192
Number of Diffusion Steps

70

72

74

76

78

80

82

84

F1
 S

co
re

74.1

78.4

81.9

80.2
79.8

F1 Score vs. Diffusion Steps

F1 Score
Best Score (81.9)

Figure 5: The left figure shows the impact of different Noise Schedule strategies on the F1 Score of the TriviaQA
task. The right figure shows the impact of different numbers of Diffusion Steps on the F1 Score of the TriviaQA
task.

0.0 0.1 0.3 0.5 0.7 1.0

74

75

76

77

78

79

75.20

76.80

77.50

78.10
77.80

76.50

ROUGE-1

0.0 0.1 0.3 0.5 0.7 1.0

43

44

45

46

47

43.50

44.80

45.60

46.70

46.20

45.00

ROUGE-2

0.0 0.1 0.3 0.5 0.7 1.0

69

70

71

72

73

74

70.10

71.50

72.30

73.30
72.90

71.80

ROUGE-L

0.0 0.1 0.3 0.5 0.7 1.0

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.80

0.82

0.84

0.85

0.84

0.82

BERTScore

0.0 0.1 0.3 0.5 0.7 1.0

4.55

4.60

4.65

4.70

4.75

4.80

4.85

4.90

4.85

4.80

4.75

4.70

4.65

4.60

Text Entropy

0.0 0.1 0.3 0.5 0.7 1.0

0.07

0.08

0.09

0.10

0.11

0.12 0.12

0.11

0.10

0.09

0.08

0.07

BLEU Coefficient

0.0 0.1 0.3 0.5 0.7 1.0

1.90

1.95

2.00

2.05

1.90

1.92

1.95

1.98

2.00

2.05

Generation Time (s)

Figure 6: The effect of the LSAS loss weight on generation quality (ROUGE-1/2/L, BERTScore) and diversity (text
entropy, BLEU coefficient of variation) using the Arxiv dataset (500 documents, 8K–16K tokens).

tokens) from Arxiv, remove special characters, and
tokenize. For each λSAS,k, load pre-trained DrDiff,
fine-tune with Ldiffusion + LSAS (1 epoch, learn-
ing rate 1e-4). Generate text, record generation
time, compute ROUGE-1/2/L, BERTScore. Gen-
erate 5 times per document to calculate the text
entropy and BLEU coefficient of variation.

Expected Results: ROUGE-1 peaks near
λSAS,k = 0.5 (78.1 vs. 75.2 at λSAS,k = 0.0),
with ROUGE-2/L and BERTScore following, due
to improved coherence. At λSAS,k = 1.0, quality
may slightly drop due to over-constraint. Diversity
decreases with higher λSAS,k (text entropy from
4.85 to 4.60, BLEU coefficient of variation drops
10%). Generation time rises from 1.90s to 2.05s.

A.8 Extended Ablation Study on HSA and
DES

To further demonstrate the individual contributions
of Hierarchical Sparse Attention (HSA) and Dy-
namic Expert Scheduling (DES) within the DrDiff
model, we conducted an extended ablation study.
This study was performed on the Arxiv, TriviaQA,
and LongBench datasets. We evaluated three dis-
tinct variants of the DrDiff model 8:

1. DrDiff w/o HSA: In this variant, the Hierar-
chical Sparse Attention mechanism was re-
placed with a fixed local sparse attention op-
erating on 256-token windows.

2. DrDiff w/o DES: This variant utilized a stan-
dard Mixture-of-Experts (MoE) architecture

9338

employing a fixed top-2 expert selection strat-
egy, instead of Dynamic Expert Scheduling.

3. DrDiff w/o Both (HSA & DES): This variant
combined the modifications from the previous
two, incorporating both the fixed local atten-
tion mechanism and the standard MoE with
fixed top-2 expert selection.

The results of this ablation study are presented
in Table 8. The findings indicate that the removal
of HSA primarily degrades performance on tasks
involving long sequences. For instance, on the
LongBench Long sub-task, the score dropped from
35.6% to 30.6%. The removal of DES, on the
other hand, was observed to impact both process-
ing efficiency and output quality, as exemplified by
the Arxiv ROUGE-L score decreasing from 73.31
to 71.80. When both HSA and DES components
were absent, a more pronounced decline in perfor-
mance was recorded across tasks; for example, the
TriviaQA F1 score fell from 82.1 to 76.0. These
results empirically validate the crucial role of HSA
in managing computational complexity effectively
for long sequences and underscore the contribution
of DES towards enabling adaptive computation and
enhancing overall model quality. Further details
regarding these ablation studies have been incorpo-
rated into the revised manuscript.

A.9 Training Datasets

DrDiff’s foundational language understanding and
generative capabilities are developed through a
multi-stage training process. Initial pre-training
is conducted on extensive and diverse text corpora,
primarily leveraging a carefully filtered version of
the Common Crawl and The Pile, which together
provide billions of tokens covering a wide array
of domains, including web text, books, academic
papers, and code. This large-scale pre-training en-
sures the model acquires a broad understanding of
linguistic structures, factual knowledge, and rea-
soning patterns. Subsequently, DrDiff undergoes
fine-tuning on more specialized datasets tailored to
enhance its performance on specific downstream
tasks, particularly those involving long-form text
generation, comprehension, and domain-specific
knowledge. Key datasets used in this phase include
the Arxiv dataset for scientific and technical docu-
ments, selections from Project Gutenberg for liter-
ary long-form text, and task-specific benchmarks
such as TriviaQA for question answering, to en-

sure robust performance and adaptability across its
target applications.

9339

Table 8: Ablation study on key components of DrDiff: Hierarchical Sparse Attention (HSA) and Dynamic Expert
Scheduling (DES). Performance is evaluated on Arxiv (ROUGE scores), TriviaQA (F1 score), and LongBench
(accuracy %).

Model Variant Arxiv Arxiv Arxiv TriviaQA LB Overall LB Easy LB Hard LB Short LB Medium LB Long
R-1 R-2 R-L F1 (%) (%) (%) (%) (%) (%)

DrDiff (Full Model) 78.12 46.71 73.31 82.1 33.5 31.7 29.8 35.5 32.4 35.6
DrDiff w/o HSA 74.50 42.80 69.50 78.0 30.5 30.2 28.3 34.5 30.4 30.6
DrDiff w/o DES 76.20 44.90 71.80 80.0 32.0 30.7 28.8 35.0 31.4 33.6
DrDiff w/o Both (HSA & DES) 72.30 40.50 67.20 76.0 29.0 29.2 27.3 34.0 29.4 28.6

9340

