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Abstract

As large language models (LLMs) increasingly
exhibit human-like capabilities, a fundamental
question emerges: How can we enable LLMs
to learn the underlying patterns from limited
examples in entirely novel environments and
apply them effectively? This question is central
to the ability of LLMs in inductive reasoning.
Existing research on LLM-based inductive rea-
soning can be broadly categorized based on
whether the underlying rules are expressible
via explicit mathematical equations. However,
many recent studies in the beyond-equations
category have emphasized rule design without
grounding them in specific scenarios. Inspired
by the parallels between inductive reasoning
and human scientific discovery, we propose the
task of LLM-Based Scientific Inductive Rea-
soning Beyond Equations and introduce a new
benchmark, SIRBench-V1, to evaluate the in-
ductive reasoning abilities of LLMs in scien-
tific settings. Our experimental results show
that current LLMs still struggle with this task,
underscoring its difficulty and the need for fur-
ther advancement in this area.'

1 Introduction

In recent years, many advanced reasoning models,
including OpenAl ol (OpenAl et al., 2024) and
DeepSeek-R1 (DeepSeek-Al et al., 2025), have
demonstrated strong deductive reasoning capabili-
ties, especially as evidenced by their performance
in mathematics and programming tasks. These
tasks are typically characterized by concise prob-
lem descriptions, where the model is required to
generate a long chain of thought (Wei et al., 2022)
to solve complex problems.

In contrast, inductive reasoning (Hayes et al.,
2010) poses a different challenge, requiring mod-
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Figure 1: Illustrative comparison of scientific inductive
reasoning: on the left, tasks focused on equation dis-
covery (Shojaee et al., 2025), and on the right, tasks
representing broader forms of scientific induction be-
yond equation generation.

els to infer general rules or structures from mul-
tiple specific observations (Chollet, 2019; Yang
et al., 2022). Inductive reasoning involves making
predictions about new scenarios based on existing
knowledge or observed data (Hayes et al., 2010).
Inductive reasoning has been progressively recog-
nized as a critical component for human-like cog-
nitive modeling and the development of general
artificial intelligence (Li et al., 2024). However,
current LLMs still exhibit notable shortcomings
in inductive reasoning tasks (Li et al., 2024; Hua
et al., 2025; Yan et al., 2025). Even state-of-the-art
models often fail to correctly infer abstract rules
from observations and typically rely on memoriz-
ing rather than truly understanding the underlying
concepts.

Currently, artificial intelligence is increasingly
regarded as a transformative paradigm in scientific
discovery, with growing applications across dis-
ciplines such as physics, materials science, and
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Related to

Beyond

Benchmark Task Type Scientific Mathematical Closed-].Ended #Instances Sequence
. . Questions Length
Discovery Equations
MATDESIGN HI v v X 50 250-1,000
TOMATO-Chem HI v v X 51 100-600
ResearchBench HI v v X 1,386 unknown
chaotic systems SR v X v 131 ~100
SRSD SR v X v 240 100-300
LLM-SRBench SR v X v 239 ~100
MIRAGE R X v v 2,000 20-100
MIR-Bench IR X v v 6,930 50-250
IOLBench IR X v v 1,500 200-2,000
SIRBench-V1 (Ours) IR v v v 710 500-3,000

Table 1: Analysis of existing related benchmarks. HI: Hypothetical Induction, SR: Symbolic Regression, IR:
Inductive Reasoning. Related to Scientific Discovery: targets scientific problem-solving. Beyond Mathematical
Equations: focuses on reasoning not reducible to equation fitting. Closed-Ended Questions: has deterministic
answers for automatic evaluation. #Instances: number of test examples. Sequence Length: input sequence
length—crucial as scientific inductive reasoning often requires extracting information from extensive resources.

chemistry (Xu et al., 2021). Against this backdrop,
increasing attention has been paid to the inductive
reasoning abilities of LLMs in scientific contexts
recently (Yang et al., 2024; Liu et al., 2025; Fang
et al., 2025). However, systematically leveraging
reasoning models to enhance inductive tasks for
scientific discovery remains largely underexplored.

While some scientific rules, such as the velocity
formula of free fall, can be expressed mathemati-
cally, others, such as molecular structure-function
relationships, are not readily amenable to such for-
mulation. Under this criterion, we observe that ex-
isting LLM-based inductive reasoning research can
be broadly categorized based on whether the under-
lying rules can be formulated mathematically. The
first category comprises tasks that are mathematical
equation-based, which are closely related to sym-
bolic regression (Matsubara et al., 2022; Gilpin,
2021). Recent work has shown that LLMs can
serve as equation generators or guide the equa-
tion discovery process (Wang et al., 2024; Du
et al., 2024; Shojaee et al., 2024, 2025; Fang et al.,
2025). However, these tasks typically only cover
cases where the underlying rules can be explic-
itly formulated as equations. A separate line of
work targets tasks beyond mathematical equations,
proposing new inductive tasks and datasets from
various perspectives (Hua et al., 2025; Tang et al.,
2024; Banatt et al., 2024; Goyal and Dan, 2025).
However, many of these studies emphasize the cre-
ation of novel synthetic or low-frequency symbolic
systems, which often have a limited connection to
discovering scientific patterns in real-world scenar-
i0s. Recent efforts under the Al4Science agenda
are exploring more scientifically grounded settings

where models emulate researchers by deriving in-
sights or hypotheses from scientific materials (Yang
et al., 2023, 2024; Liu et al., 2025). However, the
reasoning processes of these studies often remain
coarse-grained or open-ended, making robust auto-
matic evaluation challenging.

To address these gaps, we propose to examine
the capabilities of LLMs in Scientific Inductive
Reasoning Tasks Beyond Mathematical Equations.
To the best of our knowledge, high-quality and
easy-to-evaluate datasets to directly investigate this
problem are currently lacking. We have therefore
created SIRBench-V1, a new benchmark consist-
ing of a series of subtasks in chemistry and biol-
ogy. In these subtasks, the underlying rules cannot
be expressed through mathematical equations, yet
they yield relatively deterministic answers. We
transform basic scientific resources from prior stud-
ies (GresSova et al., 2023; Liu et al., 2024; Guo
et al., 2023; Edwards et al., 2022a; Irwin et al.,
2021; Westerlund et al., 2024b,a; Kim et al., 2018)
into inductive reasoning tasks. Furthermore, to
eliminate LLLM memorization, we design counter-
factual tasks that establish synthetic scientific rules
for the models to reason with, rather than recall.

We follow several commonly adopted reason-
ing strategies for LLMs on the SIRBench-V1,
including implicit and explicit reasoning, self-
consistency (Wang et al., 2022), and hypothesis
refinement (Qiu et al., 2023). By investigating the
performance of several LLMs augmented with dif-
ferent reasoning strategies, we find that equation-
free scientific inductive reasoning is highly chal-
lenging for modern LLMs. Gemini-2.5-Flash, the
best-performing model, achieves an average accu-
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racy of 43.81% in our benchmark, while Claude-
3.5-Haiku and GPT-4.1 demonstrate a lower aver-
age accuracy of 31.53% and 32.41%, respectively.
We also observe that using sophisticated reasoning
strategies provides minimal performance improve-
ment and, in some cases, even leads to performance
decline. Using hypothesis refinement, Gemini-2.5-
Flash, Claude-3.5-Haiku, and GPT-4.1 attain an
average accuracy of 39.06%, 31.63%, and 33.25%,
respectively. We believe this work will pave the
way for a new and fruitful avenue of research in
scientific discovery.

Contributions In summary, the main contribu-
tions of this work are as follows:

* We present SIRBench-V1, a new scientific
inductive reasoning benchmark featuring au-
thentic and counterfactual test examples from
tasks in both biology and chemistry.

* We conduct evaluations using several repre-
sentative LLMs in conjunction with diverse
advanced inference strategies, the results of
which demonstrate the capability boundaries
of the examined LLMs.

* We derive several constructive findings for
scientific inductive reasoning, such as a com-
parison between many-short-shot and long-
few-shot learning approaches and an analysis
of memorization, which we anticipate will be
helpful for subsequent studies.

2 Related Work

2.1 Inductive Reasoning

Benchmark Various benchmarks have recently
been introduced to systematically evaluate these
capabilities from multiple perspectives. Hua et al.
(2025) evaluate the model’s ability to infer string
transformation rules from limited input-output ex-
amples. Bongard-OpenWorld (Wu et al., 2023)
examines conceptual induction and image classi-
fication in few-shot scenarios. Tang et al. (2024)
propose an embodied interactive environment re-
quiring models to induce task rules and objec-
tives. MIR-Bench (Yan et al., 2025) provides a
many-shot in-context benchmark covering vari-
ous function-based input-output pairs. WILT (Ba-
natt et al., 2024), inspired by the Wason 2-4-6
task, evaluates multi-turn inductive reasoning and
generalization capabilities. Additionally, bench-
marks such as LINGOLY (Bean et al., 2024), Lin-

guini (Sénchez et al., 2024) and IOLBench (Goyal
and Dan, 2025), derived from the International Lin-
guistics Olympiad, challenge model generalization
under low-resource language scenarios.

Methods Beyond benchmark development, re-
cent efforts have also explored structured frame-
works to enhance inductive reasoning in LLMs,
addressing limitations observed with chain-of-
thought prompting and few-shot methods (Bowen
et al., 2024; Gendron et al., 2023). For instance,
Chain-of-Language-Models (Yang et al., 2022) em-
ploys a modular pipeline integrating rule generation
and verification. Qiu et al. (2023) combines LLMs
with symbolic executors in a propose-verify-refine
loop, significantly enhancing robustness. Similarly,
the De-In-Ductive (DID) (Cai et al., 2024) sim-
ulates a human-like inductive-then-deductive rea-
soning sequence within a single prompt, enabling
flexible strategy switching and improved cross-task
generalization.

2.2 Scientific Inductive Reasoning in LLLMs

Symbolic Regression Symbolic regression is a
core approach for scientific discovery (Matsubara
et al., 2022; Gilpin, 2021). It is valued for its abil-
ity to extract analytical expressions directly from
data (Angelis et al., 2023). Recent studies have ex-
tended this paradigm by incorporating LLMs into
the tasks. In materials science, Wang et al. (2024)
highlight its role in revealing underlying physical
and chemical principles. Du et al. (2024) propose
a prompt-based framework using LLMs to gener-
ate candidate equations, offering greater flexibility
than traditional methods. Shojaee et al. (2024) treat
equations as programs, guided by scientific priors.
To support systematic evaluation, they then intro-
duce LLM-SRBench, a multi-domain benchmark
designed to evaluate LLMs’ true discovery capabil-
ities.

Hypothetical Induction Hypothetical Induction
has been recognized as a subtask of inductive rea-
soning (Norton, 2003), with growing interest in
using LLMs to generate novel, valuable scientific
hypotheses from background knowledge or obser-
vations. Kumbhar et al. (2025) introduced a goal-
driven dataset and evaluation framework in mate-
rials science, while Yang et al. (2023, 2024) con-
structed datasets for hypothesis generation in chem-
istry and social science. Researchbench (Liu et al.,
2025) further provides the first benchmark covering
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inspiration retrieval, hypothesis formulation, and
ranking.

3 SIRBench-V1: Task and Construction

We curate 7 tasks, with 100 samples for each biol-
ogy task, including synthetic tasks, and 30 samples
for each chemistry task.

3.1 Task Overview

Task 1: DNA Translation (Synthetic) This task
simulates the biological process of translating a
DNA sequence into its corresponding amino acid
sequence. The model is required to induce the
codon-to-amino-acid mappings solely based on in-
context learning (ICL) examples and apply the
inferred mappings to translate a target DNA se-
quence. However, LLMs may have internalized the
canonical genetic codon table as prior knowledge,
enabling them to generate the correct amino acid
sequence through memorization rather than gen-
uine rule induction. To better assess the inductive
reasoning capabilities of the model, we provide a
synthetic alternative to the standard task design,
by randomly assigning codon-to-amino-acid map-
pings.

Task 2: DNA Table Inference (Synthetic) This
task focuses explicitly on evaluating the model’s
inductive ability by requiring it to recover the
underlying codon table based solely on a set of
DNA-amino acid sequence pairs. The model is
asked to infer the translation rules and provide
a fully structured codon table, including codon-
to-amino acid mappings, start codons, and stop
codons. We follow the same design as in Task 1,
providing both standard and synthetic configura-
tions.

Task 3: DNA Transformation This task adopts
a fully synthetic setup, with the goal of evaluating
the model’s ability to infer transformation rules
from ICL examples and to apply them correctly to
unseen test sequences. Each ICL example consists
of an input—output DNA sequence pair generated
by applying one of several predefined transforma-
tions: sequence reversal, complementation, reverse
complementation, segmented transformation, and
fixed base mutation.

Task 4: Molecule Design This task requires
LLMs to generate molecular structures that sat-
isfy a given textual description. The input is a

natural language sentence (in English), and the out-
put is the corresponding molecule represented in
SMILES format.

Task 5: Molecule Captioning This task is the
inverse of Task 4, where the input is a molecular
structure and the model is expected to generate a
corresponding description or annotation in natural
language.

Task 6: Reaction Prediction This task focuses
on chemical reaction prediction. Given one or more
reactants and reagents, the model is expected to pre-
dict the resulting product in the form of a SMILES
string.

Task 7: Name Prediction This task focuses on
conversions between three common chemical repre-
sentations: SMILES (linear structural encodings),
IUPAC names (standardized nomenclature), and
molecular formulas (atomic composition). We
include four relatively unambiguous conversions:
smiles2formula, smiles2iupac, iupac2smiles, and
iupac2formula.

3.2 Data Collection

Biology We derive source DNA sequences and
their corresponding amino acid sequences from
GenomicLLM_GRCh38 (Gresova et al., 2023; Liu
et al., 2024) for the standard task. For the synthetic
task, we generate codon tables by randomizing
every mapping except the start and stop codons,
and translate inputs using these tables.

For DNA Transformation, we randomly sample
DNA fragments from the training set as ICL exam-
ples and truncate them to a maximum length, and
do the same for test sequences. The transforma-
tion type and base-pairing schemes are randomly
sampled from a predefined set. These base-pairing
schemes are designed manually to disrupt natural
complementarity, increasing the inductive reason-
ing challenge. For all the tasks, we ensure that the
ICL examples cover all the mappings used in the
test example.

Chemistry ChemLLMBench (Guo et al., 2023)
is a chemistry-domian LLM benchmark compris-
ing eight tasks. We select four tasks, corresponding
to Task 4-7 in our work, which exhibit a relatively
stronger emphasis on inductive reasoning capabil-
ities. The Molecule Design and Captioning tasks
are based on the ChEBI-20 dataset (Edwards et al.,
2022a), pairing molecular SMILES with textual
description. The Reaction Prediction task draws

9374



Biology Tasks

DNA (to-protein)
Translation

B B
| =) 1

ElE=

DNA Table & DNA °
Inference

Transformation e

)

'
Synthetic
°
L]
Synthetic

Chemistry Tasks

Molecule
Captioning

Molecule
Design

Name
Prediction

Reaction
Prediction

ﬂ ﬂ
=a

g A

B > EB

Figure 2: Our benchmark includes 7 tasks spanning two scientific disciplines: biology and chemistry. < denotes
tasks that adopt a synthetic configuration; 4 refers to tasks that involve only rule induction from examples, while
others involve both induction and application to a new test input.

on the USPTO-MIT Mixed reaction dataset (Irwin
et al., 2021; Westerlund et al., 2024b,a), which con-
tains information on reactants, reagents, and prod-
ucts in SMILES reaction format. The Name Pre-
diction task is derived from PubChem (Kim et al.,
2018), which offers extensive mappings between
SMILES strings and their corresponding standard
chemical names, including both IUPAC names and
molecular formulas.

3.3 Maetrics

Biology All three tasks are evaluated using accu-
racy as the primary metric, computed as the propor-
tion of correctly predictions.

Chemistry For molecule design, we adopt eight
metrics, including BLEU, Exact Match (Edwards
et al., 2022b), and Levenshtein distance (Miller
et al., 2009) for string-level consistency; validity
for structural correctness; MACCS (Ratcliff and
Metzener, 1988), RDK (Landrum, 2020), and Mor-
gan (Dash et al., 2023) for structural similarity; and
FCD (Preuer et al., 2018) for distributional sim-
ilarity. For molecule captioning, we use BLEU,
ROUGE, and METEOR to capture surface-level
overlaps, but also introduce an LLM-as-a-Judge
score (1-10 scale), with an emphasis on scientific

accuracy, while also considering completeness and
clarity. For reaction prediction, we follow the Top-1
Accuracy metric and improve robustness by canon-
icalizing both predicted and reference SMILES
using RDKit (Landrum, 2020) before compari-
son. Finally, for name prediction, we apply the
same canonicalization for the iupac2smiles task,
and adopt Exact Match Accuracy for the other
three tasks (smiles2formula, smiles2iupac, and iu-
pac2formula).

4 Evaluation

4.1 Models

In order to provide a comprehensive assessment
of the inductive reasoning capabilities of cost-
optimized, flagship, and reasoning LLMs, we
choose one representative model from each cat-
egory, namely Claude-3.5-Haiku, GPT-4.1, and
Gemini-2.5-Flash. Since our benchmark is inte-
grated into the OpenCompass framework, it can
be easily evaluated on any other LLM. To ensure
consistency and encourage output diversity during
repeated sampling, we set the temperature at 1.0 for
all experiments. For Gemini-2.5-Flash, we retain
its default “thinking” configuration.
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4.2 Inference Strategies

We evaluate SIRBench-V1 on four commonly used
inference strategies for inductive reasoning as il-
lustrated in figure 3. Explicit inductive reasoning
serves as a baseline for advanced methods like self-
consistency and hypothesis refinement, where the
LLM needs to explicitly formulate and apply the
hypotheses.

Implicit Inductive Reasoning. We provide the
LLM with ICL examples and ask the LLM to pro-
vide the final answer directly without explicitly
stating the induced rules. This approach is the most
straightforward way to perform inductive reason-
ing.

Explicit Inductive Reasoning. We prompt the
LLM to formulate a hypothesis based on the ICL
examples. Then, we let the LLM apply the hypoth-
esis to the given target question to obtain the final
answer. This approach forces the LLM to perform
the inductive reasoning process explicitly.

Self-Consistency. For self-consistency (Wang
et al., 2022), we sample multiple hypotheses (we
use n = 5) from the LLM and ask it to apply each
of them to the target question, obtaining a corre-
sponding answer from each hypothesis. A final
answer is selected using majority voting performed
by the LLM itself via prompting (see appendix C).

Hypothesis Refinement. The hypothesis refine-
ment method (Qiu et al., 2023) follows a three-
stage iterative process: hypothesis generation, se-
lection, and refinement.

Initially, we sample multiple hypotheses (n = 5)
based on the ICL examples, then evaluate them
using one of the two approaches: (1) for code-
executable tasks, we translate them into Python
functions and execute them following Qiu et al.
(2023), or (2) otherwise, we have the LLM apply
each hypothesis directly. A task-specific evaluator
scores each hypothesis’s output.

Next, we generate a new set of hypotheses (n =
5) by prompting (see appendix C for prompt) the
LLM to refine the highest-scoring hypothesis based
on feedback.

We repeat this select-and-refine loop up to ¢ = 3
iterations, stopping early if the hypothesis achieves
a perfect score on ICL examples or performance
degradation is detected. We added the early stop-
ping mechanism for performance degradation to
prevent weaker models from degrading rule quality.

Finally, we apply the best resulting hypothesis
to the target question to produce the answer.

5 Results and Analysis
5.1 Main Results

Table 2 reveals consistently low performance
across most tasks, highlighting the limitations of
current LLMs in scientific inductive reasoning
tasks beyond mathematical equations. Among
the evaluated models, Gemini-2.5-Flash demon-
strates superior performance in computationally
intensive tasks while exhibiting comparable results
to other models in conceptually oriented tasks such
as Molecule Caption. Additionally, larger flagship
models perform better than cost-optimized models.

We observe that LLMs struggle with explicit
inductive reasoning (i.e., proposing effective rules
and applying them to novel inputs), as shown by the
performance drop from implicit to explicit induc-
tive reasoning. Self-consistency helps alleviate this
shortcoming by sampling multiple diverse reason-
ing paths and marginalizing across them, thereby
enhancing the robustness of the explicit inductive
reasoning process. The hypothesis refinement strat-
egy further improves the performance, as it selects
the best rule from multiple sampled hypothesis and
revises the rule at each iteration. However, we find
that the advantage of hypothesis refinement over
implicit inductive reasoning varies inconsistently
across tasks and models.

To validate our findings across more LLMs, we
evaluated additional open-source models under
implicit inductive reasoning, as shown in Table
3. Deepseek-V3-0324 performs comparably with
GPT-4.1 across most tasks, while Qwen3-8B with
thinking generates extremely long chain-of-thought
reasoning for biology tasks, often exceeding its rec-
ommended 32K max output length without com-
pleting the reasoning process, demonstrating that
long chain-of-thought is not effective on the biol-
ogy tasks. These results reinforce our findings on
the fundamental limitation of current LLMs in sci-
entific inductive reasoning. Additionally, current
inductive reasoning methods remain inadequate for
scientific inductive reasoning tasks beyond mathe-
matical equations.

5.2 Effect of Length

Being able to perform inductive reasoning on a long
context is fundamental. We evaluated the LLMs
on DNA transformation and DNA translation tasks
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Figure 3: Comparison of four inference strategies: (1) Implicit induction - directly providing output; (2) Explicit
induction - formulating clear hypotheses explicitly; (3) Self-consistency - using multiple reasoning paths to reach
consensus; and (4) Hypothesis refinement - iteratively improving hypothesis on feedback.

Biology Chemistry
Models DNA DNA Table DNA Molecule Molecule Reaction Name Avg.
Translation  Inference  Transformation  Design Caption  Prediction Prediction
Implicit Inductive Reasoning
Claude-3.5-Haiku 5.47 10.23 27.28 62.00 67.70 44.44 3.57 31.53
GPT-4.1 5.71 12.73 31.37 75.00 66.30 2222 13.51 32.41
Gemini-2.5-Flash 11.72 32.06 30.42 85.00 63.30 54.17 30.00 43.81
Explicit Inductive Reasoning
Claude-3.5-Haiku 5.85 9.72 26.05 64.00 54.00 19.23 2.81 25.95
GPT-4.1 5.31 12.13 28.73 69.00 59.00 17.86 6.09 28.30
Gemini-2.5-Flash 9.14 23.34 28.66 77.00 67.70 34.78 30.00 38.66
Self-Consistency (Wang et al., 2022)
Claude-3.5-Haiku 5.11 10.00 26.34 66.00 69.70 20.83 0.83 28.40
GPT-4.1 5.96 13.19 30.81 72.00 65.70 25.00 9.58 31.75
Gemini-2.5-Flash 9.15 24.84 304 80.00 70.00 39.29 40.13 41.97
Hypothesis Refinement (Qiu et al., 2023)
Claude-3.5-Haiku 5.79 10.02 30.05 73.00 72.70 28.00 1.88 31.63
GPT-4.1 5.62 14.57 35.56 67.00 66.30 32.14 11.59 33.25
Gemini-2.5-Flash 10.60 28.55 30.37 72.00 65.70 32.14 34.07 39.06

Table 2: Performance of Claude-3.5-Haiku, GPT-4.1, and Gemini-2.5-Flash on SIRBench-V1 using four inference
strategies. All scores report accuracy (%), except Molecule Design (Morgan similarity rescaled to 0-100). Molecule
Caption reports the accuracy from LLM-as-judge. Synthetic versions were used for DNA Translation and DNA

Table Inference tasks.

with varying sequence length configurations. The
DNA transformation task demands the comprehen-
sion of the entire sequence (e.g., identifying re-
versals), while the DNA translation task requires
observation of local patterns. As shown in figure 4,
for DNA transformation, we found that the LLMs
achieve relatively strong performance on shorter

sequences but exhibits a significant performance
decline as sequence length increases. For DNA
translation, GPT-4.1 and Claude-3.5-Haiku show
minimal decrease with longer sequences only be-
cause they struggle with this task at shorter lengths.
The results indicate that current LLMs are effec-
tive at inducing pattern only within limited input
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Biology Chemistry
Models DNA DNA Table DNA Molecule Molecule Reaction Name Avg.
Translation  Inference  Transformation  Design Caption  Prediction Prediction
Qwen3-8B (with thinking) 0.20 4.88 3.24 59.00 52.67 3.33 1.67 17.00
Qwen3-8B (without thinking) 6.30 7.06 27.19 50.00 49.67 0.00 0.00 20.03
Deepseek-V3-0324 7.21 12.24 28.81 75.00 64.00 30.00 14.17 33.06

Table 3: Performance of Qwen3-8B and Deepseek-V3-0324 on SIRBench-V1 under the Implicit Inductive
Reasoning setting. Scores are accuracy (%) except Molecule Design (Morgan similarity, 0-100 scale) and Molecule
Caption (LLM-as-judge accuracy). Synthetic versions used for DNA tasks.

DNA Translation

—o— GPT4.1

DNA Transformation
o GPTal
—#— Claude-3.5-Haiku 175
—+ Gemini-2.5-Flash

—8— Claude-3.5-Haiku
—— Gemini-2.5-Flash

Iy
N
—
e S, W

- ;\‘;,Ja?:jﬁ

Accuracy (%)

6 2 236 512 200 300 600 760

) 138 360 560
Sequence Length Sequence Length

Figure 4: Effect of Sequence Length in Transformation
and DNA Translation tasks.
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Figure 5: Effect of Number of Shots in Reaction Predic-
tion and DNA Transformation tasks.

lengths. This limitation reflects the broader chal-
lenge of developing robust inductive reasoning ca-
pabilities that can handle long context.

5.3 Effect of Number of Shots

We examine the effect of the number of shots on
accuracy in one representative task each from the
domains of biology and chemistry. Figure 5 shows
that increasing the number of shots has varying
effects on different models. In reaction prediction
task, GPT-4.1 exhibits an upward trend, showing
that it benefits from additional shots. In contrast,
Claude-3.5-Haiku shows performance degradation,
likely due to limitations in its context processing ca-
pability. Gemini-2.5-Flash does not show any clear
upward or downward trend with as shot increases.
For DNA transformation, all the models exhibit
consistent performance, implying that additional
examples provide limited benefit.

5.4 Many-Short-Shot vs. Long-Few-Shot

Unlike previous studies that only explore increas-
ing the number of relatively short examples (Yan

Model Many-Short-Shot Few-Long-Short
Claude-3.5-Haiku 31.19 15.63
GPT-4.1 36.94 25.64
Gemini-2.5-Flash 35.14 24.47

Table 4: Performance comparison in many-short-shot
versus long-few-shot settings on the DNA Translation
task. The many-short-shot setting uses 64 shots with
sequence length 100, while the few-long-shot setting
uses 4 shots with sequence length 1600.

et al., 2025), we also explore the inductive reason-
ing capabilities of LLMs on few long examples.
The latter paradigm adheres more to real-world
applications, where it is difficult to obtain numer-
ous examples for long input tasks. Our compara-
tive analysis in table 4 across both scenarios while
maintaining the total input length demonstrates that
LLMs perform worse with few long examples. This
finding highlights a critical area for the advance-
ment of LLM inductive reasoning ability.

5.5 Task Difficulty Analysis

Reasoning ability is not only reflected in overall
accuracy but also in performance across difficulty
levels. We analyzed two representative tasks, one
from biology and one from chemistry, under Im-
plicit Inductive Reasoning. Test instances were
categorized into Easy, Medium, Hard, with 100
samples each. The DNA Translation samples were
grouped by input sequence length, with ranges of
100-300 for Easy, 300-500 for Medium, and 500-
700 for Hard, while the Molecule Design samples
were classified by molecular complexity using RD-
Kit based on structural features. As shown in both
Table 5 and Table 6, model performance exhibits
a clear downward trend from easy to hard sam-
ples, suggesting that difficulty-based categorization
offers a straightforward way to assess robustness
while also enabling a more fine-grained evaluation
of reasoning abilities across domains.
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Difficulty Level GPT-4.1 Claude Gemini

Easy accuracy 6.16 5.7 12.6
Medium Aaccuracy 5.56 4.85 7.98

Hard  accuracy 5.27 491 59

Table 5: Performance of LLMs on the DNA Translation
task by difficulty level.

Difficulty Level GPT-4.1 Claude Gemini

validity 0.94 0.67 0.94

Easy morgan_sims 0.67 0.39 0.89
fed (J) 2.66 9.82 1.15

validity 0.92 0.64 0.88

Medjum Morgan_sims 0.55 0.29 0.78
fed (1) 7.77 21.08 4.73

validity 0.74 0.59 0.41

Hard morgan_sims 0.46 0.21 0.6
fed (J) 19.85 29.86 22.24

Table 6: Performance of LLMs on the Molecule Design
task by difficulty level.

5.6 Counterfactual Evaluation

DNA Translation
Aut. Syn. (A)  Aut.

2195 547 —1648) 68.50 10.23 (-58.27)
2124 571 (-1553) 81.84 12.73 (—69.11)
30.64 11.72 (-18.92) 87.09 32.06 (-55.03)

DNA Table Inf.
Syn. (A)

Model

Claude-3.5-Haiku
GPT-4.1
Gemini-2.5-Flash

Table 7: Performance comparison between authentic
and synthetic versions of chosen tasks. A represents the
performance gap, calculated as the score on synthetic
tasks minus the score on authentic tasks.

To investigate whether LLLMs perform true in-
ductive reasoning, we compare their performance
on original and synthetic settings of DNA Trans-
lation and Table Inference. As illustrated in Table
7, all three models suffer a dramatic performance
decline in synthetic tasks, suggesting that higher
performance in authentic versions stems from the
memorization of standard mappings rather than
genuine inductive reasoning capabilities.

Among the evaluated models, Gemini-2.5-Flash
maintains the highest performance on both origi-
nal and synthetic versions of the tasks. This sug-
gests that reasoning models have better capability
to identify rules beyond the constraints of memo-
rized knowledge than non-reasoning models. How-
ever, its absolute score in synthetic tasks remains

low. Overall, these results indicate that current
LLMs are fundamentally limited in their ability to
perform genuine inductive reasoning. In the con-
text of scientific discovery, LLMs need to recog-
nize novel patterns rather than just retrieve existing
knowledge. Therefore, our findings highlight the
need to distinguish inductive reasoning from re-
trieval to advance the ability of LLMs for scientific
discovery.

6 Conclusion

In this paper, we introduce SIRBench-V1, a bench-
mark that includes Chemistry and Biology subtasks,
to evaluate the scientific inductive reasoning of
LLMs on tasks beyond mathematical equation. We
evaluated different LLMs using commonly used
reasoning strategies on our proposed benchmark.
We found that current leading LLMs obtain low
performance on our benchmark and that using so-
phisticated strategies provide minimal benefits. Ad-
ditionally, we point out limitations of LLMs in
performing inductive reasoning on longer context
lengths, few-long-shot settings, and counterfactual
rules. The experimental results will provide valu-
able insights for future studies on LLM-driven sci-
entific discovery.

7 Limitations

In this work, we take the first step toward incor-
porating scientific scenarios into the design of the
LLM-Based Inductive Reasoning Beyond Equa-
tions and introduce a new dataset for evaluation.
However, the SIRBench-V1 is limited to chemistry
and biology domains. As a next step, we plan to
invite domain experts in these areas to review and
refine both our benchmark and evaluation protocol.
In the future, we aim to expand the benchmark to
cover a broader range of scientific disciplines.
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A Additional Details on SIRBench-V1

A.1 Dataset Configurations

We curate 7 tasks in total. Considering that multi-
ple metrics provide robust assessment, for chem-
istry tasks, we evaluate Molecule Design, Molecule
Captioning and Reaction Prediction with 30 exam-
ples each. For Name Prediction, we sample 30 ex-
amples for each type of transformation (including
smiles2formula, smiles2iupac, iupac2smiles, and
iupac2formula). Since biology tasks rely solely on
accuracy, we increase the number of examples to
100 for each biology task to ensure more stable eval-
uation, including DNA Translation, DNA Transla-
tion (Synthetic), DNA Table Inference, DNA Table
Inference (Synthetic) and DNA Transformation.
All experiments are conducted under 5-shot set-
ting, unless otherwise stated. However, since our
benchmark has various configurations and supports
synthetic data generation for some subtasks, the
actual number of items can be configurable.

In our main results, we use the following con-
figurations. For DNA Translation, we uniformly
sample across sequence length 200 to 450 since the
effective DNA sequences in the dataset starts from
length 200. While data are available for longer se-
quences, only sample until 450 because they are too
challenging for most models. For DNA Transfor-
mation, we set the sequence length to 300, which
is a reasonably challenging level.

A.2  Examples of Transformation Types in
DNA Transformation Task

The transformation types include: 1) Sequence re-
versal: reversing the order of the entire sequence
(e.g., AGCT — TCGA); 2) Complementation:
replacing each base according to a substitution
rule (e.g., AGCT — TCGA, using A«T, C&G
or a randomized complement map); 3) Reverse
complementation: performing complementation
followed by reversal (e.g., AGCT — AGCT); 4)
Segmented transformation: transforming fixed-
length segments after a fixed stride (e.g., AGCT-
TAGCGT — AGCTTGACGT, reversing 2 bases
every 3 bases); 5) Fixed base mutation: replac-
ing specific bases with new ones (e.g., AGCT —
GGTT, where A—G and C—T).

Task Model Initial Final Test
Claude-3.5-Haiku  3.87 6.52 579
DNA Translation GPT-4.1 9.15 11.37 5.62
Gemini-2.5-Flash ~ 24.37 30.57 10.60

Claude-3.5-Haiku ~ 0.67  0.71  0.73
GPT-4.1 077 082 0.67
Gemini-2.5-Flash ~ 0.92 097 0.72

Molecule Design

Table 8: Comparison of initial and final hypothesis
quality scores on in-context examples (ICE) alongside
corresponding test performance of final hypothesis for
various models across DNA Translation (Synth) and
Molecule Design tasks. Morgan similarity (scale of O to
1) is reported for the Molecule design task.

B Explicit Inductive Reasoning Analysis

B.1 Hypothesis Quality and Refinement

In order to provide a more thorough analysis, we
show the computed evaluation score of the gener-
ated hypotheses on ICL examples during hypoth-
esis refinement in table 8. For the initial evalu-
ation scores, we report the average score of the
best hypothesis generated by the model prior to
any refinement. This also serves as an approximate
upper bound of the evaluation scores for hypothe-
ses generated by explicit inductive reasoning and
self-consistency. We notice that for DNA Transla-
tion task, these rules obtained low accuracy on ICL
examples. The scores increase at the end of the re-
finement process, but still remain low. This shows
the limitation in inductive reasoning capability of
current LLMs. Furthermore, although hypothesis
refinement enhances the consistency of rules with
ICL examples, we observe that in some cases there
remains a substantial gap between performance on
ICL examples and generalization to test examples.
Future work may focus on enhancing the hypothe-
sis proposal capabilities of LLMs to improve both
accuracy on ICL examples and generalization to
novel scenarios.

We also provided examples of hypothesis gener-
ated by GPT-4.1 which can be found table 9 and
10.

B.2 Misalignment of Advanced Reasoning
Strategies

As shown in Table 2, the performance of LLMs
does not consistently improve with the applica-
tion of more fine-grained reasoning strategies. In
some cases, advanced strategies even reduce per-
formance. To investigate this phenomenon, we
analyzed the recorded reasoning traces, focusing
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Task

Hypothesis

DNA Translation

Rule 1: Read the DNA from 5°->3 in consecutive codons (3 bp) starting at
the first base. Rule 2: Each codon uniquely maps to one amino acid per the
in-context examples. Rule 3: Inferred codon table: ATG:M, ATT:M, ATA:N,
ATC:Q, GTT:S, GTC:V, GTA:C, GTG:V, TTT:F, TTC:F, TTA:W, TTG:W, CTT:M,
CTC:D, CTA:R, CTG:G, TCT:S, TCC:S, TCA:H, TCG:S, CCT:P, CCC:N, CCA:N,
CCG:Y, ACT:P, ACC:N, ACA:N, ACG:VW, GCT:A, GCC:N, GCA:N, GCG:F,
TAT:Y, TAC:P, TAA:*, TAG:*, CAT:Q, CAC:Y, CAA:D, CAG:V, AAT:F, AAC:G,
AAAK, AAG:N, GAT:D, GAC:G, GAA:E, GAG:G, TGT:P, TGC:L, TGA:*,
TGG:W, CGT:R, CGC:C, CGA:M, CGG:H, AGT:S, AGC:F, AGA:G, AGG:S,
GGT:G, GGC:W, GGA:V, GGG:Q. Rule 4: Translate sequentially until a stop
(TAA, TAG, TGA — “*”). Rule 5: Output one-letter amino acid string. Rule 6:
Stop at and include first “*”. Rule 7: Unseen codons should not be assumed.

DNA Table Infer-
ence

Rule 1: DNA—protein pairs align codons (3 bp) to amino acids. Rule 2: Segment
DNA into triplets from 5’ and align to protein until “*” or end. Rule 3: Codons
aligned to “*”” are stop codons. Rule 4: First-codon— ‘M’ pairs are start codons.
Rule 5: Aggregate across examples; record all observed mappings. Rule 6: Include
only codons seen. Rule 7: Build forward_table from all mappings, excluding stops.
Rule 8: start_codons = all first codons mapped to ‘M’. Rule 9: stop_codons = all
codons aligned to “*’. Rule 10: Amino acids are single-letter codes including “*.”

DNA Transform

Rule 1: Split input into 7-nt segments from 5°; last segment may be shorter. Rule
2: Reverse each 7-nt segment. Rule 3: Concatenate reversed segments to form
output.

Table 9: Hypotheses Generated by GPT-4.1 for the DNA tasks

on chemistry-related tasks. In the molecule caption-
ing task, Self-Consistency occasionally produced
lower scores than the Implicit Inductive Reasoning
baseline. While this strategy generates multiple
hypotheses and applies them to derive answers, the
resulting outputs were often fragmented or overly
technical. For example, instead of producing full
descriptive captions, as required by the task, the
model frequently produced structural abbreviations
or linkage names such as beta-D-Galp (1—4) beta-
D-GlcpNAc (which are often part of the rule repre-
sentations extracted by the model), omitting infor-
mation about overall structure or functional roles.
This indicates a misalignment between rule-based
derivations and the task’s requirement for holistic
descriptions. In the reaction prediction task, Hy-
pothesis Refinement also failed to deliver consis-
tent improvements. Our analysis suggests that this
was due to refined rules were not always effectively
applied to the examples, and the selection of the
"best" hypothesis depended solely on an automatic
evaluator of prediction accuracy, which does not
necessarily capture scientific plausibility.

Overall, these results suggest that the limitations

of advanced reasoning strategies stem less from
insufficient domain knowledge in base models than
from structural mismatches between the strategies
and the nuanced demands of the tasks.

C Experiment Details

C.1 Implementation Details

We run our experiments using API-based closed-
source models, specifically claude-3-5-haiku-
20241022, gpt-4.1-2025-04-14, and gemini-2.5-
flash-preview-04-17. We implement our inference
strategies in the OpenCompass framework. This
allows us to perform inference in parallel at high
rates. The explicit inductive reasoning is imple-
mented via one-pass decoding, generating the hy-
pothesis and applying it to the test example in one
API call. Self-consistency is implemented by sam-
pling multiple times using the same process as ex-
plicit inductive reasoning. For hypothesis refine-
ment, we sample the hypothesis using the same
general prompt in all tasks, except for DNA Trans-
lation where we ask the model to provide the spe-
cific codon-to-amino acid so that the hypothesis
can be properly refined. For tasks in which the
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Task

Hypothesis

Molecule Design

Rule 1: Identify required functional groups (e.g., diamine, aldehyde, etc.). Rule 2:
Map biological role to known scaffolds (e.g., antineoplastic — stilbene). Rule 3:
Choose core heterocycle per “derives from” (e.g., triazine). Rule 4: Decorate core
with substituents to satisfy function and activity. Rule 5: Respect stereochemistry
(e.g., [C@H] per natural enantiomer). Rule 6: For natural products, replicate
known SMILES closely. Rule 7: Attach alkyl/aryl groups at correct positions.
Rule 8: Output valid SMILES with rings, heteroatoms, charges.

Molecule Caption

Rule 1: Identify core ergot alkaloid and name (e.g., ergotaman). Rule 2: Describe
substituents and positions (e.g., 12’-hydroxy). Rule 3: Note stereochemistry if
differentiating isomers. Rule 4: Mention salts/derivatives (e.g., methanesulfonic
acid salt). Rule 5: State biological origin or role if recognizable. Rule 6: Use
“derives from” for parent relationships. Rule 7: Note naming conventions or
historical context if relevant. Rule 8: Separate distinct features into clear sentences.

Reaction Predic-
tion

Rule 1: Target N-heterocycle fused to benzene undergoes nucleophilic attack.
Rule 2: Organometallics ([Li]JCCCC, [H—]) add to carbonyl or halide. Rule 3:
Bases ([NHI], [OH-]) deprotonate or hydrolyze esters — amides/acids. Rule 4:
Leaving groups replaced by nucleophiles forming C—X or C-C. Rule 5: Ester +
nucleophile -> amide/ether. Rule 6: Most nucleophilic reagent reacts with most
electrophilic center. Rule 7: Ignore spectator ions in final product. Rule 8: Grignard
addition -> alcohol at addition site. Rule 9: Reductions ([H—]) convert carbonyls
— alcohols/amines. Rule 10: On heteroaryl halide, nucleophile replaces halide on
ring. Rule 11: Ethers/amides attach to aromatic systems via substitution/acylation.
Rule 12: With both esters and amines, amide formation is preferred.

Name Prediction

Rule 1: Count all C atoms (including branches/rings). Rule 2: Count H via implicit
valence rules. Rule 3: Count N, O, S, Si, halogens from SMILES. Rule 4: Include
implicit Hs in aromatic rings per standard. Rule 5: Integrate substituent atoms
without double-counting. Rule 6: Adjust H count for double/triple bonds. Rule 7:
Write formula as C, H, then others alphabetically. Rule 8: Expand grouped atoms
(e.g., O[Si](C)(C)C). Rule 9: Sum counts; check branching consistency. Rule 10:
Format as [Element][count]... (e.g., C6H60).

Table 10: Hypotheses Generated by GPT-4.1 for the Chemistry tasks

hypothesis can be translated into Python code, we
prompt an LLM to generate the code. Otherwise,
we prompt the LLM to apply a hypothesis to all
in-context example inputs and do this to all the gen-
erated hypothesis. We used Al assistants to polish
some of the text in this paper.

C.2 Prompts

Molecule Captioning As discussed in Sec-
tion3.3, molecule captioning is an open-ended gen-
eration task, for which existing evaluations rely
primarily on surface-level matching. To address
this limitation, we design a dedicated prompt with
fine-grained scoring criteria and employ an LLM
to serve as the evaluator.

One-pass Self-Consistency To reduce the num-
ber of API calls and improve the efficiency of self-
consistency, we design the prompt so that the model
performs both rule induction and application to the
test input within a single invocation.

Universal Majority Voting with Self-Consistency
Given that the outputs of the chemistry and biol-
ogy tasks in SIRBench-V1 are typically long and
semantically complicated, basic majority voting
mechanism often fails to identify a representative
response, thereby diminishing the effectiveness of
self-consistency. To address this, we adopt the uni-
versal self-consistency strategy(Chen et al., 2023),
selecting the most semantically consistent response
to form the final answer.
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Hypothesis Refinement We provide the main
prompts used in the hypothesis refinement process,
including Hypothesis Induction, Hypothesis Appli-
cation, Hypothesis Refinement, and Final Hypothe-
sis Application.

D Complete Results on Chemistry Tasks

We provide the full results on Chemistry Tasks that
reports all the metrics in table 11, table 13, and
table 12.
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Implicit Explicit

Task Metric Inductive Inductive S?lf- Hypothesis
. . Consistency Refinement
Reasoning Reasoning

exact_match 0.17 0.23 0.23 0.27

bleu 0.41 0.36 0.19 0.71

levenshtein () 70.87 84.70 173.47 26.30

Molecule validity 0.70 0.77 0.80 0.70

Design maccs_sims 0.81 0.75 0.84 0.89
rdk_sims 0.81 0.69 0.69 0.76

morgan_sims 0.62 0.64 0.66 0.73

fed (1) 12.82 13.87 12.46 13.22

bleu2 0.20 0.22 0.39 0.24

bleu4 0.14 0.15 0.29 0.17

rouge_1 0.33 0.24 0.48 0.40

Molecule rouge_2 0.18 0.12 0.29 0.23
Caption rouge_l 0.25 0.19 0.38 0.31
meteor_score 0.39 0.23 0.44 042
LLM as judge 67.70 54.00 69.70 72.70
Reaction Prediction accuracy 44.44 19.23 20.83 28.00
smiles2formula accuracy 0.00 0.00 0.00 0.00
smiles2iupac accuracy 0.00 0.00 0.00 0.00
iupac2smiles accuracy 14.29 4.55 0.00 4.17
iupac2formula accuracy 0.00 6.67 3.33 3.33

Table 11: Performance of the Claude-3.5-Haiku on Chemistry Tasks
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Implicit Explicit .
Task Metric Inductive Inductive S?lf- Hypothesis
. . Consistency Refinement
Reasoning Reasoning

exact_match 0.30 0.20 0.20 0.23

bleu 0.75 0.71 0.70 0.75
levenshtein (]) 25.37 27.93 26.37 24.03

Molecule validity 0.87 1.00 0.93 0.93
Design maccs_sims 0.92 0.87 0.91 0.87
rdk_sims 0.80 0.74 0.82 0.78

morgan_sims 0.75 0.69 0.72 0.67

fed (1) 8.16 7.08 7.97 7.43

bleu2 0.42 0.49 0.49 0.20

bleu4 0.32 0.38 0.39 0.15

rouge_1 0.55 0.55 0.57 0.38

Molecule rouge_2 0.36 0.38 0.39 0.24
Caption rouge_l 0.44 0.46 0.48 0.31
meteor_score 0.57 0.52 0.54 0.48
LLM as judge 66.30 59.00 65.70 66.30
Reaction Prediction accuracy 22.22 17.86 25.00 32.14
smiles2formula accuracy 13.33 6.67 10.00 10.00
smiles2iupac accuracy 0.00 0.00 0.00 0.00
iupac2smiles accuracy 17.39 4.35 5.00 13.04
iupac2formula accuracy 23.33 13.33 23.33 23.33

Table 12: Performance of the GPT-4.1 on Chemistry Tasks
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Implicit Explicit

Task Metric Inductive Inductive S?lf- Hypothesis
. . Consistency Refinement
Reasoning Reasoning
exact_match 0.33 0.27 0.27 0.20
bleu 0.73 0.79 0.79 0.76
levenshtein (]) 27.90 25.27 22.50 26.67
Molecule validity 0.80 0.77 0.90 0.73
Design maccs_sims 0.95 0.94 0.94 0.81
rdk_sims 0.89 0.86 0.87 0.82
morgan_sims 0.85 0.77 0.80 0.72
fed (1) 8.19 8.89 6.26 10.56
bleu2 0.49 0.54 0.51 0.42
bleu4 0.38 0.43 0.41 0.33
rouge_1 0.57 0.61 0.61 0.52
Molecule rouge_2 0.38 0.42 0.41 0.35
Caption rouge_l 0.47 0.50 0.49 0.43
meteor_score 0.55 0.59 0.59 0.52
LLM as judge 63.30 67.70 70.00 65.70
Reaction Prediction accuracy 54.17 34.78 39.29 32.14
smiles2formula accuracy 30.00 20.00 30.00 16.67
smiles2iupac accuracy 0.00 0.00 3.33 0.00
iupac2smiles accuracy 20.00 40.00 53.85 52.94
iupac2formula accuracy 70.00 60.00 73.33 66.67

Table 13: Performance of the Gemini-2.5-Flash on Chemistry Tasks
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LLM-as-Judge Evaluation of Molecule Captioning:

You are an expert molecular biologist.

Below is a SMILES string representing a molecule: {smiles}

Here is a reference description of the molecule: {gt}

Here is a predicted description of the same molecule: {pred}

Your task is to evaluate the predicted description only based on its scientific quality compared to
the reference.

You must assign a score from 1 to 10 based on the following criteria:

* Score 10: Nearly perfect — scientifically precise, complete, and fluent. Matches all key
aspects of the reference (e.g., functional groups, chemical class, derivation, roles).

* Score 8-9: Very good — minor omissions or slight rewording, but the core structure-level
and functional meaning is intact.

* Score 6-7: Reasonable — generally correct but may lack specific details (e.g., derivation or
one functional role). Possibly vague phrasing.

* Score 4-5: Partial — captures the general category or one function but omits multiple
important details or shows misunderstanding in phrasing.

* Score 2-3: Poor — vague, generic, or scientifically weak. May refer to the wrong compound
type or confuse structural features.

* Score 1: Completely incorrect or irrelevant.

Only output a single line in the following format: Score: [1-10]

One-pass Self-Consistency:
Below is a full prompt about the reasoning task, which includes the ICL examples and a new test
case. Your task is:

1. Read the full prompt to understand the task and identify: 1) the example input-output pairs
2) the specific input question to answer.

2. Analyze these example pairs and generate a series of rules that explains how each input is
transformed to its corresponding output.

3. Then, apply those rules to the final test question and output the answer.
4. Return your answer in the following format:

<rules>
Rule 1:
Rule 2:
Rule 3:

</rules>
<answer>

{{your answer}}
</answer>

Full prompt: {full_prompt}
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Universal Majority Voting with Self-Consistency:
You are given a reasoning task prompt and multiple candidate responses to the question in that
prompt. Your task is:

1. Read the full prompt carefully to understand the question being asked.

2. Examine all the candidate responses and determine whether any of them form a majority
consensus.

* A majority exists if any single response appears more than any other (either verbatim
or semantically equivalent).

* In case of a tie (e.g., all responses differ or two responses appear with equal frequency),
consider that no majority exists.

3. If a majority exists, return that response as the final answer.

4. If no majority exists, then select the most reasonable and task-appropriate response based
on the prompt.

Candidate responses: {responses}
Full prompt: {full_prompt}
Return your final answer using exactly the following format:

majority_found: [yes or no]
selected_response: {full response content}

Example:

majority_found: yes
selected_response: This is the most common (or semantically equivalent)
response and correctly answers the question.
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Hypothesis Induction Prompt
Below is a full prompt about the reasoning task, which includes the ICL examples that you should
learn from. Your task is:

1. Read the full prompt to understand the task and identify the example input-output pairs.

2. Analyze these example pairs and generate a series of rules that explains how each input is
transformed to its corresponding output.

3. Provide as much detail as possible in the rules, such as elaborating on the specific map-
ping.{note}

4. Return your rules in the following format (each rule on its own line):

<hypothesis>
Rule 1:
Rule 2:
Rule 3:

</hypothesis>

Full prompt:
{full_prompt}

Hypothesis Application Prompt (General)

Task Description: task_description

Please apply the given hypothesis to the given list of inputs. Ensure that you provide the actual
output for each input. Do not give a program, partial output, or placeholder.

Hypothesis: hypothesis

Input: icl_in

Format your output as follows:

<output>

Output 1:

Output 2:

</output>

DNA Table Prompt
Below is a full prompt about the reasoning task, which includes the question that you should give
the corresponding answer. Your task is:

1. Read the full prompt to understand the task and identify the specific input question to answer.

2. Based on your understanding of the given rules, generate the corresponding output for the
question.

Rules: hypothesis
Full prompt: x
Enclose your answer with <answer></answer> tags.
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DNA Translation/Transformation as Python Code Prompt

Convert the following hypothesis into a Python function called apply that takes a string input
and returns the transformed output. The function should implement the rules described in the
hypothesis. Make sure to handle all the transformations correctly.

Task Description: self.task_description

Hypothesis: hypothesis

Your function should follow this template:

def apply(input_str):
# Implementation based on the hypothesis rules
# ...
return result

Return ONLY the Python code without any explanation or markdown formatting.
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Hypothesis Refinement Prompt

You are given a candidate hypothesis that attempts to explain how each input is transformed into
its output. A hypothesis consists of rules that explain how the inputs are mapped to the outputs.
Your goal is to revise this hypothesis so it fully accounts for any discrepancies. You may add new
rules, modify existing ones, or remove inaccurate ones. You can also propose a completely new
hypothesis.

Context: self.task_description

Current Hypothesis: hypothesis

Input: icl_in

Model Output: generated_output

Expected Output: expected_output

Steps:

1. List the exact differences between Model Output and Expected Output.

2. For each difference, identify which existing rule (if any) fails to cover it.

3. Revise existing rules or introduce new rules to fix these gaps.

4. Ensure the rules clearly state how the input is mapped into output in a detailed manner.{note}

Output only the refined hypothesis—do not solve the original task.
Format your output as follows:

<new_hypothesis>
Rule 1:
Rule 2:
Rule 3:

</new_hypothesis>

Final Hypothesis Application Prompt
Below is a full prompt about the reasoning task, which includes the question that you should give
the corresponding answer. Your task is:

1. Read the full prompt to understand the task and identify the specific input question to answer.

2. Based on your understanding of the given rules, generate the corresponding output for the
question.

Rules: hypothesis
Full prompt: x
Enclose your answer with <answer></answer> tags.
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