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Abstract
Implicit reasoning is the ability of a language
model to solve multi-hop reasoning tasks in a
single forward pass, without chain of thought.
We investigate this capability using GPT2-style
language models trained from scratch on con-
trolled k-hop reasoning datasets (k = 2, 3, 4).
We show that while such models can indeed
learn implicit k-hop reasoning, the required
training data grows exponentially in k, and the
required number of transformer layers grows
linearly in k. We offer a theoretical explanation
for why this depth growth is necessary. We
further find that the data requirement can be
mitigated, but not eliminated, through curricu-
lum learning.

1 Introduction

Large language models (Brown et al., 2020;
Achiam et al., 2023) have demonstrated strong ca-
pabilities in complex reasoning tasks (Jaech et al.,
2024; Guo et al., 2025). With chain-of-thought
methods (Wei et al., 2023; Nye et al., 2021), lan-
guage models (LMs) learn to explicitly generate
the intermediate steps of the given problem before
generating the final answer. However, such meth-
ods incur long inference time (Chen et al., 2024b)
and require costly annotations (Nye et al., 2021; Ze-
likman et al., 2022). This raises the question: Can
language models learn to reason effectively with-
out explicit chain-of-thoughts, i.e., through implicit
reasoning?

There has been some research exploring implicit
reasoning abilities of language models (Yang et al.,
2024a; Biran et al., 2024; Wang et al., 2024). Such
studies design their task in a two-hop question an-
swering format, where the model is assumed to
know individual facts like The father of A is B and
The teacher of B is C, and then asked questions
like Who is the teacher of the father of A?. Find-
ings from these works suggest that LMs can learn
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train

2-hop task
Who is the instructor of the teacher
of Jennifer? 
Answer: _ 

testLM

train testLM

train testLM

3-hop task

Who is the instructor of the teacher
of the advisor of Jennifer? 
Answer: _ 

4-hop task

Who is the instructor of the teacher
of the advisor of the instructor of
Jennifer? 
Answer: _ 

Figure 1: Example illustrating our finding: An LM
can be trained to perform implicit k-hop reasoning, but
requires a large increase in training data as k grows.

implicit reasoning by combining individual factual
knowledge. However, their reasoning tasks are
limited to questions that can be solved with two in-
termediate steps (i.e. 2-hop), leaving more difficult
k-hop (k > 2) reasoning questions alone. Hence,
it remains unclear whether language models can
learn to perform such k-hop reasoning or not.

In this paper, we study the capacity of lan-
guage models to learn k-hop reasoning tasks, where
k = 2, 3, 4. By training a randomly initialized
GPT2-style transformer (Vaswani et al., 2017; Rad-
ford et al., 2019) on knowledge (e.g. Jennifer ’s
instructor is Robert) and knowledge-based ques-
tions (e.g. Who is the instructor of the instructor
of Jennifer?), we study if such language models
learn to generalize to questions that require novel
combinations of learned facts.

Our study addresses three research questions.

• First, can LMs learn implicit k-hop reason-
ing, and if so, under what conditions? Our
findings suggest that LMs can indeed learn im-
plicit k-hop reasoning, but doing so requires
exponentially increasing data budgets as k
grows (see Figure 1), primarily due to the
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explosion in the search space of fact combina-
tions.

• Second, we investigate how models perform
k-hop reasoning internally through mechanis-
tic interpretability experiments. Our analysis
reveals that models trained with sufficient data
systematically derive intermediate hop entities
in a layer-wise manner, progressing from shal-
low layers to deeper layers in a step-by-step
fashion, consistent with Biran et al. (2024);
Wang et al. (2024). We further show a the-
oretical lower bound (Theorem 5.1) suggest-
ing that such a mechanism, with the required
depth growing with k, may be unavoidable for
the transformer architecture.

• Third, motivated by the substantial data re-
quirements for k-hop reasoning, we ask: How
can we reduce the data budget for k-hop rea-
soning? We explore the use of easier (m-hop,
m < k) tasks as auxiliary training signals.
Our findings show that curriculum learning
(Elman, 1993; Bengio et al., 2009), which
introduces tasks in a progressively harder or-
der, significantly reduces the required training
data, while simply mixing m-hop tasks with
k-hop tasks provides only modest gains.

Bringing our findings together, we answer the
broader question Can language models learn im-
plicit reasoning? with a "yes, but" response. Lan-
guage models can solve k-hop reasoning; however,
this capability comes at the cost of an exponential
increase in training data and at least linear growth
in model depth as k increases. Curriculum learning
serves as a significantly effective mitigation strat-
egy to reduce the training data requirement, but the
data growth issue still persists.

The code and datasets are available online 1.

2 Related work

Implicit reasoning. Many works have shown the
power of explicit reasoning ability of language
models (Wei et al., 2023; Saparov and He, 2022;
Jaech et al., 2024). However, such powerful mod-
els, even after heavy pretraining (Achiam et al.,
2023), generally come with negative results on im-
plicit reasoning tasks (Press et al., 2023; Dziri et al.,
2023). Relevant studies can mainly be categorized
into two groups according to the evaluation task:

1github.com/ykyaol7/lm_implicit_multihop_reasoning

knowledge-based reasoning (Kassner et al., 2020;
Press et al., 2023; Yang et al., 2024b), and mathe-
matical reasoning (Nanda et al., 2023; Stolfo et al.,
2023). In this paper, we study the former task, and
we show that GPT2-style language models, are in-
deed capable of multi-hop reasoning in the cost of
training data requirements.

Most previous work studies knowledge-based
reasoning with existing large language models
(Yang et al., 2024b; Biran et al., 2024; Press et al.,
2023), where language models are assumed to gain
single-hop knowledge through pretraining and eval-
uated on multi-hop tasks. Our work instead trains
language models on synthetic datasets, which al-
lows us to accurately attribute the model behavior
to particular aspects like data and models. Wang
et al. (2024) also train a transformer on synthetic
datasets to evaluate 2-hop reasoning. By contrast,
we investigate this question across increasingly
complex tasks (e.g. 2, 3, 4-hop), and we shed light
on possible methods that can help under such chal-
lenging cases.

Memorization and generalization. To train
a language model to fit a training set, the model
could either memorize all training instances (i.e.
overfitting), or develop a generalizable solution
that solves the test set. Previous work studies this
in terms of grokking phenomenon (Power et al.,
2022; Murty et al., 2023). Their findings suggest
that both memorized and generalizable solutions
exist as neural circuits in the learning process, and
increasing training set size encourages the efficient
one (i.e. generalizable solution) through weight de-
cay (Nanda et al., 2023; Varma et al., 2023; Zhu
et al., 2024). Compared to these work, our study
suggests that training data size needs to exponen-
tially grow according to the task difficulty, which
provides a possible explanation for the failure of
LLMs on complex implicit reasoning tasks.

3 Dataset

We introduce a k-hop reasoning dataset we created
to train and evaluate LMs in this section. We focus
on knowledge-based multi-hop reasoning, where
generating the correct answer requires combining
multiple known facts. Following previous work
(Wang et al., 2024; Allen-Zhu and Li, 2024), we
generate datasets according to synthetic knowledge,
which allows better control of the task difficulty
and attribution of model behaviors.
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Instance 1: 
Jennifer 's instructor is Robert. Jennifer 's teacher
is William. Jennifer 's advisor is Miller. Jennifer 's
supervisor is Marie…

Instance     :
Robert 's instructor is Frank. Robert 's teacher is
Flora. Robert 's advisor is Lisa. Robert 's
supervisor is Joey...

Instance           :
Who is the instructor of the instructor of Jennifer?
Answer: Frank

Instance               :
Who is the advisor of the instructor of Jennifer?
Answer: Lisa

Entity
Profiles

k-hop
Questions

...
...

Training instances for k-hop task

Held-out test instances for k-hop task

...

Instance 1:
Who is the teacher of the instructor of Jennifer?
Answer: Flora

Figure 2: Example of our training and test dataset. Here,
we use 2-hop task as an example.

3.1 Task description

Definitions. The knowledge-based reasoning task
includes two main aspects: facts and queries. Fol-
lowing prior definitions (Yang et al., 2024a; Wang
et al., 2024), we represent a fact as a triple (e, r, e′),
where e is the subject entity, r is a relation, and e′ is
the object entity. Each relation r acts as a function
mapping a subject to an object: r(e) → e′.

A k-hop query corresponds to the com-
position of k such functions, formalized as
rk(rk−1(. . . r1(e))). Answering this query re-
quires reasoning over a chain of k facts:
(e1, r1, e

′
1), (e

′
1, r2, e

′
2), . . . , (e′k−1, rk, e

′
k). The in-

termediate entities e′1, e
′
2, . . . , e

′
k−1 are referred to

as bridge entities. In a k-hop query, we refer to
the components (e′1, r1), (e

′
2, r2), and so on as the

1-hop, 2-hop, and subsequent hops, respectively.
We thus call e′1 the 1-hop entity, and r1 the 1-hop
relation. While prior work has mostly focused on
2-hop queries involving a single bridge entity, we
construct datasets for k ∈ {2, 3, 4} to assess mod-
els’ ability to handle increasingly complex reason-
ing chains.

Dataset format. We create one dataset for each
k ∈ {2, 3, 4} task. Our dataset includes two com-
ponents: (1) entity profiles encoding known facts,
and (2) reasoning questions that query composi-
tions of facts in natural language (see Figure 2).

• An entity profile encodes all possible facts for

E1
(1) E2

(1) En
(1)......

En+1
(2) En+2

(2) E2n
(2)......

E2n+1
(3) E2n+2

(3) E3n
(3)......

instructor
teacher

......

Profile: Jennifer

instructor: Robert,
teacher: Williams,

ruler: John,
advisor: Miller,

supervisor: Marie...

Profile: Robert

instructor: Frank,
teacher: …,

ruler: …,
advisor: …,

supervisor: …
5

layers

Figure 3: Profile sampling process. We always use 5
layers, and hence n =|E|/5 (e.g. 100 for k-hoplarge).

a particular entity where the entity serves as
the subject entity (e.g. Jennifer ’s instructor is
Robert, Jennifer ’s teacher is William...).

• The prompt for our reasoning question is as
simple as “Who is the teacher of the instructor
of Jennifer? \n Answer: ”, where instructor,
teacher refer to relations and Jennifer refers
to the queried entity.

We introduce details for generating profiles and
questions in Section 3.2. To ensure the model
has access to all entity profiles, the training set in-
cludes all possible profiles together with randomly
selected reasoning questions, and we use the held-
out reasoning questions as the test set.

We construct two dataset variants by varying
the number of entities (|E|) and relations (|R|): a
larger dataset with |E|= 500, |R|= 20 (denoted k-
hoplarge), and a smaller one with |E|= 250, |R|=
10 (denoted k-hopsmall).

3.2 Data generation

Profile sampling. We use the same set of entity
profiles across k = 2, 3, 4 tasks to ensure fair com-
parison. Figure 3 illustrates the process to generate
profiles. We first sample |E| entity names (e.g. Jen-
nifer) from a predefined namespace and group them
into K disjoint hierarchical layers, where K is the
largest k + 1 value. Since we consider k < 5, K
is fixed at 5. Each entity is then linked to |R| ran-
domly selected entities in the upper layer through
distinct relations, with relation names reused across
layers for generality. This structure guarantees that
a composition of k ∈ {2, 3, 4} relations starting
from any entity in the bottom layer leads to a well-
defined target entity. More details are provided in
Appendix D.1.

Profile and question generation. Each fact
(e, r, e′) is mapped to a natural language sentence
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Training data budget
Dataset ×1 ×2 ×5 ×10 ×20 ×50 ×100

k-hopsmall

2-hop 99.8
3-hop 5.7 12.6 99.9 100
4-hop 4.3 6.2 6.7 9.2 96.4 100 100

k-hoplarge

2-hop 99.9
3-hop 2.5 3.1 4.9 94.6 100
4-hop 2.0 2.6 3.1 3.7 4.0 6.3 100

Table 1: Accuracy of GPT-2 on k-hopsmall and k-hoplarge datasets with different training data budgets. Empty cells
indicate that the data budget exceeds the number of possible questions.

using a simple template (e.g., {subj}’s {relation} is
{obj}). Following previous work (Allen-Zhu and
Li, 2024), all facts about a given subject entity are
concatenated into a single paragraph to form that
entity’s profile. To construct reasoning questions,
we sample entities from the bottom layer of the
hierarchy (Figure 3) and recursively traverse k rela-
tions to identify the correct answer. All valid k-hop
queries are generated for each source entity. For
example, for 2-hop queries on k-hoplarge, we can
generate up to |R|2× |E|/5 = 40000 instances.

4 LMs can learn k-hop reasoning, but at a
large data cost

Our first objective is to establish that language mod-
els can learn implicit k-hop reasoning, but this re-
quires the number of training instances (i.e. k-hop
reasoning questions) grows exponentially as k in-
creases. In this section, we empirically demonstrate
this by training models on our k-hop datasets with
k = 2, 3, 4.

4.1 Experiment setup

Model. We adopt the smallest GPT-2 architecture
(Radford et al., 2019) as our model. Following
recent studies (Allen-Zhu and Li, 2024), we re-
place the original positional embeddings in GPT-2
with Rotary Position Embedding (RoPE) (Su et al.,
2024). We use the GPT-2 tokenizer (Radford et al.,
2019) and extend its vocabulary by adding all pos-
sible entity names from our dataset. The training
objective is the causal language modeling loss cal-
culated over all tokens in each prompt. In our main
experiments, we train the model from scratch by
randomly initializing all parameters. Additionally,
we conduct experiments using the pretrained GPT-2
and its larger variants (see Appendix B for results).

Training. We set the training steps to 20k for all
tasks except 4-hoplarge, where we extend the train-
ing to 40k steps to ensure convergence. We apply

a cosine learning rate scheduler with 1k warm-up
steps. Each experiment is repeated across three
runs using different random seeds, and we report
the average performance. Details of hyperparam-
eters for model architecture and training are pro-
vided in Appendix E.

Dataset. We utilize the k-hopsmall and k-hoplarge

datasets introduced in Section 3 for training and
evaluation, considering k = 2, 3, 4. This results in
six datasets in total. For the 2-hop task, we gener-
ate all possible reasoning questions and randomly
sample 50% for the 2-hoplarge training set and 80%
for 2-hopsmall. All entity profiles are included in
the training sets. The test set consists of 3,000 in-
stances randomly selected from the held-out ques-
tions, except for 2-hopsmall, which contains only
1,000 held-out questions. We report the details and
statistics of our datasets in Appendix D.1.

For 3-hop and 4-hop tasks, we find that the same
data size as the 2-hop training set results in ran-
dom guessing performance. Thus, we progres-
sively increase the training data size by defining
the base training budget bg as the number of rea-
soning questions in the 2-hop training set. We
create training sets by scaling bg with ratios from
the set {×1,×2,×5,×10,×20,×50,×100}. For
each ratio r, we randomly sample r × bg reason-
ing questions for training. The test set for each k-
hop task always includes 3,000 instances randomly
sampled held-out instances except for 2-hopsmall.

Evaluation. For each test instance, we provide
the language model with the prompt up to the an-
swer token (e.g., “Who is the instructor of the in-
structor of Jennifer? \n Answer: ”) and evaluate
the accuracy of the generated token against the gold
answer. Greedy decoding is used for evaluation.

4.2 Results

Language models can learn k-hop reasoning. Ta-
ble 1 reports the test accuracy of our models under
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Figure 4: Model accuracy on 3-hoplarge and 4-hoplarge. 3-hoplarge can only be solved when the training budget
is increased by at least a factor of ×10, while 4-hoplarge requires ×100. Using ×20 budget further encourages
convergence on 3-hoplarge compared to ×10 budget.

varying training data budgets. Our first observa-
tion is that GPT-2 models are capable of achieving
100% accuracy not only on 2-hop tasks but also on
more complex 3-hop and 4-hop tasks, given a suffi-
ciently large training data budget with the same k
as the test set. This is a significant finding, as each
entity profile appears individually in the training
set without any explicit instructions on how to com-
bine them to solve multi-hop tasks. The perfect
accuracy suggests that language models can learn
the underlying reasoning process based solely on
input-output pairs, even without explicit rationales.

However, data requirements increase expo-
nentially with k. We further observe that the base
training data budget (×1) is insufficient for the
model to effectively learn 3-hop and 4-hop tasks,
as evidenced by test accuracy below 10%. As the
training data budget increases, model performance
improves correspondingly. We define a model as
successfully learning the task if it achieves a test
accuracy above 80%. On k-hopsmall datasets, a
minimum budget of ×5 is necessary to learn the
3-hop task, whereas the 4-hop task requires a bud-
get of at least ×20. On k-hoplarge datasets, the data
budget required for the 3-hop task is ×10, and for
the 4-hop task, it escalates to ×100. These findings
suggest that the training data budget grows in an
exponential manner as the value of k increases.

We also plot the test accuracy of one training
run on k-hoplarge across training steps in Figure
4 (For k-hopsmall results see Appendix F.1). The
plots show that a larger training budget not only re-
sults in higher accuracy but also accelerates model
convergence. For instance, in Figure 4a, the ×20
budget reaches 100% accuracy by step 5000, while
the ×10 budget only achieves 10% accuracy at the
same step. This finding is also consistent with

Number of possible 1-hop and 2-hop relations
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(1, 1) (2, 2) (5, 5) (10, 10) (20, 20)

Figure 5: Case study on 4-hoplarge. x-axis denotes the
number of 1-hop and 2-hop relations, e.g. (1, 1) denotes
that 1-hop and 2-hop relations are fixed across all 4-hop
questions. Fixing 1-hop and 2-hop relations reduces the
required training budget to ×1, while increasing them
leads to rapid budget growth.

Wang et al. (2024) reported in 2-hop reasoning
tasks. We extend these observations by demonstrat-
ing that the data budget becomes even more critical
as the complexity of the reasoning task increases.

4.3 Why data-hungry?
Results so far highlight the substantial data require-
ments for k-hop tasks, but the reason for this re-
mains unclear. Increasing the value of k leads to
both an increase in the number of combined facts
(i.e., k facts for each entity) and a corresponding ex-
ponential increase of the search space (i.e., |R|k re-
lation combinations per entity). Our objective here
is to disentangle the effects of these two factors and
identify the primary source of data inefficiency.

Setup. To investigate this question, we conduct
a case study on the 4-hoplarge dataset, where we
vary the number of 1-hop and 2-hop relations while
holding the number of relations in the 3-hop and
4-hop positions constant. In the original dataset,
each hop position can take one of |R|= 20 possible
relations. For this study, we generate new training
and test sets by limiting the number of 1-hop and 2-
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hop relations to values from the set {1, 2, 5, 10, 20}.
For each configuration, we train GPT-2 models
and determine the minimal data budget required to
achieve 80% test accuracy.

Figure 5 presents the results. We observe that
when the number of 1-hop and 2-hop relations is re-
stricted to a single relation, the model can success-
fully learn 4-hop task using the base data budget.
However, as the number of relations increases, the
required data budget rapidly increases. This result
suggests that the main source of data inefficiency
in k-hop reasoning tasks is the exponential growth
in the number of relation combinations, rather than
the number of individual facts to be combined.

5 LMs reason through layer-wise lookup,
incurring the cost of depth

The second objective is to understand the un-
derlying mechanism by which language mod-
els solve the k-hop task. We first demonstrate
that language models solve such tasks by layer-
wise lookup of bridge entities of a k-hop query
rk(rk−1(. . . r1(e))) through empirical evidence
(e.g. mechanistic interpretability). Building on this
finding, we then establish a theoretical lower bound,
showing that the model’s depth must grow with k
to maintain such layer-wise lookup mechanism.

5.1 Experiment setup

We design two experiments to investigate the
model’s internal reasoning process: probing and
causal intervention. For both experiments, we se-
lect the model trained on 4-hoplarge with a ×100
budget, as it achieves strong performance.

Probing. We use probing tasks (Belinkov and
Glass, 2019; Liu et al., 2019) to assess whether
information about intermediate bridge entities is
encoded in the hidden representations. In this setup,
we freeze the model parameters and train a linear
probe classifier on top of the hidden states to pre-
dict the correct entity. We train one probe classifier
for each hop position, predicting the corresponding
bridge entity in the query. The probe is trained
across all transformer layers and all tokens in the
prompt to identify where and when information
about the bridge entities is encoded. We split the
4-hoplarge test set into 80/20% training and evalua-
tion sets for training the probe classifiers.

Causal intervention. While probing shows
whether information about bridge entities is en-
coded in the hidden representations, it does not tell

us whether the model actually relies on this infor-
mation to generate the final answer. We further
design activation patching (Vig et al., 2020; Meng
et al., 2022) experiments to investigate it.

The core idea of activation patching is to replace
the residual stream (i.e., the output of a residual
layer in a transformer block) at a specific layer Li

and prompt token tj , and measure the resulting
change in the output probability of the correct an-
swer. For convenience, we call this residual stream
res(Li, tj). In this section, we focus on the last
token position in the input prompt (i.e., tj always
being the last input token, which is whitespace
<space>), as justified in Section 5.2.

Suppose we are given a k-hop test instance and
aim to measure the causal effect of res(Li, tj),
the residual stream at layer Li and token tj . For
clarity, we define three types of runs as follows.
Clean Run: The original forward pass of the test
instance, producing the output probability of the
correct answer as Pclean. Corrupted Run: A dis-
tinct k-hop instance selected to serve as the source
of the patched residual stream. Patched Run: The
modified run, where the residual stream res(Li, tj)
in the clean run is replaced with the corresponding
res(Li, tj) from the corrupted run, leaving other
layers unchanged. The output probability in the
patched run is denoted as Ppatched. The causal ef-
fect of the targeted residual stream is defined as
Pclean − Ppatched, where a larger effect indicates
greater reliance on the removed information. We
calculate the causal effect for each layer and report
the average effect across 3000 held-out instances.

The aim of our intervention experiment is to
measure the effect of bridge entity information at
different hop positions (e.g., 1-hop, 2-hop). Hence,
we define four types of corrupted runs for each
clean run: C1-hop, C2-hop, C3-hop, and C4-hop. In a
Ci-hop run, we select a corrupted instance where
the gold i-hop entity differs from the clean run,
while the entities of other hop positions remain
unchanged. This setup allows us to measure the
effect of perturbing a specific i-hop entity while
keeping other bridge entities unchanged.

5.2 Results
Bridge entities are encoded in the last token po-
sition. Figure 6 presents the probing results across
layers and token positions in the input prompt, e.g.,
Who is the instructor of the teacher of the advisor
of the instructor of <Entity>? \n Answer:<space>.
We report results only for tokens after the <En-
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<Entity> ? \n Answer : <space>
Prompt tokens
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Figure 6: Probing results across tokens in the input
prompt. Each token is represented by four columns,
corresponding to 1-hop to 4-hop bridge entities. Note
that tokens preceding <Entity> cannot include informa-
tion about any of the entities, and are thus not shown
here. Only the <space> token consistently encodes in-
formation about all four bridge entities, indicating that
reasoning is concentrated at the last token before answer
generation.

tity> token, as preceding tokens cannot contain
information about the target bridge entities. Since
the vocabulary size of each i-hop entity is 100, a
random baseline provides 1% accuracy.

Notably, the hidden representation of the last
input token encodes information about all neces-
sary bridge entities for predicting the final answer.
Instead, probe classifiers show low accuracy for
other token positions, suggesting that the reasoning
process likely occurs in the position immediately
before generating the final answer. We confirm
this by observing zero casual effects on preceding
tokens with additional activation patching experi-
ment (see Appendix G.1). We thus focus our causal
intervention experiments on this <space> token.

Output prediction relies on bridge entity infor-
mation. Figure 7 shows the causal effects across
layers in our intervention experiment. For each
i-hop entity, we identify specific layers that the
model relies on to generate the final answer. More-
over, the model organizes the reasoning process
in a layer-wise manner, with shallower layers han-
dling lower-hop entities, and deeper layers han-
dling higher-hop entities. This layer-wise lookup
confirms that the model leverages bridge entity in-
formation to perform multi-hop reasoning, which
generalizes prior observations from 2-hop tasks
(Biran et al., 2024; Wang et al., 2024).

5.3 Theoretical Analysis

We have found that language models perform the
k-hop task by layer-wise lookup. This suggests that
transformers may need depth linear in the number
of reasoning steps. Here, we discuss how this result
relates to the in-principle expressiveness of trans-
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Figure 7: Causal interventions reveal a layer-wise
lookup mechanism: Intervening on the 1-hop entity
has the strongest effect in the 1st layer, and little effect
in higher layers. Intervening on the 2-hop entity has
an effect mainly in the 2nd and 3rd layers; analogously
for the 3-hop and 4-hop entities. Overall, these results
indicate that entities are looked up layer-by-layer.

formers. Formally, we consider a universe E of
entities (e.g., {Jennifer,Frank, . . . }) and a set R
of maps r : E → E (e.g., when r = instructor,
e = Jennifer, then r(e) denotes the instruc-
tor of Jennifer). We consider the task of map-
ping an input string “Who is the rk of the rk−1

. . . r2 of the r1 of e? Answer:” (as in Figure 2)
to the entity rk(. . . r1(e) . . . ) ∈ E (e.g., instruc-
tor(teacher(Jennifer))). We lower-bound the num-
ber of layers needed in the case where the attention
pattern does not depend on the query e. We con-
sider this a reasonable special case, as there is no
obvious way in which query-dependent attention
would help solve the k-hop task. In this case:

Theorem 5.1 (See Appendix A for proof). Con-
sider a causal transformer operating in p bits of
precision, with d hidden units, H heads and L lay-
ers. Assume it performs k-hop reasoning over E
and R as defined above. Assume further that the at-
tention pattern does not depend on e. If k ≤ |E|−2,
then, for some R,

L ≥ k

8pdH
(1)

We note that there are relation sets R for which
shortcuts with few layers may exist, but the result
shows that a linear number is needed in the worst
case. This statement expresses a width-depth trade-
off : the product of the number of layers, bits of
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Figure 8: Model performance on k-hoplarge datasets
with mixed learning and curriculum learning. Curricu-
lum learning enables the model to solve the 4-hop task
with a ×5 training budget, compared to the ×100 re-
quired by both the baseline and mixed learning setups.

precision, width, and number of heads needs to
grow linearly in k. In particular, within a single
model (i.e., fixing d, H , and p), the analysis pre-
dicts that, as k grows, more and more layers need
to be involved in the hop-by-hop retrieval, as we
found empirically (Figure 7). We also note that ex-
isting results (Chen et al., 2024a) are not applicable
to our k-hop task (Appendix A.2). Further empir-
ical evidence supports our theoretical prediction
(see Appendix C).

6 Curriculum learning mitigates the data
requirement, but doesn’t solve it

Finally, we study training strategies to improve the
data budget issue. Models in Section 4 were trained
solely on k-hop task, but i-hop (i < k) questions
should also be available in realistic setups. By ex-
ploiting such easier questions as additional training
data for k-hop task, we demonstrate that curricu-
lum learning significantly mitigates the exponential
growth issue, though not eliminate the increase of
data budget as k increases.

6.1 Experiment setup

We use the same GPT-2 architecture as in Sec-
tion 4.1 and compare two strategies: mixed learn-
ing and curriculum learning (Bengio et al., 2009).

Mixed learning. We construct the training set

by combining reasoning questions from both lower-
hop and k-hop tasks. For instance, the 4-hop train-
ing set contains a mix of 2-hop, 3-hop, and 4-hop
questions, along with all relevant entity profiles.
Lower-hop questions are generated using the same
entity profiles as the target task. We vary the k-hop
training budget using the same scaling factors as in
Section 4.1, while keeping the amount of lower-hop
data fixed (see Appendix D.2 for dataset details).

Curriculum learning. Training in curriculum
learning is split into multiple stages, where each
stage progressively introduces harder reasoning
tasks. For a k-hop task, training proceeds in k−1
stages: the first stage uses only 2-hop questions,
the second stage includes both 2-hop and 3-hop,
and so on. We use the same lower-hop data as
in the mixed learning setup and ensure that total
training steps are equal across both strategies. See
Appendix E.2 for training details.

Test set. To avoid shortcut solutions (e.g., where
lower-hop queries appear as subcomponents of the
k-hop query), we generate test sets such that such
overlaps do not exist using rejection sampling. The
test set size remains 3000 instances, consistent with
previous experiments.

6.2 Results.
Figures 8 shows the results for k-hoplarge, and the
same pattern holds for k-hopsmall (see Appendix
F.1 for results). We compare mixed learning, cur-
riculum learning, and the baseline model trained
only on the target k-hop dataset from Section 4.1.

Curriculum learning significantly reduces
the required data budget. Notably, curriculum
learning yields the most significant improvement.
For example, perfect accuracy on 4-hop tasks is
achieved with only a ×5 budget, compared to ×100
in the baseline. In contrast, simply mixing all avail-
able data provides only modest gains. This demon-
strates that presenting easier reasoning tasks before
harder ones is a highly effective strategy for im-
proving data efficiency.

Curriculum learning builds circuits gradually.
We attribute this effectiveness of curriculum learn-
ing to a stepwise build-up of circuits: As we show
in Appendix G.2, mechanisms retrieving lower-hop
entities (e.g., 1-hop) emerge in the early training
stages; subsequent stages then build upon these es-
tablished circuits to learn more complex reasoning
tasks. While baseline models have to construct a
full circuit for k-hop reasoning at once, curricu-
lum learning enables 1-hop circuits to emerge in
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shallower layers in the first stage, with later stages
developing circuits for 2-hop and 3-hop entities on
top of these.

Curriculum learning does not completely
solve the data growth issue. Despite the effec-
tiveness of curriculum learning strategy, it does not
completely eliminate the growth of data budget.
For example, curriculum learning requires ×2 bud-
get for 3-hop task and ×5 for 4-hop task, indicating
the challenge of k-hop implicit reasoning for LMs.

7 Conclusion

Our work investigates whether language models
can learn implicit multi-hop reasoning. We provide
a nuanced answer through controlled k-hop rea-
soning datasets using GPT2-style language models.
On the one hand, our findings demonstrate that lan-
guage models can indeed learn k-hop reasoning
through sequential lookup of intermediate bridge
entities layer by layer. However, this capability
comes at a cost: as k increases, the training data
budget grows exponentially, and the model depth
must scale linearly. Furthermore, while curricu-
lum learning mitigates the data budget growth, it
does not eliminate the growth trend. Together, we
present a comprehensive view of the potential and
limitations of LMs in implicit reasoning, underscor-
ing the inherent trade-offs between task complexity,
data requirements, and model depth.

8 Limitations

We limit our study to implicit reasoning tasks using
synthetic datasets generated based on predefined
templates. Applying the same analysis to realis-
tic datasets is challenging due to the difficulty of
collecting complex multi-hop questions (e.g. 4-hop
questions) and corresponding facts. Due to com-
putational budget constraints, we also restrict our
experiments to k-hop tasks with k < 5.

Additionally, our experiments primarily rely on
randomly initialized small language models (GPT-
2 small). While we also observe that the data bud-
get issues persist for pretrained models (e.g. pre-
trained GPT-2) and larger models (GPT-2 medium
and large with up to 770M parameters), we do not
extend our analysis to models with greater parame-
ter sizes.
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A Details for Theoretical Results

A.1 Proof of Theoretical Bound

Theorem A.1 (Restated from 5.1). Consider a
causal transformer operating in p bits of preci-
sion, with d hidden units, H heads and L layers.
Assume it performs k-hop reasoning over E and R
as defined above. Assume further that the attention
pattern does not depend on e. If k ≤ |E| − 2, then,
for some R,

L ≥ k

8pdH
(2)

Proof. Recall that the input has the form

Who is the rk of the rk−1 . . . r2 of the r1 of e ?
Answer :

Our argument is based on communication complex-
ity. We consider a communication game where
Alice holds r1, . . . , rk, and Bob holds e. Due
to causal masking, Alice can compute the trans-
former’s activations on all tokens “Who is the rk
of the . . . r1 of” without receiving any information
from Bob. In order to compute activations on then
final tokens “e ? Answer :” (and thus the predic-
tion), Bob requires access to the outputs of atten-
tion heads on these tokens. Because the attention
patterns are assumed to be independent of the query
e, Alice can simple, for each head at the four to-
kens “e ? Answer :” provide the activations within
the span known to Alice weighted with the atten-
tion weights. Thus, a total of 4HL such activation
vectors is sufficient. Furthermore, each of these
activations can be encoded with pd bits. Overall,
thus, Bob can compute the output with access to
only 4LpdH bits.

That is, there a way to compress the composed
function rk ◦ · · · ◦ r1 into 4LpdH bits. Hence,
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24LpdH upper-bounds the cardinality of such possi-
ble functions:

4LpdH ≥ log2 |{rk ◦ · · · ◦ r1 : r1, . . . , rk ∈ R}|
(3)

We note that, in general, the right-hand-side could
be small: for instance, if R just contains the iden-
tity function, then the set of k-fold composed func-
tions will also just contain the identity function
(since its composition with itself again equals it-
self). To conclude the theorem, the remaining prob-
lem is now to show that there is a way of choosing
R for which the right-hand-side scales with k.

We arbitrarily label the elements of E as
{0, x0, x1, . . . , xn−1}, and define R = {f, g}
where:

f(0) =0

f(xi) =x(i+1)%n

g(0) =0

g(x0) =0

g(xi) =xi (i > 0)

Intuitively, (1) there is a special “sink” entity 0,
(2) f cyclically shuffles the non-sink entities, (3) g
maps the first entity in the order to the sink entity.
We now consider all words over f, g of length k
where gg does not occur (recall that, by assumption,
k ≤ |E|−2 = n−1). The number of such words is
exponential in k; indeed, it is at least

(
3
2

)k.2 Each
such word, interpreted as a composition, generates
a different transformation E → E .3 Indeed, to show
this, we simply note that such a composition maps
xi to 0 if and only if g was applied immediately
after the i + 1-th application of f . Thus, when
k ≤ |E| − 2, we have lower-bounded the right-
hand-side of (3) as k · log2 3

2 > k
2 . The theorem

then follows by rearranging (3).

A.2 Discussion

Related Work Chen et al. (2024a) prove a lower
bound on L for causal transformers solving a more
complicated kind of composition task, which com-
poses functions taking two arguments. The input

2Indeed, it equals the Fibonacci number Fk+2. For large
k, this is lower-bounded by

(
3
2

)k+2; to make it valid even for
small k, it is sufficient to instead lower-bound by

(
3
2

)k.
3We note the connection to the general fact that every finite

semigroup can be embedded into a finite semigroup generated
by an idempotent and a nilpotent (note that f is nilpotent
and g is idempotent), proven using a similar construction in
Theorem 1.1 of Higgins (2017).

provides both (i) a sequence of functions, and (ii)
a sequence of entities serving as the second argu-
ment, with the output

zl+1(wl, zl(wl−1, zl−1(. . . z2(w1, i1)))) (4)

where z1, . . . , zl1 are two-argument functions, i1
can be viewed as an input entity (similar to
the query in our k-hop task), and—crucially—
w1, . . . , wl serve as additional arguments to the
two-argument functions. For this more compli-
cated task, Chen et al. (2024a) prove a depth-width
tradeoff. Unlike our result, theirs does not make
any assumption on the attention patterns, however,
it is specifically proven for this more complicated
task. Intuitively, separately presenting the func-
tions z1, . . . , zl1 from the entities w1, . . . , wl serv-
ing as their second argument might play a key role
in making the task challenging enough to enable the
theoretical analysis in Chen et al. (2024a). Hence,
it appears to remains open if such a bound can
also be proven for a task directly matching k-hop
reasoning (Figure 2).

Another line of work has shown limitations of
one-layer transformers in performing function com-
position (Peng et al., 2024; Kozachinskiy et al.,
2025); this is consistent with our evidence that k-
hop tasks require increasing numbers of layers, but
does not bound how many layers are needed.

Bounds from NC1-hardness As transformers
can be simulated in TC0 (e.g. Merrill and Sabhar-
wal, 2023; Strobl, 2023), some work has obtained
bounds conditional on standard complexity con-
jecture TC0 ̸= NC1. Assuming this conjecture,
transformers generally cannot solve k-hop compo-
sition unless the number of layers increases as k in-
creases; as an example, consider E to be {1, . . . , 5},
and R a generating subset of the alternating permu-
tation group A5; then solving k-hop composition
is NC1-hard and predicted to not be feasible for
transformers. However, due to the difficulty of
proving lower bounds for TC0, this line of reason-
ing does not provide precise information about how
quickly exactly L needs to grow with k.

Role of attention pattern Theorem 5.1 applies
in the case where attention patterns do not depend
on the input entity e (in fact, they might still de-
pend on r1, . . . , rk). Our proof strategy makes use
of this assumption, because it limits the amount
of information that any individual attention head
at the final positions can obtain about r1, . . . , rk.
It remains open if this assumption can be relaxed.
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Intuitively, it does not seem clear how changing
attention patterns could make the task easier. How-
ever, formally proving lower bounds for multi-layer
transformer without either constraining attention
patterns (as we do) or considering a more complex
task (as done in Chen et al. (2024a)) remains chal-
lenging; we expect that further technical tools will
be needed to overcome these challenges.

B Effect of more powerful models

Section 4 only presents results for our randomly
initialized GPT-2 small model. Would the training
data budget still grows in an exponentially way as
the k increases, even with more powerful language
models? We investigate this question by applying
the same experiments in Section 4.2 with two other
model setups: finetuning and scaling up model
parameters. We only report 1-run results for all
experiments in this section.

B.1 Finetuning

For finetuning setup, we finetune a pretrained lan-
guage model on the same training set in Section 4
and evaluate it on the same test set. Here we start
with the pretrained GPT-2 small model (Radford
et al., 2019), and use the same hyperparameters as
for our randomly initialized GPT-2. Note that the
pretrained GPT-2 adopts a learned positional em-
bedding (Vaswani et al., 2017) instead of RoPE (Su
et al., 2024), and thus we cannot directly tell the
effect of pretraining compared to non-pretrained
model. Here we only use this experiment to con-
firm that the significant increase of data budget still
holds for pretrained models.

Table 2 presents the results of pretrained GPT-2
small models. Overall, the data budget still ex-
ponentially grows as the k value increases. On
k-hoplarge the model needs ×10 budget for 3-
hoptask and ×100 for 4-hop, which is the same
as our randomly initialized transformer. The
pretrained model achieves lower accuracy on k-
hopsmall datasets, e.g. only 93.7% accuracy on 2-
hop task. Nonetheless, the model still learns to
perfectly solve k-hopsmalldatasets with enough data
budget, e.g. for 3-hop, model accuracy gets signifi-
cantly improved accuracy at ×5 budget and reaches
100% at ×10 budget. We consider the lower accu-
racy here is likely due to the lack of hyperparameter
optimization and use of better position encoding.

B.2 Scaling up the model size.

We also evaluate setups where we scale up the
number of model parameters. Kaplan et al. (2020)
demonstrates that larger model size is crucial to
gain high performance, especially the depth of
transformer layers (Fagnou et al., 2024; Ye et al.,
2024), and we want to investigate if larger models
address the data budget issue. Here we experiment
with same architecture described in Section 4.1 (i.e.
GPT-2 with RoPE), and we set hyperparameters
of architectures (e.g. number of layers, attention
heads, etc.) according to the GPT-2 medium 4 and
large model 5 configurations. We randomly ini-
tialize the model and train and evaluate it on the
k-hopsmall datasets in Section 4.1 from scratch. Hy-
perparameters for training are the same as Section
4.1.

Table 3 reports the results of such larger models.
For both GPT-2 medium and large sized models,
the growth of data budget issue still persists.

C Effect of model depth

The analysis in Section 5.3 theoretically proves that
the depth of the model needs to grow linearly as
the value k increases. In this section, we further
provide empirical evidence to support our theory
by showing that a transformer with fewer layers
struggles with k-hop reasoning.

We conducted preliminary experiments in which
we vary the model depth from 2 to 5 layers and
use the k-hopsmall datasets. We adopt the training
data budgets that are sufficient for a 12-layer GPT-
2-small model to succeed (see Table 1): ×1 for
2-hop, ×5 for 3-hop, and ×20 for 4-hop. All other
hyperparameters and training configurations are
unchanged, except for the model depth (number of
transformer layers).

We report test accuracy in Table 4. Noticeably,
the required model depth grows as the hop num-
ber increases, which is consistent with what our
theoretical analysis predicts.

D Dataset details

D.1 Datasets in Section 4

Namespaces of entity and relation names. We
provide details on the entity and relation names-
paces used to generate the datasets in Section 3.

4https://huggingface.co/openai-community/gpt2-medium
5https://huggingface.co/openai-community/gpt2-large
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Training data budget
Dataset ×1 ×2 ×5 ×10 ×20 ×50 ×100

k-hopsmall

2-hop 93.7
3-hop 6.6 8.2 45.4 100
4-hop 5.1 6.5 6.9 8.4 23.8 100 100

k-hoplarge

2-hop 100
3-hop 2.8 2.5 3.9 87.5 100
4-hop 2.3 3 4.1 4.2 3.9 24.6 100

Table 2: Accuracy of finetuned GPT-2 small models on k-hopsmall and k-hoplarge datasets with different training
data budgets.

Model Dataset Training data budget

×1 ×2 ×5 ×10 ×20 ×50 ×100

GPT-2 Medium
2-hopsmall 100
3-hopsmall 5.6 13.9 99.9 100
4-hopsmall 5 5.8 8 10.2 99.8 100 100

GPT-2 Large
2-hopsmall 100
3-hopsmall 6.5 22.0 100 100
4-hopsmall 4.6 5.6 7.9 11.0 99.6 100 100

Table 3: Accuracy of GPT-2 Medium and Large on k-hopsmall datasets with different training data budgets. Empty
cells indicate that the data budget exceeds the number of available questions possible to generate.

Dataset 2 layers 3 layers 4 layers 5 layers

2-hopsmall 31 96 97 100
3-hopsmall 13 55 100 100
4-hopsmall 25 38 83 95

Table 4: Test accuracy with varying model depth. Accu-
racies above 90% are boldfaced.

Our dataset consists of |E| entities, each with a dis-
tinct name and N relations. We use 600 unique
single-token person names (e.g., Jennifer) and 20
single-token relation names (e.g., instructor), gen-
erated by ChatGPT6, as the namespaces for entities
and relations, respectively. The complete vocab-
ulary of relation and a subset of entity names are
provided in Tables 6 and 7. Since our main experi-
ments use a randomly initialized language model,
the specific choice of vocabulary does not influence
our conclusions.

Top-hierarchy entity profiles. Entities in the
top layer of Figure 3 are not linked to any targets,
making it non-trivial to generate their profiles. Nev-
ertheless, we include their profiles in the training
set to maintain consistency across all k-hop tasks
with k ∈ {2, 3, 4}. In both the 2-hop and 3-hop
tasks, answer tokens (i.e., entity names) appear in
the training set as subject entities in their own pro-
files. To ensure the same holds for the 4-hop task,
where answers correspond to top-layer entities, we

6https://chatgpt.com/

generate profiles for these entities as well. Specifi-
cally, we generate these profiles by concatenating
facts in which the subject entity is the top-layer
entity itself, the relation is one from Table 6, and
the object entity is a single-token name sampled
from an additional set of 100 person names. These
object names are distinct from the ones used in Fig-
ure 3. Since these facts are never used in any k-hop
question in the training or test sets, including them
does not affect our results or conclusions.

Table 5 reports the training set sizes for each
dataset configuration. To maintain consistency
across data budget setups, we include the same
set of |E| entity profiles (e.g., |E|= 250 profiles for
k-hopsmall) in each training set. We partition the
|E| entities into 5 disjoint subsets, each containing
|E|/5 entities, and only generate reasoning ques-
tions targeting one subset (e.g., entities in the bot-
tom hierarchy of Figure 3). Each entity profile in-
cludes |R| relations (e.g., |R|= 10 for k-hopsmall),
allowing us to generate |R|2× |E|/5 = 5000 ques-
tions for 2-hopsmall, of which 80% are randomly
selected as training instances.

D.2 Datasets for mixed and curriculum
learning

In mixed learning, we introduce lower-hop rea-
soning questions as auxiliary training instances to
facilitate learning more complex reasoning tasks.
For the 3-hop task, we add 2-hop instances, and
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Dataset Hop ×1 ×2 ×5 ×10 ×20 ×50 ×100

small
2-hop 4 250
3-hop 4 250 8 250 20 250 40 250
4-hop 4 250 8 250 20 250 40 250 80 250 200 250 400 250

large
2-hop 20 500
3-hop 20 500 40 500 100 500 200 500 400 500
4-hop 20 500 40 500 100 500 200 500 400 500 1 000 500 2 000 500

Table 5: Statistics of the number of training instances in each setup.

instructor teacher ruler advisor
supervisor leader manager director
patron mentor administrator coordinator
tutor predecessor sponsor financier
backer overseer employer boss

Table 6: Vocabulary of relation names.

Emil Gavin Chad Flora
Adam Addie Bobby Edwin
Gabby Helen Jeffery Joel
Kris Kristen Lisa Liam
Eva Emma Dylan Isabella

Table 7: Subset of vocabulary of entity names.

for the 4-hop task, we add both 2-hop and 3-hop
instances. For k-hopsmall, we include 4k 2-hop
instances as auxiliary data for 3-hopsmall, and 4k
2-hop and 20k 3-hop instances for 4-hopsmall. For
k-hoplarge, we include 32k 2-hop instances for 3-
hoplarge, and 32k 2-hop and 100k 3-hop instances
for 4-hoplarge. Due to computational constraints,
we did not specifically tune the size of auxiliary
data. The curriculum learning setup uses the same
auxiliary instances as mixed learning.

E Training details

E.1 Baseline

This section provides the model architecture and
training setup used in Section 4. Unless stated
otherwise, the same configuration is applied across
all experiments in this paper.

Model architecture. We adopt the GPT-2 small
architecture7, consisting of 12 transformer layers
with 12 attention heads. The input embedding di-
mension is 768, and the context window is limited
to 1024 tokens. Instead of absolute position embed-
dings used in the original Transformer (Vaswani
et al., 2017), we employ Rotary Position Embed-
ding (RoPE) (Su et al., 2024) to encode positional
information. We use the default GPT-2 tokenizer
and extend the vocabulary to include all entity pro-
file names (e.g., Jennifer), resulting in a vocabulary
size of |V | = 50, 740.

7https://huggingface.co/openai-community/gpt2

Training. The batch size is set to 512 with gra-
dient accumulation steps of 4. We use the AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and
Hutter, 2019) with the following hyperparameters:
learning rate of 5e − 4, ϵ = 1e − 6, β1 = 0.9,
β2 = 0.999, and weight decay of 0.1. Training
begins with a 1k-step warm-up phase, followed by
a cosine learning rate scheduler (Loshchilov and
Hutter, 2016), with a minimum learning rate set to
0.1× the initial learning rate.

Experiments are run on Nvidia A100 and H100
GPU cards (80GB). Each experiment is conducted
on one single GPU, which takes about 8 hours
for 20k optimization steps. The implementation
is based on Huggingface (Wolf et al., 2019) and
Pytorch (Paszke, 2019). GPT-2 is released under
the MIT License by OpenAI.

E.2 Setup for mixed and curriculum learning

The model architecture for mixed and curriculum
learning experiments remains the same as the base-
line configuration described in Section E.1. The
training setup for mixed learning also follows the
baseline training setup without any modifications.

Training in curriculum learning is divided into
multiple stages, where each stage progressively
introduces harder reasoning tasks. For a k-hop
task, training consists of k−1 stages: The first stage
includes only 2-hop questions. The second stage
adds 3-hop questions. The third stage adds 4-hop
questions to the training set (only applicable for
4-hop tasks). Hence we have 2 training stages for
3-hop task and 3 training stages for 4-hop task.
The maximum number of training steps for each
stage across different target tasks is reported in
Table 8. Each stage employs the same learning
rate scheduler and warm-up steps as in the baseline
training setup to maintain consistency. The batch
size and gradient accumulation steps remain the
same as in the baseline setup.
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Figure 9: Model accuracy on 3-hopsmall and 4-hopsmall. x-axis refers to the number optimization steps.
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Figure 10: Model performance on k-hopsmall datasets
with mixed learning and curriculum learning.

Task Stage 1 Stage 2 Stage 3 Total

3-hopsmall 10000 10000 - 20000
4-hopsmall 5000 5000 10000 20000
3-hoplarge 10000 10000 - 20000
4-hoplarge 10000 10000 20000 40000

Table 8: Training steps for each training stage of cur-
riculum learning

F Detailed results

F.1 Results for LMs on k-hopsmall

We plot the test accuracy of LMs on k-hopsmall

across training steps in Figure 9. The pattern is

similar to the one observed in Figure 4. Models
trained with small budgets only give modest im-
provement over random baseline (i.e. 2% for k-
hopsmall). Larger budgets not only lead to higher
accuracy, but also achieves this with much less
training steps.

We also report k-hopsmall results of models
trained with mixed learning and curriculum learn-
ing in Figure 10. Still, we observe that curriculum
learning gives the best result compared to the base-
line and mixed learning.

F.2 Standard deviation

For each experiment reported in Section 4 and 6,
we made 3 runs based on different random seeds.
We report the mean and standard deviation of the
test accuracy for each model in Table 9. For most
results we do not observe a large standard deviation,
indicating that our conclusion is robust to the ran-
domness. For particular runs there is a large devia-
tion, especially when the data budget is not enough
(e.g. model trained with curriculum learning on 4-
hoplargewith ×2 budget), which gets smaller when
we further add more data into the training set.

F.3 Log scale of data budget

We plot the minimal data budget required to solve
k-hop tasks on a log scale as k increases. The data
points are based on numbers in Table 1. Figure 11
shows the results, confirming that the required data
budget grows exponentially with k.

G Additional mechanistic interpretability
experiments

G.1 Patching preceding prompt tokens

Figure 6 suggests that only the last token (e.g. the
whitespace <space>) includes information about

9699



100 101 102

Minimal Budget to achieve above 80% accuracy (log scale)

2

3

4
k 

Va
lu

e
k-hopsmall

k-hoplarge

Figure 11: Minimal data budget to solve k-hop tasks.

all bridge entities, and hence the reasoning process
likely occurs at this position. In this section, we use
activation patching to further demonstrate that the
reasoning process of our language model only oc-
curs at the last token position instead of preceding
prompt tokens.

Our activation patching still addresses three
types of runs: clean run, corrupted run and patched
run. For each clean run, we randomly select a dis-
tinct instance as the corrupted run. For each layer
and each token position in the input prompt, we cre-
ate a patched run by replacing the residual stream
of the clean run with that of the corrupted run at
the corresponding position. The causal effect is
calculated as Pclean −Ppatched, where Pclean denotes
the output probability of the correct answer in the
clean run, and Ppatched denotes the probability in
the patched run. We report the average causal effect
over 1000 held-out instances.

Figure 12 presents the activation patching results
across token positions. Noticeably, no significant
causal effects are observed in any token positions
following the <Entity> token, except for the last
<space> token. Since the <Entity> token is the
first position where the model can access complete
query information (i.e., relations and source entity),
this result supports our claim that the reasoning
process primarily occurs at the last token position.

We also observe large causal effects on relation
tokens when patching deeper layers (e.g., the 4th
layer for the <r4> token). We consider this ef-
fect is because the model only start to read the
information of <r4> relation since the 4th layer
when predicting the answer. Hence, deeper layers
of <r4> position should not involve any reasoning-
related computation. To show this, we also perform
the same activation patching experiment by replac-

ing only the output of each MLP layer. As shown
in Figure 13, the relation tokens only show causal
effects in the first layer, further supporting our hy-
pothesis that deeper layers do not reprocess relation
information.

G.2 Causal effects across training steps
In Section 5, we observed that LMs learn to solve k-
hop tasks through a layer-wise lookup process, with
specific layers responsible for producing bridge
entities from 1-hop to k-hop. A key question is
whether these circuits (i.e., layers) are developed
sequentially from 1-hop to k-hop or simultaneously
across multiple hop positions during training. To
investigate this, we apply the activation patching
experiment described in Section 5 at every check-
point of the training process.

We focus on the model trained on 4-hoplarge with
a ×100 budget, following the setup in Section 5.
Checkpoints are saved every 1k training steps, and
we apply activation patching at the last input token
position. For each checkpoint, we measure the
causal effect of each layer for bridge entities at
each hop position.

LMs tend to build circuits of different i-hop
bridge entities simultaneously. Figure 14 shows
the causal effect of each layer across training steps.
We observe that circuits responsible for 1-hop, 2-
hop, and 3-hop bridge entities emerge simultane-
ously at around the 17000th training step, with
each circuit appearing in distinct layers (e.g., the
1st layer for 1-hop entity). This pattern indicates
that the model tends to develop circuits for different
hop positions at once rather than sequentially from
easier (e.g., 1-hop) to more complex (e.g., 3-hop)
entities.

Curriculum learning gradually build circuits
on existing ones. We further analyze the develop-
ment of circuits in the curriculum learning model
trained on the 4-hop task with a ×5 budget (Section
6). Training this model includes 3 stages. Check-
points are saved every 1k steps, and causal effects
are calculated at each stage. For each stage, we
calculate the causal effects using the following cor-
rupted runs:

• C1-hop: Assesses 1-hop circuits across stage 1,
2 and 3.

• C2-hop: Assesses 2-hop circuits across stages
2 and 3.

• C3-hop: Assesses 3-hop circuits in stage 3.
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Figure 12: Results for activation patching replacing the residual stream of a particular layer across prompt tokens.
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Figure 13: Results for activation patching replacing the MLP output of a particular layer across prompt tokens.
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Figure 14: Causal effects calculated by corrupting 1-hop, 2-hop and 3-hop bridge entity in our baseline model.
x-axis refers to checkpoints across training steps. We observe that the circuits corresponding to different hop
positions tend to emerge at once (e.g., around the 17,000th step), rather than gradually developing over time.

Figure 15 presents the results with our curricu-
lum learning model. During stage 1, the model
establishes circuits for 1-hop entities. In stage 2,
the 2-hop circuit emerges, building upon the exist-
ing 1-hop circuit. Stage 3 follows the same pattern,
with the 3-hop circuit extending the prior circuits.
This layer-by-layer construction supports our hy-
pothesis that curriculum learning encourages pro-
gressive circuit development, allowing higher-hop
circuits to build upon existing lower-hop circuits,
explaining the observed effectiveness in Section 6.

Curriculum learning has also been explored in
prior work (Deng et al., 2024; Hao et al., 2024),

where the focus is on internalizing explicit rea-
soning abilities. These studies start from chain-of-
thought (CoT) rationales and train language models
to reason with progressively fewer prompt tokens.
In contrast, our setup does not rely on any explicit
rationales. Instead, we study how curriculum learn-
ing affects the data budget required for training
and provide an explanation for why such strate-
gies improve sample efficiency from a mechanistic
interpretability perspective.
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Figure 15: Causal effects calculated by corrupting 1-hop, 2-hop and 3-hop bridge entity in our curriculum learning
model. x-axis refers to checkpoints across training steps. Gray regions indicate stages where causal effects are
not calculated for certain entities, e.g., stage 1 does not include 3-hop bridge entities in the training data, so the
rightmost figure omits these effects in stage 1. Circuits for higher-hop entities tend to be established on top of
existing ones for lower-hop entities.

Model Size Task ×1 ×2 ×5 ×10 ×20 ×50 ×100
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

baseline

small
2-hop 99.8 0.1
3-hop 5.7 0.0 12.6 2.6 99.9 0.1 100.0 0.0
4-hop 4.3 0.4 6.2 0.5 6.7 0.2 9.2 0.4 96.4 3.1 96.4 0.0 100.0 0.0

large
2-hop 99.9 0.0
3-hop 2.5 0.3 3.1 0.1 4.9 1.6 94.6 9.4 100.0 0.0
4-hop 2.0 0.3 2.6 0.3 3.1 0.1 3.7 0.3 4.0 0.4 6.3 1.0 100.0 0.0

mix

small
2-hop 100.0 0.0
3-hop 29.2 3.0 88.1 8.6 99.9 0.1 100.0 0.0
4-hop 16.4 1.8 29.3 1.8 71.3 41.4 99.8 0.1 100.0 0.0 100.0 0.0 100.0 0.0

large
2-hop 100.0 0.0
3-hop 8.3 1.4 11.2 3.8 38.7 18.1 100.0 0.0 100.0 0.0
4-hop 2.1 0.2 2.7 0.1 3.7 0.2 3.4 0.1 4.3 0.6 7.2 1.9 100.0 0.0

curriculum

small
2-hop 100.0 0.0
3-hop 56.1 1.5 96.0 0.7 100.0 0.0 100.0 0.0
4-hop 29.3 2.7 68.7 5.4 99.6 0.2 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

large
2-hop 100.0 0.0
3-hop 35.3 1.5 96.3 1.2 100.0 0.0 100.0 0.0 100.0 0.0
4-hop 9.4 1.9 36.1 14.8 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Table 9: Accuracy (mean ± std) for 2-/3-/4-hop tasks under varying data budgets. Blank cells denote that the data
budget exceeds the number of available questions.
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