
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 9785–9800
November 4-9, 2025 ©2025 Association for Computational Linguistics

XQuant: Achieving Ultra-Low Bit KV Cache Quantization with
Cross-Layer Compression

Haoqi Yang2, Yao Yao3, Zuchao Li1*, Baoyuan Qi4, Guoming Liu4, Hai Zhao3

1School of Artificial Intelligence, Wuhan University, Wuhan, China,
2School of Computer Science, Wuhan University, Wuhan, China,

3School of Computer Science, Shanghai Jiao Tong University, Shanghai, China,
4Xiaomi Inc., Beijing, China

{yanghq, zcli-charlie}@whu.edu.cn, yaoyao27@sjtu.edu.cn,
{qibaoyuan, liuguoming}@xiaomi.com, zhaohai@cs.sjtu.edu.cn

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across diverse
natural language processing tasks. However,
their extensive memory requirements, particu-
larly due to KV cache growth during long-text
understanding and generation, present signif-
icant challenges for deployment in resource-
constrained environments. Quantization has
emerged as a promising solution to reduce
memory consumption while preserving his-
torical information. We propose XQuant, a
training-free and plug-and-play framework that
achieves ultra-low equivalent bit-width KV
cache quantization. XQuant introduces two
key innovations: a computationally negligible
data-free calibration method and cross-layer
KV cache compression, enabling quantization
to sub-1.4 bits. Extensive experiments on
TruthfulQA and LongBench demonstrate that
XQuant outperforms state-of-the-art methods
(e.g., KIVI-2bit and AsymKV-1.5bit) by achiev-
ing lower bit-width while maintaining supe-
rior performance, establishing a better trade-off
between memory efficiency and model accu-
racy. The source code is available at https:
//github.com/brinenick511/XQuant.

1 Introduction

The rapid advancement of Large Language Models
(LLMs) has propelled significant progress in a wide
array of natural language processing (NLP) appli-
cations, including code generation, search systems,
and many others (Ouyang et al., 2023; Sharma
et al., 2024; Ma et al., 2024). The exceptional
performance of LLMs is primarily driven by their
immense parameter scales, which enable them to
excel across diverse tasks. However, this remark-
able success comes with substantial costs: the com-
putational and memory demands associated with
deploying LLMs have increased exponentially due

*Corresponding author.

to increasing models parameters and growing in-
put and output, posing a formidable bottleneck for
practical deployment. In particular, GPU memory
consumption has surged to levels that frequently
surpass the capacities of current hardware infras-
tructures, making large-scale deployment increas-
ingly challenging (Shi et al., 2024).

To mitigate this challenge, the Key-Value (KV)
cache mechanism has been widely adopted (Yao
et al., 2024; Yang et al., 2024d; Ainslie et al., 2023;
Kwon et al., 2023). The KV cache optimizes mem-
ory efficiency by storing and reusing previously
computed keys and values in the attention mech-
anism, thereby reducing redundant computations
and GPU memory usage. Despite its advantages, as
model sizes and the input/output sequence lengths
continue to grow, the storage overhead of the KV
cache itself becomes increasingly significant (Shi
et al., 2024). For instance, a 30-billion-parameter
language model with a batch size of 128 and a
sequence length of 1024 may require up to 180
GB of memory solely for storing the KV cache
(Zhang et al., 2023). Although the computational
and memory requirements are reduced compared
to not using it, such escalating demands still pose
substantial challenges for deploying LLMs with
constrained hardware resources.

To address this problem, prior works have ex-
plored various strategies from different perspec-
tives. Some studies (Sheng et al., 2023; Hooper
et al., 2024; Liu et al., 2024b; Tao et al., 2024) fo-
cus on quantizing the floating-point KV cache (and,
in some cases, model weights) to lower precision.
However, these approaches often experience per-
formance degradation under extreme compression
ratios, particularly around 2-bit precision. Alter-
natively, other methods (Xiao et al., 2023; Zhang
et al., 2023; Li et al., 2024; Cai et al., 2024) aim
to alleviate the storage burden by evicting unim-
portant tokens. These methods dynamically or stat-
ically identify and discard less critical tokens to

9785

https://github.com/brinenick511/XQuant
https://github.com/brinenick511/XQuant

reduce memory usage. Nevertheless, these meth-
ods inherently introduce information loss, resulting
in reduced memory retention and severe forgetting
issues, which can undermine the model’s ability
to maintain consistent performance on longer se-
quences. Existing KV cache quantization meth-
ods, due to inherent architectural constraints, fail to
mitigate the severe performance degradation when
operating under ultra-low-bit settings.

To address these limitations, this paper focuses
on training-free KV cache quantization scenarios
under extreme compression ratios and introduces
XQuant, a plug-and-play framework for ultra-
low-bit KV cache quantization. XQuant delivers
two key improvements over existing quantization
methods: (1) Data-Free Calibration: Traditional
quantization methods often face significant limi-
tations when mapping values to low-bit precision.
Specifically, they tend to use the two endpoint val-
ues (e.g., 0 and 1 in 1-bit quantization) as represen-
tative values, which can result in substantial quan-
tization errors, particularly under low bit-width set-
tings. To address this issue, XQuant introduces a
parameterized calibration scheme that allows for
more fine-grained mapping of values. By adjust-
ing the representative values to better reflect the
actual data distribution, this method significantly
reduces quantization errors and minimizes perfor-
mance loss without the need for additional data.
(2) Cross-Layer KV Cache Compression: We
observe enhanced KV cache similarity between
adjacent layers after quantization - a previously
overlooked phenomenon. This enables effective
cross-layer compression, where the quantized KV
cache of one layer is shared across subsequent lay-
ers, significantly reducing computational and mem-
ory costs. Meanwhile, a subset of layer-specific
parameters is preserved to retain the unique char-
acteristics of each layer, ensuring minimal loss of
model performance.

To evaluate the effectiveness of XQuant, we con-
duct extensive experiments on a consumer-grade
NVIDIA GeForce RTX 3090 GPU (24GB) across
diverse datasets, including TruthfulQA (Lin et al.,
2022) and subsets of LongBench (Bai et al., 2024).
Experimental results demonstrate that XQuant
achieves an equivalent bit-width of less than 1.4-
bit across various LLMs, outperforming existing
methods such as KIVI-2bit (Liu et al., 2024b)
and AsymKV-1.5bit (Tao et al., 2024). Notably,
XQuant achieves comparable performance to full-
precision baselines while offering a significantly

improved trade-off between model performance
and compression ratio.

2 Related Work

Two mainstream approaches for addressing KV
cache challenges are Quantization and Eviction
methods (Shi et al., 2024).

Quantization has emerged as a prominent tech-
nique for compressing large-scale models by map-
ping high-precision data to lower-precision formats
(e.g., 16-bit, 8-bit, or even 4-bit integers). This sig-
nificantly reduces memory footprints while main-
taining acceptable levels of model performance.
A substantial body of work focuses on quantizing
model weights. AWQ (Lin et al., 2024) optimizes
neural network weight quantization by dynamically
adapting the bit-width based on the weights’ sig-
nificance. By retaining higher precision for more
impactful weights and reducing precision for less
critical ones, AWQ minimizes performance loss
while achieving compression. However, aggres-
sive compression is constrained by "model hemor-
rhage" (Ma et al., 2025), a phenomenon identify-
ing that models possess inherent robustness thresh-
olds beyond which performance degrades sharply.
This makes maintaining stability in the ultra-low-
bit regime a critical challenge.

Another line of research concentrates on the
quantization of the KV cache. KVQuant, in-
troduced by Hooper et al. (2024), employs dis-
tinct quantization strategies for keys and val-
ues. It applies per-channel quantization to the
keys—particularly before Rotary Positional Em-
beddings (RoPE)—and per-token quantization to
the values, effectively managing outliers and min-
imizing RoPE-induced distortions. Similarly,
MiKV (Yang et al., 2024c) introduces a mixed-
precision KV-cache strategy that retains important
KV pairs in high precision. Concurrently, KIVI
(Liu et al., 2024b) develops a tuning-free 2-bit KV
cache quantization scheme, where the key cache
is quantized per-channel, and the value cache is
quantized per-token. Building on this, AsymKV
(Tao et al., 2024) further combines 1-bit and 2-bit
representations through an asymmetric and layer-
wise quantization configuration, achieving a better
trade-off between precision and compression ratio.

In contrast, some works simultaneously quantize
both the model weights and the attention cache. For
example, FlexGen (Sheng et al., 2023) introduces a
high-throughput inference framework that applies

9786

group-wise 4-bit quantization to compress both the
model weights and KV cache. FlexGen divides ten-
sors into small groups, computes the minimum and
maximum values within each group, and performs
asymmetric quantization. The resulting tensors
are stored in 4-bit format and later dequantized
to FP16 during computation, achieving a reduc-
tion in memory usage and I/O costs with minimal
accuracy degradation. Despite the advancements
of these methods, significant performance degra-
dation remains a challenge when quantizing KV
cache activations to extremely low-precision levels,
particularly below 2-bit.

Eviction methods aim to discard unnecessary
tokens during inference to reduce memory usage.
StreamingLLM (Xiao et al., 2023) identifies the
phenomenon of attention sinks, where initial to-
kens are retained to stabilize attention computa-
tions. StreamingLLM combines these attention
sinks with a sliding window of recent tokens to
introduce a rolling KV cache, effectively balancing
memory efficiency and model performance. Build-
ing on this, SirLLM (Yao et al., 2024) uses token
entropy to preserve critical tokens’ KV cache and
incorporates a memory decay mechanism to en-
hance LLMs’ long-term memory while maintain-
ing short-term reasoning abilities.

Other methods, such as H2O (Zhang et al., 2023)
and SnapKV (Li et al., 2024), dynamically iden-
tify and evict non-important tokens based on atten-
tion scores. PyramidKV (Cai et al., 2024; Yang
et al., 2024a) observes that attention scores are
more sparse in higher layers and accordingly al-
locates different memory budgets across layers.
SpindleKV (Tang et al., 2025) further develops a
hybrid approach to balance reduction across layers,
combining attention-based eviction in deep layers
with a codebook-based replacement strategy for
shallow layers. However, most existing KV evic-
tion methods depend on attention scores to identify
non-important tokens, which limits their compati-
bility with common optimizations like FlashAtten-
tion (Dao, 2023), reducing their practical usability.

Structural Approaches modify the model’s ar-
chitecture, in contrast to post-hoc data compression.
For instance, some methods cache only partial lay-
ers of the KV cache (Wu and Tu, 2024; Sun et al.,
2024; Brandon et al., 2024), while KV-Latent (Lu-
ohe et al., 2025) reduces the dimensionality of K
and V vectors. A key characteristic of these ap-
proaches is that they all require additional training,
which contrasts with our plug-and-play framework.

We further clarify the key differences and highlight
our contributions in Appendix G.

Compared to existing methods, we introduce
XQuant with two key innovations: (1) A novel,
simple yet effective data-free calibration method
that achieves superior compression performance
even under ultra-low-bit settings, eliminating the
need for additional calibration data. (2) cross-layer
KV cache compression that leverages previously
overlooked quantization-enhanced layer similari-
ties to achieve significant memory and computa-
tional savings. While prior work has studied layer
representation similarities, our approach uniquely
exploits the quantization-enhanced similarities to
enable effective ultra-low-bit compression.

3 XQuant

In this section, we present XQuant, a novel quan-
tization framework for efficient KV cache com-
pression. As illustrated in Figure 1, our frame-
work introduces two key innovations: a data-free
calibration technique that asymmetrically adjusts
quantization parameters without additional calibra-
tion data, and a cross-layer KV cache compression
mechanism that leverages the similarity of quan-
tized caches between adjacent layers to effectively
reduce both computational and memory overhead.

3.1 Background

To formalize KV cache quantization, we consider
a group of floating-point keys or values X. The
quantization process transforms X into three
components: a B-bit quantized cache XQ, a
zero-point z, and a scaling factor s (Liu et al.,
2024b):

Quantization Phase:

z = min(X), s =
max(X)−min(X)

(2B − 1)
(1)

XT = (X− z)/s,XQ = ⌈XT⌋ (2)

Dequantization Phase:

X̂ = XQ ∗ s+ z (3)

where X∗ is the dequantized counterpart and ⌈·⌋
is the rounding function. XT, the transformed
matrix, is not explicitly cached but is introduced
as an intermediate variable to facilitate subsequent
mathematical derivations.

9787

Prefill L

Calibration

Compression

Decode L

Prefill L+1
Decode L+1

CalibrationQuantization

Quantization Original scaling factor and zero point

Calibrated scaling factor and zero point

Quantized cache shared between layers

Speedup

Figure 1: The illustration of XQuant workflow. XQuant partitions the KV cache into layer-wise pairs. For every
higher layer in a pair, XQuant only computes and stores the scaling factors and zero-points during quantization
phase, and then fetches the quantized cache from the lower layer during dequantization phase.

Building upon this framework, prior works in-
troduce various configurations to enhance perfor-
mance. For example, Liu et al. (2024b) focuses on
the element-wise distribution within the KV cache,
adopting per-channel quantization for the key cache
and per-token quantization for the value cache.
Similarly, Tao et al. (2024) introduces layer-wise
quantization configurations, employing asymmet-
ric bit-widths for the key and value caches across
different layers. While effective, these approaches
often suffer from significant performance degra-
dation under low-bit quantization settings, partic-
ularly around 2-bit precision. This limitation mo-
tivates the need for further advancements in KV
cache compression techniques.

3.2 Data-Free Calibration

Since existing quantization methods often experi-
ence significant performance degradation at 2-bit
precision, achieving ultra-low-bit compression first
requires bridging this performance gap. In this sec-
tion, we propose a data-free calibration method that
effectively preserves model performance, enabling
more aggressive compression ratios.

To analyze extreme quantization scenarios, we
start with 1-bit quantization where each parameter
is constrained to a binary state. Formally, the round-
to-nearest operation ⌈·⌋ is defined as:

⌈e⌋ =
{
0 if e ∈ [0, 0.5],

1 if e ∈ (0.5, 1].
(4)

where e denotes an element of the transformed ma-
trix. For any bit-width B, this rounding operation
maps values to a discrete set within [0, 2B − 1],
where each original value is assigned to its nearest
representative in the quantized space. As shown

in Figure 2(a), fixed representative values at end-
points (0 and 1) yield substantial quantization error
for 1-bit quantization. We therefore introduce a
relaxed-constraint mapping function that adaptively
determines the quantization levels, formulated as:

f(e, η) =

{
η if e ∈ [0, 0.5],

1− η if e ∈ (0.5, 1].
(5)

where η ∈ [0, 0.5] serves as a calibration parameter
for determining quantization tendencies. Clearly,
f(e, 0) is equivalent to the round-to-nearest func-
tion ⌈e⌋. We extend this formulation to the general
case of B-bit quantization and denote the corre-
sponding parameter as ηB .

We relax the constraint that quantized values
must be integers and apply fake quantization as a
preliminary experiment. Table 7 shows that using
this constraint-relaxed mapping function improves
model performance, validating our proposed in-
sight.

However, storing floating-point numbers as so-
called quantized caches is impractical, as shown in
Figure 2(b). To address the aforementioned prob-
lem, we establish an equivalent implementation,
with the mathematical proof provided below. We
formalize the final data-free calibration approach
as:

Consider a group of floating-point keys or values
X ∈ Rg, where g stands for the group size. Note
that X ∈ [min(X),max(X)]g = [z, s ∗ (2B −
1) + z]g, we can deduce:

XQ ∈ [0, 2B − 1]g (6)

from Equation 1 and Equation 2. If we choose
η ∗ (2B − 1) and (1 − η) ∗ (2B − 1) generalized

9788

Xmin=z Xmaxs

XQ

X

X

z, s

Quantization

Dequantization with
z, s

^

0 1
(a)

Standard
Quantization

✅ High Hardware Compatibility
❌ High Quantization Error

Xmin=z Xmaxs

XQ

X

X

z, s
0 1𝜂 1 − 𝜂

Relaxed-Constraint
MappingFloating-point

Storage

Quantization

Dequantization with
z, s

^

(b)
Relaxed-

Constraint
Quantization

❌ Low Hardware Compatibility
✅ Low Quantization Error

s
Xmin=z Xmax

XQ

X

Quantization

Dequantization with
z, s

X

z, s Interger-only
StorageCalibration

^

^ ^

0 1

(c)
Quantization

with
Calibration

✅ High Hardware Compatibility
✅ Low Quantization Error

Figure 2: The illustration of the proposed data-free
calibration method.

from Equation 5 as two endpoints, it is equivalent
to calibrate the zero-point and scaling factor to ẑ
and ŝ, and then dequantize with them. Note that
the dequantized matrix

X̂ = XQ∗ ŝ+ ẑ ∈ [ŝ∗0+ ẑ, ŝ∗(2B−1)+ ẑ]g (7)

and the corresponding interval given by two end-
points:

[z + ηs(2B − 1), z + s(2B − 1)(1− η)] (8)

By calculation we get the final operations for cali-
bration:

ẑ = z + ηs(2B − 1), ŝ = (1− 2η)s (9)

Since XT = (X− z)/s, the reconstruction loss
MSE(X, X̂) = s2 ·MSE(XT, f(XT, η)). For
analytical tractability, particularly for 1-bit quan-
tization within small group sizes, we can assume
that XT ∼ U(0, 1). Thus the expected MSE in the

Figure 3: Layer-wise analysis of absolute differences
between adjacent layers in quantized KV Cache matri-
ces. Here, delta represents the absolute difference of
quantized values between consecutive layers.

transformed space can be formulated as:

MSE(XT, f(XT, η))

= E[(XT − f(XT , η))
2]

=

∫ 0.5

0
(x− η)2dx+

∫ 1

0.5
(x− (1− η))2dx

= η2 − 1

2
η +

1

12

Since the standard quantization scheme is equiv-
alent to setting η = 0, this result confirms that
any value of η ∈ (0, 1/2) will strictly reduce the
theoretical reconstruction error.

As shown in Figure 2(c), we propose the
improved quantization scheme with this data-free
calibration as follows:

Quantization Phase with Calibration:

z = min(X), s =
max(X)−min(X)

(2B − 1)
(10)

XT = (X− z)/s,XQ = ⌈XT⌋ (11)

ẑ = z + ηs(2B − 1), ŝ = (1− 2η)s (12)

Dequantization Phase with Calibration:

X̂ = XQ ∗ ŝ+ ẑ (13)

3.3 Cross-Layer Compression

3.3.1 Motivation
Building upon Tao et al. (2024)’s investigation of
ultra-low-bit KV cache asymmetric quantization,
our reproduction experiments on LongBench (Bai

9789

et al., 2023) with Mistral (Jiang et al., 2023) demon-
strate severe limitations of existing approaches, as
shown in Table 8.

We found that 1-bit asymmetric quantization of
the key cache is practically infeasible. Even when
restricting 1-bit quantization to the top 8 layers
(AsymKV-24/32), significant performance degra-
dation occurs. Given the limitations of further key
cache quantization, we turn to cross-layer compres-
sion techniques as a viable alternative to achieve
comparable ultra-low-bit quantization without com-
promising performance.

3.3.2 Analysis on Quantized KV Cache
To enable cross-layer compression, we first analyze
the characteristics of quantized KV caches by ex-
amining inter-layer similarities. We hypothesize
that significant redundancy between adjacent lay-
ers could create opportunities for more aggressive
compression. Using the KIVI-2 framework (Liu
et al., 2024b), we conduct preliminary experiments
on the Mistral-7B-Instruct-v0.2 model (Jiang et al.,
2023) with random samples from LongBench (Bai
et al., 2023).

Under the 2-bit quantization scheme in KIVI-2,
quantized cache values are restricted to {0, 1, 2,
3}, naturally constraining element-wise absolute
differences to the same range. Our analysis, illus-
trated in Figure 3, reveals a striking pattern: over
80% of positions between adjacent layers exhibit
minimal differences (0 or 1), while extreme differ-
ences (3) occur in less than 5% of positions. This
pattern becomes even more pronounced in the 1-bit
scenario, where mapping {0,1} to 0 and {2,3} to 1
maintains identical values in over 80% of positions
between adjacent layers. These empirical findings
demonstrate substantial redundancy in quantized
KV caches between adjacent layers, suggesting
significant potential for further compression.

3.3.3 Compression Algorithm
Leveraging these insights into inter-layer similar-
ities, we propose a novel cross-layer compres-
sion method that decomposes KV caches into two
components: shared quantized caches and layer-
specific parameters. Specifically, adjacent layers
share a common set of quantized value caches
(XQ), while maintaining their individual scaling
factors and zero-points for dequantization. This
decomposition enables efficient compression by al-
lowing each layer to reuse the merged cache from
its group, while preserving the layer-specific char-

Model Method Bit-width TruthfulQA

Mistral-7b

Full Cache 16 32.09
KIVI 2 32.17
AsymKV 1.5 32.80
XQuant 1.38 34.93

Llama2-7b

Full Cache 16 30.77
KIVI 2 33.92
AsymKV 1.5 33.84
XQuant 1.4 34.22

Table 1: Evaluation on TruthfulQA task with normal
context length.

acteristic through its unique quantization parame-
ters, namely zero-points and scaling factors.

In the implementation, for a model with L lay-
ers, we organize the layers into groups of size G.
Within each group, KV caches are compressed us-
ing weighted averaging, where each layer l (0 ≤
l ≤ L) is assigned a weight γl, subject to the con-
straint

∑
γl = 1.

Formally, for every layer l in a group G, the
quantization workflow with cross-layer compres-
sion and calibration is utilized as follows:

Quantization Phase with Cross-Layer Com-
pression and Calibration:

∀l ∈ G,

zl = min(Xl), sl =
max(Xl)−min(Xl)

(2B − 1)

ẑl = zl + ηsl(2
B − 1), ŝl = (1− 2η)sl

XQ =
∑

l∈G
γl

⌈
Xl − zl

sl

⌋

Dequantization Phase with Cross-Layer Com-
pression and Calibration:

X̂l = XQ ∗ ŝl + ẑl

We present the pseudo code for the whole work-
flow as shown in Appendix J.

3.3.4 Speedup through Cross-layer
Compression

While our previous discussion introduced weighted
averaging with the weight γ for compressing XQ

within a group, we can further optimize the com-
putation by setting γk = 1 for a chosen dominant
layer k, which consequently forces all other γ val-
ues within the group to zero. In this accelerated
configuration, each subordinate layer only needs

9790

Model Method Bit-width HQA 2Wiki MSQ TREC TQA SAMS PC Avg

Mistral-7b-ins

Full Cache 16 43.02 27.10 18.78 71.00 86.23 42.75 2.75 41.66
PyramidInfer / 35.08 23.92 16.90 62.00 85.06 41.45 1.04 32.55
KIVI 2 41.96 26.08 18.13 71.00 86.00 43.70 2.78 41.38
AsymKV 1.5 37.17 22.77 15.76 70.50 86.25 43.44 3.16 39.86
XQuant 1.38 42.90 26.65 17.44 71.50 84.50 45.18 5.71 41.98

Llama2-7b-chat

Full Cache 16 30.09 26.48 9.98 63.00 84.19 41.22 4.50 37.07
PyramidInfer / 29.14 24.53 7.49 54.00 81.79 40.71 4.00 34.52
KIVI 2 29.10 25.12 9.86 63.00 84.98 40.18 4.00 36.61
AsymKV 1.5 27.75 24.82 8.45 62.00 84.21 41.22 2.75 35.89
XQuant 1.4 29.21 25.56 9.69 62.50 84.57 40.01 4.00 36.51

Table 2: Evaluation of different KV cache compression methods on LongBench tasks.

to compute and store its own scaling factors and
zero-points, significantly reducing computational
overhead. Specifically,

XQ =

⌈
Xk − zk

sk

⌋

As illustrated in Figure 1, this optimization elim-
inates the computations shown in the dashed line,
effectively streamlining the process. Experimen-
tal results show that selecting the first layer within
the group as the dominant layer yields optimal per-
formance, as demonstrated in Table 4 and Table
5.

4 Evaluation

4.1 Experimental Setup
Models. We evaluate our XQuant on Llama-2-
7b / Llama-2-7b-chat (Touvron et al., 2023) and
Mistral-7B-v0.3 / Mistral-7B-instruct-v0.2 (Jiang
et al., 2023).

Tasks. For the normal context length task, we
choose TruthfulQA (BLEU score) from LM-Eval
(Gao et al., 2021). We also select several sub-
sets from LongBench (Bai et al., 2023) for the
long context length tasks, including HotpotQA (F1
score), 2WikiMultihopQA (F1 score), MuSiQue
(F1 score), TREC (classification accuracy), Trivi-
aQA (F1 score), SAMSum (Rouge-L) and Passage-
Count (Exact match accuracy). MultiFieldQA-Zh
(F1 score) is selected for some ablation studies as
well.

Baselines and Implementations. We compare
our framework with previous works, including orig-
inal 16-bit floating implementation, KIVI-2 (Liu
et al., 2024b) and AsymKV (Tao et al., 2024).
All relevant configurations adhere as in KIVI, i.e.,
quantizing key cache per-channel and value cache

per-token, and with a group size of 32 and a resid-
ual length of 128. We reproduce AsymKV based
on the official implementation of KIVI, with a typ-
ical configuration (AsymKV-32/0) selected from
the original paper, i.d., quantizing all the key cache
into 2-bit and value cache into 1-bit, which corre-
sponds to an equivalent bit-width of 1.5.

A token eviction method (Yang et al., 2024b),
configured with a 40% KV cache budget, is also
included as a baseline for the LongBench tasks.

We set the maximum sequence length to 30000
for the Mistral model to conduct our experiments
with a single NVIDIA GeForce RTX 3090 GPU
(24GB), and 8192 for the Llama model as default.
We do not consider SLERP (Shoemake, 1985; Liu
et al., 2024a) because of the incompatibility be-
tween rescale-recover operations and quantized
cache.

4.2 Performance Comparison

LM-Eval Results. Table 1 presents the evalua-
tion of different quantization methods on the Truth-
fulQA task with a standard context length. XQuant
not only achieves competitive performance but
surpasses the full cache baseline, with a Truth-
fulQA score of 34.93 on Mistral-7b and 34.22 on
Llama2-7b, outperforming all other methods at sig-
nificantly lower bit-widths. These results highlight
that XQuant provides superior performance in con-
ventional context length settings.

LongBench Results. We evaluate XQuant on the
LongBench benchmark using two widely adopted
models: Mistral-7b-Instruct-v0.2 and Llama-2-7b-
chat. As shown in Table 2, XQuant achieves sig-
nificant improvements over other KV cache com-
pression methods, particularly under ultra-low-bit
settings.

In all datasets of LongBench, XQuant achieves

9791

Method Bit-width η1 η2 MFQA-Zh
Full Cache 16 / / 48.26
KIVI 2 / 0 42.27
AsymKV 1.5 0 0 36.30

XQuant 1.375

0 0 37.20
0 0.05 40.32

0.2 0 41.98
0.2 0.05 44.20

Table 3: Ablation study on the effect of data-free cali-
bration in XQuant on the MultiFieldQA-Zh benchmark
from LongBench.

Method Bit-width γ0 MuSiQue
Full Cache 16 / 18.78
KIVI 2 / 18.13
Flooring 1.63 / 16.79
Ceiling 1.63 / 16.36

Weighted Average

1.63 [0,1/6) 12.20
1.63 (1/6,1/4) 14.05
1.63 (1/4,1/2) 16.84
1.63 (1/2,3/4) 17.32
1.63 (3/4,5/6) 17.60
1.63 (5/6,1] 17.32

Table 4: The comparison between different cross-layer
compression method with group size G = 2, where
γ0, γ1 stands for the coefficient in the weighted average
(γ1 + γ0 = 1).

performance comparable to the full cache base-
line while reducing bit-width by 31% compared to
KIVI-2bit. Notably, XQuant achieves an average
score of 41.98 for Mistral, surpassing KIVI-2bit
while maintaining a significantly lower bit-width of
1.38. Moreover, XQuant outperforms AsymKV on
nearly all datasets while simultaneously reducing
bit-width by 8% relative to AsymKV. Additionally,
compared to PyramidInfer, which sacrifices preci-
sion to reduce storage overhead, XQuant demon-
strates clear advantages in maintaining high accu-
racy across tasks while achieving lower bit-width.

4.3 Ablation and Analysis

In this section, we conduct ablation studies in some
randomly selected lightweight LongBench subsets.

Calibration Parameter. Table 3 presents an abla-
tion study on the impact of data-free calibration in
XQuant on the MultiFieldQA-Zh benchmark. The
results indicate that applying calibration (η1 ̸= 0
or η2 ̸= 0) significantly improves XQuant’s perfor-
mance, reducing the performance gap with the full
cache baseline.

Method Bit-width G k MSQ MFQA-Zh
Full Cache 16 / / 18.78 48.26
KIVI 2 / / 18.13 42.27

0 17.32 37.44
2

1 12.20 20.48
0 14.92 17.53
1 16.97 37.373

2 13.21 20.80
0 14.82 23.53
1 12.44 18.68
2 16.12 35.48

XQuant 1.63

4

3 15.39 20.32

Table 5: The comparison of different group sizes G and
selection indices k within each group, where XQuant
is employed without the calibration step for a clearer
analysis.

Cross-Layer Compression Method. We further
explore the weighted average with a group size
G = 2 and coefficients γ0, γ1 = 1 − γ0, where
γ0 falls into six intervals derived in Appendix F.
Notably, when γ0 ∈ [0, 1/6) or γ0 ∈ (5/6, 1],
the operation is optimized to directly sharing the
quantized cache. We evaluate KIVI-2 on Mistral-
7B-Instruct-v0.2 without our proposed calibration
methods starting from the 8-th layer. As summa-
rized in Table 4, the accelerated compression meth-
ods (γ0 ∈ [0, 1/6) ∪ (5/6, 1]) avoid redundant op-
erations seen in the workflow of Liu et al., 2024b,
which rounds quantized integers into floating-point
numbers. As shown in Table 4, the accelerated com-
pression operation demonstrates its effectiveness in
maintaining sufficient information for model per-
formance, particularly when γ0 ∈ (5/6, 1]. This
configuration effectively allows odd-numbered lay-
ers to reuse the quantized cache from the preceding
even-numbered layers without requiring additional
quantization or storage overhead for odd-numbered
layers.

We adopt this accelerated compression strategy
across all experiments due to its favorable balance
between computational efficiency and information
preservation.

Group Size. After optimizing the cross-layer
compression method, another factor is the group
size. To investigate the effects of layer grouping,
we partition the total L layers of a model (where
L = 32 for Mistral-7B and Llama 2-7B) into L/G
contiguous groups of size G. The parameter k indi-
cates that we store and share the quantized cache

9792

Method Bit-width TREC SAMS
Full Cache 16 71 42.75
KIVI 2 71 43.7
AsymKV 1.5 70.5 43.44
AsymKV 1.375 69.5 42.76
XQuant 1.375 71.5 45.18
AsymKV 1.28 58.5 37.41
XQuant 1.28 68.5 39.84
AsymKV 1.15625 41 23.47
XQuant 1.15625 68.5 39.47

Table 6: The comparison of different configurations
under extremely-low compression ratio.

only in the k-th layer of each group. We evaluate
group sizes G ∈ {2, 3, 4}. This range is motivated
by the empirical observation that while adjacent
layers exhibit high similarity in their quantized rep-
resentations (i.e., G = 2, as shown in Figure 3),
this similarity diminishes gradually for layer dis-
tances greater than three. For models with L = 32
layers, G = 4 thus serves as a sufficient upper
bound for investigation due to this diminishing sim-
ilarity. We set all configurations under the same
compression ratio, namely keep all layers in key
cache and 20 layers in value cache based on KIVI-
2bit framework, using Mistral-7b-instruct-v0.2. As
shown in Table 5, the model achieves the best per-
formance with the configuration of G = 2 and
k = 0.

Performance-Compression Trade-offs. Table
6 evaluates the trade-offs between bit-width re-
duction and performance degradation across dif-
ferent quantization methods. As shown in Table
6, XQuant consistently outperforms other methods
at the same bit-width, achieving higher scores on
both TREC and SAMS benchmarks. Notably, even
at an extremely low bit-width of 1.15625, XQuant
preserves a significant portion of the model’s per-
formance, maintaining a TREC score of 68.5 com-
pared to the full-cache baseline of 71. These re-
sults demonstrate that XQuant effectively balances
performance retention and compression, achieving
state-of-the-art trade-offs in ultra-low-bit KV cache
quantization.

5 Conclusion

To alleviate the growing memory overhead in LLM
inference, we propose XQuant, a plug-and-play
framework that quantizes KV cache at an extreme
compression ratio. Based on our observations on
classical training-free quantization and the distribu-

tions of quantized integers, we propose a data-free
calibration method and a compute-efficient cross-
layer compression method. Extensive experiments
show that XQuant achieves state-of-the-art trade-
offs between performance degradation and com-
pression ratio, without sacrificing computational
efficiency. Integrating these two novel methods,
our XQuant achieves comparable performance with
full-precision baseline under 1.4-bit quantization,
and still maintains competitive performance for
some tasks around an extremely 1.16-bit quantiza-
tion.

Limitations and Future Work

Our work presents several avenues for future explo-
ration. First, while XQuant demonstrates promis-
ing results on representative models and bench-
marks, its robustness and generalizability could
be further validated by extending evaluations to
a wider range of newer-generation or larger-scale
models and more diverse downstream scenarios.
Second, our current work relies on task-specific
configurations. Although a unified setting proves
robust (as shown in Appendix E), the develop-
ment of an automated method to search for op-
timal configurations presents a valuable direction
for future research. Finally, the key innovations
of XQuant — Data-Free Calibration and Cross-
layer Compression — are in principle orthogonal to
other KV cache compression paradigms. A fruitful
area for future work would be to investigate their
compatibility and potential synergies with these
existing methods, potentially yielding even greater
efficiency gains.

Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China (Grant No.
62306216) and the Natural Science Founda-
tion of Hubei Province of China (Grant No.
2023AFB816).

Hai Zhao’s contribution was funded by the Major
Program of the Chinese National Foundation of
Social Sciences under Grant "The Challenge and
Governance of Smart Media on News Authenticity"
[No. 23&ZD213].

The authors also gratefully acknowledge sup-
port from the Xiaomi Open-Competition Research
Program.

9793

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury

Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895–
4901, Singapore. Association for Computational Lin-
guistics.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119–3137. Association for
Computational Linguistics.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. 2024. Reducing transformer key-value cache
size with cross-layer attention. arXiv preprint
arXiv:2405.12981.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic
kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: Accurate post-training
compression for generative pretrained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
et al. 2021. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept, 10:8–9.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant:
Towards 10 million context length llm inference
with kv cache quantization. arXiv preprint
arXiv:2401.18079.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87–100.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3214–3252. Association for
Computational Linguistics.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-
reza Haffari, and Bohan Zhuang. 2024a. Minicache:
Kv cache compression in depth dimension for large
language models. arXiv preprint arXiv:2405.14366.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. Kivi: A tuning-free asymmetric 2bit
quantization for kv cache. ArXiv, abs/2402.02750.

Shi Luohe, Zuchao Li, Lefei Zhang, Baoyuan
Qi, Liu Guoming, and Hai Zhao. 2025. KV-
latent: Dimensional-level KV cache reduction with
frequency-aware rotary positional embedding. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1535–1550, Vienna, Austria.
Association for Computational Linguistics.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.
Comprehensive cognitive llm agent for smartphone
gui automation. arXiv preprint arXiv:2402.11941.

Ziyang Ma, Zuchao Li, Lefei Zhang, Gui-Song Xia,
Bo Du, Liangpei Zhang, and Dacheng Tao. 2025.
Model hemorrhage and the robustness limits of large
language models. arXiv preprint arXiv:2503.23924.

Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng
Wang. 2023. Llm is like a box of chocolates: the non-
determinism of chatgpt in code generation. arXiv
preprint arXiv:2308.02828.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,

9794

https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://api.semanticscholar.org/CorpusID:267413049
https://api.semanticscholar.org/CorpusID:267413049
https://doi.org/10.18653/v1/2025.acl-long.77
https://doi.org/10.18653/v1/2025.acl-long.77
https://doi.org/10.18653/v1/2025.acl-long.77

Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Nikhil Sharma, Q Vera Liao, and Ziang Xiao. 2024.
Generative echo chamber? effect of llm-powered
search systems on diverse information seeking. In
Proceedings of the CHI Conference on Human Fac-
tors in Computing Systems, pages 1–17.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and
Hai Zhao. 2024. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption.
arXiv preprint arXiv:2407.18003.

Ken Shoemake. 1985. Animating rotation with quater-
nion curves. In Proceedings of the 12th annual con-
ference on Computer graphics and interactive tech-
niques, pages 245–254.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. arXiv
preprint arXiv:2405.05254.

Zicong Tang, Shi Luohe, Zuchao Li, Baoyuan Qi,
Liu Guoming, Lefei Zhang, and Ping Wang. 2025.
SpindleKV: A novel KV cache reduction method bal-
ancing both shallow and deep layers. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 28428–28442, Vienna, Austria. Association
for Computational Linguistics.

Qian Tao, Wenyuan Yu, and Jingren Zhou. 2024.
Asymkv: Enabling 1-bit quantization of kv cache
with layer-wise asymmetric quantization configura-
tions. arXiv preprint arXiv:2410.13212.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv
cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyramid
KV cache compression for high-throughput LLM
inference. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 3258–
3270. Association for Computational Linguistics.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024b. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. arXiv preprint arXiv:2405.12532.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. 2024c. No token
left behind: Reliable KV cache compression via
importance-aware mixed precision quantization.
CoRR, abs/2402.18096.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo
Qin, Dongjie Yang, Hai Zhao, and Zhi Chen.
2024d. Kvsharer: Efficient inference via layer-
wise dissimilar kv cache sharing. arXiv preprint
arXiv:2410.18517.

Yao Yao, Zuchao Li, and Hai Zhao. 2024. Sirllm:
Streaming infinite retentive llm. arXiv preprint
arXiv:2405.12528.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.
H2o: Heavy-hitter oracle for efficient generative
inference of large language models. Advances in
Neural Information Processing Systems, 36:34661–
34710.

9795

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2025.acl-long.1380
https://doi.org/10.18653/v1/2025.acl-long.1380
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096
https://doi.org/10.48550/ARXIV.2402.18096

Method Bit-width η1 η2 MFQA-Zh
Full Cache 16 / / 48.26
KIVI 2 / 0 42.27
KIVI 2 / 0.05 44.34
AsymKV 1.5 0 0 36.30
AsymKV 1.5 0 0.05 41.28
AsymKV 1.5 0.2 0 42.78
AsymKV 1.5 0.2 0.05 43.81

Table 7: The comparison using different quantization
methods with and without our calibration method in
MultiFieldQA-Zh tasks from LongBench.

A Preliminary Study on
Relaxed-Contraint Mapping

As demonstrated in Figure 2, the traditional quan-
tization workflow faces higher quantization error
in low-bit scenarios. In Section 3.2, we propose a
flexible mapping to mitigate the quantization error
in this aspect. Moreover, to provide empirical evi-
dence supporting the effectiveness of the flexible
mapping in the proposed calibration method, we
employ its generalized form and conduct a prelimi-
nary study on the default KIVI-2bit and AsymKV-
32/0 configurations. We extend this approach to a
generalized B-bit quantization mechanism, where
ηB serves as the corresponding parameter. Notably,
when ηB = 0, the B-bit quantization operates with-
out the flexible mapping.

The results in Table 7 demonstrate that incor-
porating the flexible mapping function enhances
model performance across different quantization
settings.

B Preliminary Experiment on Layer-Wise
Asymmetric Quantization

In the existing method (Tao et al., 2024), the KV
cache for each layer is quantized using either 1-bit
or 2-bit precision. A straightforward strategy to
maximize the compression ratio is to apply 1-bit
quantization to a greater number of layers.

However, a significant bottleneck arises, as it
is nearly impossible to quantize the key cache at
1-bit precision without compromising performance.
As shown in Table 8, further compression by in-
creasing the number of 1-bit quantized key cache
layers is not feasible, as it leads to substantial per-
formance degradation. This observation motivates
us to explore alternative compression methodolo-
gies.

Method Bit-width # Key Layers in 1-bit MFQA-Zh
Full Cache 16 / 48.26
KIVI (32/32) 2 0 42.27
AsymKV-24/32 1.875 8 37.10
AsymKV-16/32 1.75 16 21.36
AsymKV-8/32 1.625 24 13.16
AsymKV-0/32 1.5 32 7.66

Table 8: Evaluation on LongBench based on AsymKV
shows that the key cache is nearly impossible to quan-
tized under 1-bit.

C Equivalent Bit-width Analysis

Formally, let b, h, s, d be the batch size, the num-
ber of heads in GQA (Ainslie et al., 2023), the
sequence length and the dimension per head. The
original L layers of KV cache occupies 2L∗bhsd∗
16 bit, which equals to 2L ∗ n ∗ 16 bit if we set
n = bhsd for convenience.

Consider a typical KV cache quantization
scheme (Liu et al., 2024b). If we quantize all L
layers of key cache and value cache into b-bit, the
quantized KV cache memory usage is 2L∗n∗b bit.
Tao et al., 2024 uses a asymmetrical configura-
tions for key and value caches across different lay-
ers. In their paper, Asym-lk/lv means quantizing
the initial lk layers of key cache and lv of value
cache into 2-bit, and quantizating 1-bit for oth-
ers. So the quantized KV cache memory usage is
(2 ∗ lk +(32− lk)+2 ∗ lv +(32− lv)) ∗n bit. For
example, Asym-1.5bit stands for Asym-32/0 in our
paper, which can be calculated to 3L ∗ n bit and
can be equivalently considered as a 1.5-bit symmet-
rical quantization for better understanding of the
compression ratio.

The related parameters in XQuant are kq,
vq, km, and vm. The equivalent bit-width
B can be expressed as follows: B =
((32 − max(kq, km))/2 + (max(kq, km) −
min(kq, km))+(max(kq, km)+min(kq, km))∗
2 + (32 − max(vq, vm))/2 + (max(vq, vm) +
min(vq, vm))+(max(vq, vm)+min(vq, vm))∗
2)/64.

In the classical configuration in our paper, kq =
30, vq = 2, km = 32, and vm = 16, in key
cache we apply 2-bit quantization to the layers
[0, kq) and 1-bit quantization to the layers [kq, 32),
and cross-layer compression to the layers [km, 32).
The value cache is processed in the same manner.
Therefore, the equivalent bit-widths of the key and
value caches are computed as follows:

Bk =
(32− 30) + 30 ∗ 2

32
= 1.9375

9796

18000

18500

19000

19500

20000

20500

21000

21500

22000

KIVI Xquant

21842ms

18807ms

(2-bit) (1.38-bit, Ours)

Figure 4: Comparison of Execution Time.

Bv =
(32− 16)/2 + (16− 2) + 2 ∗ 2

32
= 0.8125

The average bit-width is therefore 1.375, which
appears as 1.38 in most parts of this paper. More
parameter sets used in our experiments are listed in
Appendix I.

To maintain consistency with seminal works
(e.g., KIVI (Liu et al., 2024b) and GPTQ (Frantar
et al., 2022)), our reported "equivalent bit-width"
for asymmetrical quantization methods considers
only the quantized integer tensors, excluding meta-
data overhead like scaling factors and zero-points.
The comparisons remain rigorous, as all evaluated
quantization methods were implemented with iden-
tical group sizes and residual lengths. This ensures
the unaccounted overhead is uniform across all
methods and does not affect their relative perfor-
mance rankings.

D Efficiency analysis

Using Mistral-7B as an example, we theoretically
analyze the computational cost of our two key im-
provements. During the calibration step, generat-
ing each token incurs only 64 additional floating-
point multiplications and 32 additions (Equation
12), which are negligible in practice. Moreover, as
described in Section 3.3.4, the cross-layer com-
pression step optimizes efficiency by skipping cer-
tain parts of the quantization process (Equation 2).

To evaluate inference efficiency, we adopt the
same experimental setup as implemented in KIVI’s

repository, using a batch size of 16, a prompt length
of 1024, and an output length of 128. As shown in
Figure 4, XQuant, by leveraging its unique speedup
mechanism, demonstrates competitive inference
efficiency.

E Hyperparameter

The related parameters in XQuant are kq, vq, km,
and vm. In XQuant, we quantize the lower kq,
vq layers of key and value cache into 2-bit, while
quantizing others into 1-bit. We apply cross-layer
compression from the km th, vm th layer of key
and value cache. All the configurations are summa-
rized in Table 11.

As demonstrated in Table 9, additional experi-
ments on the Mistral-7B-Instruct model using the
LongBench benchmark show that XQuant, with a
fixed η1 = 1/6 and η2 = 0.045, consistently de-
livers strong performance as well. These results
suggest that this fixed set of hyperparameters are
robust and can generalize effectively across differ-
ent datasets. Therefore, task-specific hyperparam-
eter tuning is superior but not necessary, and the
method can achieve reliable performance with a
fixed, pre-selected set of hyperparameters.

F Cross-Layer Compression Strategy

Under 2-bit quantization, the values in the KV
cache are restricted to the discrete integer set
{i ∈ Z | 0 ≤ i ≤ 3}. Therefore, a rounding
operation is required after weighted averaging. If
standard rounding-to-nearest is applied, the range
of γ0 can be divided into six disjoint intervals, as
summarized in Table 4. The derivation is as fol-
lows:

Let e0 and e1 denote the B-bit quantized values
at the same position in adjacent layers of XQ. Then
the merged value em after cross-layer compression
is computed as:

em =

⌊
γ0e0 + γ1e1
γ0 + γ1

⌉

= ⌊γ0e0 + (1− γ0)e1⌉
= e1 + ⌊γ0(e0 − e1)⌉ .

Without loss of generality, assume e0 ≥ e1 and
define δ = e0 − e1 ≥ 0. Then we have:

em = e1 + ⌊γ0δ⌉ , (14)

where γ0 ∈ [0, 1] and δ ∈ Z ∩ [0, 3]. Since γ0δ ∈
[0, δ], the rounding term ⌊γ0δ⌉ in Eq. 14 can only

9797

Method Bit-width Hyperparameters HQA 2Wiki MSQ TREC TQA SAMS PC Avg
Full Cache 16 / 43.02 27.10 18.78 71.00 86.23 42.75 2.75 41.66
AsymKV 1.5 / 37.17 22.77 15.76 70.50 86.25 43.44 3.16 39.86
XQuant 1.38 Task-specific 42.90 26.65 17.44 71.50 84.50 45.18 5.71 41.98
XQuant 1.38 Static 42.64 25.16 16.91 70.50 84.50 42.64 4.57 40.99

Table 9: Evaluation of different KV cache compression methods using static hyperparameters setting.

take δ + 1 discrete values. Let ⌊γ0δ⌉ = c, where
c ∈ Z ∩ [0, δ]. Then:

γ0δ ∈
(
c− 1

2
, c+

1

2

)
∩ [0, δ], (15)

which yields the following constraint for γ0, when
δ > 0:

γ0 ∈
(
c− 1/2

δ
,
c+ 1/2

δ

)
∩ [0, 1]. (16)

We now enumerate all valid combinations of δ
and c from Equation 16:

• δ = 0: Only one possible value exists; trivial
case omitted.

• δ = 1:

• c = 0: γ0 ∈ [0, 1/2)

• c = 1: γ0 ∈ (1/2, 1]

• δ = 2:

• c = 0: γ0 ∈ [0, 1/4)

• c = 1: γ0 ∈ (1/4, 3/4)

• c = 2: γ0 ∈ (3/4, 1]

• δ = 3:

• c = 0: γ0 ∈ [0, 1/6)

• c = 1: γ0 ∈ (1/6, 1/2)

• c = 2: γ0 ∈ (1/2, 5/6)

• c = 3: γ0 ∈ (5/6, 1]

Collectively, this yields six effective intervals of
γ0, as summarized in Table 4.

G Comparison with Other Cross-Layer
Compression Methods

Several prior works have explored inter-layer re-
dundancy from different perspectives. To elimi-
nate potential confusion, we clarify several key
distinctions and highlight innovations as follows:
(a) Most existing methods compute KV caches at
a subset of layers. However, these approaches re-
quire additional training steps and, in some cases,

Method Bit-width 2Wiki HQA
Full Cache 16 58.20 61.88
AsymKV 1.4 38.55 44.69
XQuant 1.4 54.16 57.44

Table 10: Comparison of XQuant with Full Cache
and AsymKV on the Qwen2.5-14B model using the
LongBench benchmark.

even full retraining, significantly limiting scala-
bility. In contrast, XQuant is designed as a plug-
and-play solution that leverages deeper insights
to enable effective redundancy reduction without
any additional training. (b) XQuant is the only
method that explicitly considers inter-layer redun-
dancy through the lens of quantization. After quan-
tization, the KV cache is decomposed into three
components: the quantized cache, zero-points, and
scaling factors. We demonstrate that the quantized
cache, consisting solely of integers, exhibits sub-
stantial inter-layer similarity. Meanwhile, the zero-
points and scaling factors, which require minimal
storage, are retained individually to preserve per-
layer characteristics without being compressed. (c)
MiniCache (Liu et al., 2024a) is another training-
free method that primarily introduces a retention-
recovery mechanism for cache magnitudes and un-
mergable tokens. However, such operations are not
directly compatible in mainstream open-source KV
quantization frameworks. Furthermore, its use of
the SLERP function imposes several constraints,
making it inapplicable to quantized caches, which
fundamentally differs from XQuant.

H Evaluation on Qwen2.5-14B

As shown in Table 10, we evaluated XQuant on a
larger-scale and newer-generation model, Qwen2.5-
14B (Qwen et al., 2025), using the LongBench
benchmark. The results demonstrate that XQuant
generalizes well to different models, maintaining a
superior trade-off between model performance and
compression ratio.

9798

Model Dataset kq vq km vm eta1 eta2
Mistral-7b-v0.3 TruthfulQA 30 2 32 16 0 0

Mistral-7b-instruct-v0.2

HQA 30 2 32 16 1/6 0.045
2Wiki 32 0 32 16 0 0.09
MSQ 32 0 32 16 1/6 0
TREC 30 2 32 16 1/6 0
TQA 30 2 32 16 1/6 0.09
SAMS 30 2 32 16 0 0
PC 32 0 32 16 0 0.045

Llama2-7b TruthfulQA 28 0 32 28 1/3 0

Llama2-7b-chat

HQA 28 0 32 28 1/6 0.045
2Wiki 28 0 32 28 1/3 0.045
MSQ 28 0 32 28 1/3 0
TREC 32 0 32 20 1/6 0
TQA 32 0 32 20 1/6 0
SAMS 32 0 32 20 0 0
PC 32 0 32 20 1/3 0.045

Table 11: The configurations of our main experiments.

I Configurations

The Configurations of XQuant in our main experi-
ments are summarized in Table 11

J XQuant Pseudo Code

The pseudo code for the whole workflow is pro-
vided in Algorithm 1 and 2.

9799

Algorithm 1: XQuant Procedure
Input :kq, vq, km, vm, η[2]
Output :Optimized Quantized Cache

1 for l← 0 to 31 do
2 if l < vm or l mod 2 == 0 then
3 KeyCache[l]←

Quantize
(
X l

k, 2 if l < kq else 1
)

4 else
5 KeyCache[l]←

PseudoQuantize
(
X l

k, 2 if l <
kq else 1

)

6 if l < vq or l mod 2 == 0 then
7 ValueCache[l]←

Quantize
(
X l

v, 2 if l < vq else 1
)

8 else
9 ValueCache[l]←

PseudoQuantize
(
X l

v, 2 if l <
vq else 1

)

10 for l← 0 to 31 do
11 if l < km or l mod 2 == 0 then
12 DequantizedKey← Dequantize

(

13 KeyCache[l][0],
14 KeyCache[l][1],
15 KeyCache[l][2]

)

16 else
17 DequantizedKey← Dequantize

(

18 KeyCache[l − 1][0],
19 KeyCache[l − 1][1],
20 KeyCache[l][2]

)

21 if l < vm or l mod 2 == 0 then
22 DequantizedValue← Dequantize

(

23 ValueCache[l][0],
24 ValueCache[l][1],
25 ValueCache[l][2]

)

26 else
27 DequantizedValue← Dequantize

(

28 ValueCache[l − 1][0],
29 ValueCache[l − 1][1],
30 ValueCache[l][2]

)

Algorithm 2: Supporting Functions

1 Function PseudoQuantize(X , n_bits):
2 zero_point← min(X) // Find the

minimum value of X;
3 scaling_factor ← max(X)−min(X)

2n_bits−1

// Calculate scaling factor;
4 return
5 Calibrate(zero_point,

scaling_factor, n_bits),
6 None;

7 Function Quantize(X , n_bits):
8 zero_point← min(X);
9 scaling_factor ← max(X)−min(X)

2n_bits−1
;

10 quantized_cache←
round

(
X−zero_point
scaling_factor

)
// Round to

nearest quantized value;
11 return
12 Calibrate(zero_point,

scaling_factor, n_bits),
13 quantized_cache;

14 Function Dequantize(zero_point,
scaling_factor, quantized_cache):

15 return quantized_cache ·
scaling_factor + zero_point
// Reconstruct original value;

16 Function Calibrate(zero_point,
scaling_factor, n_bits):

17 zero_point_cali← zero_point+
scaling_factor · η[n_bits]
// Adjust zero point based on η;

18 scaling_factor_cali←
scaling_factor ·

(
1− 2 · η[n_bits]

)

// Adjust scaling factor based
on η;

19 return
20 zero_point_cali, scaling_factor_cali

// Return calibrated values;

9800

