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Abstract

Large language model (LLM) agents have
demonstrated significant potential for address-
ing complex tasks through mechanisms such
as chain-of-thought reasoning and tool invo-
cation. However, current frameworks lack ex-
plicit supervision during the reasoning process,
which may lead to error propagation across rea-
soning chains and hinder the optimization of
intermediate decision-making stages. This pa-
per introduces a novel framework, AgentPro,
which enhances LLM agent performance by
automated process supervision. AgentPro em-
ploys Monte Carlo Tree Search to automatically
generate step-level annotations, and develops
a process reward model based on these anno-
tations to facilitate fine-grained quality assess-
ment of reasoning. By employing a rejection
sampling strategy, the LLM agent dynamically
adjusts generation probability distributions to
prevent the continuation of erroneous paths,
thereby improving reasoning capabilities. Ex-
tensive experiments on four datasets indicate
that our method significantly outperforms exist-
ing agent-based LLM methods (e.g., achieving
a 6.32% increase in accuracy on the HotpotQA
dataset), underscoring its proficiency in manag-
ing intricate reasoning chains.

1 Introduction

Recent advancements in large language models
(LLMs), such as GPT-4 (OpenAl, 2023), PaLM
(Anil et al., 2023), and LLaMA (Dubey et al.,
2024), have showcased impressive capabilities in
semantic understanding, knowledge reasoning, and
cross-task generalization. Meanwhile, research in-
dicates that LLM-based agents can effectively de-
compose complex, multi-step tasks through chain-
of-thought prompting and tool invocation mecha-
nisms (Schick et al., 2024). This has led to sig-
nificant advancements in mathematical problem-
solving (Lightman et al., 2023) and in scenarios in-
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volving embodied interaction (Shridhar et al., 2020;
Wei et al., 2022; Yao et al., 2023).

Despite the demonstrated potential of LLM
agents in managing complex tasks, existing frame-
works face significant challenges in utilizing pro-
cess supervision to train and improve these agents.
Conventional approaches, such as ReAct (Yao et al.,
2022b), which decomposes tasks through alternat-
ing reasoning trajectory generation and actions;
and Reflexion (Shinn et al., 2024), which uses
self-reflection mechanisms for policy iteration, pri-
marily concentrate on the accuracy of final task
outcomes while neglecting explicit supervision of
intermediate reasoning steps. This design leads to
two major issues. First, the lack of real-time error
detection and correction mechanisms allows local
errors to propagate along reasoning chains during
extended inferences (Lightman et al., 2023). Sec-
ond, the absence of mechanisms in output feedback
optimization to discern subtle differences in rea-
soning quality hinders the identification of optimal
decision paths (Wang et al., 2024). For example,
QueryAgent (Huang et al., 2024) utilizes environ-
mental feedback for self-correction. However, this
feedback primarily relates to task outcomes and
fails to pinpoint specific errors in the process.

In mathematical reasoning tasks, process super-
vision techniques, such as the use of Process Re-
ward Models (PRMs), have proven to be highly ef-
fective (Lightman et al., 2023). Ma et al. (Maet al.,
2025) further showed that step-level reward models
mainly capture the logical consistency of mathe-
matical expressions rather than natural language
rationales. Beyond mathematics, ReST-MCTS
(Zhang et al., 2024) applied PRMs to guide tree
search for self-training. Nevertheless, systematic
integration of PRMs into LLM agents remains lim-
ited, primarily due to the substantial costs associ-
ated with manual, step-wise supervision. Specif-
ically, creating training datasets for PRMs neces-
sitates human labeling to assess the correctness of
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each step. Therefore, developing cost-effective, au-
tomated process supervision methods is essential
for improving the reasoning capabilities and robust-
ness of LLM agents in handling complex tasks.

In this paper, we present AgentPro, a novel
framework for LLM Agents that incorporates an
Automated Process Supervision mechanism to ad-
dress complex tasks such as reasoning and decision
making. Our approach employs Monte Carlo Tree
Search (MCTS) (Wang et al., 2024; Swiechowski
et al., 2023) to generate step-level labels, which
facilitate the training of a process reward model
(PRM). The PRM improves its comprehension by
learning from automatically annotated data, thereby
providing detailed evaluations of each reasoning
step. Our goal is to improve the reasoning abili-
ties of an LLM agent by applying the Rejection
Sampling (RS) (Liu et al., 2023; Yuan et al., 2023)
strategy within the framework of reinforcement
learning from human feedback (Bai et al., 2022).
This approach adjusts the generation probability
distributions based on feedback from the PRM,
thereby minimizing error propagation along reason-
ing paths. We evaluated AgentPro’s performance
across four distinct datasets in various task do-
mains, demonstrating its substantial enhancements
in both the accuracy and robustness of LLM agents
when addressing complex tasks. Specifically, our
method achieved a 6.32% increase in accuracy on
the HotpotQA dataset within multi-hop question
answering scenarios, highlighting its proficiency in
handling intricate reasoning chains.

Our main contributions are as follows:

e We present the first LLM agent framework that
integrates automated process supervision to opti-
mize reasoning and decision-making tasks. Our
framework conducts real-time quality evaluation
at each step, effectively mitigating the issue of er-
ror propagation found in traditional approaches.

e We propose an automated label generation al-
gorithm based on Monte Carlo Tree Search
(MCTS) that minimizes the cost of step-wise an-
notation for training PRMs, thereby facilitating
the feasibility of large-scale process supervision.

e We conduct extensive experiments on four
datasets, considering both reasoning and
decision-making scenarios. The results indicate
that our method achieves superior performance
compared to existing agent-based methods.

2 Related Work

2.1 Large Language Model Agent

LLM agents (Yao et al., 2023; Sumers et al., 2023;
Gong et al., 2023) exhibit exceptional reasoning
capabilities across a variety of problem domains,
including embodied environments and reasoning
tasks. CAMEL (Li et al., 2023) introduces a multi-
agent role-playing framework that guides agents in
task completion by utilizing initial prompts and de-
tailed constraints while ensuring alignment with hu-
man intentions. ExpeL (Zhao et al., 2024) achieves
continuous performance enhancement and transfer
learning in decision-making tasks by autonomously
collecting experiences and extracting knowledge
through natural language. Existing approaches pri-
marily focus on the final outcomes. In contrast,
our approach addresses error propagation in exten-
sive reasoning chains by providing explicit process
supervision of the intermediate reasoning steps.

2.2 Reasoning-Action Framework

Integrating actions with reasoning enhances the
efficiency and accuracy of LLMs in multi-step,
conditional problems (Gong et al., 2023; Chen
et al., 2023; Huang et al., 2024; Arora et al., 2024).
ReAct (Yao et al., 2022b) integrates reasoning
with action generation, decreasing hallucination
in chain-of-thought processes. AUTOACT (Qiao
et al., 2024) introduces a self-planning framework
for question-answering that facilitates agent learn-
ing from scratch, addressing limitations of single-
model systems. LLM+AL (Ishay and Lee, 2025)
merges LLMs with action languages, utilizing their
strengths in semantic parsing, commonsense gen-
eration, and automated reasoning tasks. However,
these methods do not thoroughly evaluate the qual-
ity of intermediate steps, and we address this by
employing rejection sampling for dynamic error
correction during reasoning.

2.3 Process Reward Model

PRM enhances the accuracy of reasoning by su-
pervising and emphasizing intermediate steps, re-
warding correct inferences and penalizing errors,
in contrast to traditional methods that solely con-
centrate on final outcomes (Uesato et al., 2022;
Lightman et al., 2023). It allows for more precise
pattern learning and handles the misalignment be-
tween correct conclusions and flawed derivations.
However, most existing PRM implementations are
limited to math problems(Wang et al., 2024; Ma
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Generate Step-wise Response

Task: You are in the middle of a room. sit The i-th step of the solution 5.

Looking quickly around you, you see a bed 1, a

desk 2, a desk 1, a drawer 6 ... LLM Solution: S = s1, S2, 83, ..., S15
Your task is to: examine the mug with the
desklamp. Agent s; =(a;, 0;)

Generate Simulated Paths with MCTS ’

Act 1: think: To solve the task, I need to find and take a mug, then find and use a desklamp. First I need to ...
Act 2: go to drawer 1

Obs 2: You arrive at drawer 1. The drawer 1 is closed.

Act 3: open drawer 1

Obs 3: You open drawer 1. The drawer 1 is open. In it, you see a cd 2.

[ Generate Simulated Paths from Step 3 ]
/—[ Simulated Path 1 ]—\ /—[ Simulated Path 2 ]—\ /—[ Simulated Path 3 ]—\

Act 4: go to desk 1 Act 4: go to shelf 1 Act 4: go to drawer 2
Obs 4: You arrive at desk 1. On the Obs 4: You arrive at shelf 1. On the Obs 4: You arrive at drawer 2. On
desk 1, you see a bowl 1, a desklamp shelf 1, you see a alarmclock 1. the drawer 2, you see nothing.

1,alaptopl,andapenl. | | ceeeeee || Ll

Act 11: think: T have now found a Act 17: think: Now T find a
Act 49: think: I already took the desk lamp (1). The next step is to desklamp (1). Next, I need to use it.
use it.

alarmclock 1. T need to look at it.
Act 50: look at alarmclock 1
Obs 50: Nothing happens.

.

Act 12: use desklamp 1 Act 118:' use d"-Sk"lmP:‘ oo 1
Obs 12: You turn on the desklamp 1 Obs 18: You furn on the desklamp

. d examine mug 1.
and examine mug 1. an
X))\ v U A,

Generate Label of Each Step ’
+, if any simulated path's answer is correct. \/
Label(s;): {

-, if all simulated paths' answers are incorrect.

Figure 1: Overview of the Monte Carlo Tree Search-driven automatic labeling framework. First, the LLM Agent
generates a solution .S for a given task ¢g. Then, MCTS is employed to simulate multiple decision-making paths for
a given step s; (in this case ¢ = 3). Finally, the results of these simulations determine if the step s; is labeled as

correct or incorrect, depending on whether any of the simulated trajectories reach the correct final answer.

et al., 2025). Our work expands PRM to a wider
range of reasoning and decision-making tasks. Mgeni({q}), where S = {s1,52,53,...,5K}

3 Method

Existing LLM frameworks often lack robust ver-
ification mechanisms to ensure the accuracy of
intermediate steps in complex problem-solving
tasks. Furthermore, manual annotation methods
are prohibitively expensive. To address these chal-
lenges, we propose a novel framework, AgentPro,
designed to enhance the reasoning capabilities of
LLM agents while minimizing costs.
AgentPro comprises two core components:

query ¢, the agent generates a solution S <

represents the sequence of steps and K de-

at desk 1 and see a bowl 1 on the desk").

* LLM Agent: The LLM Agent Mgy is the

core component responsible for generating the correctness of that specific step.

notes the total number of steps in the solu-
tion. For decision-making tasks such as in
AlfWorld, each step s; can defined as s; =
(ai, 0;), where a; is an executable action (e.g.,
"Go to desk 1") and o; is an optional observa-
tion from the environment (e.g., "You arrive

Process Reward Model: The process reward
model (PRM), denoted as My, is utilized to
assess the step-wise accuracy of a solution .S.
It assigns a score to each step s; to quantify

step-by-step solutions (responses) and is the Building on these two components, we devised
agent to be fine-tuned in the end. Given a  a three-phase optimization framework that utilizes
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Monte Carlo Tree Search to automatically generate
a training dataset for the PRM M,,, which is then
employed to improve the reasoning abilities of the
LLM Agent Mjgen through reinforcement learn-
ing. The details of our proposed framework are
presented in Algorithms 1 and 2. The framework
functions as follows:

1. Automated Process Annotation: We employ
the LLM Agent to produce multi-step trajec-
tories, with each intermediate step s; being
automatically annotated using labels obtained
from MCTS simulations. This phase facili-
tates the creation of a self-supervised dataset,
which is subsequently used to train the PRM.

2. Training of the Process Reward Model: Uti-
lizing the annotated steps from Phase 1, we
fine-tune the PRM M, to accurately predict
correctness scores for each individual step s;,
thereby equipping the PRM with the capabil-
ity to assess step-wise validity within complex
problem-solving scenarios.

3. Reinforcement Learning: We adopted the re-
jection sampling strategy, a technique within
the framework of reinforcement learning from
human feedback (RLHF), to enhance the capa-
bilities of our LLM Agent Mpgent, Where the
PRM M, functions as the reward model.

3.1 Gathering Step-Wise Trajectories

To enable effective process supervision, it is es-
sential to ensure that the answers from the LLM
Agent are generated in a step-by-step manner. A ro-
bust base model is critical for generating structured,
step-wise responses, leveraging its contextual un-
derstanding and reasoning capabilities developed
through extensive training on large-scale corpora.
Consequently, a good base model ensures the high
quality of the generated responses. In our setting,
we utilize pre-trained LLMs, such as LLaMA-3.1-
8B-Instruct (Dubey et al., 2024) , as the base model
for our agent.

Meanwhile, every step of a response must be
meticulously documented to facilitate the subse-
quent automatic labeling process, which is crucial
for training the PRM. For each query ¢, the LLM
agent performs a comprehensive semantic analy-
sis to extract crucial information and delineate the
inherent reasoning framework. This analysis in-
volves consulting its internal knowledge base to
construct logically coherent reasoning or decision-
making trajectories. Specifically, the solution

S < Mygeni({q}) must be delineated in a step-wise
manner and presented as S = {s1, s2,S3,...,SK }.
Then the trajectory 7}, can be represented as:

) SK } ey

For example, for a given decision-making task
(query) q illustrated in Fig. 1 within the AlfWorld
scenario, the agent generates a solution S compris-
ing K = 15 steps. Thus, the trajectory for task ¢
can be represented as T, = {q, s1, $2, ..., 515}-

Tq = {Q) 817827537 e

Algorithm 1: MCTS-Based Automatic La-
beling and PRM Training
Input: LLM agent Mgeni, PRM model
Mprm, Query set (), number of
MCTS simulations m, PRM training
epochs Epp,
Output: Trained PRM model My,
1 Phase 1: Auto-labeling with MCTS
2 Dprm < 0
3 for each query q; € @ do

4 S+ Magent({(ﬂf})

5 //S:{81,82,.5’3,...,.5’](}

6 for each step s; € S do

7 correct_flag < False

8 for j = 1to mdo

9 p; <~ Magent({‘]kasla'-wsi})
10 if Aj(‘i]n)al = Acorrec: then

1 correct_flag < True
12 break

13 end

14 end

15 if correct_flag then

16 // Label s; as +

17 yfl — +

18 else

19 yE — —

20 end
21 end
22 dp =

({Qk7 Slf’ R Sl;(}7 {y§17y§27 ce 7y§K})

23 Dyrm <= Dprm U {d}

24 end

25 Phase 2: PRM Training

26 for epoch e = 1to Ep.p, do

27 Update My, via supervised
full-parameter fine-tuning on D,

28 end

29 return M,
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3.2 Monte Carlo Tree Search-Driven
Automatic Labeling

To systematically evaluate the quality of each step
s; generated by the LLM agent Mgy, we de-
fine the following criterion: a step s; is deemed
high-quality if it contributes to deriving the ground-
truth answer Agorrect- This criterion aligns with the
fundamental objective of multi-step reasoning and
decision-making tasks, where intermediate steps
should progressively lead to a correct final result.
Our goal is to design a method to automatically
assess the contribution of each step.

Monte Carlo Tree Search (MCTYS) (Swiechowski
et al,, 2023) is a heuristic search algorithm
renowned for its effectiveness in navigating com-
plex decision spaces under uncertainty. Building
upon its strong simulation performance, we intro-
duce an MCTS-based automatic labeling frame-
work for training the PRM. For each step s;, we
generate m simulated paths p! to p’, for s; using
the path from query ¢ to s; in the trajectory 7Tj
described by Eq. 1. Each path pz- is constructed as:

pé‘ <~ Magent({Qa Sly--+ 51}) ()

Let Aé]nal denote the final answer of the j-th path
p5. The label for s; is determined based on whether
any of the m paths from pﬁ to pﬁn result in Acorrect:

Label(ss) = {+ if35 € [1,m], Aggll = Acomrect, 3

— ifVje[1,m], AY) # Acomet.

As illustrated in Fig. 1, we generated m = 3 sim-
ulated paths from p3 to pg for step s3. Given that
the task ¢ in AlfWorld pertains to decision-making,
each step s; can be represented as s; = (ay, 0;),
where o; is optional. Consequently, each path pg? is
derived from p? <= Mugent({q, a1, a2, 02, a3, 03}).
Since the outcomes of both path p3 and path pg
lead to the correct answer, "You turn on desk lamp
1 and examine mug 1", we label step s3 as "+".

Utilizing the MCTS-based automatic labeling
framework, we label each step s; within trajectory
T,. Upon completion of the labeling process for all
steps across all queries = {¢; };VZI, we generate
a labeled dataset Dy, = {d; }jvzl This dataset
consists of N samples, each corresponding to one
of the IV queries in set Q. For each data sample
dj, the input X = {q;,s1,s},..., s) }, which rep-
resents the trajectory qu generated from the j-th
query g; that includes K steps. The output (label)
y is an array of K elements, where each element
corresponds to the label associated with step s;:

Algorithm 2: LLM Agent Training Process
Input: LLM agent Mygeni, PRM model
Mpm, Query set (), number of
candidate responses n, training
iterations 7', LLM Agent training
epochs F,g
Output: Optimized LLM agent Mgen
1 Phase 3: Rejection Sampling
2 for roundt = 1to T do

3 D, < ®;

4 for each query q € ) do

5 /I Generate n candidate responses

6 for j =1tondo

7 Ilrj ={s1,52,83,...,5K}

8 Tj < Magent({‘]})

9 // Generate labels and associated
probabilities for every step of
current response ;

10 {0, P} = Mpm(r5)

11 // Calculate the reward score R;
for current response 7

12 Rj = Y (I(li = +)- P
—I(li=-) - PR)

13 end

14 /I Select the best response

15 T« = argmax,. R;

16 Dys < Dys U{(q,74)}

17 end

18 for epoche = 1to F,s do

19 Update Mpgene via supervised

full-parameter fine-tuning on D, .4
20 end
21 end

22 return Mgen

dj = ({Qj>3]1>~'-7SJK}a{yglvyg27"' 7ng}) 4)

X y

where 37, represents the label of step sg , Label(sg ).

3.3 Process Reward Model Training

We utilize the dataset Dy,.,, in Sec. 3.2 to train our
process reward model M, enabling it to evaluate
step-wise responses in complex problem-solving
scenarios. The PRM is also constructed based on a
pre-trained LLM. We adopt the full parameter fine-
tuning strategy for training, where all parameters
of M are optimized by gradient descent to mini-
mize prediction errors in step-wise assessments:
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Query ﬁ;enerate Outputs \
A&S is a _channel from
e United States ri: Stepl: ... The final answer is: SUPPORTS R;=0.94
Process
rz: Stepl: ... The final answer is: SUPPORTS Reward R,=0.57
LLM Model
Agent r3: Stepl: .. The final answer is: NOT ENOUGH INFOJ R;=-0.95

\.

Supervised Fine-Tuning

Figure 2: Overview of the training process for LLM Agent M,y For a given query g, the agent generates multiple
step-wise responses, and each response 7; is subsequently evaluated by the PRM M,,,,. The agent is then fine-tuned
based on the response r, with the highest reward score R.. The whole process will repeat until the agent converges.

N K

11 o

“NE Z Z CrossEntropy(yi,,72,) ()
j=1i=1

Eprm -

where g)ﬁl denotes the predicted correctness score
for step s} of the j-th training sample, while
CrossEntropy signifies the cross entropy loss.

This full-parameter fine-tuning strategy effec-
tively utilizes fine-grained supervisory labels from
the training data, enabling the trained PRM to accu-
rately determine if each generated step s; logically
progresses toward resolving the problem. Conse-
quently, it provides high-quality reward scores for
training LLM agents.

3.4 LLM Agent Training

Drawing on the principles of reinforcement learn-
ing (Kaelbling et al., 1996), we introduce an opti-
mization mechanism that employs rejection sam-
pling (Liu et al., 2023) to enhance the performance
of our LLM agent. This mechanism involves itera-
tively generating multiple step-wise responses by
the LLM agent Mgy, evaluating these responses
using our well-trained PRM M, and selecting
the response with the highest reward score to train
the LLM agent through supervised fine-tuning.
Specifically, for each query ¢, the LLM agent
Mgen first generates n candidate responses, rang-
ing from 71 to ry, defined as r; < Mageni({q}).
Similar to the solution S described in Sec. 3.1,
each response r; should be generated in a step-
wise format: 7; = {s1, 52, 53,..., Sk }. The PRM
M will evaluate each step s; in r; and assign
a label [; (+ or —) to s;, along with the probabil-
ity P; for generating that label. The reward score

R; for response r; is then calculated as the aver-
age probability of the label values across all steps.
During calculation, we negate those probabilities
associated with negatively labeled steps to reflect
our disinclination towards incorrect steps:

K
R; = % d (Mli=+)-P—-1Ili==)-P) ()
=1

where I is the indicator function. The response 7
with the highest reward score R, is selected as the
optimal response for further training:

ry = argmax It @)
Tj

After selecting the optimal responses for all
queries, we utilize these responses to fine-tune the
LLM agent M,gen.. Consistent with Sec. 3.3, we
employ the full-parameter fine-tuning strategy on
Mgene to maximize the likelihood of replicating

the optimal reasoning steps:

N, T;
1 T k3
Eagent = _F Z Z lOg P(yz,t’xz) (8)

T i=1 t=1

where z; is the ¢-th query (prompt) among N, train-
ing samples, y; is the step-wise response for x;, y; ;
is the ¢-th word of y;, and 7; is the length of y;.

Fig. 2 illustrates an example of the agent training
process, wherein the agent generates three step-
wise responses. The first response, which exhibits
the highest reward score (R; = 0.94), is chosen for
training the agent. The training process is repeated
until the agent develops sufficient capabilities to
manage complex multi-step reasoning tasks.

In summary, our framework enhances the per-
formance of the LLM agent through MCTS-based

9986



automated process supervision and rejection sam-
pling training strategy. For additional details on the
algorithm, please refer to Appendix A.

4 Experiments

4.1 Experimental Setup

Datasets. We selected four representative bench-
mark datasets to evaluate the performance of our
method: FEVER (Thorne et al., 2018), HotpotQA
(Yang et al., 2018), ALFWorld (Shridhar et al.,
2020), and WebShop (Yao et al., 2022a). The
FEVER dataset is utilized for assessing fact extrac-
tion and verification. HotpotQA serves as a bench-
mark for knowledge-intensive, multi-hop question
answering. ALFWorld provides an embodied simu-
lation environment for executing multi-step tasks in
domestic contexts. Finally, WebShop functions as a
benchmark for complex decision-making, simulat-
ing multi-modal interactions and product filtering
in online shopping settings.

Baselines. We compare our method with four base-
line methods: Act (Yao et al., 2022b), ReAct (Yao
et al., 2022b), Reflexion (Shinn et al., 2024), and
ExpeL (Zhao et al., 2024). The Act method gen-
erates responses through single-step predictions
without explicit reasoning abilities. ReAct adopts a
more structured approach by integrating reasoning
and action in a feedback loop to enhance task per-
formance. Reflexion uses verbal reinforcement to
enable agents to learn from past mistakes, thereby
improving the quality of reasoning. ExpeL, the
state-of-the-art agent-based method, focuses on
autonomously gathering experience from a set of
training tasks to enhance the capabilities of LLM.
Implementation. Following ReAct, we use suc-
cess rate (SR) as the evaluation metric: exact match-
ing for HotpotQA and FEVER, timely task com-
pletion for ALFWorld, and purchasing an item
matching all attributes for WebShop. We utilize
the LLaMA-3.1-8B-Instruct model (Dubey et al.,
2024) as the LLM agent for our method and all
baselines. For FEVER and HotpotQA, Wikipedia
information is appended to questions for additional
context, a common practice among all baselines.
For MCTS, we conduct m = 3 simulations to de-
termine the label for each step. Regarding rejection
sampling, n = 4 different responses are generated
over T' = 5 iterations during the training of our
LLM agent. All results are averaged across three
different random seeds. For further implementation
details, please refer to Appendix B.

Computational Resources All our experiments
were conducted on a single machine with 1TB
RAM and 256-core AMD EPYC 7742 64-Core
Processor @ 3.4GHz CPU. We use the NVIDIA
H100 GPU with 80GB memory. The software envi-
ronment settings are: Python 3.9.21, PyTorch 2.5.1
with CUDA 12.4 on Ubuntu 22.04.4 LTS.

4.2 Main Results

Fig. 3 illustrates the average success rates of vari-
ous methods across all four datasets. Results show
that our method consistently outperforms existing
baselines, which underscores the effectiveness of
process supervision in enhancing the reasoning
and sequential decision-making abilities of LLM
agents. Specifically, in tasks requiring fine-grained
factual inference (e.g., FEVER) and multi-hop rea-
soning (e.g., HotpotQA), our method systemati-
cally refines the reasoning process step by step
using PRM. This leads to accuracy gains of 3.59%
and 6.32%, respectively, over the best-performing
baseline, ExpeL. These improvements suggest that
PRM effectively identifies flawed reasoning paths
and minimizes error accumulation, which is preva-
lent in traditional single-step predictions.
Furthermore, results from the ALFWorld envi-
ronment demonstrate the impact of process rewards
on physical reasoning. Across 134 household inter-
action scenarios, our approach achieves a 40.88%
success rate, outperforming the best baseline, Re-
flexion (34.08%). This suggests that the automati-
cally generated step-level annotations successfully
capture environmental state transitions. The most
significant improvement is observed in the Web-
Shop tasks, where our method achieves a 52.67%
success rate, which is substantially higher than
ExpeL (38.00%) and Reflexion (40.67%). This
finding indicates that PRM’s ability to evaluate the
quality of actions (such as price comparison and op-
tion matching), which helps the agent to build bet-
ter decision-making chains in shopping scenarios.
All these experiments confirm that PRM, trained
automatically using step-wise labels from MCTS,
significantly improves the LLM agents.

4.3 Effectiveness of Process Reward Model

To evaluate the effectiveness of the trained process
reward model (PRM), we employ two performance
metrics: last-step accuracy and all-steps accuracy.
Last-step accuracy measures the PRM’s ability to
correctly evaluate the label of the final reasoning
step. In contrast, all-steps accuracy calculates the
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Figure 3: Average task success rates (%, mean=std) comparison of our method to other baselines on various tasks.
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Figure 4: Performance of the trained process reward
model (PRM) on the FEVER and HotpotQA datasets.

average accuracy of the PRM across all reason-
ing steps, thereby reflecting its overall capacity to
assess the entire reasoning process.

As shown in Fig. 4, the PRM exhibits signifi-
cant progressive convergence on both the FEVER
and HotpotQA datasets. During the training iter-
ations from 2,000 to 20,000, both last-step accu-
racy and all-steps accuracy display a consistent
upward trend, with convergence speed showing
marked nonlinearity. Specifically, on the FEVER
dataset, last-step accuracy increases by 9% dur-
ing this phase. Conversely, between 20,000 and
33,000 iterations, performance stabilizes, yielding
only a marginal increase of 0.17%. On the Hot-
potQA dataset, all-steps accuracy reaches 80.00%
by 20,000 iterations, after which improvements be-
come negligible, maintaining stable performance
for the remainder of training. Although all-steps ac-
curacy is slightly lower than last-step accuracyj, it re-
mains adequate (78.82%) for the PRM to correctly
evaluate and score the reasoning steps. Overall,

Table 1: Performance comparison (%) of different meth-
ods with the deepseek-l1lm-7b-chat model structure.

Dataset Act ReAct Reflexion ExpeL AgentPro
Fever 40.01 44.89 49.97 51.87 57.07
WebShop  20.00  14.00 27.00 24.00 39.00

these results indicate that the PRM demonstrates
excellent stability during training and effectively
scores the reasoning steps.

4.4 TImpact of Model Structure

To validate the robustness of our method across dif-
ferent base models, we conducted comparative ex-
periments using the deepseek-1lm-7b-chat (Bi et al.,
2024) model architecture. This model has a simi-
lar parameter size to LLaMA-3.1-8B-Instruct but
features a significantly different architecture. Table
1 illustrates that although the deepseek model ex-
hibits weaker reasoning abilities compared to llama,
our method consistently surpasses all other base-
lines. Notably, for the knowledge reasoning tasks
in FEVER, our method surpasses the best base-
line, ExpeL, by 5.2%. For the interactive decision-
making tasks in WebShop, the success rate of our
method reaches 39%, significantly outperforming
the best baseline (27%). These results indicate that
guiding the reasoning path of the LLM agent with
PRM significantly boosts reasoning capabilities,
irrespective of the base model architecture.

4.5 Ablation Studies

Hyperparameter sensitivity. We investigate the
impact of the hyperparameters fop_p and temper-
ature of our method on LLM agent performance
in generating step-wise responses. As shown in
Fig. 5, when the temperature is fixed at 0.5, ad-
justing top_p within the range of 0.45 to 0.95 leads
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Figure 5: Impact of hyperparameters on agent perfor-
mance for the FEVER dataset.

Table 2: Success rates (%) of our method with different
number of MCTS iterations on the HotpotQA dataset.

No. of MCTS iterations 1 3 5 7 9
Accuracy 32 39 41 42 42

to less than a 0.54% variation in accuracy on the
FEVER dataset (65.38% compared to 64.84%).
This finding indicates that the model exhibits strong
robustness to these hyperparameters. Similarly, fix-
ing top_p at 0.85 and varying the temperature be-
tween 0.4 and 0.9 results in model accuracy remain-
ing consistently within a 0.62% range, peaking at
65.38% at a temperature of 0.5. Notably, even
under extreme temperature settings such as 0.4,
the model maintained performance levels above
64.76%. This highlights the positive effect of pro-
cess supervision mechanisms on the stability of the
step-wise generation process.

Effect of MCTS simulation iterations. Table 2
shows how different numbers of MCTS simula-
tion iterations impact the agent performance of
our method on the HotpotQA dataset. The results
demonstrate a significant increase in accuracy from
32% to 39% as the number of simulations rises
from 1 to 3. Increasing the simulations to 5 yields
a marginal improvement of 2% (from 39% to 41%).
Beyond 5 simulations, the performance stabilizes
at 42%. These findings suggest that the MCTS al-
gorithm effectively identifies crucial path informa-
tion within the first three simulations, and provides
empirical evidence that a balance can be achieved
between computational efficiency and model per-
formance, as three simulations are adequate for
achieving near-optimal outcomes.

Effect of number of generated responses during
rejection sampling. We evaluated the effect of the
number of generated responses (n) during rejec-
tion sampling on the performance of our method
observed on the AlfWorld and Webshop datasets.
As illustrated in Table 3, there is a clear pattern

Table 3: Accuracy (%) of our method with various num-
ber of generated responses during rejection sampling.

No. of Responses 3 4 5 6 7 8
AlfWorld 38 40 41 42 42 43
WebShop 47 50 52 54 55 55

of "diminishing marginal returns" associated with
increasing n. For instance, in the AlfWorld tasks,
performance levels off when n reaches 6, with a
marginal improvement from 42% to 43%. Sim-
ilarly, in WebShop tasks, the accuracy improved
from 47% to 55% when n increased from 3 to 7,
with no notable improvements beyond this point.
This pattern indicates that while initial increases
in the number of generated responses significantly
enhance the diversity and quality of candidate re-
sponses, further increases eventually result in mini-
mal gains as the selection mechanism driven by the
reward model reaches stabilization.

5 Conclusion

This paper presents AgentPro, a novel framework
designed to improve the reasoning and decision-
making abilities of LLM agents through automated
process supervision and rejection sampling. Our
framework leverages Monte Carlo Tree Search to
automatically generate step-level labels and train a
process reward model, which greatly reduces error
propagation in the responses generated by large lan-
guage model agents and facilitates real-time quality
assessment of these responses. Extensive experi-
ments on four datasets demonstrate that our method
significantly enhances the accuracy and robustness
of LLM agents. This work provides a scalable
solution to the challenges associated with manual
process supervision in complex and practical real-
world tasks, thereby broadening the applicability
of LLM agents across various domains.
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7 Limitation

In contrast to prompt-based methods, our method
necessitates further training of large language mod-
els to develop the process reward model and en-
hance the LLM agent. Specifically, we utilize
MCTS to generate labels for intermediate steps and
need to fine-tune all model parameters, which re-
sults in increased computational resource usage and
extended training time. It is important to note that
while our approach incurs higher training costs due
to additional fine-tuning and inference of large lan-
guage models, it remains significantly more cost-
effective compared to manual process supervision
requiring human labeling. In the future, we aim to
explore more efficient training strategies, such as
parameter-efficient fine-tuning and distillation tech-
niques, to minimize resource consumption during
the training process.
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A Algorithm Details

Our framework functions across three distinct
phases:

e Phase 1: Automated Step Annotation via
MCTS (Alg. 1, lines 1-24). For each query
qr, from the Query Set (), an initial step-wise
solution S is generated using the LLM agent
Mgent (line 4). Then, for each step s; in S,
we generate m MCTS simulations (lines 8-14)
through path expansion. A step s; is labeled
positively (+) if any simulation path results
in the correct final answer Agopect (line 17).
Otherwise a negative label (—) is assigned if
no path concludes correctly (line 19). Then,
the dataset D, is constructed (lines 22-23)
for training the PRM.

* Phase 2: Process Reward Model Training
(Alg. 1, lines 25-29). We conducted super-
vised, full-parameter fine-tuning of the model
Mpm across Epm epochs utilizing the anno-
tated dataset Dpy. This procedure enabled
M to acquire precise, step-wise evaluative
capabilities essential for the subsequent train-
ing in rejection sampling.

* Phase 3: LLM Agent Training via PRM-
Guided Rejection Sampling (Alg. 2). In each
round ¢, we generate n candidate paths from
71 to 7y, for each query q using Mgeq (line 8).
Subsequently, we compute the reward score
R; for each j-th response r; (lines 10-12) and
select the response 7, with the highest reward
score among all evaluated responses (line 15).
The dataset D, is then updated to include
these responses (line 16), which facilitates the
full-parameter fine-tuning of Mgen (lines 18-
20). Over T iterations, Magen incrementally
optimizes its alignment with trajectories that
yield high rewards, while M, remains un-
changed during the whole rejection sampling
training process.

B Implementation Details

B.1 Details of datasets

As illustrated in Table 4, our study utilized four
datasets: FEVER, HotpotQA, ALFWorld, and
WebShop. The FEVER dataset initially comprised
of 145,000 training and 19,000 test samples, and
we selected 30,000 training samples to train the
process reward model and 9,999 test samples to

evaluate the performance of LLM agents. For Hot-
potQA, we analyzed its performance using 100
validation tasks from the distractor dev split of the
dataset, which is also used by Expel, ReAct and
Reflexion in their studies. In the case of ALF-
World, we utilized the same set of 134 solvable
tasks previously used by Expel, ReAct and Reflex-
ion. Likewise, the evaluation of the WebShop tasks
involved the same 100 tasks as those used in prior
studies by Expel, ReAct, and Reflexion.

As detailed in Sec. 4.3, to assess the efficacy
of the trained process reward model (PRM), we
divided the 30,000 FEVER and HotpotQA training
samples into a reward training set (24,000 samples,
80%) and a reward test set (6,000 samples, 20%).

B.2 Computational and Storage Resources

We utilized the Llama-3.1-8B-Instruct as the base
model, which possesses a total of 8 billion param-
eters; each model checkpoint demanded 106 GB
of disk space. To improve inference efficiency, we
incorporated the vLLM framework (Kwon et al.,
2023), which features optimized attention compu-
tation and enhanced memory management.

The time required for processing varies across
different datasets. For example, each stage of the
FEVER dataset’s processing pipeline requires vary-
ing amounts of time. The generation of step-wise
responses phase takes about 25 minutes and 33 sec-
onds, focusing on generating responses in a step-
by-step manner for each claim. Following that,
Monte Carlo Tree Search (m=3) is a more compu-
tationally intensive process, lasting approximately
5 hours and 12 minutes to evaluate all generated
steps. Next, training the process reward model for
Eprm = 5 epochs requires 11 hours and 25 min-
utes, during which the model learns to assign re-
ward scores to step-by-step responses. For a single
round of the rejection sampling process, where mul-
tiple responses are generated for each claim (n=4),
the process takes 45 minutes and 15 seconds. After-
ward, the reward scores for all generated responses
are calculated, which takes 8 hours and 53 minutes
because vllm cannot be used here to calculate the
probability of every generated token, therefore the
original transformer library is applied here which
is much more slower than vllm. Lastly, the model
undergoes supervised fine-tuning, taking 2 hours
and 26 minutes to further improve its performance
based on labeled data. This entire pipeline sums up
to around 33 hours and 34 minutes for completion.
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Dataset Training Set Size Training Samples Used Test Set Size Test Samples Used
FEVER 145,449 30,000 19,998 9,999
HotpotQA 90,443 30,000 7,405 100
ALFWorld 3,553 355 134 134
WebShop 10,587 1,000 500 100

Table 4: Training and Test Set sizes for each dataset, along with sampled data for training and evaluation.

B.3 Hyperparameters

In our experiments, we use the vllm and the trans-
former library to generate step by step responses.
The sampling process is controlled by a tempera-
ture of 0.9, which adjusts the randomness of the out-
put, and a top-p value of 0.85 for nucleus sampling,
determining the smallest set of tokens to consider
based on cumulative probability. The model gen-
erates a maximum of 2048 tokens per output, with
a repetition penalty of 1.0 to discourage repetitive
phrases. Additionally, the tokenizer processes the
text before it is passed to the model for generation
and decodes the output back into human-readable
text. All these parameters were conducted through
grid search and the hyper-parameters with the best
performance are selected as the final parameters.
We generated three different responses for Monte
Carlo Tree Search with seeds 0, 1 and 3407. For
Rejection Sampling, we run five iterations, and for
every iteration we generate four different responses
with seeds 0, 3407, 314159, 271828, respectively.

The LLaMA-Factory library is used to fine-tune
the large language models, including the process
reward model and the LLLM agent. In our experi-
ments, the adopted fine-tuning approach involves
full fine-tuning with the SFT (Supervised Fine-
Tuning) stage. Training is conducted using Deep-
Speed, which is well-suited for large-scale training
environments and incorporates ZeRO-3 optimiza-
tion. The maximum input sequence length is con-
strained to 2048 tokens. During training, the batch
size per device is set to 1, and gradient accumula-
tion is used over 2 steps to simulate a larger batch.
The learning rate is set to 1.0e-5 with a cosine
learning rate scheduler, a warmup ratio of 0.1, and
training will run for F,.; = 5 epochsand T' = 5
iterations. Every epoch will train the model for
2250 steps. Mixed precision training with bf16 is
enabled for efficiency. The training pipeline uses
16 workers for data preprocessing. For evaluation,
10% of the dataset is used for validation, with the
batch size set to 1 for evaluation as well.

C License

Our implementation employs the LLaMA-3.1-8B-
Instruct model (Dubey et al., 2024), a cutting-edge
large language model tailored for a range of natural
language processing (NLP) tasks, including ques-
tion answering and text generation. This model
is subject to the LLaMA 3.1 Community License
Agreement. Additionally, the LLaMA-Factory,
which facilitates efficient training and deployment
of large language models and is likely employed
for fine-tuning LLaMA models, is governed by
the Apache-2.0 license (Zheng et al., 2024). The
vLLM framework, designed to optimize large lan-
guage models for both training and inference with a
focus on efficient memory usage and computational
performance, adheres to the Apache-2.0 License
(Kwon et al., 2023).

Our implementation also utilizes the transform-
ers library, a widely recognized open-source tool
for NLP that offers easily accessible pre-trained
models for various tasks such as text classification,
question answering, and translation. This library,
supporting multiple architectures including BERT,
GPT, and T3, is governed by the Apache-2.0 Li-
cense (Wolf et al., 2020).

Regarding datasets, the FEVER dataset (Thorne
et al., 2018), utilized for fact verification where
models determine the veracity of claims against
provided texts, is licensed under the Apache-2.0
License. The HotpotQA dataset (Yang et al., 2018),
used for multi-hop question answering that requires
synthesizing information from multiple documents,
operates under the Apache-2.0 License. The ALF-
World dataset (Shridhar et al., 2020), designed for
training agents in virtual environments through nat-
ural language for interactive task-oriented dialogue
and situated learning, is available under the MIT
License. Lastly, the WebShop dataset (Yao et al.,
2022a), aimed at developing conversational agents
for e-commerce applications where users interact
with a shopping assistant, is also available under
the MIT License.
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Method FEVER HotpotQA ALFWorld WebShop
Act 59.894+0.08 21.674+1.25 19.1540.93 27.00+1.63
ReAct 60.92+0.83 24.00+1.63 24.624+2.20 28.33+£2.49
Reflexion 60.69+1.00 27.33+1.25 34.08+0.93 40.67+2.49
ExpeL  61.80+0.73 33.67+0.94 30.344+2.46 38.00%1.41
AgentPro 65.39+£0.09 39.33+1.25 40.88+1.22 52.67+1.70

Table 5: The specific numerical results from the experiments shown in Fig. 3.

Table 6: Performance comparison of our method on
larger-scale models, evaluated on the FEVER and ALF-
World benchmarks.

Table 7: Success rates (%) of our method with and with-
out the Process Reward Model (PRM) across different
datasets.

Task Model Accuracy (%)
LLaMA-3.1-8B-Instruct 65.39
FEVER
Qwen-14B 68.52
LLaMA-3.1-8B-Instruct 40.88
ALF 1
World ) en-14B 4521

D Additional Experiments
D.1 Comparison on large LLMs

To further evaluate the scalability and gener-
alization capability of our method beyond rel-
atively small-scale language models, we con-
ducted additional experiments using the Qwen-
14B model, which contains significantly more pa-
rameters than LLaMA-3.1-8B. Specifically, we ap-
plied our method to two representative benchmarks:
FEVER and ALFWorld.

As shown in Fig. 6, our method remains effec-
tive and even shows improved performance when
applied to a larger-scale model. On the FEVER
dataset, Qwen-14B outperforms LLaMA-3.1-8B-
Instruct by over 3%, indicating that our method
can better leverage the enhanced capacity of larger
models to improve factual verification. Similarly,
on ALFWorld, Qwen-14B achieves a 4.33% higher
accuracy, suggesting that our approach generalizes
well across both different model sizes and task
types, including reasoning tasks in complex inter-
active environments.

D.2 Impact of Process Reward Model

To assess the contribution of the Process Reward
Model (PRM) during agent training, we conduct an
ablation study by completely removing the PRM
component. In this setting, instead of selecting
high-quality reasoning trajectories based on PRM
scores, the agent is trained with randomly gener-
ated trajectories from the base model.

As shown in Table 7, removing PRM results

Method FEVER  HotpotQA ALFWorld WebShop
w/o PRM 58.38 22.65 24.62 28.33
w/ PRM 65.39 39.33 40.88 52.67

Table 8: Success rates (%) of process-based supervision
(PRM) vs. outcome-based supervision (ORM) across
different datasets.

Supervision Type FEVER  HotpotQA ALFWorld WebShop
ORM 61.02 25.45 28.36 34.92
PRM 65.39 39.33 40.88 52.67

in performance decline across all four evaluation
benchmarks. These results indicate that the PRM
plays a critical role in improving the quality of
reasoning supervision. Notably, the performance
decline occurs despite using the same training pro-
cedure and exposure to comparable in-domain ex-
amples, suggesting that the observed improvements
are primarily due to the strong reward signal pro-
vided by the process-level evaluation rather than
simple data exposure. This confirms that the PRM
effectively guides the agent toward better interme-
diate reasoning steps.

D.3 Comparison of PRM and ORM

To validate the effectiveness of our proposed
process-based supervision (PRM), we conducted
comparative experiments against outcome-based
supervision (ORM) across multiple standard bench-
marks. As shown in Table 8, PRM consistently out-
performs ORM on all evaluated datasets, demon-
strating the advantage of supervising intermediate
reasoning steps rather than only final outcomes.
Specifically, PRM achieves higher success rates on
FEVER, HotpotQA, ALFWorld, and WebShop, in-
dicating that process supervision can lead to more
robust and generalizable reasoning behavior in
complex tasks.

9994



Table 9: Success rates (%) of PRM with different test-
time computation strategies on the FEVER dataset.

Method Success Rate (%)
Base Model 65.39
Majority Voting 66.21
Beam Search 66.89
BoN (N=5) 67.45

D.4 Effect of Test-Time Computation
Strategies

We further investigate the impact of various test-
time computation strategies on the performance of
our approach. Specifically, we assess the PRM-
based model on the FEVER dataset using three
widely adopted inference-time techniques: ma-
jority voting, beam search, and Best-of-N (BoN).
These strategies aim to improve decision robustness
by aggregating or selecting from multiple reason-
ing trajectories at inference time.

The results presented in Table 9 reveal that all
three strategies lead to improved performance over
the base model. This demonstrates that test-time
enhancements can further improve the reliability
and performance of process-supervised reasoning.
Notably, the BoN strategy (with N=5) achieves
the highest success rate of 67.45%, indicating that
selecting the best outcome from multiple sampled
reasoning paths can be particularly effective when
combined with process supervision.

D.5 Impact of MCTS Iterations and Number
of Responses in Rejection Sampling

In order to assess how the performance of our
model scales with additional computational re-
sources, we conduct experiments that vary two key
factors: the number of MCTS iterations and the
number of generated responses used in rejection
sampling. These settings directly affect inference
cost and search capacity, and are crucial to under-
standing the scalability of our approach.

Table 10 presents the results on HotpotQA when
increasing the number of MCTS iterations. While
accuracy improves initially—reaching 42% with
just 5 iterations—the performance plateaus there-
after, with no further gains observed at 20 or even
50 iterations.

Similarly, as shown in Table 11, increasing the
number of sampled responses leads to improved
accuracy in both ALFWorld and WebShop, but the
benefit saturates after a certain point (8 responses

Table 10: Accuracy (%) of PRM on HotpotQA with
different numbers of MCTS iterations.

No. of MCTS Iterations 1 3 5 7 9 20 50
Accuracy (%) 32 39 41 42 42 42 42

Table 11: Accuracy (%) on ALFWorld and WebShop
with different numbers of responses during rejection
sampling.

No. of Responses 3 4 5 6 7 8 9 20 50
ALFWorld 38 40 41 42 42 43 43 43 43
WebShop 47 50 52 54 55 55 55 55 55

for ALFWorld and 7 for WebShop). These findings
suggest that beyond a moderate scale, further in-
creases in computation yield diminishing returns,
emphasizing the importance of optimizing infer-
ence strategies over merely scaling them.

D.6 Comparison with Training-Based
Baselines

To assess the effectiveness of our full pipeline rel-
ative to other training-based approaches, we com-
pare our method with two representative baselines:
Copy (Ma et al., 2024) and AGILE (Peiyuan et al.,
2024), both of which leverage fine-tuned language
models and task-specific training. The evaluation is
conducted on the FEVER and ALFWorld datasets.

As summarized in Table 12, our approach con-
sistently outperforms both baselines across tasks.
The improvement is particularly pronounced on
FEVER, where our method achieves 65.39% ac-
curacy compared to 61.52% and 63.97% for Copy
and AGILE respectively. These results highlight
the advantage of our method in capturing factual
consistency and multi-step inference.

D.7 Evaluation on Complex Multi-step
Reasoning Tasks

To further assess the generalization ability of our
method beyond factual recall and short-horizon rea-
soning, we conducted additional experiments on
the GSM8K dataset, which is specifically designed
to evaluate long-form, multi-step mathematical rea-
soning. We compared our approach with several
strong baselines, and the results are presented in Ta-
ble 13. As shown, our method achieves an accuracy
of 88.54%, substantially outperforming other base-
lines. These results demonstrate the effectiveness
and robustness of our method in handling complex
reasoning tasks.
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Table 12: Comparison with training-based baselines on
FEVER and ALFWorld.

Method FEVER ALFWorld
Copy 61.52 34.21
AGILE 63.97 35.14
Ours 65.39 40.88

Table 13: Performance comparison on the GSM8K
dataset for multi-step mathematical reasoning.

Method
Accuracy (%)

ReAct
65.43

Reflexion
66.95

Ours
88.54

ExpeL
68.17

E Experiment Details and Discussion

Table 5 presents the detailed numerical values of
all the datasets depicted in Fig. 3, serving as a
reference for further analysis and comparison.

The ablation studies discussed in Section 4.5
conclusively show that our method ensures robust
hyperparameter selection and exhibits distinct con-
vergence behaviors during critical processes like
MCTS simulations and rejection sampling. These
findings affirm the effectiveness of our method in
reducing the need for manual adjustments of hy-
perparameters, while the automated process super-
vision framework improves the model’s resilience
to parameter fluctuations by optimizing explicit
reasoning paths. Importantly, these experimen-
tal results offer practical implications for deploy-
ment: users can efficiently manage computational
resources by moderately decreasing the number of
MCTS simulations and rejection sampling itera-
tions without compromising performance.

F Prompt Templates

F.1 Prompt for generating step by step
responses

For the FEVER dataset, we employed the prompt
illustrated in Fig. 6 to guide the LLM agent in
generating detailed, step-by-step responses to the
corresponding claims. Similarly, for the HotpotQA
dataset, we used the prompt shown in Fig. 7 to
direct the agent toward producing step-wise re-
sponses to the questions. For both the AlfWorld
and WebShop datasets, we applied the prompts
from the ReAct dataset to generate step-by-step,
action-based outputs from the LLM agent.

F.2 Prompt for MCTS

Fig. 8 presents the prompt used for labeling each
step in the Monte Carlo Tree Search. This prompt
contains the original trajectories before the current
step that awaits labeling.

F.3 Prompt for process reward model

Fig. 9 shows the prompt employed to train the
process reward model. This prompt annotates each
step in the responses generated by the LLM agent,
assigning a single binary label (+ or -) to each step.

G Case Study

In this section, we present a detailed case study on
the FEVER dataset to illustrate the entire process of
our AgentPro framework. This includes generating
step-by-step answers, utilizing Monte Carlo Tree
Search to train the process reward model, and em-
ploying the rejection sampling strategy to train our
LLM agent. This comprehensive demonstration
aims to provide a clear and efficient understanding
of our framework.

First of all, we need to generate step-by-step re-
sponses for a given claim by our pre-trained LLM
agent. Take the claim "The 84th Academy Awards’
winners included Beginners" as an example, Fig.
10 illustrates how our LLM agent Mgene generates
a step-by-step solution for the claim: the agent ana-
lyzes the claim, verifies the ceremony year (2012),
checks the film’s eligibility (2011 release), and fi-
nally confirms its award (Best Supporting Actor).

Next, we need to use Monte Carlo Tree Search
to label each step generated in Fig. 10, in order
to create the training set required for training the
process reward model. Fig. 11 showcases three
MCTS simulations, with each simulation exploring
alternative reasoning paths:

* Response 1 correctly identifies Beginners’
Best Supporting Actor and gives the SUP-
PORTS conclusion.

* Response 2 erroneously attributes a Best Orig-
inal Screenplay win but still reaches a SUP-
PORTS conclusion.

* Response 3 mistakenly assumes that "Be-
ginners" was solely a Best Picture nomi-
nee, which results in the conclusion of NOT
ENOUGH INFO.

We employ the same pre-trained LLM agent as
in Fig. 10 to generate all three responses. Given

9996



that the correct response to the claim is SUP-
PORTS, and 2 out of the 3 responses arrived at
this conclusion, our method consequently auto-
annotates this step (Step 2) as correct (+).

After labeling all four steps in Fig. 10 via MCTS,
we generated a sample based on the claim for train-
ing the process reward model, as illustrated in Fig.
12. Notably, all steps in the original response (as
shown in Fig. 10) received a positive label, demon-
strating the effectiveness of our LLM agent in step
by step reasoning on this claim. We will use the
method described from Fig. 10 to Fig. 12 to gener-
ate training samples for the process reward model.

After training the process reward model, we can
then employ the Rejection Sampling strategy to
train our LLM agent. For instance, consider the
claim "A&E is a channel from the United States"
in the FEVER dataset. Initially, our LLM agent
is tasked with generating multiple, step by step re-
sponses based on this claim, using the prompt as
depicted in Fig. 13 with Wikipedia background
information. Figures 14 and 15 present four candi-
date responses, among which three conclude with
SUPPORTS and one with NOT ENOUGH INFO.

Subsequently, the trained PRM evaluates the
four candidate responses and selects the one with
the highest average probability as the sample to
fine-tune our LLM agent. As depicted in Fig. 16,
the PRM assigns labels to each step of the re-
sponses and calculates the associated probabilities.
A higher probability signifies higher confidence
in the correctness of that label. We then negate
those probabilities associated with negatively la-
beled steps to reflect our disinclination towards
incorrect steps and calculate the average of all the
probabilities across the steps. This average prob-
ability quantifies the likelihood of each candidate
response being correct, which is essentially the re-
ward value of PRM. Finally, the response with the
highest average probability, in this case, the second
response, is selected as the training sample for fur-
ther supervised fine-tuning of our LLM agent. This
method is consistently applied to each sample in
the training set during rejection sampling.

The procedure shown from Figures 13 to 16 is
repeated through multiple rounds until the agent
can reliably generate high-quality responses appro-
priate to the current dataset.
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Prompt for generating step by step responses (FEVER)

You are an assistant tasked with analyzing claims and determining their validity. Your
goal is to evaluate whether a given Claim is SUPPORTS, REFUTES, or if there is NOT ENOUGH
INFO.

Follow these guidelines strictly:

1. Carefully analyze the information provided in the Claim.

2. Think step by step and provide reasoning for your conclusion.

3. At the end of your analysis, choose one of the following outcomes:

- SUPPORTS

— REFUTES

- NOT ENOUGH INFO

The final result must follow this format:

Step 1: [Solution process for Step 1].

Step 2: [Solution process for Step 2].

"The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Claim: The 84th Academy Awards' winners included Beginners.
Evaluate the claim step by step and determine its validity.
Your response must end with:

"The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]"

Figure 6: Example prompt for generating step-by-step responses on the FEVER dataset.

Prompt for generating step by step responses (HotpotQA)

Solve a question answering task with steps. Please think step by step to determine the
answer to the question.

Question: [Insert your question herel.

Step 1:[Provide the solution process for Step 1].

Step 2:[Provide the solution process for Step 2].

Step 3:[Provide the solution process for Step 3].

The final answer is: [Provide the final answerl].

Based on the example above, solve the following question step by step. The number of
steps to solve the problem is not limited. Your response to me must end with: The final
answer is: [Provide the final answer]

Question: What nationality were the Tag team wrestlers the Haas Brothers?

g J

Figure 7: Example prompt for generating step-by-step responses on the HotpotQA dataset.
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Prompt for MCTS

You are an assistant tasked with analyzing question and determining their validity. Your
goal is to evaluate whether a given claim is SUPPORTS, REFUTES, or if there is NOT ENOUGH
INFO.

Follow these guidelines strictly:

1. Carefully analyze the information provided in the Claim.

2. Think step by step and provide reasoning for your conclusion.

3. At the end of your analysis, choose one of the following outcomes:

— SUPPORTS

- REFUTES

— NOT ENOUGH INFO

The final result must follow this format:

Step 1: [Solution process for Step 1].

Step 2: [Solution process for Step 2].

The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Continue generating the steps for the claim in a step-by-step manner. Each response must
contain only the solution steps and, when available, the final answer in the specified
format. The final answer should be given as: 'The final answer is: [SUPPORTS/REFUTES/NOT
ENOUGH INFO]'. No other explanations or symbols are allowed. If the final answer has
already been reached, output the final answer directly in the specified format.

Claim: The 84th Academy Awards' winners included Beginners.

Figure 8: Example prompt for MCTS.

Prompt for process reward model

Label each step: if a step contributes to deriving the correct result, mark it as '+'. If
a step hinders the derivation of the correct result, mark it as '-'.

Claim: The 84th Academy Awards' winners included Beginners.

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners
included "Beginners." This implies that "Beginners" is a film that won at least one
category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards
ceremony was held in 2012.

Step 3: Check if "Beginners" is a film released in 2011, which would make it eligible for
the 84th Academy Awards. After verifying, it is confirmed that "Beginners" is a 2011 film
directed by Mike Mills.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. Upon reviewing
the list of winners, it is confirmed that "Beginners" indeed won the award for Best
Supporting Actor for Christopher Plummer's performance.

The final answer is: SUPPORTS

N\ J

Figure 9: Example prompt for training the process reward model.
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Trajectory for generating a step by step response

Claim: The 84th Academy Awards' winners included Beginners.

Response:

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners
included "Beginners." This implies that "Beginners" is a film that won at least one
category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards
ceremony was held in 2012.

Step 3: Check if "Beginners" is a film released in 2011, which would make it eligible for
the 84th Academy Awards. After verifying, it is confirmed that "Beginners" is a 2011 film
directed by Mike Mills.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. Upon reviewing
the list of winners, it is confirmed that "Beginners" indeed won the award for Best
Supporting Actor for Christopher Plummer's performance.

The final answer is: SUPPORTS

N J

Figure 10: Trajectory for generating a step-by-step response on a claim in the FEVER dataset.
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Trajectory for MCTS

Claim and Step 1&2:
The 84th Academy Awards‘ winners included Beginners.

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners
included "Beginners." This implies that "Beginners" is a film that won at least one
category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards

ceremony was held in 2012.

First Response:

Step 3: Determine the nominees and winners of the 84th Academy Awards to verify if
"Beginners" won in any category. The 84th Academy Awards took place in 2012, and "The
Artist" won the award for Best Picture, Best Director, and several other categories.

Step 4: Verify if "Beginners'" won any awards at the 84th Academy Awards. "The Artist"
received the award for Best Picture, but "Beginners" received a win for Best Supporting
Actor for Christopher Plummer.

Step 5: Since "Beginners" won a category at the 84th Academy Awards, we can conclude that
the claim is accurate.

The final answer is: SUPPORTS

Second Response:

Step 3: Identify major films from 2011, the year before the 84th Academy Awards.
"Beginners" is a film released in 2011 and received critical acclaim.

Step 4: Check the 84th Academy Awards winners. The 84th Academy Awards took place in 2012
and recognized the best in film for 2011. "Beginners" won the award for Best Original
Screenplay.

Step 5: Determine if the claim is supported by the information. The claim that
"Beginners" is a film that won at least one category at the 84th Academy Awards is
supported by the fact that it won the award for Best Original Screenplay.

The final answer is: SUPPORTS

Third Response:

Step 3: Research the winners of the 84th Academy Awards. According to my knowledge, the

84th Academy Awards, held in 2012, had a number of winners but most notable were "The

Artist" as the Best Picture and Michel Hazanavicius for Best Director.

Step 4: Look up the nominees for Best Picture to confirm if "Beginners" was among them.
"Beginners" was indeed a nominee for Best Picture at the 84th Academy Awards but not the
actual winner.

\\ The final answer is: NOT ENOUGH INFO 4/

Figure 11: Trajectory for MCTS simulation on the same claim in Fig. 10 with m = 3 simulations.
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Generated sample for training the process reward model

Label each step: if a step contributes to deriving the correct result, mark it as '+'. If
a step hinders the derivation of the correct result, mark it as '-'.

Claim: The 84th Academy Awards' winners included Beginners.

Step 1: Analyze the Claim: The Claim states that the 84th Academy Awards' winners
included "Beginners." This implies that "Beginners" is a film that won at least one
category at the 84th Academy Awards.

Step 2: Recall the year the 84th Academy Awards took place. The 84th Academy Awards
ceremony was held in 2012.

Step 3: Check if "Beginners" is a film released in 2011, which would make it eligible for
the 84th Academy Awards. After verifying, it is confirmed that "Beginners" is a 2011 film
directed by Mike Mills.

Step 4: Verify if "Beginners" won any awards at the 84th Academy Awards. Upon reviewing
the list of winners, it is confirmed that "Beginners" indeed won the award for Best
Supporting Actor for Christopher Plummer's performance.

The final answer is: SUPPORTS

Output:

Step 1: +
Step 2: +
Step 3: +
Step 4: +

Figure 12: Generated sample for training the process reward model for the claim in Fig. 10.
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Prompt for rejection sampling

You are an assistant tasked with analyzing claims and determining their validity. Your
goal is to evaluate whether a given Claim is SUPPORTS, REFUTES, or if there is NOT ENOUGH
INFO. Follow these guidelines strictly:

1. Carefully analyze the information provided in the Claim.

2. Think step by step and provide reasoning for your conclusion.

3. At the end of your analysis, choose one of the following outcomes:

- SUPPORTS

— REFUTES

- NOT ENOUGH INFO

The final result must follow this format:

Step 1: [Solution process for Step 1].

Step 2: [Solution process for Step 2].

The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO]

Claim: A&E is a channel from the United States.

Background Information about the Claim: The information about A&E is as follows: A or a
is the first letter and the first vowel letter of the Latin alphabet, used in the modern
English alphabet, and others worldwide. Its name in English is a (pronounced
/\u@2c8e\u@26a/ AY), plural aes. It is similar in shape to the Ancient Greek letter alpha,
from which it derives. The uppercase version consists of the two slanting sides of a
triangle, crossed in the middle by a horizontal bar. The lowercase version is often
written in one of two forms: the double-storey |a| and single-storey |[\u@251|. The latter
is commonly used in handwriting and fonts based on it, especially fonts intended to be
read by children, and is also found in italic type..\n\nThe information about United
States is as follows:\nThe United States of America (USA), commonly known as the United
States (U.S.) or America, is a country primarily located in North America. It is a
federal union of 50 states and a federal capital district, Washington, D.C. The 48
contiguous states border Canada to the north and Mexico to the south, with the State of
Alaska in the northwest and the archipelagic State of Hawaii in the Pacific Ocean. The
United States also asserts sovereignty over five major island territories and various
uninhabited islands. The country has the world's third-largest land area, second-largest
exclusive economic zone, and third-largest population, exceeding 340 million. Its three
largest metropolitan areas are New York, Los Angeles, and Chicago, and its three most
populous states are California, Texas, and Florida. Paleo-Indians migrated across the
Bering land bridge more than 12,000 years ago, and formed various civilizations and
societies.

Evaluate the claim step by step and determine its validity. Your response must end with:
\» The final answer is: [SUPPORTS/REFUTES/NOT ENOUGH INFO] 4/

Figure 13: Example prompt for the claim "A&E is a channel from the United States" during rejection sampling,
where Wikipedia information is appended as background information.
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Trajectory for rejection sampling (1th&2th response)

First response:

Step 1: Determine the relevance of the provided information to the claim. The provided
information about A&E and the United States seems unrelated at first glance, as one
pertains to the Latin alphabet and the other is about a country. However, looking closely,
"A&E" can refer to "Arts & Entertainment," a global cable and satellite television
network. This network is often associated with the United States.

Step 2: Check if "A&E" refers to a television network that originated or is headquartered
in the United States. From general knowledge, A&E (Arts & Entertainment) is a well-known
cable television network in the United States. While it has global presence, its origins
and a significant portion of its content are tailored to the American audience, making it
a US-centric channel.

Step 3: Analyze the definition of A&E in relation to its original context of the claim.
Since the provided background information about A&E does not directly mention its
association with television, it is unclear whether the claim refers to the original Latin
letter or the television network. However, the lack of any information suggesting an
alternative meaning of A&E in the context of the United States makes it more plausible
that the claim refers to the television network, which is indeed based in the United
States.

Step 4: Determine the validity of the claim. Considering the information about A&E as a
television network, the claim that A&E is a channel from the United States is true. A&E
(Arts & Entertainment) is indeed a television channel that originated in the United
States.

The final answer is: SUPPORTS

Second response:

Step 1: Analyze the Claim: The claim is that A&E is a channel from the United States. The
key components of the claim are "A&E" and "United States."

Step 2: Identify relevant information from the background: We have information about A&E,
which describes it as an English alphabet letter, but it also mentions the word "A&E,"
which could refer to several things. We also have extensive information about the United
States, describing its geography, population, and other characteristics.

Step 3: Consider the context of the acronym A&E: The provided background information
about the letter "A"™ and "E" in the Latin alphabet does not directly relate to the
context of a TV channel. However, A& is indeed an acronym that can be expanded to mean
"Arts and Entertainment." A search of the internet would show that A& is an American pay
television network that airs content related to documentary, drama, and reality TV.

Step 4: Connect the information to the claim: Since A&E refers to the Arts and
Entertainment network, which is indeed based in the United States, this would support the
claim that A&E is a channel from the United States.

Step 5: Evaluate the information for consistency and reliability: Based on external
knowledge, the information is consistent and reliable.

\» The final answer is: SUPPORTS 4}

Figure 14: Generated responses for the claim "A&E is a channel from the United States" during rejection sampling
(1th&2th response).
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Trajectory for rejection sampling (3th&4th response)

Third response:

Step 1: Identify the components of the claim. The claim is about A&E being a channel from
the United States. The two main components are A& (a channel) and the United States (a
country).

Step 2: Analyze the information provided about A&E in the background. The given text
about A&E discusses its origin, pronunciation, shape, and usage in different fonts, but
does not mention its location or origin country.

Step 3: Analyze the information provided about the United States in the background. The
given text about the United States describes its geographical location, size, population,
and history, but does not mention any TV channels or media networks by name.

Step 4: Determine the relevance of the information. The text about A&E does not mention
its location or affiliation, while the text about the United States does not mention any
media networks. There is no direct information linking A&E to the United States.

Step 5: Draw a conclusion. Since there is no direct information in the provided
background that links A&E to the United States, the claim is unsubstantiated by the given
information.

The final answer is: NOT ENOUGH INFO

Fourth response:

Step 1: Analyze the claim "A&E is a channel from the United States." The claim is about a
media channel named A&E, not the letter 'a'. Therefore, this claim is unrelated to the
background information about the letter 'a' provided in the background information.

Step 2: Look for information about A&E in the background information. There is no mention
of A&E in the background information.

Step 3: Search for external information about A&E. From external knowledge, A&E is known
to be a channel that is a joint venture between Hearst Communications and Disney-ABC
Television Group. A&E stands for Arts and Entertainment. A&E networks is a US-based
American cable television network.

Step 4: Determine the origin of A&E based on the external information. Given the external
information that A&E is a joint venture between US-based companies, it is plausible that

A&E has its origins in the United States.

\\ The final answer is: SUPPORTS J/

Figure 15: Generated responses for the claim "A&E is a channel from the United States" during rejection sampling
(3th&4th response).
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Trajectory for rejection sampling (scoring)

Second response:

\

First response:

Step 1:
Step 2:
Step 3:
Step 4:

+

+

+

Probability:

0.8839759230613708
0.9774795174598694
0.9435433745384216
0.9968554973602295

Average Probability: 0.5085

Third response:

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Average

Probability:

0.9888468384742737
0.9226863980293274
0.8883765935897827
0.9999895095825195
0.9771665334701538

Probability: -0.9552

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

+

+

+

+

Probability:
0.9885740280151367
0.958041250705719
0.9999788999557495
0.9999936819076538
0.9998918771743774

Average Probability: 0.6061 \//

Fourth response:

Step 1:
Step 2:
Step 3:
Step 4:

+

+

Probability:

0.9190813302993774
0.9998040795326233
0.9996646642684937
0.9998919963836674

Average Probability: 0.0202

J

Figure 16: The scoring process of the process reward model for the four responses shown in Fig. 14 and Fig.
15. The response with the highest average probability (the second response) is selected as the training sample for
subsequent supervised fine-tuning.
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