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Abstract

Schema linking is a critical bottleneck in ap-
plying existing Text-to-SQL models to real-
world, large-scale, multi-database environ-
ments. Through error analysis, we identify
two major challenges in schema linking: (1)
Database Retrieval: accurately selecting the
target database from a large schema pool, while
effectively filtering out irrelevant ones; and (2)
Schema Item Grounding: precisely identifying
the relevant tables and columns within com-
plex and often redundant schemas for SQL
generation. Based on these, we introduce
LinkAlign, a novel framework tailored for
large-scale databases with thousands of fields.
LinkAlign comprises three key steps: multi-
round semantic enhanced retrieval and irrel-
evant information isolation for Challenge 1,
and schema extraction enhancement for Chal-
lenge 2. Each stage supports both Agent and
Pipeline execution modes, enabling balancing
efficiency and performance via modular design.
To enable more realistic evaluation, we con-
struct AmbiDB, a synthetic dataset designed to
reflect the ambiguity of real-world schema link-
ing. Experiments on widely-used Text-to-SQL
benchmarks demonstrate that LinkAlign con-
sistently outperforms existing baselines on all
schema linking metrics. Notably, it improves
the overall Text-to-SQL pipeline and achieves a
new state-of-the-art score of 33.09% on the Spi-
der 2.0-Lite benchmark using only open-source
LLMs, ranking first on the leaderboard at the
time of submission. The codes are available
at https://github.com/Satissss/LinkAlign.

1 Introduction

Text-to-SQL (Zhong et al., 2017; Wang et al., 2017;
Cai et al., 2017; Qin et al., 2022) aims to enable
non-expert users to retrieve data effortlessly by au-
tomatically translating natural language questions
into accurate SQL queries. Recent advances in
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† Corresponding author.

Approach Open-source Score (%)

ReFoRCE + o1-preview ✗ 30.35
Spider-Agent + Claude-3.7 ✗ 25.41
Spider-Agent + o3-mini ✗ 23.40
DailSQL + GPT-4o ✗ 5.68
CHESS + GPT-4o ✗ 3.84
DIN-SQL + GPT-4o ✗ 1.46

LinkAlign + DeepSeek-R1 ✓ 33.09
LinkAlign + DeepSeek-V3 ✓ 24.86

Table 1: Comparision across methods on Spider 2.0-lite
benchmark. Our method achieves new SOTA score of
33.09 purely using open-source LLMs.

large language models (LLMs) have led to notable
improvements in Text-to-SQL benchmarks (Sun
et al., 2023; Pourreza et al., 2024), showcasing
their growing capabilities in understanding and
generating SQL queries. However, existing meth-
ods often fall short in real-world enterprise ap-
plications due to difficulties in handling massive
redundant schemas and complex multi-database
environments (e.g., local and cloud systems). It
faces significant failures in adapting existing Text-
to-SQL models to large-scale multi-database sce-
narios largely due to schema linking, i.e., identi-
fying the necessary database schemas (tables and
columns) from large volumes of database schemas
for user queries (Wang et al., 2019; Guo et al.,
2019; Talaei et al., 2024). The underlying reasons
for these failures remain unexplored, leaving a gap
in addressing the real-world Text-to-SQL tasks.

To understand the failures, we conduct a sys-
tematic error analysis and identify two major chal-
lenges underlying the schema linking. Challenge 1
- Database Retrieval : how to accurately select the
target database from a large schema pool, while
effectively filtering out irrelevant ones. Existing
researches often overlook this challenge as they
often assume that schemas from single-database
are small-scale and can be directly fed into models
for efficient processing. Challenge 2 - Schema Item
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Grounding : how to precisely identify the relevant
tables and columns within complex and redundant
schemas for SQL generation. The post-retrieval
phase must handle a large volume of semantically
similar tables and columns, which increases the
risk of overlooking critical items necessary for gen-
erating accurate SQL queries.

Motivated by these factors, we propose
LinkAlign, a novel framework that systematically
addresses the challenges of schema linking in real-
world environment. To address Challenge 1, our
approach focuses first on (1) Retrieving Potential
Database Schemas through multi-round semantic
alignment by query rewriting. This step infers
missing database schemas from retrieval results
by leveraging the LLM’s reflective capabilities,
then rewrites the query to align with the ground
truth schema semantically. Then our approach cen-
ters on (2) isolating irrelevant schema informa-
tion to reduce noise by response filtering. This
step filters out the database noise from a set of
candidates, minimizes interference from irrelevant
schemas, and streamlines the downstream process-
ing pipeline. To address Challenge 2, our approach
directs efforts towards (3) extracting schemas for
SQL generation through identifying tables and
columns by schema parsing. This step scales
schema linking to large-scale databases by intro-
ducing advanced reasoning-enhanced prompting
techniques like multi-agent debate (Chan et al.,
2023; Pei et al., 2025) and chain-of-thought (Wei
et al., 2022). To balance efficiency and accuracy,
we propose two complementary implementation
paradigms: Pipeline and Agent. The pipeline mode
executes each step via a process-fixed single LLM
call, offering a streamlined, low-latency solution
ideal for real-time database queries. In contrast, the
agent mode performs multi-turn agent collabora-
tion during inference, harnessing test-time com-
putation to scale schema linking capabilities to
databases with massive and complex schemas.

To better evaluate the model’s schema linking
capabilities, we automatically construct AmbiDB,
a variant of the Spider (Yu et al., 2018) bench-
mark, which introduces a large number of com-
plex synonymous databases to simulate the chal-
lenges in large-scale, multi-database scenarios. We
perform comprehensive evaluations on the Spi-
der, Bird (Li et al., 2024a) and Spider 2.0 (Lei
et al., 2024) benchmarks. The framework consis-
tently outperforms baselines in all schema link-
ing metrics. By applying LinkAlign to the clas-

sic DIN-SQL (Pourreza and Rafiei, 2024) method,
the framework achieves a state-of-the-art score of
33.09 on the Spider 2.0-Lite benchmark using only
open-source LLMs, highlighting its effectiveness in
tackling schema linking challenges and enhancing
the performance of the Text-to-SQL pipeline.

2 Error Analysis

To better understand the gap between existing re-
search and real-world environments, we evaluate
500 samples from the Spider dataset and analy-
sis common error types when models handling
schemas across all databases, rather than limit-
ing the scope to small-scale schemas from a sin-
gle database. To avoid context-length overflow,
we employ vectorized retrieval to extract semanti-
cally relevant schemas. The results indicate that
schema linking errors are the main cause of Text-to-
SQL failures, with an error rate greater than 60%.
We manually examined the erroneous samples and
identified four error types, which further highlight
the two key challenges presented in the Introduc-
tion. More details are provided in Appendix B.

Error 1: Target Database without Retrieval
(Database Retrieval). This error indicates that the
retrieved results do not include complete ground-
truth database schemas, accounting for 23.6% of
the failures. For example, the user intends to query
"which semester the master and the bachelor both
got enrolled in", but the retrieved results exclude
degree_program table from the target database,
which requires inference based on query semantics
and commonsense knowledge. However, general
vectorized retrieval approaches only return seman-
tically similar results based on embedding distance,
conflicting with the fact that user complex queries
often misaligned with the ground-truth schema.

Error 2: Referring Irrelevant Databases
(Database Retrieval). Unlike Error 1 that fo-
cuses on the missing target database, Error 2 cen-
ters on the irrelevant schema noise introduced by
imprecise retrieval. This error indicates that the
model refers to incorrect schemas from unrelated
databases when generating SQL, accounting for
13.3% of the failures. For example, the user in-
tends to query "The first name of students who
have both cats and dogs". However,the generated
SQL incorrectly infers People.first_name from
an unrelated database while overlooking the ground
truth Student.f_name, even though both are suc-
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cessfully retrieved and fed into the model. Without
isolating irrelevant database information, the model
tends to mistakenly select seemingly more appro-
priate schemas from unrelated databases, leading
to SQL execution failures.

In summary, Error 1 and Error 2 highlight the
gap between existing methods and real-world large-
scale multi-database scenarios. Even though these
are avoided, SQL execution still fails due to other
schema linking errors.

Error 3: Linking to the Wrong Tables (Schema
Item Grounding). This error indicates that the
generated SQL omits or misuses tables, accounting
for 19.8% of the failures. For example, both the
student and people tables have fields for name,
but the model selects the latter incorrectly. In real-
world scenarios, the models often overlook critical
tables, which directly impairs the execution accu-
racy of the generated SQL (Maamari et al., 2024).

Error 4: Linking to the Wrong Columns
(Schema Item Grounding). This error indicates
that the generated SQL omits or misuses fields de-
spite referencing the ground truth table correctly,
accounting for 11.6% of the failures. For example,
the model may omit the join columns pets.pet_id
and has_pet.pet_id in the join operation of the cor-
rect SQL statement. Missing such critical columns
directly incurs SQL execution failure.

3 Methodology

This section introduces the LinkAlign frame-
work, scaling schema linking to large-scale, multi-
database environments through three key steps.
The framework begins by (1) retrieving potential
database schemas via multi-round semantic align-
ment through query rewriting, effectively recalling
the ground-truth schemas while significantly reduc-
ing the candidate pool. Next, (2) isolates irrele-
vant schema information through response filtering,
enabling precise target database localization and
noise reduction by discarding unrelated candidates.
Finally, it focuses on (3) extracting schemas for
SQL generation by identifying necessary tables
and columns through schema parsing. To balance
efficiency and effectiveness, we provide two com-
plementary implementation modes—Pipeline and
Agent—for each step of the framework.

3.1 Background

Before proposing our method, we consider a typical
Text-to-SQL setting. Given a set of N databases
D = {D1, D2, . . . , DN} and the schemas S =
{S1, S2, . . . , SN}, where a schema Si is defined as
Si = {Ti, Ci}, with Ti representing multiple tables
{T i

1, T
i
2, . . . , T

i
|Ti|} and Ci representing columns

{Ci
1, C

i
2, . . . , C

i
|Ci|}. Traditional methods take full

multi-database schemas and user query as input
and rely on schema linking component to identify
tables and columns for SQL generation:

S′ = fparser (S,Q, c | E,LLM) , (1)

where fparser (· | E) denotes the schema parsing
function based on the text-embedding model E and
LLM. Symbol c denotes additional context such as
field descriptions or sampling examples.

3.2 Modular Step Design

This section outlines the modular design of each
step, decoupling from implementations to accom-
modate diverse application scenarios.

Step one: retrieve potential database schemas.
To mitigate the exclusion of the ground truth
schema (Error 1), we propose a multi-round se-
mantically enhanced retrieval method to recall crit-
ical schemas without significantly increasing the
retrieval size. This step infers missing schemas
from retrieval results by leveraging the LLM’s re-
flective capabilities, then rewrites the query to align
with the ground-truth schema semantically.

Specifically, following each retrieval round,
field-level metadata (e.g., type, description, value
example) from index nodes are extracted and seri-
alized into structured natural language sequences
aligned with LLM processing preferences. The re-
sulting schema representation, combined with the
original user query, forms the context, denoted as
the tuple (Sri , Q0). Subsequently, we leverage
LLMs to evaluate the semantic alignment between
the user query and the retrieved schema context,
and further infer potentially missing schema ele-
ments critical for accurate SQL generation. The
inferred schemas are integrated with the original
query and optimized to remove redundant or am-
biguous expressions. This integration helps reduce
hallucination-induced deviations from user intent
and improves semantic alignment with the ground-
truth schema. The rewritten queries are then em-
bedded into vector representations and used to re-
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Figure 1: Overview of the LinkAlign framework including three core components.

trieve relevant database schemas. Finally, the re-
trieval results are ranked and aggregated based on
the number of rewrites and their similarity scores:

Z =
T⋃

t=0

fretriever (S,Qt, c | E) , (2)

where T represents the number of query rewrites.
By rewriting queries and enhancing their semantic
representation, this approach improves the align-
ment between user queries and database schemas,
ensuring more accurate retrieval outcomes. Dy-
namically adjusting the retrieval strategy based on
feedback enables high retrieval performance with
fewer iterations. Concurrently, multi-round iter-
ative optimization enables effective scalability to
large-scale databases with massive schemas. Here
is an example of the query rewriting process.

➣ User Query Q0: Which semester the master and the
bachelor both got enrolled in?
Missing Schema: degree_programs (degree_type)
[1] Rewrite Q1: In a database with degree_programs,
how to find semesters where both master’s
degree_type and bachelor’s degree_type pro-
grams exist? Group by enrollment_semester
with checks for both program types.

Missing Schema: enrollment_records (semester)
[2] Rewrite Q2: In a database with
enrollment_records, how to find semesters
where both master and bachelor students enrolled?
Group by semester and filter for overlapping
enrollments.

Step two: isolate irrelevant schema information.
While multi-round retrieval substantially enhances
the recall of critical schema elements, embedding-

based similarity comparisons are prone to introduc-
ing additional semantically proximate but irrele-
vant noise (Error 2). To mitigate this challenge,
we introduce a filtering mechanism designed to
prune redundant or irrelevant schema elements. Al-
though we prioritize target database localization
in multi-database settings, which challenges non-
technical users who lack expert database knowl-
edge, the framework remains effective in filtering
out noise in single-database settings, which can
serve as a subsequent operation after localization.
To further improve performance in single-database
settings, we propose two optimization strategies:
Random Preservation with Exponential Decay and
Post-Retrieval, detailed in the Appendix D. We now
focus on the multi-database setting.

Once the retrieved results Z contain schemas
from irrelevant databases, the next step is to pre-
cisely locate the target database Dt while filtering
out irrelevant ones. To achieve this, the frame-
work initially groups all schemas by their respec-
tive databases, enabling subsequent processing to
treat each database as a cohesive unit. The frame-
work then compares the relevance of each candi-
date database Di by evaluating how well its as-
sociated schemas satisfy the user’s query intent
and then ranks these databases accordingly. The
database exhibiting the highest relevance, Dt, is
then designated as the target database, concurrently
with the suppression of schema noise originating
from irrelevant databases.

Dt = arg max
1<i<N

PM (Di | Q0, Z), (3)
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where M denotes the LLMs used for analysis.
By isolates unrelated schemas information, this
step enables subsequent processes to concentrate
computational resources on the most appropriate
database, improving schema linking performance
while achieving cost efficiency.

Step three: extract schemas for SQL generation.
To mitigate schema misuse during SQL generation
(Error 3 and Error 4), it is imperative to precisely
parse the schema and identify the most relevant ta-
bles and columns. This procedure emulates the la-
borious manual process of schema extraction, yet it
is fully automated by leveraging the intrinsic knowl-
edge and reasoning capabilities of LLMs. Crucially,
this approach scales schema linking to complex, re-
dundant, and large-scale databases through the inte-
gration of advanced reasoning-enhanced prompting
techniques, including multi-agent debate and chain-
of-thought reasoning.

Specifically, from the filtered database schema
Sû derived in the preceding steps, the objective
is to identify a salient subset S′

û comprising the
most relevant tables T û

i and columns C û
i . This

selection is predicated on their alignment with the
user query, thereby ensuring the resulting schema
is both precise and comprehensively representative.

S′
û = {T û

i , C
û
i | I(Q0, C

û
i ) = 1}}, (4)

whereI(·)is an abstract indicator that determines
whether a column is needed based on the query,
returning 1 if true and 0 otherwise. In stark con-
trast to traditional text-to-SQL approaches, which
typically depend on static mappings, the LinkAlign
framework leverages dynamic reasoning to robustly
address intricate schema-linking challenges.

3.3 Component Implementation Optimization
Drawing upon the modular definitions outlined in
Section 3.2, we introduce two distinct strategies to
implement the core components of each step, as
depicted by the dashed boxes in Figure 1. This
modular framework enables flexible combinations
based on specific query scenarios, allowing for op-
timized trade-offs between computational cost and
processing effectiveness.

The first strategy is the Single-Prompt Pipeline,
which executes each step through a single process-
fixed LLM call. This design offers a low-latency
streamlined solution, making it ideal for real-time
database queries. A detailed exposition of this strat-
egy is provided in Appendix C. Conversely, this

section will primarily focus on the Multi-agent Col-
laboration strategy. This approach prioritizes ac-
curacy and offers robust capabilities for tackling
complex query tasks in real-world environments.

Align Semantics by Query Rewriting. Inspired
by the reflective capabilities of LLMs demonstrated
by Shinn et al., we introduce a semantic-enhanced
retrieval approach based on retrieval feedback to
achieve precise alignment with the ground-truth
schema. Specifically, the Schema Auditor initi-
ates by mapping the user queries into structured
triplets (entities, attributes, and constraints). Next,
it scrutinizes the retrieval results to infer missing
schemas that may critical for accurate SQL gen-
eration (e.g., tables or fields for SELECT, JOIN,
or WHERE clauses). This process culminates in
an audit report that summarizes the parsed query,
the inferred missing schemas, and the correspond-
ing confidence levels. Subsequently, the Query
Rewriter Agent leverages the comprehensive re-
port to enhance the original query by clarifying
ambiguous expressions, supplementing semantic
information for missing elements, and transforming
the query into a template format optimized for text
embedding models, ultimately improving retrieval
recall for the ground-truth schema.

Reduce Noise by Response Filtering. When mul-
tiple candidate schemas exhibit minimal semantic
differentiation, achieving consensus through multi-
agent debate can significantly mitigate the risk of
confusion. Inspired by this insight, we meticu-
lously designed a multi-agent debate model com-
prising two distinct LLM agents: Data Analyst
and Database Expert. Specifically, the Data Ana-
lyst evaluates the alignment between each database
and the user query based on domain relevance and
schema coverage completeness, then ranking them
through corresponding comprehensive assessment.
The highest ranked database is then selected from
all candidates, with its schema and query context
provided to the Database Expert. Subsequently,
the Database Expert rigorously evaluates whether
its provided database schema can satisfy the query
requirements, validating the selection’s appropri-
ateness and determining whether to retain it. The
debate follows a one-by-one strategy, i.e., start-
ing with the data analyst, after which the two
roles present their perspectives in turn. The de-
bate ends when a predefined number of rounds is
reached, and then a terminator outputs the consen-

981



sus database as a final result.

Identify Tables and Columns by Schema Pars-
ing. To enhance schema linking capabilities in com-
plex scenarios, we meticulously designed a Multi-
Agent Debate framework comprising two distinct
LLM agents: Schema Parser and Data Scientist.
Specifically, the Schema Parser extracts potentially
required schema elements across three dimensions
— tables, fields, and relationships — conducting re-
views to prevent omissions. Extraction results from
multiple Schema Parsers are then aggregated and
submitted to the Data Scientist, who subsequently
verifies all results, identifying any omissions or
errors. The debate process follows a Simultaneous-
Talk-with-Summarizer strategy, wherein multiple
peer Schema Parsers engage in concurrent deliber-
ation during each round, with final outcomes eval-
uated by the authoritative Data Scientist. Multi-
role participation enhances the recall of tables and
columns required for SQL generation, with diverse
answers complementing each other to reduce the
randomness of single-prompt outputs.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate our method performance of
schema linking on the SPIDER, BIRD and Am-
biDB datasets, and the ability to adapt existing
Text-to-SQL models to real-world environments
on the SPIDER 2.0 benchmark. We provide more
details about SPIDER, BIRD and SPIDER 2.0 in
Appendix F, and the construction of the AmbiDB
dataset in Appendix E.

Baselines. We compare our method against multi-
ple LLM-based schema linking methods. DIN-
SQL (Pourreza and Rafiei, 2024) employs a
prompt-driven approach with a single LLM call and
a chain-of-thought strategy to improve reasoning.
PET-SQL (Li et al., 2024b) generates preliminary
SQL to infer schema references. MAC-SQL (Wang
et al., 2024) uses a Selector agent to identify mini-
mal relevant schema subsets. MCS-SQL (Lee et al.,
2024) applies a two-step table and column linking
process with multiple prompts and random shuf-
fling for robustness. RSL-SQL (Cao et al., 2024)
adopts a bidirectional linking strategy that com-
bines forward and backward schema linking.

Metrics. We evaluate the ability of schema linking
using the following metrics:

• Locate Accuracy (LA). Let N denote the total
number of test examples and Na the number of
examples without Error 1 or Error 2. The LA is
defined as Na / N , measuring the model’s ability
to locate the target database accurately.
• Exact Matching (EM). Let Ne denote the

number of examples without Error 1 to 4. The EM
score is defined as Ne / N , measuring the model’s
ability to perform precise schema linking.
• Recall. This metric measures the recall of

database schemas from the ground truth SQL. It
is preferred over Precision, as minor schema noise
may not significantly impact SQL generation (Maa-
mari et al., 2024). But it still makes sense for the
model to maintain a high recall rate while improv-
ing precision, in order to minimizing noise intro-
duced by excessive irrelevant schema.

We evaluate the ability of Text-to-SQL using the
Execution Accuracy:
• Execution Accuracy(EX). This metric is

widely used to evaluate the quality of the gener-
ated SQL (Yu et al., 2018; Li et al., 2024a; Lei
et al., 2024), based on the comparison with the
results of the Gold SQL execution.

Implementations. The open-sourced text-
embedding model bge-large-en-v1.5 is applied to
convert database schema metadata and queries
into vectors. We set the top_k of the retrieval
size at 5 and adaptively adjust turn_n according
to the database size. We use GLM-4-air model
for schema linking and DeepSeek-V3, R1 and
Qwen-72B for "end-to-end" Text-to-SQL evalua-
tion. We further developed a versatile Text-to-SQL
development and evaluation tool, enabling multi-
task concurrent calls via configuration files, thereby
supporting subsequent experimental testing.

4.2 Main Results

4.2.1 Schema Linking Performance

Multi-Databases Results. As shown in Table 2,
our method achieves the highest Locate Accuracy
(LA) on the SPIDER, BIRD, and AmbiDB datasets,
with scores of 86.4%, 83.4%, and 69.4%, respec-
tively, demonstrating the effectiveness in mapping
data requirements to the target database. A key
contributor to this improvement is the introduc-
tion of the Response Filtering step, which miti-
gates Error 2 by eliminating irrelevant database
schemas. Additionally, our framework achieves
the highest Exact Match (EM) performance across
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Approach Spider Bird AmbiDB

LA EM Recall LA EM Recall LA EM Recall

LlamaIndex
DIN-SQL 80.0 26.8 62.4 68.8 5.1 31.3 59.7 13.3 44.2
PET-SQL 84.1 38.6 67.2 77.1 8.2 39.7 66.4 22.0 50.2

MAC-SQL 82.3 17.3 42.8 75.0 5.7 34.5 65.1 9.7 30.8
MCS-SQL 81.0 24.3 73.2 73.7 13.9 56.1 61.9 13.7 54.8
RSL-SQL 74.8 29.1 76.1 80.0 16.1 61.8 62.4 17.9 59.6

Pipeline(ours) 85.4 37.4 65.9 66.8 8.6 38.1 69.4 20.3 50.4
Agent(ours) 86.4 47.7 80.7 83.4 22.1 64.9 67.6 22.4 56.9

Table 2: Comparison of LA, EM and Recall across different methods in multi-database scenario.

Approach Spider-dev Bird-dev AmbiDB

Precision Recall EM Precision Recall EM Precision Recall EM

DIN-SQL 83.9 73.2 40.4 79.9 55.7 13.1 86.6 76.9 44.2
PET-SQL 84.8 73.9 33.4 81.6 64.9 25.9 90.2 78.3 39.5

MAC-SQL 75.0 66.8 24.4 76.3 56.2 9.1 79.8 69.6 30.1
MCS-SQL 66.7 85.0 29.8 79.6 76.9 25.5 71.5 88.5 34.1
RSL-SQL 74.8 84.3 37.6 78.1 77.5 27.7 80.7 88.3 42.2

Agent (ours) 80.2 87.3 48.1 77.1 79.4 29.0 86.7 85.8 51.5

Table 3: Comparison of Precision, Recall and EM across different methods in single-database scenario.

all three datasets, outperforming baseline models
by margins of 23.6%, 1.8%, and 37.3%, respec-
tively.The presence of error 1,2 in multi-database
contexts makes it difficult to avoid blending unre-
lated schemas, leading to challenges in accurately
recalling relevant tables and columns. Especially
as the database size increased, we observed a sig-
nificant decrease in the recall rate of all methods
on the AmbiDB dataset, further demonstrating that
our proposed dataset exacerbated the challenge.

Single-Database results. We further compare and
evaluate the ability of different methods to identify
correct tables and columns in a large-scale database.
As shown in Table 3, our Agent method achieves
state-of-the-art performance across all datasets in
terms of the EM evaluation metric. After eliminat-
ing interference from irrelevant database schemas,
the recall rate for all methods significantly im-
proved compared to the results in Table 2. Com-
pared to the baseline models, the Agent method
achieves the highest recall rates on both the Spider-
dev and Bird-dev datasets. This demonstrates that
our method exhibits superior performance and ro-
bustness when the inference capabilities of large
models are limited. Although, on the AmbiDB
dataset, our method’s recall rate lags behind MCS-
SQL (88.5%) and RSL-SQL (88.3%), our method
outperforms these models by 21.3% and 7.4%, re-

spectively, in Precision. This indicates that our
method maintains high recall while minimizing ir-
relevant noise. Overall, considering all metrics, our
method demonstrates excellent performance and
robust schema-linking capabilities.

4.2.2 Text-to-SQL Performance

Spider 2.0-lite Results. To convincingly demon-
strate the effectiveness of the framework, we con-
ducted tests on the Spider 2.0-Lite benchmark (Lei
et al., 2024), which simulates real-world challenges
by significantly increasing the number of schemas.
As shown in Table 1, we achieved the new SOTA
score of 33.09% applying LinkAlign to the DIN-
SQL method of lowest rank. In particular, our
method achieves performance comparable to the
existing baseline like ReFoRCE and Spider-Agent
using purely open-source LLMs. The results high-
light the framework’s effectiveness in enhancing
Text-to-SQL performance by improving schema
linking in large-scale database environments.

Small-scale database results. We assess the frame-
work ability to generalize improved schema linking
to smaller-scale databases by evaluating it on the
Spider and Bird dev set. To further assess gener-
alization across diverse LLMs, we employed two
open-source models, Deepseek and Qwen, with
significantly different parameter sizes of 671B and
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Approach EX (%)

DIN-SQL + GPT-4 82.8
MAC-SQL + GPT-4 86.8
DAIL-SQL + GPT-4 86.6
MCS-SQL + GPT-4 89.5

LinkAlign∗ + GPT-4 91.2
LinkAlign∗ + DeepSeek-V3(671B) 88.9
LinkAlign∗ + Qwen(72B) 86.8

Table 4: Comparison of different methods on Spider-dev
dataset. ∗ indicates method using a simplified LinkAlign
framework without Step One and Step Two.

Approach EX (%)

DIN-SQL + GPT-4 50.7
MAC-SQL + GPT-4 59.4
DAIL-SQL + GPT-4 54.8
MCS-SQL + GPT-4 63.4
RSL-SQL + GPT-4 67.2

LinkAlign∗ + GPT-4 61.6
LinkAlign∗ + DeepSeek-V3(671B) 57.5
LinkAlign∗ + Qwen(72B) 53.4

Table 5: Comparison of different methods on Bird-dev
dataset. ∗ indicates method using a simplified LinkAlign
framework without Step One and Step Two.

72B, respectively. Given that the limited database
schemas would not exceed the model’s context and
minor redundant schema noise would not impact
the LLMs’ attention significantly, we only utilized
a simplified LinkAlign framework by excluding
Step One and Step Two. The results show that
Execution Accuracy gains of 6.7% on Spider and
7.2% on Bird, demonstrating that improved schema
linking enhances SQL generation significantly.

4.3 Runtime Efficiency

We assessed the average runtime of each step in
LinkAlign using samples from the Spider 2.0-lite
dataset. The results show that pipeline mode is
more efficient and better suited for latency-sensitive
scenarios, while agent mode offers improved per-
formance when accuracy is prioritized. This flexi-
bility enables users to adapt LinkAlign to different
application needs.

Approaches S1 Time (s) S2 Time (s) S3 Time (s)

Pipeline 9.02 2.94 1.67
Agent 30.90 26.23 13.46

Table 6: Average time for each step of the framework.

Model variant Spider AmbiDB

LA EM Recall LA EM Recall

Pipeline 85.4 37.5 66.1 69.4 20.3 50.4
w/o que. rew. 85.3 37.7 72.3 63.1 14.5 52.8
w/o res. fil. 81.9 26.0 62.0 66.2 15.3 48.5
w/o both 80.0 26.8 62.4 59.5 11.4 38.7

Agent 86.4 47.7 80.7 67.6 22.4 56.9
w/o que. rew. 83.6 30.6 73.0 65.3 15.1 57.0
w/o res. fil. 66.7 27.8 54.8 58.5 14.5 60.6
w/o both 73.6 32.9 61.1 58.0 17.6 47.8

Table 7: Performance comparison of model variants on
Spider and AmbiDB datasets. “que. rew.” indicates
query rewriting and “res. fil.” denotes the response
filtering.

4.4 Ablation Study

We conducted an ablation study to examine the
incremental impact of the two core steps in the
LinkAlign framework. We exclude Step 3 from
consideration, as schema parsing is often consid-
ered fundamental to schema linking and must be re-
tained. As shown in Table 7, each step contributes
to achieving SOTA performance on the benchmark.

Impact of Query Rewriting. User queries often
misaligned with the target schema, leading to re-
trieval inefficiency. As shown in Figure 2, adding
Query Rewriting reduces Error 1 by 6.9% and
10.8% for two mode, improving recall by resolving
ambiguity. The Agent mode benefits more than
Pipeline, indicating LLM reflection better aligns
queries to schemas. However, this step also in-
troduces irrelevant schemas, increasing Error 2 by
5.7% and 8.4%, which complicates database lo-
calization. Despite this, the net effect is positive:
Locate Accuracy improves overall. The improve-
ment is more notable on the AmbiDB dataset than
on Spider, showing query rewriting is especially im-
portant with higher ambiguity. For simple queries,
balancing gains and drawbacks of rewriting is rec-
ommended to optimize Locate Accuracy.

Impact of Response Filtering. Figure 2 shows
that although Query Rewriting introduces irrele-
vant databases, Response Filtering reduces Error
2 in the Agent mode by 10.8%, effectively offset-
ting this negative effect. The Agent mode gains
more than Pipeline, highlighting the filtering step’s
critical role in narrowing LLM focus to the cor-
rect schema. As Table 7 demonstrates, Response
Filtering improves both EM and Recall for both
strategies. Despite wrong database selection caus-
ing Schema Linking failures, filtering significantly
boosts schema linking by mitigating Error 3 and 4.
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Figure 2: The impact on Error Rates. Figure 3: The impact on Evaluation Metrics.

5 Conclusion

In this paper, we aim to adapt existing methods
to real-world large-scale multi-database scenario
by tackling the challenge of schema linking. First,
we highlight four core errors leading to schema
linking failures. Based on this analysis, we pro-
pose the LinkAlign framework, which composes
of three key steps. Additionally, we introduce the
AmbiDB dataset, for better design and evaluation
of the schema linking component. Experiments
demonstrate that our model outperforms existing
baseline methods across all evaluation metrics in
both multi-database and single-database contexts.
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mance (Choi et al., 2021). Models like IRNet (Guo
et al., 2019) and RASAT (Qi et al., 2022) lever-
age attention mechanisms to better incorporate
schema elements into the query understanding pro-
cess. A notable breakthrough in schema linking is
achieved with the introduction of graph neural net-
works (Wang et al., 2019; Cao et al., 2021; Bogin
et al., 2019), enabling models to represent rela-
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nections between query and schema elements more
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ecution accuracy. Recent studies also explore the
integration of LLMs (Rajkumar et al., 2022; Liu
et al., 2023; Guo et al., 2023), such as GPT, which
can directly generate SQLs without requiring task-
specific training data. Building on LLMs, models
like C3 (Dong et al., 2023), DIN-SQL (Pourreza
and Rafiei, 2024), and MAC-SQL (Wang et al.,
2024) leverage task decomposition strategies and
advanced reasoning techniques, such as Chain-of-
Thought (Wei et al., 2022), Least to Most (Zhou
et al., 2022) and self-consistency decoding (Wang
et al., 2022) to address schema linking tasks more
effectively.

Emerging Solutions and Challenges. Schema
linking remains a challenge when handling large-
scale schema and further complicated by the am-
biguity in user queries. Approaches such as
CHESS (Talaei et al., 2024) and MCS-SQL (Lee
et al., 2024) try to address this by using multi-
ple intricate prompts and sampling responses from
LLMs on existing benchmarks such as Spider (Yu
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et al., 2018) and Bird (Li et al., 2024a). To ad-
dress challenges, some works focus on system ro-
bustness and mitigating model hallucinations. For
instance, Solid-SQL (Liu et al., 2024a) enhances ro-
bustness via a specialized pre-processing pipeline,
while TA-SQL (Qu et al., 2024) introduces a “Task
Alignment” strategy to reduce hallucinations by
reframing sub-tasks into more familiar problems
for the model. Although effective, they still re-
quire considerable computational resources and
API costs, particularly in large-scale database sce-
narios. An alternative line of research is to explore
traditional model compression techniques—such
as pruning (Xia et al., 2024; Liu et al., 2025), quan-
tization (Lin et al., 2024; Liu et al., 2024b,c), or
distillation (Hsieh et al., 2023), to adapt LLMs
into smaller (Liu et al., 2021), task-specific vari-
ants. This may provide a cost-efficient and scalable
direction for future work.

B Error Analysis

To figure out why existing methods fail in real-
world environments, we tested 500 examples ran-
domly sampled from the SPIDER dataset. In par-
ticular, the model needs to handle schemas from all
databases, rather than small-scale schemas from
a single database. Given the challenges exist-
ing methods face in handling large-scale database
schemas, we adopt a vectorized retrieval approach
to search relevant schemas based on user queries.
Then the retrieve results composed of related
schemas from different databases are fed into DIN-
SQL models to generate SQL for user queries.

Experimental results in Figure 4 show that in
large-scale, multi-database scenarios, the EX score
of the DIN-SQL model drops from 85.3 to 67.4%.
Manual analysis of error cases reveals that schema
linking errors account for 68.3% of Text-to-SQL
failures, making them the major failure cause.

C Single-Prompt Pipeline Strategy

This section provides a detailed introduction of the
single-prompt pipeline strategy which simplifies
the LinkAlign framework for better efficiency.

Align Semantics by Query Rewriting.We propose
a query semantic enhancement module that utilizes
few-shot Chain of Thought examples to guide the
LLMs to clarify the query’s semantic intent through
four reasoning steps.

Step 1: Requirement Understanding. The first
step involves rephrasing the user query to explicitly

Figure 4: Error Distribution in Failed Cases.

define its objective and data requirements.
Step 2: Key Entity Identification. This step

extracts and identifies the key entities or values
from the query that are semantically relevant to the
target database.

Step 3: Entity Classification. Based on the
previous step’s extractions, entities are classified
into broader categories, and their relationships are
defined.

Step 4: Database Schema Inference. The final
step infers the relevant tables and columns in the
target database schema that are likely to provide
the necessary data to address the query.

Reduce Noise by Response Filtering. We design
a prompt with few-shot Chain of Thought examples
to guide the LLM through multiple reasoning steps,
mapping the query to the correct target database.
First, the model rephrases the data requirements to
ensure full understanding. Next, it evaluates each
database to confirm it contains the necessary data
columns. Finally, the model outputs the name of
the most relevant database.

Identify Tables and Columns by Schema Pars-
ing. We adapted the prompt design from DIN-SQL,
employing a single LLM call for schema linking.
DIN-SQL uses a prompt with few-shot Chain of
Thought examples, incorporating 10 randomly se-
lected samples from the Spider dataset’s training
set. Experimental results demonstrate that this ap-
proach strikes a balance between accuracy and ef-
ficiency in database query scenarios with a small
number of tables and columns, aligning with the
objectives of the pipeline method. By utilizing a
single model call, the method achieves strong per-
formance in solving simpler problems.
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D Effectiveness in Single-Database
Setting

In this section, we discuss how to effectively ap-
ply the LinkAlign framework to Text-to-SQL mod-
els in large-scale single-database scenarios. As a
common assumption in existing studies, the sin-
gle database setting simplifies real-world multi-
database environments by only utilizing the schema
from target database as input for Text-to-SQL mod-
els. However, the single-database setting is of-
ten impractical in real-world scenarios, as non-
technical business users always struggle to select
the appropriate database for data query (e.g., local
SQLite and cloud BigQuery) due to a lack of ex-
pertise in database architecture. This is why our
study prioritizes the multi-database setting, as this
gap limits the real-world application of existing
models.

To ensure LinkAlign remains effective in the
single-database setting, we need to adjust the ob-
jective of Step two to filter out irrelevant database
schemas rather than those from unrelated databases.
However, we notice that this approach sometimes
mistakenly excludes the ground-truth schema, as
it may appear unrelated to generating the correct
SQL. We propose two feasible optimization tech-
niques to address this issue as explained below.
Specific adjustments of prompts and codes are
available in our open source repository.

Random preservation with exponential decay.
To avoid discarding potentially correct schemas
without sufficient evidence, we randomly retain
database schemas for each retrieval round using a
dynamic retention rate. Specifically, the retention
rate decays exponentially with the retrieval rounds
because rewritten queries may gradually deviate
from the user’s original intent, thereby increasing
noise. Random sampling of retrieval results not
only preserves expected benefits, but also enhances
the method’s generalization ability. In addition,
the retention rate needs carefully chosen to ensure
that the number of retained schemas is smaller than
the excluded ones. In our experiments, we set the
initial retention rate (at turn n = 0) to 0.55, the
exponential decay coefficient to 0.6, and clip it to
0 when it falls below 1.

Post Retrieval. This method is also highly effec-
tive by performing mini-batch retrieval on excluded
database schemas (i.e., those not retrieved or fil-
tered out). Intuitively, this offers the model a new

opportunity to sift gold from the sand without the
influence of the spotlight, as it compares against
noisy database schemas rather than those obviously
relevant. This stage employs the same method as
Step One, differing only in the mini-batch retrieval
scale and the number of retrieval rounds. In our
experiments, we set the post-retrieval top-K to 5
and turn-n to 1.

E AmbiDB Dataset Construction

We introduce the AmbiDB benchmark, a variant
of the Spider dataset. It is constructed through
database expansion and query modification to bet-
ter simulate real-world query scenarios charac-
terized by large-scale synonymous databases and
enhanced-ambiguity queries by multi-database con-
texts. The motivation stems from three limitations
in existing benchmarks. First, experiments on the
existing benchmarks specifies the target database
required by the query in advance, ignoring the chal-
lenge of mapping user queries to the target database
in multi-database scenarios. Second, the exist-
ing benchmark has a limited number of synonym
databases, exhibiting lesser ambiguity in multiple
databases context. Third, existing benchmarks of-
ten fail to balance database scale and variety. Am-
biDB outperforms Spider in terms of scale and
surpasses Bird in terms of quantity.

E.1 Data Construction

Database Expansion We extend the database
schema through two key steps. First, we instruct
the LLMs to extract a subset of schema from origi-
nal database.The extracted schema subset forms the
foundation to construct synonym databases. These
schema subsets typically capture key characteris-
tics of the specific domain. For example, the Stu-
dent table, containing attributes such as student
ID and name, can serve as a shared schema for
synonym databases related to College domain. Sec-
ond, we add new tables and columns to expand
the scale of every database while aligned with the
original database themes. The expanded schemas
preserve the integrity of the original SQL queries
while becoming larger in scale. Furthermore, the
inclusion of similar sub-schemas across multiple
databases enhances contextual ambiguity, making
it more close to real-world query scenarios.

Query Modification We instruct the LLMs to
modify original queries with the use of synony-
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mous databases, which making them more com-
plex and ambiguous in multi-database scenarios.
The motivation for this step is that the original
queries are semantically explicit or contain suffi-
cient details, facilitating identifying required ta-
bles and columns from the target database. This
step aligns the queries semantically with overlap-
ping schemas included in multiple synonymous
databases, while avoiding tokens with identical
names across databases. Additionally, we subtly
incorporated details that could be reasoned to help
determine the target database, preventing complete
confusion.

E.2 Data Filter

In the main text, we provided a brief overview
of Query Modification. However, the complete
process involves two key steps: (1) generating the
correct SQL query for a given question, and (2)
filtering the rewritten question-SQL pairs.

Generating the Correct SQL Query for the
Question. LLMs with strong reasoning and gen-
eration capabilities is employed to generate the
corresponding SQL query based on the modified
question. Due to the inherent ambiguity and com-
plexity of the questions, the model cannot guar-
antee absolute correctness of the generated SQL.
To address this, we implement an automatic veri-
fication step, where the model checks if the data
requirements described in the question align with
the SQL query’s execution result. The model is
then given a single opportunity to correct any er-
rors by fine-tuning the question to match the SQL
query. Finally, we manually review and verify the
question-SQL pairs to ensure correctness.

Filtering the Rewritten Question-SQL Pairs. We
assess the complexity and ambiguity of each ques-
tion individually, removing or modifying any in-
adequate samples. We then filter out the top 10%
and bottom 5% of questions based on length. This
approach is driven by two considerations: first,
longer questions may contain more semantically
relevant information about the target database, mak-
ing it easier to locate the question through semantic
matching alone, which fails to simulate the real-
world challenges of database localization. Second,
shorter questions may oversimplify the Schema
Linking task, making it easier to address the sec-
ond challenge.

Methods Avg. Time (s) Avg. Token
LinkAlign-Pipeline 127.6 8507.4
LinkAlign-Agent 183.5 12486.5
CHESS 457.8 21413.8
RSL-SQL 157.2 14713.4
DIN-SQL 146.3 8600.0

Table 8: End-to-end run time efficiency comparison.
LinkAlign achieves improved schema linking without
significant increases in runtime or token consumption.

F Supplementary Experimental Setup

SPIDER includes 10,181 questions and 5,693 SQL
queries spanning 200 databases, encompassing 138
domains. The dataset is split into 8,659 training
examples, 1,034 development examples, and 2,147
test examples. The databases utilized in the multi-
database scenario experiment are primarily sourced
from the dev dataset and the train dataset.

BIRD comprises 12,751 question-SQL pairs across
95 large databases and spans 37 professional do-
mains. It adds external knowledge to align the
query with specific database schemas. The queries
in BIRD are more complex than SPIDER, neces-
sitating the provision of sample rows and external
knowledge hints to facilitate schema linking.

SPIDER 2.0 comprises 632 real-world text-to-SQL
tasks from enterprise databases with thousands of
columns and diverse SQL dialects. It requires
schema linking, external documentation, and multi-
step SQL generation, posing greater challenges
than SPIDER 1.0 and BIRD. Simplified variants,
Spider 2.0-lite and Spider 2.0-snow, focus on text-
to-SQL parsing without workflow interaction.

G End-to-End Efficiency Analysis

To further assess LinkAlign’s efficiency, we con-
ducted an additional evaluation on the Spider 2.0-
Lite benchmark, which is recognized for its large-
scale and realistic database settings. We randomly
sampled 50 examples and adopted DeepSeek-V3
as the backbone to measure the end-to-end SQL
generation efficiency of different baseline meth-
ods. As reported in Table 8, LinkAlign consistently
improves the quality of SQL generation, without
incurring notable overhead in runtime or token us-
age. In particular, the Pipeline mode exhibits clear
efficiency gains over baselines that directly process
the full schema (e.g., DIN-SQL), highlighting its
effectiveness in balancing performance and cost.
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H Limitations

This paper presents two limitations that will require
attention in future work. First, we did not explore
the potential advantages of combining different
strategies for addressing the schema linking task,
even though our modular interface could facilitate
such combinations. Second, we did not use the
most advanced LLMs in our experiments. The
reasoning limitations of the LLMs maybe resulte
in more noticeable performance between different
methods. However,as large models gain sufficient
capabilities, we may need to consider whether it’s
necessary to simplify the framework.
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