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Abstract

In the era of evaluating large language mod-
els (LLMs), data contamination has become
an increasingly prominent concern. To address
this data contamination risk, LLM benchmark-
ing has evolved from a static to a dynamic
paradigm. In this work, we conduct an in-
depth analysis of existing static and dynamic
benchmarks for evaluating LLMs. We first
examine methods that enhance static bench-
marks and identify their inherent limitations.
We then highlight a critical gap—the lack of
standardized criteria for evaluating dynamic
benchmarks. Based on this observation, we
propose a series of optimal design principles
for dynamic benchmarking and analyze the lim-
itations of existing dynamic benchmarks. This
survey provides a concise yet comprehensive
overview of recent advancements in data con-
tamination research, offering valuable insights
and a clear guide for future research efforts. We
maintain a GitHub repository to continuously
collect both static and dynamic benchmarks for
LLMs.

1 Introduction

The field of natural language processing (NLP)
has advanced rapidly in recent years, driven by
breakthroughs in Large Language Models (LLMs)
such as GPT-4, Claude3, and DeepSeek (Achiam
et al., 2023; Liu et al., 2024; Wan et al., 2023).
Trained on vast amounts of Internet-sourced data,
these models have demonstrated remarkable capa-
bilities across various applications, including code
generation, text summarization, computer use, and
mathematical reasoning (Codeforces, 2025; Ran
et al., 2024; Hu et al., 2024).

To develop and improve LLMs, beyond advance-
ments in model architectures and training algo-
rithms, a crucial area of research focuses on ef-
fectively evaluating their intelligence. Tradition-
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Figure 1: The progress of benchmarking LLMs.

ally, LLM evaluation has relied on static bench-
marking, which involves using carefully curated
human-crafted datasets and assessing model perfor-
mance with appropriate metrics (Wang et al., 2018;
Achiam et al., 2023; Gunasekar et al., 2023; Ran
et al., 2025).

However, because these static benchmarks are
released on the Internet for transparent evaluation,
and LLMs gather as much data as possible from the
Internet for training, potential data contamination
is unavoidable (Magar and Schwartz, 2022; Deng
et al., 2024b; Li et al., 2024d; Balloccu et al., 2024).
Data contamination occurs when benchmark data
is inadvertently included in the training phase of
LLMs, leading to inflated and misleading perfor-
mance assessments. Although this issue has long
been recognized—rooted in the fundamental ma-
chine learning principle of separating training and
test sets—it has become more critical with the rise
of LLMs, which often scrape vast amounts of pub-
licly available Internet data (Achiam et al., 2023),
increasing the risk of contamination. Furthermore,
due to privacy and commercial concerns, tracing
the exact training data of these models is challeng-
ing—if not impossible—complicating efforts to
detect and mitigate potential contamination.

To mitigate the risk of data contamination in
LLM benchmarking, researchers have proposed
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several enhancements to static evaluation meth-
ods, including data encryption (Jacovi et al., 2023)
and post-hoc contamination detection (Shi et al.,
2024). However, due to the inherent limitations
of static methods—such as unverifiable data expo-
sure—these enhancements have seen limited adop-
tion. As a result, researchers have shifted toward
new dynamic benchmarking paradigms, as illus-
trated in Fig. 1. Dynamic methods aim to reduce
contamination risk either by continuously updating
benchmark datasets based on LLM training times-
tamps (White et al., 2024; Jain et al., 2024), or by
regenerating test data to reconstruct and replace
original benchmarks (Chen et al., 2024a; Zhou
et al., 2025; Mirzadeh et al., 2025).

Although many dynamic benchmarking methods
have been proposed to promote fair and transparent
evaluation of LLMs, most existing work primarily
highlights the advantages of these dynamic bench-
marks (White et al., 2024). However, the question
remains: what are the potential trade-offs of us-
ing dynamic benchmarks to evaluate LLMs? The
limitations of dynamic benchmarking—such as the
computational overhead of continuous updates, and
the need for reliable timestamp metadata—are not
yet fully explored.

Moreover, existing surveys on LLM data con-
tamination have mainly focused on post-hoc de-
tection methods (Deng et al., 2024a; Ravaut et al.,
2024; Xu et al., 2024a; Dong et al., 2024; Balloccu
et al., 2024), offering little attention to the emerg-
ing landscape of dynamic benchmarking strategies.
Considering the growing importance and adoption
of dynamic benchmarking methods, it is essential
to assess their effectiveness and limitations. Unfor-
tunately, our empirical survey of existing dynamic
benchmarking methods reveals that their evalua-
tions are highly fragmented. To date, there is no
systematic work that defines clear evaluation crite-
ria for dynamic benchmarks themselves. Moreover,
existing reviews often overlook a detailed compar-
ison of the strengths and weaknesses of different
dynamic methods, leaving a gap in understanding
their practical trade-offs and applicability.

To bridge this gap, we first conduct a system-
atic survey of benchmarking methods for LLMs
designed to mitigate the risk of data contamina-
tion, covering both static and dynamic benchmarks.
We summarize state-of-the-art methods and pro-
vide an in-depth discussion of their strengths and
limitations. Furthermore, we are the first to sum-
marize and abstract a set of criteria for evaluating

dynamic benchmarks. Our study reveals that exist-
ing dynamic benchmarks do not fully satisfy these
proposed criteria, implying the imperfection of cur-
rent design. We hope that our criteria will provide
valuable insights for the future design and standard-
ization of dynamic benchmarking methods.

The paper is organized as shown in Fig. 2. We
first review the background on data contamination
(§2), and then survey static benchmarks and their
enhancements for mitigating data contamination
(§3). Next, we introduce key principles and exist-
ing methods for dynamic benchmarking (§4). Fi-
nally, we discuss open challenges and future direc-
tions (§5).

2 Background

2.1 Data Contamination

Data contamination arises when LLM training data
Dirain improperly overlaps with evaluation data
Drest, undermining performance validity. We re-
view existing work and formalize the definition.
Exact Contamination. Exact contamination oc-
curs when there is any exact duplicate in the bench-
mark dataset

dd st de Dtrain and d € Dtest

In other words, there exists a data point d that is in
both Dypain and Dieir. Common cases include ver-
batim test examples appearing in training corpora,
code snippets from benchmark implementations, or
documentation leaks.

Syntactic Contamination. Syntactic contamina-
tion occurs when a test data point could be found in
the training dataset after a syntactic transformation,
such that

Jd st Jrsyntactic(d) € Dyain and d € Diey

where Fynactic denotes syntactic transformations
like punctuation normalization, whitespace modifi-
cation, synonym substitution, morphological vari-
ations, or syntactic paraphrasing while preserving
lexical meaning.

Examples of Each Contamination. We provide
contamination examples in Table 1. Syntactic con-
tamination occurs when test data is rephrased from
training data using a prefix. Whether such syntac-
tic contamination constitutes true contamination
is debated, as it is difficult to separate memoriza-
tion from reasoning. In this work, we treat such
transformations as contamination, since some NLP
tasks rely heavily on syntax.
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Data Contamination

Exact Contamination
Syntactic Contamination

Examples of Each Contamination

Background Significance of Contamination
Contamination from LLM Training
LLM Benchmarking
Problem Formulation
Math GSMSK (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AIME
d 2024 (of America, 2024) and CNMO 2024 (Society, 2024).
NaturalQuestions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), CMMLU (Li et al., 2023a), MMLU (Hendrycks et al., 2020),
BBH (Suzgun et al., 2022), AGI Eval (Zhong et al., 2023), MMLU-
Knowledge - Redux (Gema et al.,2024) and MMLU-Pro (Wang et al., 2024b),
ControlBench (Darioush et al., 2024), FRAMES (Krishna et al., 2024),
and GPQA Diamond (Rein et al., 2023), AlpacaEval (Li et al., 2023c),
ArenaHard (Li et al., 2024a).
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), SWE-Bench
Coding (Jimenez et al., 2024; Yang et al., 2025), Codeforces (Code-forces, 2025),
Aider (Aider, 2025).
Static Benchmarkin = - IFEval (Zhou et al., 2023), InfoBench (Qin et al., 2024),
. o € |r{Instruction Following [~c gyat (Huang et al, 2024).
Static Application
Benchmarking PIQA (Bisk et al., 2020)_, SIQA (Sap et al., 20}9)’ HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
Reasoning ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), CommonsenseQA (Talmor et al., 2018), C-SimpleQA
(He et al., 2024).
RealToxicityPrompts (Gehman et al., 2020), ToxiGen
Safety (Hartvigsen et al., 2022).
GLUE (Wang, 2018), SuperGLUE (Wang
Language etal., 2019), CLUE (Xu et al., 2020), Typo-fixing (Suzgun et
al., 2022).
Reading SQuAD (Rajpurkar et al., 2018), QuAC (Choi et al., 2018),
Comprehension BoolQ (Clark et al., 2019).
Canary String BIG-Bench(Jacovi et al., 2023).
3 Jacovi et al. (2023), Yang et al. (2023),
Encryption TRUCE (Chandran et al., 2024) .
5 GLUE (Wang, 2018), SuperGLUE (Wang et al., 2019),
Methods for Mitigation Label Protection HumanEval (Chen et al., 2021).
Direct overlap detection(Touvron et al., 2023), Radford et al.,
2019; Brown et al., 2020; Chowdhery et al., 2023, Riddell et
al., 2024; Lee et al., 2023; Gunasekar et al., 2023, Li et al.,
Post-hoc Detecti 2024d; Xu et al., 2024), memorization through masked inputs
EEHNE DEEEIE (Ranaldi et al., 2024; Chang et al., 2023), partial completions
(Anil et al., 2023; Golchin and Surdeanu, 2024), preference for
original over paraphrased test cases (Duarte et al., 2024;
Golchin and Surdeanu, 2023; Zong et al., 2024).
Problem Formulation
{Correctness |
|Scalability |
- — |Collision |
Evaluation Criteria —————————
|Stable of Complexity |
Diversity |
Dynamic Interpretability |
| Benchmarking LiveBench (White et al., 2024), AntiLeak-Bench (Wu et al.,

Existing Work

2024), AcademicEval (Zhang et al., 2024a), Live- CodeBench
(Jain et al., 2024), LiveAoPSBench (Mahdavi et al., 2025),

Forecastbench (Karger et al., 2024).
games(Puma et al., 2023), MMLU-CF (Zhao

Template-Based -
etal., 2024).

Temporal Cutoff -

GSM-Symbolic (Mirzadeh et al., 2025),
Mathador-LM(Kurtic et al., 2024), Mathador

Rule-Based  Jifp e Based | S3Eval (Lei et al., 2024).
1 Graph-Based -

DyVal (Zhu et al., 2024a), NPHardEval (Fan
etal., 2024).

Auto-Dataset (Ying et al., 2024), StructEval
(Cao et al., 2024), ITD (Zhu et al., 2024c),
VarBench (Qian et al., 2024).

LLM examiner (Li et al., 2023b), LM-as-an-
Interviewer (Kim et al., 2024), TreeEval (Li
et al., 2024b), KIEval (Yu et al., 2024).

{LLM-Based

Multi-Agent

Self-Evolving (Wang ct al., 2024a),
BENCHAGENTS (Butt et al., 2024).

Evaluation

LatestEval (Li et al., 2023d), DARG (Zhang et al., 2024b), C2LEVA
(Li et al., 2024c).

Figure 2: Taxonomy of research on benchmarking LLMs.

Contamination Type Training Data

Testing Data

Exact Contamination Write a Python function to check

if a number is prime.

Write a Python function to check if a number is prime.

Syntactic Contamination ~ Write a Python function to check

if a number is prime.

You are a helpful code assistant for Python. Write a
Python function to check if a number is prime.

Table 1: Examples of data contamination in LLMs.
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Significance of Contamination. Data contamina-
tion poses a serious threat to the integrity of LLM
benchmarking, particularly as models grow in scale
and are trained on vast publicly available corpora.
Without proper safeguards, evaluations may inad-
vertently test models on data that they have seen
during training, leading to inflated performance
metrics and misleading claims about generaliza-
tion and robustness. Recent studies underscore
this concern: Schaeffer (2023) demonstrates that
pretraining on test data can significantly distort
evaluation outcomes; Balloccu et al. (2024) reveal
how easily data contamination and evaluation mal-
practices can occur in closed-source LLMs; Xu
et al. (2024b) propose methods to quantify such
contamination; and Deng et al. (2024a) provide a
comprehensive survey of existing risks and mitiga-
tion strategies. The issue gained public attention
when Meta’s LLaMA 4 faced allegations of us-
ing a non-public version fine-tuned for benchmark
gains (Babic, 2025), raising concerns about evalu-
ation transparency—despite Meta’s denial of test
set exposure. Such cases underscore the need for
contamination-aware benchmarking to accurately
assess LLM performance on truly unseen data. We
also present a proof-of-concept evaluation in Ap-
pendix A to highlight the impact of data contami-
nation.

2.2 Contamination Source

Data contamination can occur during the pre-
training, post-training, or fine-tuning phases of
LLM development. Unlike traditional models
with clear separations between training and eval-
uation data, LLLMs are pre-trained on massive, di-
verse datasets—often scraped from the web (e.g.,
FineWeb (Penedo et al., 2024)), increasing the risk
of evaluation data overlap. In the post-training
phase, models are further fine-tuned on large
human-annotated (Mukherjee et al., 2023; Kim
et al., 2023) or synthetic datasets (Ding et al., 2023;
Teknium, 2023; Wang et al., 2023) that may resem-
ble evaluation tasks, further compounding contam-
ination risks. Although retrieval-based detection
methods (Team et al., 2024; Achiam et al., 2023)
exist, the sheer scale and complexity of training
corpora make it difficult to entirely exclude eval-
uation data. Additionally, many LL.Ms keep their
training data proprietary (Dubey et al., 2024; Yang
et al., 2024), complicating the accurate assessment
of their true performance and highlighting the need
for fair and reliable benchmarks. This opacity fur-

ther exacerbates data contamination, as it impedes
the community’s ability to verify and mitigate po-
tential overlaps between training and evaluation
data.

2.3 LLM Benchmarking

As LLMs evolve into general-purpose task solvers,
it is crucial to develop benchmarks that provide a
holistic view of their performance. To this end, sig-
nificant human effort has been dedicated to build-
ing comprehensive benchmarks that assess vari-
ous aspects of model performance. For example,
instruction-following tasks evaluate a model’s abil-
ity to interpret and execute commands (Zhou et al.,
2023; Qin et al., 2024; Huang et al., 2024), while
coding tasks assess its capability to generate and
understand programming code (Chen et al., 2021;
Austin et al., 2021; Jimenez et al., 2024; Code-
forces, 2025; Aider, 2025). Despite their useful-
ness, static benchmarks face challenges as LLMs
evolve rapidly and continue training on all avail-
able data (Villalobos et al., 2022). Over time, un-
changing benchmarks may become too easy for
stronger LLMs or introduce data contamination
issues. Recognizing this critical problem, contami-
nation detectors have been developed to quantify
contamination risks, and dynamic benchmarks have
been proposed to mitigate these issues.

3 Static Benchmarking

3.1 Problem Formulation

A static benchmark is given by D = (X, ), S(.)),
where D represents the seed dataset, consisting
of input prompts X, expected outputs ), and a
scoring function S(+) that evaluates the quality of
an LLM’s outputs by comparing them against ).

3.2 Static Benchmark Applications

Math. Math benchmarks evaluate a model’s abil-
ity to solve multi-step math problems. Datasets
such as GSMS8K (Cobbe et al.,, 2021) and
MATH (Hendrycks et al., 2021) require models
to work through complex problems. Recent chal-
lenges like AIME 2024 (of America, 2024) and
CNMO 2024 (Society, 2024) further test a model’s
capacity to tackle diverse and intricate math tasks.
Coding. Coding benchmarks measure a model’s
ability to generate and debug code. Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) test code synthesis and debugging,
whereas SWE-Bench (Jimenez et al., 2024; Yang

10083



et al., 2025) addresses more advanced challenges.
Competitive platforms like Codeforces (Code-
forces, 2025) and datasets like Aider (Aider, 2025)
further probe dynamic problem solving. There are
also benchmarks that evaluate LLMs’ ability to
judge the correctness of code (Jiang et al., 2025).
Instruction Following. Instruction benchmarks
evaluate a model’s ability to comprehend and exe-
cute detailed directives. Datasets like IFEval (Zhou
et al., 2023) and InfoBench (Qin et al., 2024) sim-
ulate real-world scenarios requiring clear, step-by-
step guidance, with C-Eval (Huang et al., 2024)
focusing on Chinese instructions.

Other Applications. We provide a detailed intro-
duction to other applications in Appendix B, along
with a further analysis on enhancing static bench-
marks in Appendix C.

4 Dynamic Benchmarking

4.1 Problem Formulation

A dynamic benchmark is defined as Bgynamic =
(D,T(-)), D = (X,¥,5(-)) where D repre-
sents the static benchmark dataset. The transforma-
tion function 7'(-) modifies the dataset during the
benchmarking to avoid possible data contamination.
The dynamic dataset for the evaluation of an LLM
can then be expressed as D; = T3(D), Vt €
{1,..., N} where D; represents the evaluation
dataset at the timestamp ¢, and [V is the total times-
tamp number, which could be finite or infinite. If
the seed dataset D is empty, the dynamic bench-
marking dataset will be created from scratch.

4.2 Criteria Summarization and Abstraction

While many dynamic benchmarking methods have
been proposed to evaluate LLMs, the criteria for
evaluating these benchmarks themselves remain
non-standardized. To address this gap, we analyze
existing evaluation practices and abstract them into
a unified framework. We review over 50 dynamic
benchmarking papers, focusing specifically on how
they evaluate their own benchmarks. Although
many of these works include some form of self-
evaluation, the dynamic benchmarking methods
are often incomplete, or lack depth. For example,
DyVal2 evaluates benchmark complexity and cor-
rectness, but does not address the interpretability
of the benchmark construction process.

To systematize this landscape, we identify a uni-
fied set of evaluation criteria and present them in
Table 2. We then assess whether each dynamic

benchmark fully supports, partially supports, or
does not support each criterion. For instance, in the
case of correctness: benchmarks with built-in guar-
antees—such as those using temporal cutoffs or
rule-based generation—are marked as “supported”.
Benchmarks generated using LLMs are marked as
“partially supported” if they include validation (e.g.,
human or automated checks); otherwise, they are
labeled “not supported”. More guidance for classi-
fying each dynamic benchmark could be found in
Appendix D.

4.3 Summarized Evaluation Criteria
4.3.1 Correctness

The first criterion for evaluating the quality of dy-
namic benchmarking is Correctness. If the cor-
rectness of the generated dataset cannot be guaran-
teed, the benchmark may provide a false sense of
reliability when applied to benchmarking LLMs,
leading to misleading evaluations. We quantify the
correctness of dynamic benchmarks as

Correctness = EY, S(;, G(X)))

where &; and ); represent the input and output of
the ' transformation, respectively. The function
G(-) is an oracle that returns the ground truth of
its input, ensuring an objective reference for cor-
rectness evaluation. For example, the function G(-)
could be a domain-specific annotator. This equa-
tion can be interpreted as the expected alignment
between the outputs of the transformed data set and
their corresponding ground truth values, measured
using the scoring function S(+). A higher correct-
ness score indicates that the dynamic benchmark
maintains correctness to the ground truth.

4.3.2 Scalability

The next evaluation criterion is scalability, which
measures the ability of dynamic benchmark-
ing methods to generate large-scale benchmark
datasets. A smaller dataset can introduce more
statistical errors during the benchmarking process.
Therefore, an optimal dynamic benchmark should
generate a larger dataset while minimizing associ-
ated costs. The scalability of a dynamic benchmark
is quantified as

Scalability:Ele[ I7:(D)| ]

D] x Cost(T:)

This equation represents the expectation over the
entire transformation space, where || 7;(D)|| is the
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Dynamic Mechanisms Benchmark Name

Evaluation Criteria

Correctness Scalability Collision Stability of Complexity Diversity Interpretability

LiveBench (White et al., 2024)
AcademicEval (Zhang et al., 2024a)
LiveCodeBench (Jain et al., 2024)
LiveAoPSBench (Mahdavi et al., 2025)
AntiLeak-Bench (Wu et al., 2025)

Temporal Cutoff

© O O
©

D C

@]

S3Eval (Lei et al., 2024)

DyVal (Zhu et al., 2024a)

MMLU-CF (Zhao et al., 2025)
NPHardEval (Fan et al., 2024)
GSM-Symbolic (Mirzadeh et al., 2025)
PPM (Chen et al., 2024a)
GSM-Infinite (Zhou et al., 2025)

Rule-Based

cCecee 02
o~ |amaa
0000~00 0000

o000

Auto-Dataset (Ying et al., 2024)
LLM-as-an-Interviewer (Kim et al., 2024)
TreeEval (Li et al., 2024c¢)

BeyondStatic (Li et al., 2023a)

StructEval (Cao et al., 2024)

Dynabench (Kiela et al., 2021)
Self-Evolving (Wang et al., 2025)

LLM-Based

OO0O0O0

(o))

DARG (Zhang et al., 2024b)
LatestEval (Li et al., 2023c)
C2LEVA (Li et al., 2025)

[N ECRECNCECNCECNC N

Hybrid

C0 020020 0200000 00 OC
Ce 000000 222 am OO

o200 0200000 00
ceess oec0c00®

©
[ ]
©

-
[ ]

Table 2: Existing dynamic benchmarks and their quality on our summarized criteria. @ represents support, ©

represents partial support, and O represents no support.

size of the transformed dataset, and ||D|| is the size
of the original dataset. The function Cost(-) mea-
sures the cost associated with the transformation
process, which could include monetary cost, time
spent, or manual effort according to the detailed
scenarios. This equation could be interpreted as the
proportion of data that can be generated per unit
cost.

4.3.3 Collision

One of the main motivations for dynamic bench-
marking is to address the challenge of balancing
transparent benchmarking with the risk of data con-
tamination. Since the benchmarking algorithm is
publicly available, an important concern arises: If
these benchmarks are used to train LLMs, can
they still reliably reflect the true capabilities of
the LLMs? To evaluate the robustness of a dynamic
benchmark against this challenge, we introduce
the concept of collision in dynamic benchmarking.
Collision refers to the extent to which different
transformations of the benchmark dataset produce
overlapping data, potentially limiting the bench-
mark’s ability to generate novel and diverse test
cases. To quantify collision, we propose the follow-
ing metrics

isi _ RN 1D 0Dy
Collision Rate = E;;_; ;; [”m'
k
Repeat=EY, |k |k =min{ | JD; 2 D;
j=1

Collision Rate measures the percentage of overlap
between two independently transformed versions
of the benchmark dataset, indicating how much po-
tential contamination among two trials. Repeat
Trials quantifies the expected number of transfor-
mation trials required to fully regenerate an exist-
ing transformed dataset 7;(D), providing insight
into the benchmark’s ability to produce novel varia-
tions. These metrics help assess whether a dynamic
benchmark remains effective in evaluating LLM ca-
pabilities, even when exposed to potential training
data contamination.

4.3.4 Stability of Complexity

Dynamic benchmarks must also account for com-
plexity to help users determine whether a perfor-
mance drop in an LLM on the transformed dataset
is due to potential data contamination or an in-
crease in task complexity. If a dynamic transforma-
tion increases the complexity of the seed dataset,
a performance drop is expected, even without data
contamination. However, accurately measuring the
complexity of a benchmark dataset remains a chal-
lenging task. Existing work has proposed various
complexity metrics, but these are often domain-
specific and do not generalize well across differ-
ent applications. For example, DyVal (Zhu et al.,
2024a) proposes applying graph complexity to eval-
uate the complexity of reasoning problems. For-
mally, given a complexity measurement function
U (-), the stability can be formulated as

Stability = Var(¥(D;))
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This equation can be interpreted as the variance
in complexity across different trials, where high
variance indicates that the dynamic benchmarking
method is not stable.

4.3.5 Diversity

The diversity metric can be categorized into two
components: external diversity and internal di-
versity. External diversity measures the varia-
tion between the transformed dataset and the seed
dataset. Internal diversity quantifies the differences
between two transformation trials.

External Diversity = EY ,0(D;, D)
Internal Diversity = E;_, ,.;0(D;, D;)

where O(+) is a function that measures the diversity
between two datasets. For example, it could be
the N-gram metrics or the reference-based metrics,
such as BLEU scores.

4.3.6 Interpretability

Dynamic benchmarking generates large volumes
of transformed data, making manual verification
costly and challenging. To ensure correctness, the
transformation process must be interpretable. Inter-
pretable transformations reduce the need for exten-
sive manual validation, lowering costs. Rule-based
or manually crafted transformations are inherently
interpretable, while LLM-assisted transformations
depend on the model’s transparency and traceabil-
ity. In such cases, additional mechanisms like ex-
plainability tools or human-in-the-loop validation
may be needed to ensure reliability and correctness.

4.4 Existing Work

Table 4 summarizes recent dynamic benchmarks.
Dynamic benchmarking methods can be catego-
rized into four types: temporal cutoff, rule-based
generation, LLM-based generation, and hybrid.

4.4.1 Temporal Cutoff

Since LLMs typically have a knowledge cutoff date,
using data collected after this cutoff to construct
datasets can help evaluate the model while mitigat-
ing data contamination. This type of method has
been widely adopted to construct reliable bench-
marks that prevent contamination (Uddin et al.,
2024). LiveBench (White et al., 2024) collects
questions based on the latest information source,
e.g., math competitions from the past 12 months,
with new questions added and updated every few

months. AntiLeak-Bench (Wu et al., 2025) gener-
ates queries about newly emerged knowledge that
was unknown before the model’s knowledge cut-
off date to eliminate potential data contamination.
AcademicEval (Zhang et al., 2024a) designs aca-
demic writing tasks on latest arXiv papers. Live-
CodeBench (Jain et al., 2024) continuously col-
lects new human-written coding problems from
online coding competition platforms like LeetCode.
LiveAoPSBench (Mahdavi et al., 2025) collects
live math problems from the Art of Problem Solv-
ing forum. Forecastbench (Karger et al., 2024)
updates new forecasting questions on a daily basis
from different data sources, e.g., prediction mar-
kets.

Limitations. The collection process typically re-
quires significant human effort (White et al., 2024;
Jain et al., 2024), and continuous updates demand
ongoing human involvement. Despite the popu-
larity of temporal cutoffs, using recent informa-
tion from competitions to evaluate LLMs can still
lead to data contamination, as these problems are
likely to be reused in future competitions (Wu et al.,
2025). Verification is often overlooked in these live
benchmarks (White et al., 2024).

4.4.2 Rule-Based Generation

The method of rule-based generation synthesizes
new test cases based on predefined rules, featuring
an extremely low collision probability (Zhu et al.,
2024a).

Template-Based. GSM-Symbolic (Mirzadeh et al.,
2025) creates dynamic math benchmarks by using
query templates with placeholder variables, which
are randomly filled to generate diverse problem
instances. Mathador-LM (Kurtic et al., 2024) gen-
erates evaluation queries by adhering to the rules
of Mathador games (Puma et al., 2023) and vary-
ing input numbers. MMLU-CF (Zhao et al., 2025)
follows the template of multiple-choice questions
and generates novel samples by shuffling answer
choices and randomly replacing incorrect options
with “None of the other choices”.

Table-Based. S3Eval (Lei et al., 2024) evaluates
the reasoning ability of LLMs by assessing their
accuracy in executing random SQL queries on ran-
domly generated SQL tables.

Graph-Based. In this category, LLMs are evalu-
ated with randomly generated graphs. For instance,
DyVal (Zhu et al., 2024a) assesses the reasoning
capabilities of LLMs using randomly generated di-
rected acyclic graphs (DAGs). The framework first

10086



constructs DAGs with varying numbers of nodes
and edges to control task difficulty. For example, in
arithmetic reasoning tasks, leaf nodes represent ran-
dom numeric values, while edges correspond to ran-
domly assigned arithmetic operators. These DAGs
are then transformed into natural language descrip-
tions through rule-based conversion. Finally, the
LLM is evaluated by querying it for the value of
the root node. Similarly, NPHardEval (Fan et al.,
2024) evaluates the reasoning ability of LLMs on
well-known P and NP problems, such as the Trav-
eling Salesman Problem (TSP). Random graphs of
varying sizes are synthesized as inputs for TSP to
assess the LLM’s performance. Xie et al. (2024) au-
tomatically construct Knights and Knaves puzzles
with random reasoning graph.

Limitations. The pre-defined rules may limit sam-
ple diversity, and publicly available rule-generated
data may increase the risk of in-distribution con-
tamination during training (Tu et al., 2024).

4.4.3 LLM-Based Generation

Benchmark Rewriting. In this category, LLMs are
employed to rewrite samples from existing static
benchmarks, which may be contaminated. Auto-
Dataset (Ying et al., 2024) prompts LLMs to gen-
erate two types of new samples: one that retains
the stylistics and essential knowledge of the orig-
inal, and the other that presents related questions
at different cognitive levels (Bloom et al., 1956).
StructEval (Cao et al., 2024) expands on examined
concepts from the original benchmark by using
LLMs and knowledge graphs to develop a series of
extended questions. ITD (Zhu et al., 2024c¢) utilizes
a contamination detector (Shi et al., 2024) to iden-
tify contaminated samples in static benchmarks
and then prompts an LLM to rewrite them while
preserving their difficulty levels. VarBench (Qian
et al., 2024) prompts LLMs to generate new ones.
Interactive Evaluation. In this category, inspired
by the human interview process, LLMs are evalu-
ated through multi-round interactions with an LLM
(Li et al., 2023a). LLM-as-an-Interviewer (Kim
et al., 2024) employs an interviewer LLM that
first paraphrases queries from existing static bench-
marks and then conducts a multi-turn evaluation
by posing follow-up questions or providing feed-
back on the examined LLM’s responses. TreeE-
val (Li et al., 2024¢) begins by generating an initial
question on a given topic using an LLM. Based
on the previous topic and the examined LLM’s re-
sponse, it then generates follow-up subtopics and

corresponding questions to further assess the model.
KIEval (Yu et al., 2024) generates follow-up ques-
tions based on the evaluated model’s response to
an initial question from a static benchmark.
Multi-Agent Evaluation. Inspired by the re-
cent success of multi-agent systems (Guo et al.,
2024), multi-agent collaborations are used to con-
struct dynamic benchmarks. Benchmark Self-
Evolving (Wang et al., 2025) employs a multi-agent
framework to dynamically extend existing static
benchmarks, showcasing the potential of agent-
based methods. Given a task description, BEN-
CHAGENTS (Butt et al., 2024) leverages a multi-
agent framework for automated benchmark cre-
ation. It splits the process into planning, genera-
tion, verification, and evaluation—each handled by
a specialized LLM agent. This coordinated method,
with human-in-the-loop feedback, yields scalable,
diverse, and high-quality benchmarks.
Limitations. The quality of LLM-generated sam-
ples is often uncertain. For instance, human anno-
tation in LatestEval (Li et al., 2023c¢) reveals that
10% of samples lack faithfulness or answerability.
In interactive settings, reliability further depends
on the interviewer LLM.

4.4.4 Hybrid Generation

LatestEval (Li et al., 2023c) combines temporal
cutoff and LLM-based generation to automatically
generate reading comprehension datasets using
LLMs on real-time content from sources such as
BBC. DARG (Zhang et al., 2024b) integrates LLM-
based and graph-based generation. It first extracts
reasoning graphs from existing benchmarks and
then perturbs them into new samples using prede-
fined rules. C2LEVA (Li et al., 2025) incorporates
all three contamination-free construction methods
to build a contamination-free bilingual evaluation.
TrustGen (Huang et al., 2025) is the first dynamic
benchmarking to evaluate trustworthiness across
multiple dimensions and model types, including
text-to-image, large language, and vision-language
models.

5 Discussions

Current Challenges. Benchmarking LLMs is es-
sential for evaluating model performance, but tra-
ditional static benchmarks risk data contamination.
Dynamic benchmarks address this risk by updat-
ing or regenerating test data, aiming to maintain
integrity. However, current dynamic methods often
lack standardized evaluation criteria, suffer from
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limited scalability, and offer little interpretability.
Many also fail to systematically assess trade-offs
like computational overhead and robustness.
Future Directions. Future work should estab-
lish standardized evaluation frameworks with cri-
teria such as correctness, diversity, and scalability.
Contamination-resilient benchmarks—using tem-
poral filtering, synthetic data, or rule-based gener-
ation—can further improve reliability. Dynamic
benchmarks should also support continual updates,
cross-model applicability, and human-in-the-loop
validation. Public update logs and improved in-
terpretability will enhance transparency and trust
in LLM evaluation. Future directions also include
extending dynamic benchmarking to multi-modal
LLMs (Chen et al., 2024b,c).

6 Conclusion

This survey reviews the literature on data contami-
nation in LLM benchmarking, analyzing both static
and dynamic methods. We find that static meth-
ods, though consistent, become more vulnerable to
contamination as training datasets grow. While dy-
namic methods show promise, they face challenges
in reliability and reproducibility. Future research
should focus on standardized dynamic evaluation,
and practical mitigation tools.
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Limitations

While this survey provides a comprehensive
overview of static and dynamic benchmarking
methods for LLMs, there are several limitations to
consider. First, due to the rapidly evolving nature
of LLM development and benchmarking methods,
some recent methods or tools may not have been
fully covered. As benchmarking practices are still
emerging, the methods discussed may not yet ac-
count for all potential challenges or innovations in
the field. Additionally, our proposed criteria for dy-
namic benchmarking are a first step and may need
further refinement and validation in real-world ap-
plications. Finally, this survey focuses primarily on

high-level concepts and may not delve into all the
fine-grained technical details of specific methods,
which may limit its applicability to practitioners
seeking in-depth implementation guidelines.

Ethical Considerations

Our work is rooted in the goal of enhancing the
transparency and fairness of LLM evaluations,
which can help mitigate the risks of bias and con-
tamination in Al systems. However, ethical con-
cerns arise when considering the use of both static
and dynamic benchmarks. Static benchmarks, if
not carefully constructed, can inadvertently perpet-
uate biases, especially if they rely on outdated or
biased data sources. Dynamic benchmarks, while
offering a more adaptive method, raise privacy and
security concerns regarding the continual collection
and updating of data. Moreover, transparency and
the potential for misuse of benchmarking results,
such as artificially inflating model performance or
selecting biased evaluation criteria, must be care-
fully managed. It is essential that benchmarking
frameworks are designed with fairness, account-
ability, and privacy in mind, ensuring that they do
not inadvertently harm or disadvantage certain user
groups or research domains. Finally, we encourage
further exploration of ethical guidelines surround-
ing data usage, model transparency, and the broader
societal impact of Al benchmarks.
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A Significance of Data Contamination

To demonstrate the effectiveness of dynamic
benchmarks, we following existing work (Chen
et al., 2025) and conduct a study using Hu-
manEval and DyCodeEval (Chen et al., 2025) us-
ing three LLMs: Llama-3.2-1B, Llama-3.2-3B, and
DeepSeek-Coder-1.3B. For each model, we simu-
late data contamination by intentionally leaking a
portion of the benchmark dataset during fine-tuning.
We experiment with contamination levels of 0%,
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HumanEval DyCodeEval
Leakage [ lama-3.2-1B Llama-3.2-3B DeepSeck-Coder-1.3b Llama-3.2-1B  Llama-3.2-3B  DeepSeek-Coder-1.3b
0% 0.19 0.28 0.41 0.14 0.25 0.41
25% 0.29 0.32 0.47 0.08 0.18 0.13
50% 0.48 0.57 0.50 0.08 0.19 0.16
75% 0.68 0.71 0.59 0.07 0.21 0.14
100% 0.82 0.87 0.62 0.11 0.18 0.07

Table 3: A proof of concept experiment.

25%, 50%, 75%, and 100% respectively, producing
four distinct contaminated models.

The results show that for overfitted models, as
the contamination level increases from 25% to
100%, accuracy on HumanEval also increases. This
result highlights the limitation of static benchmarks
in detecting overfitting. However, on the dynamic
DyCodeEval, even when a model is overfitted on
one version, it maintains stable accuracy scores
across different versions. The results demonstrate
the advantage of dynamic benchmarks in evaluat-
ing models under data contamination.

B Benchmark Applications

Knowledge. = Knowledge benchmarks evalu-
ate LLM internal knowledge.  NaturalQues-
tions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017) focus on retrieving real-
world information, while multi-domain tasks are
covered by MMLU (Hendrycks et al., 2020),
BBH (Suzgun et al., 2023), and AGI Eval (Zhong
et al., 2024). Recent extensions like MMLU-
Redux (Gema et al., 2025) and MMLU-Pro (Wang
et al., 2024) refine these assessments further. Ad-
ditionally, ControlBench (Darioush et al., 2024),
FRAMES (Krishna et al., 2025), and GPQA Dia-
mond (Rein et al., 2023) target technical and long-
context challenges, with open-domain evaluations
provided by AlpacaEval (Li et al., 2023b) and Are-
naHard (Li et al., 2024b).

Reasoning. Understanding and applying everyday
knowledge is a key aspect of language compre-
hension. Benchmarks such as PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), and WinoGrande (Sakaguchi et al.,
2021) are designed to assess a model’s intuitive
reasoning skills from multiple perspectives. In ad-
dition, academic challenge sets like ARC (Clark
etal., 2018), OpenBookQA (Mihaylov et al., 2018),
and CommonsenseQA (Talmor et al., 2019) push
models further by requiring the integration of back-
ground knowledge with logical reasoning to arrive

at plausible answers. C-SimpleQA (He et al., 2025)
evaluates the factuality ability of language models
to answer short questions in Chinese.

Safety. Safety benchmarks are essential for evalu-
ating the robustness of LLLM’s ability to generate
non-toxic and ethically aligned content. Datasets
such as RealToxicityPrompts (Gehman et al., 2020)
and ToxiGen (Hartvigsen et al., 2022) assess re-
silience against producing harmful outputs. Trust-
Gen (Huang et al., 2025) is the first dynamic bench-
marking to evaluate trustworthiness across multi-
ple dimensions and model types, including text-to-
image, large language, and vision-language mod-
els.

Language. Language benchmarks assess
the LLMs’ proficiency in specific languages.
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) cover tasks from sentiment analysis to
language inference, while CLUE (Xu et al., 2020)
targets Chinese language. Typo-fixing (Suzgun
et al., 2023) is also widely used.

Reading Comprehension. Reading comprehen-
sion tasks test a model’s ability to extract and
infer information from text. Benchmarks like
SQuAD (Rajpurkar et al., 2018), QuAC (Choi et al.,
2018), and BoolQ (Clark et al., 2019) challenge
models to understand passages and draw logical
conclusions.

C Static Benchmark Enhancements

Because LLMs often train on publicly available
data, static benchmarks risk being inadvertently
included, leading to contamination. To mitigate
this risk, several methods have been proposed to
enhance static benchmarking.

C.1 Canary String

Canary strings are deliberately crafted, being
unique tokens embedded within a dataset to serve
as markers for data contamination. When a
model’s output unexpectedly includes these tokens,
it strongly indicates that the model has memorized
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Task Type Benchmark
Static GSMSK (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AIME 2024 (of America,
Math 2024), CNMO 2024) (Society, 2024)
Dynamic  LiveBench (White et al., 2024), UGMathBench (Xu et al., 2025), Mathador-LM (Kurtic
et al., 2024)
Static GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019), CLUE (Xu et al., 2020)
Language Dynamic  LiveBench (White et al., 2024), C2LEVA (Li et al., 2025), ITD (Zhu et al., 2024c)
. Static HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), SWE-Bench (Jimenez et al.,
Coding 2024; Yang et al., 2025), Codeforces (Codeforces, 2025), Aider (Aider, 2025)
Dynamic  PPM (Chen et al., 2024a), DyCodeEval (Chen et al., 2025), LiveCodeBench (Jain et al.,
2024), ComplexCodeEval (Feng et al., 2024)
. Static PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Wino-
Reasoning Grande (Sakaguchi et al., 2021), ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), CommonsenseQA (Talmor et al., 2019), C-SimpleQA (He et al., 2025)
Dynamic  LiveBench (White et al., 2024), DyVal (Zhu et al., 2024a), CZLEVA (Li et al., 2025),
NPHardEval (Fan et al., 2024), S3Eval (Lei et al., 2024), DARG (Zhang et al., 2024b)
Static NaturalQuestions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), CMMLU (Li
Knowledge etal., 2024a), MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2023), AGI Eval (Zhong
et al., 2024), MMLU-Redux (Gema et al., 2025), MMLU-Pro (Wang et al., 2024), Control-
Bench (Darioush et al., 2024), FRAMES (Krishna et al., 2025), GPQA Diamond (Rein et al.,
2023), AlpacaEval (Li et al., 2023b), ArenaHard (Li et al., 2024b)
Dynamic C2LEVA (Li et al., 2025), ITD (Zhu et al., 2024c), Auto-Dataset (Ying et al., 2024),
DyVal2 (Zhu et al., 2024b), SciEval (Sun et al., 2024)
Static RealToxicityPrompts (Gehman et al., 2020), ToxiGen (Hartvigsen et al., 2022)
Safety Dynamic  C2LEVA (Li et al., 2025), FactBench (Bayat et al., 2024)
. Static IFEval (Zhou et al., 2023), InfoBench (Qin et al., 2024), C-Eval (Huang et al., 2024)
Instruction Dynamic  LiveBench (White et al., 2024)
. Static SQuAD (Rajpurkar et al., 2018), QuAC (Choi et al., 2018), BoolQ (Clark et al., 2019)
Comprehension Dynamic LatestEval (Li et al., 2023c), Antileak-bench (Wu et al., 2025)

Table 4: Summary of benchmarking applications.

portions of its training data rather than learning to
generalize. For instance, the BIG-Bench dataset
incorporates these strings so that model developers
can identify and filter out such instances (Jacovi
et al., 2023).

Limitations. The effectiveness of canary strings
depends on model trainers being aware of and re-
sponsive to these markers. If a developer aims
to leak benchmarking data to boost scores, this
method will not work.

C.2 Encryption

Encryption methods secure evaluation data by mak-
ing it inaccessible to unauthorized parties, prevent-
ing its accidental inclusion in training sets. Jacovi
et al. (2023) propose encrypting test data with a
public key and a “No Derivatives” license to block
automated crawling and reuse. Yang et al. (2023)
show that even advanced decontamination methods
can be defeated by minor text variations, empha-
sizing the need for robust encryption. Similarly,
TRUCE (Chandran et al., 2024) leverages confiden-
tial computing and secure multi-party computation

to enable private benchmarking, ensuring that test
data and model parameters remain confidential.
Limitations. While these methods effectively pro-
tect against data leakage, they depend on strong key
management, they introduce extra computational
overheads. These methods are vulnerable if encryp-
tion is compromised or private key is exposed.

C.3 Label Protection

Label protection involves keeping the true answers
of a test set hidden from public access so that
only an authorized evaluator can use them dur-
ing model assessment. This method is common
in benchmarks such as GLUE (Wang et al., 2018),
SuperGLUE (Wang et al., 2019), and OpenAl’s
HumanEval (Chen et al., 2021). where the test
labels are withheld to prevent models from learn-
ing or memorizing them during training. The key
advantage of this method is its ability to maintain
evaluation integrity by preventing model exposure
to answers, thereby mitigating data contamination
risks.

Limitations. Label protection limits transparency
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and independent verification, and it forces re-
searchers to rely on centralized evaluation systems
for performance metrics, which can impede de-
tailed error analysis and reproducibility.

C.4 Post-hoc Detection

Post-hoc detection mitigates data contamination
by identifying overlaps between Dy;q;r, and Dyest.
This method is typically done through n-gram
matching at various levels, such as tokens (Tou-
vron et al., 2023) or words (Radford et al., 2019;
Brown et al., 2020; Chowdhery et al., 2023). How-
ever, exact matching often leads to false negatives,
prompting the use of more robust methods like
embedding-based similarity (Riddell et al., 2024;
Lee et al., 2023; Gunasekar et al., 2023) and im-
proved mapping metrics (Li et al., 2024d; Xu et al.,
2024b).

Beyond direct overlap detection, post-hoc meth-
ods also analyze model behavior under different
conditions, such as memorization through masked
inputs (Ranaldi et al., 2024; Chang et al., 2023),
partial completions (Anil et al., 2023; Golchin and
Surdeanu, 2024), or preference for original over
paraphrased test cases (Duarte et al., 2024; Golchin
and Surdeanu, 2023; Zong et al., 2024). For in-
stance, Dekoninck et al. (2024) propose CONSTAT,
which detects contamination by comparing model
performance across benchmarks.

Limitations. Post-hot detection methods face sev-
eral limitations. Full access to the training dataset is
often restricted due to legal and privacy constraints,
making overlap detection challenging. Addition-
ally, assumptions about model behavior, such as
higher memorization or lower perplexity for con-
taminated instances, may not hold across different

models and tasks.

D Dynamic Benchmarking Strategy
Property Labeling Guidance

We label each dynamic benchmark as “supported”,
“partially supported”, or “not supported” for each
criterion based on the following guidelines:
Correctness. Benchmarks with built-in guarantees
(e.g., via temporal cutoffs or rule-based generation)
are marked “‘supported”. LLM-generated bench-
marks are “partially supported” if validated (e.g.,
by humans or automation), and “not supported”
otherwise.

Scalability. Fully automated benchmarks are “sup-

ported”. Those combining automation with human
effort are “partially supported”, while purely man-

ual ones are “not supported”.

Collision. If a benchmark provides theoretical
guarantees or formally analyzes collision rates, it
is “supported”. Empirical analysis without guaran-
tees is “partial support”, and absence of discussion
results in “not supported”.

Complexity Stability. Benchmarks that define and
control complexity are “supported”. Those that
define but do not control it receive “partial support”.
Lack of discussion results in “not supported”.
Diversity. Benchmarks that define and enforce di-
versity are “supported”’. Those that define but do
not control it are “partially supported”, and bench-
marks that omit it are “not supported”.
Interpretability. Rule-based or human-designed
benchmarks are “supported”. Those combining
rules with LLMs receive “partial support”. Bench-
marks relying entirely on LLMs without inter-
pretability are “not supported”.
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