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Abstract

Long-range tasks demand reasoning over long
inputs. However, existing solutions are limited,
e.g., long-context models require large compute
budgets, parameter-efficient fine-tuning (PEFT)
needs training data, and retrieval-augmented
generation (RAG) entails complex task-specific
designs. Though in-context approaches over-
come many of these issues, methods with short-
context LLMs are inefficient, trading context
for processing more tokens. We introduce
PRISM, a highly token-efficient in-context
method based on structured schemas that out-
performs baselines on diverse tasks with 4x
shorter contexts. This approach produces con-
cise outputs and efficiently leverages key-value
(KV) caches to reduce costs by up to 54%.
PRISM scales down to tiny contexts without
increasing costs or sacrificing quality, and gen-
eralizes to new tasks with minimal effort by
generating schemas from task descriptions.

1 Introduction

Long information contexts pose significant chal-
lenges for language tasks. The prototypical ex-
ample is long document summarization, where a
lengthy piece of text must be summarized into a
short-form summary. For these and other long nat-
ural language tasks, large language models (LLMs)
are state-of-the-art. In summarization, an LLM
is typically prompted with summarization instruc-
tions alongside the text and generates a summary of
the content. However, this requires sufficient con-
text to accommodate the entire document. Many
practitioners and researchers rely on models with
short contexts because they are limited by the in-
ference cost of long-context models, open source
or on-premises requirements, local compute con-
straints, or other barriers. There are a range of al-
ternatives to long-context language models, which
include PEFT and RAG. However, these solutions
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Figure 1: PRISM efficiently processes a stream of
chunked data, leveraging a concise and cache-optimized
structured memory to propose revisions at each step.

either require training data or necessitate complex
task-specific design choices. Short context LLMs
with in-context methods promise a training data-
free and task-agnostic alternative to solving long-
range tasks. They achieve this by repeatedly ap-
plying short context models to chunks of long text,
requiring processing a very large number of input
and output tokens. In turn, this leads to high API
usage or compute costs. In response, we design
PRISM, Processing Incrementally with Structured
Memory: a highly token-efficient in-context ap-
proach that is task-agnostic, requires no training
data, uses a small compute budget, and does not
need access to model weights. No existing method
satisfies all these constraints.

PRISM employs incremental processing, treat-
ing the input as a sequential stream of chunks, pro-
cessed in the order of their appearance alongside
a structured in-context memory of prior chunks.
While incremental methods are not new, e.g.,
Chang et al. (2024); Hwang et al. (2024); Qian
et al. (2024), existing approaches are task-specific
and are not economic in terms of tokens processed.
PRISM specifically addresses these limitations
through an optimized structured memory. Rather
than seeing a natural language memory, the LLM
leverages a structured representation of prior in-
formation and outputs a proposed revision to the
memory based on the current chunk (Figure 1). The

10196

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 10196-10218
November 4-9, 2025 ©2025 Association for Computational Linguistics



g B2

= .80 o o0

< [ o <

5 B 3 u

°© °o & &

Method Z Z A K

Long-context models v v v
RAG v v/
PEFT v

In-context alternatives v ?

PRISM (Ours) v v / /

Table 1: Comparison of approaches for long-range
tasks. While existing methods each have limitations,
PRISM satisfies all constraints: it requires no training
data, needs no access to model weights, operates within
a low compute budget, and remains task-agnostic, mak-
ing it suitable for a wide range of applications.

memory is specified by a user-defined typed hierar-
chical schema, supporting any kind of long-range
task. PRISM uses the structured memory to track
salient prior information more succinctly than with
natural language. Instead of the output of the LLM
overwriting the memory, it proposes a structured re-
vision which is used to programmatically revise the
memory. This design yields concise outputs and re-
duces the reasoning burden on the LLM. Crucially,
we design the memory to efficiently leverage prefix
key-value caching (Kwon et al., 2023; Pope et al.,
2023) by intelligently reusing activations computed
from unchanged memory segments in prior steps.
Taken together, our approach yields both higher
quality results and greater token efficiency.

Our main contributions are: (1) PRISM: an ap-
proach for solving long-range tasks with better
quality (Section 4.1), efficiency (Section 4.2), and
fewer constraints (Table 1) than alternatives; (2) an
empirical analysis demonstrating PRISM’s token
efficiency and scalability to shorter chunks (Sec-
tion 4.2); and (3) evidence PRISM generalizes to
new tasks with generated schemas (Section 4.3).

2 Related Work

Several approaches tackle long-range reasoning
with limited contexts through various memory-
based and memory-less mechanisms. For docu-
ment processing, methods include hierarchical sum-
marization (Chang et al., 2024), natural language
knowledge representations (Hwang et al., 2025), se-
quential scanning and selection (Qian et al., 2024),
and JSON-encoded memories (Hwang et al., 2024).

Fei et al. (2024) specifically target retrieval-based
question-answering and Packer et al. (2023) per-
form stateful reasoning in LLMs using function
calls to read and write data to storage. While
some of these methods address specific domains,
they lack PRISM’s general applicability across task
types and, crucially, all neglect the token efficiency
that PRISM achieves.

In contrast to external memories, another re-
search direction embeds memories directly into
model architectures. Several works transform
LLM:s into recurrent models through memory em-
beddings (He et al., 2024) or latent-space memo-
ries (Munkhdalai et al., 2024). Wang et al. (2023)
design a new model architecture with a retrieval
side-network to cache and update a memory and
Ivgi et al. (2023) propose using a language model
encoder to encode overlapping chunks and fuse in-
formation with a pre-trained decoder. Unlike these
methods requiring architectural modifications or
weight access, PRISM maintains a structured exter-
nal memory that works with any black-box LLM.

By using a structured schema to organize infor-
mation and optimizing it for KV caches, PRISM
achieves both task-agnosticism and token efficiency
without requiring model modifications or train-
ing—addressing core limitations of prior work.

3 Method

We seek to solve long-range tasks token-efficiently
without long-context models. By using an incre-
mental processing strategy with a structured mem-
ory, we resolve many of the constraints of other
methods (Table 1). In this section, we define the
incremental processing strategy, provide a way to
structure the memory using a typed hierarchical
schema, and show how to efficiently process these
tokens across multiple LLM calls.

3.1 Incremental Processing Formulation

In the incremental view, instead of seeing the en-
tire context at once, the LLM sees contiguous seg-
ments (which we refer to as chunks) in sequence.
To avoid forgetting previous information, the LLM
also sees a memory, encoding information about
prior chunks relevant to the task. This memory
is constructed from the output of the LLM in the
previous step. In the current call, the LLM uses its
output to revise the memory based on the informa-
tion in the current chunk. The use of LLM outputs
as a memory in this way is characteristic of solving
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incremental tasks using LLMs.

Formally, data arrives in increments, forming an
ordered sequence of chunks (di,ds,...,d,). An
LLM is prompted over multiple incremental steps
i € {1,...,n}, with task instructions 7, the next
chunk d;, and the output of the model from the
previous step 0;—1. Accordingly, the prompt is a
tuple (7, d;, 0;—1). The output of the previous step
acts as a natural language memory that assists in
solving the task. This implies a definition for an
in-context memory:

Definition 3.1. An in-context memory is the to-
kens input to the model in an incremental step that
encode the prior information seen by the model.

In this formulation, the LLM revises the memory
by overwriting it through the tokens it decodes in
the next incremental step, forming the next state
of the memory. The output of the final step o, is
taken as the answer or otherwise post-processed.

3.2 Using Structured Memories

Natural language (or unstructured) memories do
not necessarily encode the most salient information
for a specific task because the output format is un-
constrained. This often impairs task performance.
We improve the typical incremental processing for-
mulation by introducing a structured memory and
structured output to increase information relevance
and reduce the LLM’s cognitive burden.

To introduce a structured constraint in PRISM,
we replace the natural language memory with a
structured memory. Specifically, we prompt the
language model at step ¢ with a modified tuple
(T,S,m;,d;) where we replace the natural lan-
guage memory o;_1 with a structured memory m;
specified by a typed hierarchical schema.

Definition 3.2. A typed hierarchy is a structure
of primitive types and simple data structures (e.g.,
integers, floating points, strings, and lists) in a
hierarchy laid out by nested key-value maps.

Definition 3.3. A structured memory m has a
schema S specified with a typed hierarchy.

For example, a simple schema for narrative sum-
marization could be (with Python-like typing) str:
list<str>i.e., a key-value mapping of character
names to strings describing events involving that
character. After seeing a new story chunk, we can
revise information about a character by adding to
the entries for that character. We choose to use
typed hierarchies because they are easily address-
able (using a path specified by keys and indices)

and updatable. We specify a new schema for each
task as this structure determines the information
that will be encoded in the memory.

To revise the memory, instead of generating a
structured memory to overwrite the prior memory,
the output of the model is a proposed memory revi-
sion r;, which provides a path to programmatically
revise m; with a new value. Proposing revisions
rather than overwriting the entire memory saves
tokens and improves efficiency.

Definition 3.4. A structured memory revision r is
a tuple (p,o0,v) where p specifies an addressable
path in the memory, o is a binary operation that is
either add or update and v is the value to revise
the memory with.

If o is add, p specifies a new path to which v is
added; if update, p specifies an existing path in the
memory whose current value should be replaced
with v. After validating the proposed revision by
programmatically ensuring it conforms to the ex-
pected structure, the memory m; is revised with 7;
to the next memory state m;1. Figure 2 provides
an overview of our approach and Figure 3 gives a
concrete example. In practice, r; may consist of
more than one proposed revision.

After processing all chunks, the LLM uses the
final state of the memory (alongside the query and
a specification of the memory structure) to give a
final answer. Algorithm 1 shows all steps.

Algorithm 1 PRISM

Require: 7,q, S, (di,da,...,dy,) >
Task instruction, query, memory schema, and
chunks of information
my < {}
fori=1tondo

r; < LLM(T, q, S, my, d;)

m;+1 < ReviseMemory(m;, r;) > Add to
or update the memory with the proposed value
end for
6: answer <— LLM(Tgnals ¢, S, Mnt1) >

Generate the answer using the final memory

7: return answer

Rl e

el

Our approach brings several quality benefits. First,
a structured memory constrains the output to the
query domain. This gives the model focus by forc-
ing it to generate only the information we have
deemed relevant for the query (via the schema §)
to revise the memory. Having a structured memory
also assists the LLM in understanding and updat-

10198



(K1, ((k2,v4), (k3,v3)))
u ((k1, k2), update, v4)

ri

LLM (kl,((k2,v2),(k37v3)))

B (-G =)

L]

Figure 2: PRISM with typed examples. The model
receives as input the tuple (7, ¢, S, m;, d;) describing
the task, query, schema, the current state of the memory,
and the current chunk. The model outputs a proposed
revision r; to programmatically revise the memory state
to m,4+1. The purple arrows annotate example memory
and revision states. Here, vy in m;; is replaced with v,4 in
m;1 using the path, operation, and value in the revision.
If the operation were add instead, then the path would
be created and v4 added to the memory. To instead up-
date k3 with vy, the addressable path would be (&1, k3),
leading to output revision ((k1, k3), update, v4).

ing relevant information for the task. By using a
structured memory, we provide flexibility in de-
ciding how to construct the memory structure for
a particular type of task or to even automate the
generation of the schema. Furthermore, we output
a revision (i.e., the difference between the current
and next memory state) rather than the memory it-
self, reducing the number of tokens to decode. Be-
yond the quality benefits, our structured approach
enables significant token efficiency gains through
key-value cache utilization, PRISM’s core contri-
bution, which we explore next.

T [ Compose two functions to A (functions, {cap:
capitalize two strings )l m,_; | "capitalises a string",
c

(" Find the functions that are | at: "concats strings'})

q
: relevant to the task J Validate
# map func to a description and revise
S |_functions: dict[Callable, str] | > LLM T

N

(functions, add,
cat: "concats

(functions, {cap:
"capitalises a string"})

d: (" deffirst(a, b): return a strings")
* | defcat(a, b): returna + b

Figure 3: PRISM code composition example. The
LLM proposes adding the cat function from the chunk
d; (and a description) to the existing memory because it
best fits the query. The memory now has cap and cat.

3.3 Token-Efficient Memory Encoding

Encoding memories increases token count and pro-
cessing time. This can become a significant bottle-

neck when there are many chunks of information
in an incremental task or if the size of the memory
dominates the rest of the prompt.

One way to improve encoding efficiency is to uti-
lize prefix KV caching (Zheng et al., 2023) to store
and reuse previously computed token activations.
With this method, if there is a prefix of the prompt
that matches a prior encoded prompt, the model
can reuse the KV activations previously computed
for this prefix. Thus, maximizing the length of this
prefix is essential for cache efficiency. For simplic-
ity, our experiments implement prefix KV caching
such that the KV activations are reused for only the
longest prefix matching the last encoded prompt.
Most prefix caching implementations will store ac-
tivations from further in the past and may lead to
even higher cache efficiency as a result of being
able to retrieve matching prefixes from multiple
past prompts.

To leverage the cache utilization improvements
we introduce next, we first ensure that our prompt
is KV cache-friendly. The prompt is the tuple
(T,S,m;,d;). Since only m and d will change
between incremental steps, there is no need to re-
encode the tokens for the prefix (7, S). We arrange
the prompt so that the memory m appears before
the chunk d rather than after because while the to-
kens in the chunk will likely be different, parts of
the memory may not change across steps. As our
method produces memory revisions, which do not
necessarily always overwrite the entire memory,
key-value activations can be reused when encoding
memory m; up until the point of the first change
to the memory from the previous prompt m;_1.
Reusing a substantial number of token activations
would be unlikely in the usual problem formulation
with natural language memories.

We now introduce amendments, a novel ap-
proach to maximize cache utilization. If, instead
of updating the path p in the memory with the new
value v, we add a new memory, which we call an
amendment, containing the new value and its path
directly after the existing one, then the KV activa-
tions for everything up to the newest change can
always be reused. This requires the LLM to rea-
son more about the memory by understanding that
subsequent amendments with existing paths over-
write prior paths. Adding amendments is an alter-
native to maintaining an in-place memory (Figure
4) and creates a configurable efficiency trade-off.
Amendments reduce encoding costs but may in-
crease memory tokens if update operations, rather
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Figure 4: PRISM’s amendments improve KV cache
utilization. Using a single-level key-value map as the
memory m,;, we show an update proposed to the value
at kq. After applying it, we get memory state m;1
which can be represented in one of two ways: an in-
place memory where the value is updated directly or
as amendments where the change is amended to the
end of the memory state as a new memory structure.
Green shows the longest matching prefix compared to
the previous memory m; and red shows the information
that must be (re-)encoded. Using amendments reduces
the number of tokens that need to be encoded at the cost
of increasing the size of the memory.

than additions, dominate. A choice between these
options should be made based on the expected op-
eration patterns of a specific task, optimizing for
the best performance in each scenario.

3.4 Generating Memory Schemas

To minimize implementation effort and expand do-
main coverage, the memory schema can be auto-
matically generated by prompting an LLM. We
hand-craft three schemas from a variety of domains,
using these as few-shot examples, and prompt the
LLM (Appendix D) to generate a schema for a
different domain given a simple description of the
query domain and an example query.

For example, if the task is code retrieval, the
prompt should describe the query domain, the task
of retrieving a function given a code repository,
and provide an example query which describes the
procedure of a function as well as its inputs and
outputs. The output of the LLM is then a schema
that defines the structure of a memory that encodes
information relevant to this task from the chunks
seen by the LLM. This could be something like a
map from the names of functions seen to a brief
description of what the function does.

Other than automatically generating schemas re-
ducing human effort, we hypothesize that an LLM
can produce a more relevant schema for a task than
what a non-expert may construct. Thus, schema
generation makes PRISM accessible beyond do-
main specialists.

4 Experiments

Datasets We use three state-of-the-art long-range
datasets spanning the spectrum of reasoning tasks.
BooookScore (Chang et al., 2024) is both a long-
context book summarization dataset and bench-
mark metric. It contains very large books (each
over 100k tokens) curated to ensure they did not
exist in the data of public LLMs at the time of
publication. Chang et al. (2024) also introduce a
reference-free summarization metric with the same
name which we use to measure the coherency of
summaries. This is an LLM-assisted measure that
computes the % of sentences in the summary that
do not contain any of a number of error types. The
second dataset is a long-range code understanding
and retrieval benchmark called RepoQA (Liu et al.,
2024). Inputs are large code repositories totalling
above 100k tokens. The task is to retrieve a func-
tion, described in natural language without being
named, from the repository. A memory is useful
to reason about this task because function descrip-
tions describe behavior through relationships with
other functions. We measure accuracy, marking an
output as correct if it names the described function
exactly. Our final task, which we refer to as LOFT-
Spider (Lee et al., 2024), requires answering a set
of questions directly (rather than via SQL com-
mands) from a large SQL database. Response accu-
racy on this task is measured using exact match.
These datasets evaluate opposing boundaries in
LLM reasoning. BooookScore is an unstructured
natural language reasoning task, while RepoQA
and LOFT-Spider are well-structured retrieval and
reasoning tasks.

Models To establish a quality ceiling, we com-
pare our baselines to a state-of-the-art long context
model, Gemini 1.5 Pro (Reid et al., 2024), with a
context of 1M tokens. This is large enough to fit the
longest samples from each of the datasets we study
within context. For all other baselines, we use the
same model with 32k context, isolating the impact
of context length while keeping model capability
constant. We use top k£ sampling (k = 40) with
temperature 0.8.

Baselines We use incremental merging and hi-
erarchical merging as our short-context baselines
for BooookScore. These were proposed by Chang
et al. (2024) alongside the dataset. Incremental
merging follows the characteristic incremental task
formulation of revising a running summary in natu-
ral language as new chunks are seen; hierarchical
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merging summarizes all chunks, then summarizes
consecutive pairs of summaries hierarchically in
layers until a single summary remains at the last
layer. As RepoQA lacks short-context baselines,
we adapted the incremental merging approach from
Chang et al. (2024), modifying prompts to suit the
retrieval task. We also construct a similar baseline
for LOFT-Spider. A hierarchical baseline is not nat-
urally amenable to these latter tasks as it is unclear
how to merge summaries of independent functions
or tables nor why it would be beneficial.
Ablations To isolate components of our ap-
proach, we evaluate several variations of our
method. We compare in-place memories to amend-
ments (Figure 4) to see the effect of caching im-
provements. We also evaluate when the proposed
revision (Definition 3.4) supports both add and
update as well as when it supports only the add
operation since using only the add operation can
reduce the number of tokens decoded.

Setup We encode our typed hierarchy in
JavaScript Object Notation (JSON) and specify the
schema for the memory using Python 3 dataclasses.
Appendix C provides some examples of this im-
plementation. Unless specified otherwise, we use
the schemas defined in Appendix A. We evaluate
on 50 examples per dataset due to compute restric-
tions, and report the mean of the dataset-specific
metric over all samples. We quote uncertainty as
the standard error of the mean over five solutions
generated through our method.

4.1 PRISM Outperforms Alternatives While
Using Shorter Contexts

In Table 2, our method beats both existing base-
lines (incremental and hierarchical merging) on
all datasets to a statistically significant degree (at
worst p = 0.02). This suggests that our struc-
tured approach and memory provide meaningful
improvements in reasoning performance over alter-
natives. This could be a result of constraining the
LLM to produce outputs that are directly relevant
to the task using the structured memory. We also
note that our approach generally benefits or per-
forms on par with in-place memories when using
amendments instead. This is a promising signal
that cache-optimized memories can be just as ef-
fective at producing strong final answers.

In all datasets, PRISM begins to approach the
long context ceiling and in BooookScore, it almost
matches it. RepoQA and LOFT-Spider are more
difficult tasks that necessitate reasoning and aggre-

gating over multiple code files and tables. It is not
trivial to define a schema that optimally supports
the reasoning involved. We also believe that critical
information is clustered in these tasks and failing
to add relevant information to the memory during
the processing of an important chunk is likely to be
substantially more costly than in summarization.

While PRISM achieves strong performance
across all tasks with significantly smaller context
windows, what is the computational cost? Tradi-
tional memory approaches often trade increased
token usage for improved reasoning capabilities. In
the following section, we demonstrate that PRISM
not only improves performance but does so with
substantial efficiency gains.

4.2 PRISM Is Scalable and Token-Efficient

In this section, we measure cache hit rate as the
proportion of tokens whose key-value activations
could be reused (i.e., the number of tokens in the
longest matching prefix to the last input prompt
divided by the total number of tokens encoded). We
also compute a cost index to compare the relative
compute cost of each method.

In Table 3, we see that variants of our method
achieve the best results for all metrics across both
datasets. Notably, using amendments with updates
leads to the highest cache hit rates and generally
cuts costs in half. In the case of BooookScore, it
leads to the lowest estimated cost. Similarly, for
RepoQA, using amendments (but this time without
updates) leads to the lowest cost.

As compute constraints can significantly reduce
viable context lengths, we also analyze how the
characteristics of our method change as we re-
duce the context size. In Figure 5, we use differ-
ent chunk sizes on the RepoQA dataset using our
cache-efficient amended memory approach without
updates. For larger chunk sizes, accuracy slightly
increases. The net encoded tokens stays relatively
constant since cache hit rate decreases. This is be-
cause a smaller proportion of the context is taken by
the memory. Meanwhile, tokens decoded decreases
as fewer incremental steps are required. However,
tokens encoded dominates tokens decoded. Thanks
to this property, remarkably, PRISM maintains con-
sistent cost even as chunk sizes decrease by 4x.
Thus, smaller chunks do not always lead to higher
costs with our method.
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‘ BooookScore ‘ RepoQA ‘ LOFT-Spider
Method ‘ Score Ch. Tokens ‘ Acc. Ch. Tokens ‘ Acc. Ch. Tokens
Long context | 0.67+0.004 100k | 0.92 121k | 0.4440.01 30k
Baselines'
Incremental 0.6340.010 B 0.24+0.03 B 0.12+0.02 B
Hierarchical 0.5140.006 n/a n/a
PRISM
In-place 0.63+0.008 2Kk 0.42+0.02 8Kk 0.22+0.03 Sk
+ w/o updates | 0.63+0.006 0.50+0.03 0.26+0.02
Amendments 0.65+0.004 2Kk 0.48+0.03 8k 0.14+0.01 Sk
+ w/o updates | 0.63+0.005 0.53+0.02 0.22+0.02

"Baselines adapted from Chang et al. (2024)’s methods.

Table 2: PRISM closes the gap between baselines and long-context models using 4-50x smaller context
windows. Using just 2-8k token chunks (vs. 30-121k for long context), PRISM significantly outperforms baselines
across all tasks. On BooookScore, PRISM’s amendments achieve 97% of long-context performance (p<.02) with
50x smaller context. On RepoQA, PRISM reaches 58% of ceiling accuracy while using 15x less context.
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Figure 5: PRISM costs do not increase with shorter chunk sizes due to effective KV caching. This allows
PRISM to scale down without sacrificing performance. Net tokens encoded are calculated after subtracting tokens
reused. Weighted cost reflects typical API pricing (encoding + 3x decoding).

4.3 PRISM Works With Generated Schemas

In Table 4, we use LLM-generated schemas (Ap-
pendix B) constructed by providing a brief descrip-
tion of the task and an example query (alongside
some examples for other tasks) to the LLM. The
output is a schema that we use to specify the mem-
ory. We compare this to the best result using our
hand-crafted schemas from Table 2. The results
reveal that our approach is competitive with hand-
crafted expert schemas. Our method can be applied
to tasks with little human input or domain expertise.
For LOFT-Spider, we believe it is generally unclear
what an optimal memory representation would be,
and it is impressive that a strong representation can

be constructed with an LLM.

5 Conclusion & Future Work

PRISM demonstrates that structured in-context
memories with programmatic revisions enable
short-context models to match or approach long-
context performance at substantially lower com-
putational cost with high token-efficiency. We
achieved better long-range task performance than
baselines with unstructured memories for unstruc-
tured tasks, such as narrative summarization, as
well as structured reasoning problems for code and
databases. Our method was even competitive with
a long-context model. We also demonstrated that
PRISM is task-agnostic, requiring only specifying
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3
Method ‘ Cache Tokens (x10°) Output Cost
| Hit (%) Total Net (x10%) Index
BooookScore
Long context | - 100 100 1 -
Baselines

Incremental® 0 249 248 141 0.67

Hierarchical 1 227 225 70 0.43
PRISM

In-place 49 495 250 131 0.64

+ w/o updates 34 619 409 14 0.45

Amendments 69 559 171 47 0.31

+ w/o updates 37 676 424 15 0.47

RepoQA

Long context - 121 121 0 -

Incremental 1 180 178 28 0.26
PRISM

In-place 71 491 142 9 0.17

+ w/o updates 68 437 139 6 0.16

Amendments 75 581 144 11 0.18

+ w/o updates 68 435 138 6 0.15

"Methods from Chang et al. (2024).

Cost Index = (Net Tokens + 3 x Output) + 10°, reflecting typical API pricing ratios.

Table 3: PRISM with amendments achieves 69% cache reuse and 54% cost reduction. On BooookScore,
PRISM’s amendment strategy maximizes cache hits (69% vs. 0-1% for incremental and hierarchical baselines)
while minimizing net tokens (171k vs. 248k) and cost (0.31 vs. 0.67). Without updates further reduces output
tokens by 70% but increases net encoding. Similar patterns hold for RepoQA, where amendments achieve 75%
cache reuse. We do not provide a cost index for long context as the cost is different and would not be comparable.
Results are similar for LOFT-Spider and shown in Appendix E for brevity.

Schema | B.Score RepoQA  LOFT-Spider
Manual 0.65 £ 0.004 0.53 +0.02 0.26 £ 0.02
Gen. 0.61+0.010 0.53" +0.02 0.15£0.03

Table 4: LLM-generated schemas match or approach
experts. Generated schemas achieve identical perfor-
mance on RepoQA, near-parity on BooookScore (93%
of expert), with some limitations on Spider (58% of
expert). Both maintain similar efficiency (Manual: 760
tokens, Generated: 790 tokens). TGenerated schema
matched manual; alternative: 0.24 + 0.01.

an appropriate schema for our memory. This too
can be automated by generating the schema with
an LLM. These LLM-assisted schemas achieved
similar performance to expert schemas. Further-
more, with a slight modification to the memory
representation, we improved key-value cache ef-
ficiency to reduce inference cost substantially be-

low baselines without sacrificing task performance.
Finally, we noticed that our method scales down
without significantly increasing the inference cost
and while remaining practical for long-range rea-
soning. Taken collectively, our method provides a
solution for long-range reasoning without expen-
sive long-context models and specialized methods.

We suggest several research directions for future
work: (1) combine prior and future context rather
than relying on incremental solutions; (2) apply-
ing our method to hierarchical memory approaches
that capture both fine-grained details and high-level
abstractions; (3) explore dynamically updating the
schema based on incoming content; and (4) exper-
iment with multi-stage PRISM processing, where
the entire memory is revisited after all chunks are
processed.
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Limitations

While we have shown that structured memories
can be task-agnostic, improve quality, and improve
token-efficiency, there remain some limitations to
our work. First, we explore only three hand-crafted
schemas across our tasks. There is likely to be
a large space of effective and useful schemas for
various types of tasks. Understanding how schemas
should be designed for different tasks would help
use structured memories more effectively.

Second, the analysis of chunk size and token
efficiency is an interesting preliminary study that
demonstrates the cost-efficiency of our approach
even in increasingly context-constrained environ-
ments. However, we were only able to examine a
single dataset with just five different chunk sizes.
Evaluating on more datasets and more chunk sizes
would not only allow us to be more confident in
our approach, but also would help investigate the
presence of a scaling law for token-efficiency.

Additionally, we do not use long-context bench-
marks such as RULER (Hsieh et al., 2024) and
InfiniteBench (Zhang et al., 2024) as their tasks are
mostly synthetic. Instead, we choose to evaluate
with tasks that are grounded in real problems and
of direct relevance to the community. Furthermore,
the factors that these benchmarks aim to evaluate
are retrieval, tracing, and aggregation, which we
already evaluate using our tasks. Specifically, Re-
poQA requires retrieving exact code snippets from
very large code repositories, LOFT-Spider requires
tracing by resolving references across SQL tables,
and BooookScore requires aggregation as it neces-
sitates summarizing and synthesizing information
across chunks. Thus, using additional benchmarks
would introduce redundancy.

Another limitation of our work, and incremen-
tal memory approaches in general, is that they are
less well-suited for precise multi-hop reasoning
tasks. These tend to be synthetic tasks such as
key-value tracing (Liu et al., 2023), where the con-
text consists entirely of (key, value) pairs. Values
may recursively point to other keys until a terminal
value is found. If a value points to a key from a
prior chunk, then for it to be traced successfully,
this prior key-value pair must already be in the
memory. To do so would require a complete and
lossless memory as an incremental approach would
not know in advance which precise key to keep
in memory. This problem can be alleviated with
multiple passes, reducing the usefulness of token

efficiency, or by using a bidirectional or hierarchi-
cal approach. In realistic tasks that require tracing,
such as LOFT-Spider where tables may refer to
information from tables in prior chunks, we show
that PRISM can still achieve reasonably strong per-
formance, including outperforming other baselines.

Perhaps the most significant limitation is that,
although we outperform other short context ap-
proaches, the ultimate goal is to achieve on-par
performance with long-context models. Although
we achieved this for the summarization task, there
remains a gap to bridge for other tasks.
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A Hand-crafted schemas

For BooookScore, the attributes map should be keyed by some identifier and the values should be a
list of sentences that summarize the main plot of the book including events, background, themes, and
characters. For RepoQA, each key is a function name and the value is a type that contains a natural
language description of the function’s purpose, input, output, and procedure. For LOFT-Spider, the
schema maps table names to descriptions of the columns and relevant fields.

@dataclasses.dataclass

class BookSummary:
"""Keys may be whatever you want them
to be. Values should summarize in
sentences only the most important
attributes of the book which should
include absolutely essential details
such as the main characters and their
motivations, the main plot, the main
events, background information, and
the main theme."""

4 attributes: dict[str, list[str]]

O

Listing 1: Schema for BooookScore.

I @dataclasses.dataclass

2> class FunctionNaturalDescriptor:

3 """candidate_functions is keyed by the exact name of the
function and stores FunctionDescription objects. Each entry
should represent a unique function, class method, property,
getter, or setter (or anything defined with a def keyword)
present in [TEXT] that potentially matches the description
given in [QUESTION]. Never add the same function more than once

and only add functions that appear similar to the description
given in [QUESTION]. If two functions are very similar to each
other, you should make sure to distinguish them in their
FunctionDescription objects.""”

4 @dataclasses.dataclass

class FunctionDescription:

6 """purpose describes the purpose of the function i.e. what it
does. input describes what the parameters of the function are.
output describes what the function returns. procedure describes

how the function is implemented (i.e. how it does what it does
). Do not repeat the description given in [QUESTION]. You must
describe the function based on what you see in [TEXTJ]."""

W

7 purpose: str
8 input: str
9 output: str

10 procedure: str
11 candidate_functions: dict[str, FunctionDescription]

Listing 2: Schema for RepoQA.
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I @dataclasses.dataclass
> class RelevantTableInfo(pg.Object):

3 table_descriptions is a list of TableDescription objects. One
for each table.”"""

5 @dataclasses.dataclass

6 class TableDescription(pg.Object):

7 """Each element in columns_observed should provide the precise
name and data type of a column in the table. In
relevant_statistics you should calculate and provide statistics

relevant to answering the query. relationships should provide
the names of other tables that are related to this table and
relevant to answering the query.”"”

8 table_name: str

9 table_description: str

10 columns_observed: list[str]

) relevant_statistics: list[str]

12 relationships: list[str]

13

14 table_descriptions: list[TableDescription]

Listing 3: Schema for LOFT-Spider.

B LLM-generated schemas

I @dataclasses.dataclass

> class NarrativeSummary:

3 @dataclasses.dataclass

4 class SummaryEvent:

5 events: str

6 characters: str

7 places: str

8 elements: str

9 summary_events: dict[str, SummaryEvent]

Listing 4: LLM-Generated Schema for BooookScore.

| @dataclasses.dataclass
> class FunctionMatch:
3 matches: dict[str, float]

Listing 5: LLM-Generated Schema for RepoQA.

| @dataclasses.dataclass
> class QueryPartialSolution(pg.Object):
attributes: dict[str, list[str]]

Listing 6: LLM-Generated Schema for LOFT-Spider.

C Using Typed Hierarchies in JSON

We present the use of Typed Hierarchies in JSON in figure 6. In this section, we refer to revisions as
updates. The problem formulation is the same otherwise.

D Prompts

In this section, we provide prompts for PRISM and LLM-assisted schema generation. Prompts for
baselines may be found in Chang et al. (2024).

,

Example Prompt For PRISM

I {% raw %}I will provide a class definition [CLASS], which defines some fields
that need to be generated, an instantiation of that class under [
PARTIAL_SUMMARY] that is a response to the question in [QUESTION], and
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Query Schema Memory (i) Chunk (i)

Find the function which class FuncMem: { "candidates": { def bar (text: str):
best matches the class FuncProp: ”f?o": { . . hit = walk (text)
following description: "It purpose: str "purposi : . [}-]'.' ; ] o if hit: .

walks a tree encoded as percent _match: float 113 IPSIEESNE_JWEnEein e elggvurn e

a string, searching for a candidates: dict[str, FuncProp] [. ]

leaf node with [...]"

l Context ‘
l Update (i+1) Memory (i+1)
{ "S$.'candidates'.'bar'": { "candidates": {
TaSK. LLM —>»  { "add": { ﬂ) "foor: ([...1},
Instruction wourpose™: "[...1", update b?;u;ﬁpése"' N
"percent match": 0.8, "percent_ﬁatcﬂ;; 028,
11} 11}

Figure 6: Using a JSON-encoded memory. Using the example of a code retrieval task, we fill the context of the
LLM with the task instruction, query, a schema defining our memory structure, the existing memory, and a chunk of
code context. When this context is used to prompt the LLM, it should propose a memory revision based on the
chunk that it has seen. The revision is used to programmatically revise the underlying JSON memory structure,
which is then used in the prompt for the next step.

some text in a section called [TEXT]. Your task is to propose updates to [
PARTIAL_SUMMARY] gathered from the information in [TEXT].

Here are the sections that you will complete, in the same order:

5 [OBJECTS FOR UPDATE]

6 In this section you will produce a set of dictionaries (one per line) in JSON
format where the keys correspond go the JSONPaths whose objects should be
updated and the values are a dictionary with the following fields:

7 * 'update': The object to overwrite the existing value at the JSONPath.

9 The 'update' object must adhere to the [CLASS] definition at the given
JSONPath. If information is missing for some fields, then you can use the
placeholder string '???' or “None~ to represent that missing information.
Updates must only ever increase the amount of information in [
PARTIAL_SUMMARY]1, they can be made by either replacing a “None~ object or
the placeholder string '???' with relevant content from [TEXT] or by
modifying an existing value using content from [TEXT]. To separate
multiple values within a string, use '; '. For example, a value about the
'location' of a hotel may say '5 minute walk from the subway station;

views of the Eiffel tower'.

11 [OBJECTS FOR ADD]

In this section you will produce a dictionary in JSON format where the keys
correspond to the JSONPaths that do not exist in [PARTIAL_SUMMARY] yet
that will be added, and the values are a dictionary with the following
fields:

3 * 'add': The object to add at that JSONPath.

12

15 The 'add' object must adhere to the [CLASS] definition at the given JSONPath.
If information is missing for some fields, then you can use the
placeholder string '???' or “None” to represent that missing information.

17 Additional guidelines:

19 1. Field names in JSONPaths must be quoted. For example, "$.'places'.'
flexibility of material '".

20 2. Proposed JSON objects must have sufficient context: the values of the [
PARTIAL_SUMMARY] should have enough context so a reader can understand
what it means.
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Memory (i) Memory (i+1) Memory (i+1)
{ "candidates": { { "c dates": { i Yg Jates": {
"foo": { " £ "f {

L

purpose": "[...]1",

> 8 5o purpose":
"percent _match": 0.7,

"purpose": "[... ,
"percent match": 0.2,
by
"bar": {

be

ez Hommg

"purpose": "[...]", —>| "purpose": "[...]", "purpose": "[...]",
"percent match": 0.8, el "percent match": 0.8, "percent match":
}, o }, i
"baz": { € "baz": { "baz": {
"purpose": "[...]", Q |——> "purpose": "[...]", "purpose": "[...]",
"percent match": 0.1, = "percent match": 0.1, "percent_match":
} K] } }
}} © 3} 1}
kel { "candidates": {
:Q. "foo": {
. "purpose": "[...]",
i+1 Single Memory "percent_match": 0.
Update (i+1) )
>}
{ "$.'candidates'.'foo'":
{ "update": { >

"purpose": "[...]",
"percent match": 0.7,
b}

Amendments

Figure 7: Using amendments with a JSON memory. An update to the candidate function

"percent_match": 0.2,

o

o

“foo” is proposed,

changing the existing “percent_match” field from 0.2 to 0.7 and replacing the “purpose” field. The function
ReviseMemory takes the existing memory and applies the proposed update to it. We show two possible resulting
memory states. Single memory shows the memory if the object at the specified path is updated with the new object
directly. Amendments shows the state if the change is simply amended to the end as a new JSON object. Text in
green shows the longest matching prefix compared to the previous memory and text in red shows the information
that must be (re-)encoded. Using amendments reduces the number of tokens that need to be encoded at the cost of

increasing the size of the memory.

Ignore irrelevant text:

to make no update to that object.
No redundant fields: If information from [TEXT] can be
updating an existing field in [PARTIAL_SUMMARY], then do not
new redundant field. For example,
activities' do not introduce a new field for 'other activities'
activities', 'hiking'. Update the existing field for
A field should not contain redundant values.
of the details in another value, merge them together.
beautiful views of the Eiffel tower” and

be merged into a single value like

Here is an example of an entity comparision:
[QUESTION]

ESR HalolLock wireless car charger vs. MagSafe Wireless Car Charger
[CLASS]

30 Comparison

3 T python

33 class Comparison:

34 product_names: tuple[str, str]
35 Facet = str
36 values: dict[Facet, tuplel[str, strl]

[PARTIAL_SUMMARY]

40 {

41 "product_names"”: ("ESR HaloLock wireless car charger”,
Charger"),

12 "values": {

43 "size": ("4.2 inches", "?27?2?"),

14 "flexibility": ("?2?", "very flexible"),

45 }

16 }

If the content in [TEXT] does not have any
information that is relevant to [QUESTION] and [PARTIAL_SUMMARY] it is OK

incorporated by
introduce a
if there's already a field for

'activities'.

If one value encompasses most
For instance,
"view of the Eiffel tower”
"beautiful views of the Eiffel tower"”.

"MagSafe Wireless Car

or 'water

n

should
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47

49

60

80
81

82

90

94

s [TEXT]

When using ESR HalolLock wireless car charger, the orientation of the iPhone is
absolutely free, as they are free too inclination and height that you
want to give to the smartphone, as long as you pay attention to the center
of gravity: despite the aluminum structure it is very resistant and the
joints are very solid, if you position the smartphone too far forward, the
base of the stand would not be able to support the weight and would risk
tilting forward.

[OBJECTS FOR UPDATE]
{"$.'values'.'flexibility'": {"update”: ("allows iPhone to orientate freely",
"very flexible")}}

[OBJECTS FOR ADD]

{"$.'values'. 'material '": {"add"”: ("aluminum structure”, "?2?2")}}

{"$.'values'. 'durability'”: {"add": ("very resistant”, "??2")}}

{"$.'values'.'design'": {"add"”: ("can not support the weight of a phone if it
is too far forward”, "??22")}}

Here is an example of an entity summarization:

> [QUESTION]
3 Describe attributes and values of HOTEL®.

[CLASS]
class Summary (TypedDict):
attributes: dict[str, list[str]] # Keyed by attribute, with a list of
sufficient details about the attribute.

[PARTIAL_SUMMARY]
{
"attributes": {
"Amenities”: ["There are two pools”, "pub opens till midnight"],
"Food & Beverage": ["limited breakfast options”],
"Room Quality”: ["Spacious and comfortable rooms"],
}
3

[TEXT]
HOTEL® offers exceptional dining and the beds were very cozy, but there was a
lot of street noise. HOTEL1 offers great Eiffel tower view from window.

[OBJECTS FOR UPDATE]
{"$."'attributes'. 'Food & Beverage'": {"update”: [ "limited breakfast options”,
"HOTEL® offers exceptional dining" 1}}

3 {"$.'attributes'. ' 'Room Quality'"”: {"update”: [ "Spacious and comfortable rooms

n

, "beds were very cozy” J]}}

[OBJECTS FOR ADD]
{"$.'attributes'. 'Noise Level '": {"add": [ "Notable street noise at night” J}}

Here is an example of query answering from SQL tables:
[QUESTION]

> What is the total number of singers?

[CLASS]

5 class TableMemory (pg.Object):

nnn

table_descriptions is keyed by the name of the table and the value is a

nnn

TableDescription object. One for each table.

class TableDescription(pg.Object):
"""table_description is a short summary of the table. thoughts is a list
of relevant information from the table that will be helpful in answering
the query. When referring to fields and columns, use their exact names."""
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0 table_description: str
) thoughts: list[str]

103 table_descriptions: dict[str, TableDescription]
104
10s [PARTIAL_SUMMARY]

106 {

107 "table_descriptions”: {

108 "Stadiums": {

109 "table_description”: "The table lists the stadiums including Wembley
Stadium, Stark's Park, and others.”,

110 "thoughts": [

111 "There are 8 stadiums in the table.",

112 "It does not say which singers perform.”,

11 1,

114 1,

115 3,

116 }

117

11s LTEXT]

119 Table: Concert

120 concert_ID,concert_Name,Theme, Stadium_ID, Year
21 1,Auditions,Free choice,1,2014

122 2,Super bootcamp,Free choice 2,2,2014

123 3,Home Visits,Bleeding Love,2,2015

124 4, Week 1,Wide Awake , 10,2014

125 5,Week 1,Happy Tonight,9,2015

126 6,Week 2,Party All Night,7,2015

28 Table: Singer

129 Singer_ID,Name,Country,Song_Name,b Song_release_year ,Age,Is_male
130 1,Joe Sharp,Netherlands,You,1992,52,F

131 2,Timbaland,United States,Dangerous,b2008,32,T

132 3,Justin Brown,France,Hey Oh,2013,29,T

133 4,Rose White,France,Sun,2003,41,F

134 5,John Nizinik,France,Gentleman,2014,43,T

135 6,Tribal King,France,Love,b2016,25,T

1
1
1
1

37 Table: Singer_in_Concert
38 concert_ID,Singer_ID
39 1,2

=

O
O UIUlhA WNN = =
N wWwo » T WOl w

150 Table: Stadium

151 Stadium_ID,Location,Name, Capacity,Highest,Lowest,6 Average
152 1,Raith Rovers,Stark's Park,10104,4812,1294,2106

153 2,Ayr United, Somerset Park,11998,2363,1057,1477

154 3,East Fife,Bayview Stadium,b2000,1980,533,864

155 4,Queen's Park,Hampden Park ,52500,1763,466,730

156 5,Stirling Albion,Forthbank Stadium,b3808,1125,404,642
157 6,Arbroath,Gayfield Park,4125,921,411,638

158 7,Alloa Athletic,Recreation Park,3100,1057,331,637

159 9,Peterhead,Balmoor ,4000,837,400,615

160 10,Brechin City,Glebe Park,b3960,780,315,552

162 [OBJECTS FOR UPDATE]
163 {}

16s [OBJECTS FOR ADD]
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166

167
168
169
170
171

172

176
177
178

179

180
181
182

183
184
185
186
187
188
189
190
191
192
193
194

195

196

{"$.'table_descriptions'.'Singers'"”: {"add": {"table_description”: "This table
lists the singers.”, "thoughts”: [ "The Singer table has the singers Joe
Sharp, Timbaland, Justin Brown, Rose White, John Nizinik, and Tribal King
.", "There are 6 singers in the table.” 13}}}

Here is an example of code retrieval:

[QUESTION]

Find the exact name of the function described by the following function
descripition: 1. *xPurpose*x*: The function generates a string used to
format text with new lines and optionally a form feed character, typically

used to control spacing in formatted output.

2. *xInput*x: The function takes three parameters: an integer representing the

number of new lines, a boolean indicating whether a form feed character
should be included, and an optional string representing the line break
character (defaulting to a newline).

3. x%Qutputx*: It returns a string composed of the specified number of newline

characters, and if requested, includes a form feed character followed by
an additional newline.

4. *xProcedure*x*: The function first checks if the form feed should be
included. If true, it concatenates the specified number of newline
characters minus one with a form feed character and another newline. If
false, it simply returns a string of newline characters multiplied by the
specified integer.

[CLASS]
class FunctionNaturalDescriptor (pg.Object):
"""candidate_functions is keyed by the exact name of the function and stores
FunctionDescription objects. Each entry should represent a unique
function, class method, property, getter, or setter (or anything defined
with a def keyword) present in [TEXT] that potentially matches the
description given in [QUESTION]. Never add the same function more than
once and only add functions that appear similar to the description given
in [QUESTION]. If two functions are very similar to each other, you should
make sure to distinguish them in their FunctionDescription objects.""" #
pylint: disable=line-too-long

class FunctionDescription(pg.Object):
"""purpose describes the purpose of the function i.e. what it does. input
describes what the parameters of the function are. output describes what
the function returns. procedure describes how the function is implemented
(i.e. how it does what it does). Do not repeat the description given in [
QUESTION]. You must describe the function based on what you see in [TEXT
1.""" # pylint: disable=line-too-long
purpose: str
input: str
output: str
procedure: str

candidate_functions: dict[str, FunctionDescription]

[PARTIAL_SUMMARY]
{
"candidate_functions"”: {
"_merge_entities":{
"purpose”: "The function merges a list of entities into a single entity.
Optionally, the merge can be done quickly, which may result in some
information being lost. The function also formats and prints the merged
entity."”,
"input”: "The function takes two parameters: a list of entities to merge
and a boolean indicating whether to do a quick merge (defaulting to False

)n
° 9

"output”: "The function returns a single entity created from merging all
entities in the input list.”,
"procedure”: "The function first checks if the quick merge flag is set.

If true, it uses a simple merge algorithm that simply concatenates all the
entities in the list without any additional processing. If false, it uses

10212




198
199
200

201

202

203

204
205
206
207
208
209
210

211

213
214
215
216
217
218
219
220
221
222
223

%)

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258

3
3

a more complex merge algorithm that attempts to merge the entities in a
way that preserves as much information as possible. The function then
formats and prints the merged entity.”,

}Y
"reduce_sum_list": {
"purpose”: "The function reduces a list of integers to a single integer
by summing all the values in the list."”,
"input"”: "The function takes a single parameter: a list of integers.”,
"output”: "The function returns a single integer representing the sum of
all the values in the list."”,
"procedure”: "The function iterates through the list of integers and

adds each value to a running sum. It then returns the running sum.”,

3

[TEXT]
File path: /src/test_file.py
Content:

def

def

elif t in {token.NAME, token.NUMBER, token.STRING}:
return NO

elif p.type == syms.import_from:
if t == token.DOT:
if prev and prev.type == token.DOT:
return NO

elif t == token.NAME:
if v == "import":
return SPACE

if prev and prev.type == token.DOT:
return NO

elif p.type == syms.sliceop:
return NO

== syms.except_clause:
token.STAR:
rn NO

elif p.type
if t ==
retu

return SPACE

make_simple_prefix(nl_count: int, form_feed: bool, empty_line: str = "\n")
-> str:
"""Generate a normalized prefix string.
if form_feed:

return (empty_line * (nl_count - 1)) + "\f" + empty_line
return empty_line * nl_count

nnn

preceding_leaf (node: Optional[LN]) -> Optional[Leaf]:

"""Return the first leaf that precedes “node”, if any."""
while node:

res = node.prev_sibling

if res:

if isinstance(res, Leaf):
return res

try:
return list(res.leaves())[-1]

except IndexError:
return None

node = node.parent
return None
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259
260

61 def

262

263

264

265

266

267 [OB
68 {3}
269

b70 [OB
b7 {"$

b7 {"$.

prev_siblings_are(node: Optional[LN], tokens: List[Optional[NodeTypel]l) ->
bool:

"""Return if the “node” and its previous siblings match types against the
provided

list of tokens; the provided “node has its type matched against the last

element in

the list. ~None™ can be used as the first element to declare that the
start of the

list is anchored at the start of its parent's children.

nnn

JECTS FOR UPDATE]

JECTS FOR ADD]

.'candidate_functions '. 'make_simple_prefix'": {"add": {"purpose”: "The
function generates a prefix string by repeating a number of empty lines
which can be formatted with a form feed character if supplied.”, "input":

"The function takes three parameters: an integer which denotes the number
of new lines, a boolean determining if a form feed character should be
used, and an optional argument: a string representing a character to be
used for line breaks. This optional argument is defaulted to a newline
character.”, "output”: "The function returns a string which is a prefix of
the desired format."”, "procedure”: "The function first checks if the form
feed character should be used. If it should, the function generates a
string which is a concatenation of the specified number of newline
characters minus one, a form feed character, and another newline character
If it should not, the function generates a string which is a
concatenation of the specified number of newline characters. The function
then returns the generated string.” }}}
'candidate_functions'. 'preceding_leaf '": {"add": {"purpose”: "The function
returns the first leaf that precedes a given node, if any.”, "input”: "
The function takes a single parameter: a node to find the preceding leaf
for.", "output"”: "The function returns a leaf if one exists, otherwise it
returns None.", "procedure”: "The function first checks if the node has a
previous sibling. If it does, it checks if the previous sibling is a leaf.
If it is, it returns the previous sibling. If it has a list of leaves,
then it returns the last (or None if there is an IndexError). If it is not
a leaf nor has a list of leaves, it sets the node to the parent and
repeats the process in a while loop." 1}}}

b73 {"$.'candidate_functions'. 'prev_siblings_are'": {"add": {"purpose”: "The
function checks if the node and its previous siblings match types against
the provided list of tokens.”, "input”: "The function takes two parameters

a node to check and a list of tokens to match against.”, "output”: "The

function returns a boolean indicating whether the node and its previous
siblings match types against the provided list of tokens.”, "procedure”: "
Unknown" 3}3}}

274

276

b77 {% endraw %}[QUESTION]

078 {{ question }}

279

80 [CLASS]

g1 {{ structure }}

282

283 [PARTIAL_SUMMARY ]

bsa {{ partial_summary 3}}

285

86 [TEXT]

g7 {{ text }}

288

30 {{ parse_response(store(”"raw_response”, llm(temperature=0.8))) }}
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Example Prompt For Schema Generation (And Example Generations)

1 I have a system in which a user enters a query in a particular domain and the
system must answer the query. In order to answer the query, the system
views a large number of documents one at a time and only once. Thus, when
the system sees a document it stores information related to answering the
query by updating a JSON format memory. Once the system has viewed all
documents, the system will read its JSON memory and use this information
to decide the output for the query. Consequently, the JSON memory should
store all information relevant to answering the query. Hence, the schema
for the JSON memory must ensure that the memory contains the right
information to assist the system in producing the final answer. It should
make sure not to keep too little information nor too much-but generally
should prefer to store more information if unsure. The schema for the
memory is defined by a python dataclass and is specific to the domain of
the query. The schema may include a python comment describing how it
should be used. Your task is to construct a schema given a query domain
and a query example.

3 The schema will always store some information from every document, so it
should support data structures that can be appended or updated such as
lists or dicts. Information that should be structured together should be
kept together with subclasses.

U
1
I
1

7 [Query domain]
s Comparing two entities found in various documents based on their respective
shared attributes.

10 [Example query]

11 ESR HaloLock wireless car charger vs. MagSafe Wireless Car Charger

12

13 [Schemal

14~ python

15 class Comparison:

16 """attributes should be keyed by attributes that both entities share e.g.
connectivity and the values should be AttributeValues instances."""

17 class AttributeValues:

18 """entity_one and entity_two are lists of descriptions relating to the two

respective entities, found in documents, that correspond to the specific

attribute the instance is keyed under."""

19 entity_one: list[str]

20 entity_two: list[str]

23 attributes: dict[str, AttributeValues]

29 [Query domain]
30 Summarizing details about entities (such as people, things, and institutions)
found in online documents.

32 [Example query]
33 Describe attributes and values of HOTEL®.

35 [Schema]
3 T T python
37 class Summary (TypedDict):

38 """Keyed by attribute, with a list of sufficient details about the attribute

nnn

attributes: dict[str, list[str]]
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43

44 [Query domain]

45 Finding the top individuals in terms of a particular metric defined by the
query. Documents are the content of websites on the internet.

~

7 [Example query]
48 Who are the top 10 highest earning CEOs in the bay area?

so [Schemal]

51 " " python

52 class TopKList:

53 """top_persons is a list of PersonMetric instances giving the person name

nnn

and the value of the metric asked by the query.
54 class PersonMetric:

55 """person is the name of the individual and metric is the value of the
metric required by the query."""

56 person: str

57 metric: float

58

59

60 top_persons: list[PersonMetric]

61

62

63 ===

64

5 [Query domain]

66 Retrieving the exact name of a function given a query that describes the
purpose, input, output, and procedure of the function. Documents are files
of code. Here, the memory should provide some way of knowing to what

extent a function matches the description given in a query.

6

s [Example query]

6 Find the exact name of the function described by the following function
description: 1. **xPurpose*x: The function generates a string used to
format text with new lines and optionally a form feed character, typically

used to control spacing in formatted output.

70 2. *x*Input**: The function takes three parameters: an integer representing the

number of new lines, a boolean indicating whether a form feed character
should be included, and an optional string representing the line break
character (defaulting to a newline).

71 3. **Qutputx*: It returns a string composed of the specified number of newline

characters, and if requested, includes a form feed character followed by
an additional newline.

72 4. *x*Procedure**: The function first checks if the form feed should be
included. If true, it concatenates the specified number of newline
characters minus one with a form feed character and another newline. If
false, it simply returns a string of newline characters multiplied by the
specified integer.

75 [Schemal]

77 Generated Schema (for RepoQA):

78 class FunctionMatch:

79 """Stores information about functions found in code.

80 class FunctionInfo:

81 """name is the exact name of the function and matches is a list of strings
describing which parts of the function description in the query were

matched to the function.”""

nnn

82 name: str

83 matches: list[str]

84

85

86 functions: list[FunctionInfol]

90 [Query domain]
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91 You are summarizing very long narrative books. Each document is a segment of
the book. Here, the story may feature non-linear narratives, flashbacks,
switches between alternate worlds or viewpoints, etc. Therefore, the
memory needs to represent a consistent and chronological narrative.
Critical information may relate to key events, backgrounds, settings,
characters, their objectives, and motivations.

92

93 [Example query]

94 Summarize this book excerpt. Briefly introduce characters, places, and other
major elements if they are being mentioned for the first time.

9 [Schemal
98 Generated Schema (for BooookScore):

100 class BookSummary:

101 """Summarizes a book with potentially non-linear narratives by storing
information chronologically.""”

102 class Event:

103 """Represents a single event in the story. Events are stored in
chronological order."""

104 description: str

105 """Description of the event.

106 time: str

107 """Explicit time information provided in the text for this event, if any

nnn

nnn

108 location: str
109 """lLocation of the event, if specified.
110 characters: list[str]

111 """Characters involved in the event.

nnn

nonn

113 class Character:

114 """Represents a character in the story.
115 name: str

116 """Name of the character.
117 description: str

nnn

nnn

118 """Description or background information about the character.”"""
119 motivations: list[str]
120 """Known or speculated motivations of the character.”""

122 class Location:

123 """Represents a location in the story."""
124 name: str

125 """Name of the location."""

126 description: str

127 """Description of the location."""

128

129 events: list[Event]

nnn

130 """List of events in the story, ordered chronologically.
131 characters: dict[str, Character]

132 """Dictionary of characters encountered in the story, keyed by character
name . """

133 locations: dict[str, Location]

134 """Dictionary of locations encountered in the story, keyed by location name

nnn

33 [Query domain]

39 Given a bunch of SQL tables formatted in text, answer queries that may require
reasoning over multiple tables to find the answer.

140

141 [Example query]

142 What is the total number of singers?

143

144 [Schemal]

145

146 LOFT-Spider generated schema:
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Method Cache hit Enc. Net Enc. Dec. Cost
(%) (x10%)  (x10%) (x10%) Index

| LOFT-Spider
Long context ‘ 0 30 30 0.4
Incremental 0 31 31 1.5 0.035
Ours In-place 41 56 33 0.7 0.035
w/out updates 39 54 33 0.4 0.030
Ours Amendments 39 54 33 0.6 0.035
w/out updates 40 54 33 0.4 0.034

Table 5: Cache-efficiency results for LOFT-Spider.

147
14¢ class SQLQueryInformation:
149 """This schema stores information relevant to a SQL query.

150 It focuses on the entities and attributes mentioned in the query,

151 rather than storing entire tables.

152 o

153

154 class EntityInformation:

155 """Represents information about a specific entity mentioned in the
query .

156 For instance, if the query asks about 'singers', this would store

157 information related to singers.

158 mn

159 name: str # Entity name (e.g., "singers")

160 relevant_columns: list[str] # Columns relevant to the query for this
entity

161 relevant_rows: list[dict[str, str]] # Rows containing information
related to the query, as dictionaries

162

163 entities: list[EntityInformation]

164

165 # Additional fields for aggregate queries (COUNT, SUM, AVG, etc.):

166 aggregate_results: dict[str, float] # e.g., {"count”: 123}

\

E Additional Results
We present additional results, extending Table 3 for the LOFT-Spider dataset in Table 5.
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