

SATER: A Self-Aware and Token-Efficient Approach to Routing and Cascading

Yuanzhe Shen, Yide Liu, Zisu Huang, Ruicheng Yin

Xiaoqing Zheng*, Xuanjing Huang

School of Computer Science, Fudan University, Shanghai, China

{yzshen25}@m.fudan.edu.cn

{zhengxq, xjhuang}@fudan.edu.cn

Abstract

Large language models (LLMs) demonstrate remarkable performance across diverse tasks, yet their effectiveness frequently depends on costly commercial APIs or cloud services. Model selection thus entails a critical trade-off between performance and cost: high-performing LLMs typically incur substantial expenses, whereas budget-friendly small language models (SLMs) are constrained by limited capabilities. Current research primarily proposes two routing strategies: pre-generation routing and cascade routing. Both approaches have distinct characteristics, with cascade routing typically offering superior cost-effectiveness and accuracy despite its higher latency. To further address the limitations of both approaches, we introduce SATER, a dual-mode compatible approach that fine-tunes models through shortest-response preference optimization and a confidence-aware rejection mechanism. SATER significantly reduces redundant outputs and response times, while improving both the performance of pre-generation routing and the efficiency of cascade routing. Experiments across three SLMs and six datasets, varying in type and complexity, demonstrate that SATER achieves comparable performance while consistently reducing computational costs by over 50% and cascade latency by over 80%.

1 Introduction

With the rapid advancement of large language models (LLMs) (Yang et al., 2024; Liu et al., 2024), their outstanding performance in diverse natural language processing tasks has solidified their role as a cornerstone of artificial intelligence applications. However, their operation entails significant computational costs, high energy consumption, and reliance on specialized hardware, creating substantial financial burdens and raising critical concerns about environmental sustainability (Kaack et al.,

2022; Luccioni et al., 2024) and technological accessibility. Consequently, optimizing efficiency and reducing resource consumption have become pivotal challenges (Varangot-Reille et al., 2025).

Building on the intuitive assumption that simple tasks can be effectively managed by SLMs, with complex tasks allocated to high-performance LLMs, current research primarily proposes two approaches: pre-generation routing and post-generation routing (cascade routing). Pre-generation routing methods, such as HybridLLM (Ding et al., 2024) and RouteLLM (Ong et al., 2024), train classifiers to predict task complexity, avoiding generation overhead. In contrast, cascade routing evaluates response quality for decision-making, as seen in FrugalGPT (Chen et al., 2023), which trains an answer correctness classifier, and AutoMix (Aggarwal et al., 2024) and MoT (Yue et al., 2024), which assess output confidence through multiple sampling. The latter demonstrates better adaptability across various tasks and generally outperforms pre-generation routing. Although cascade routing is more stable and superior, it requires a complete generation process. When SLMs' responses are rejected (common in complex tasks), regeneration is needed, and long responses introduce additional latency, leading to significant latency polarization and increased costs. These limitations suggest that the performance, cost-effectiveness, and latency of both routing approaches can be further optimized.

However, current evaluation frameworks for routing strategies present several limitations. In pre-generation routing, assessment results are highly susceptible to cases where both SLMs and LLMs fail to handle queries effectively. Furthermore, existing metrics such as cost-performance curves, APGR and CPT (as proposed in RouteLLM) are subject to “Performance Gap Bias” – a phenomenon where router performance appears inflated on benchmarks with minimal performance

* Corresponding author.

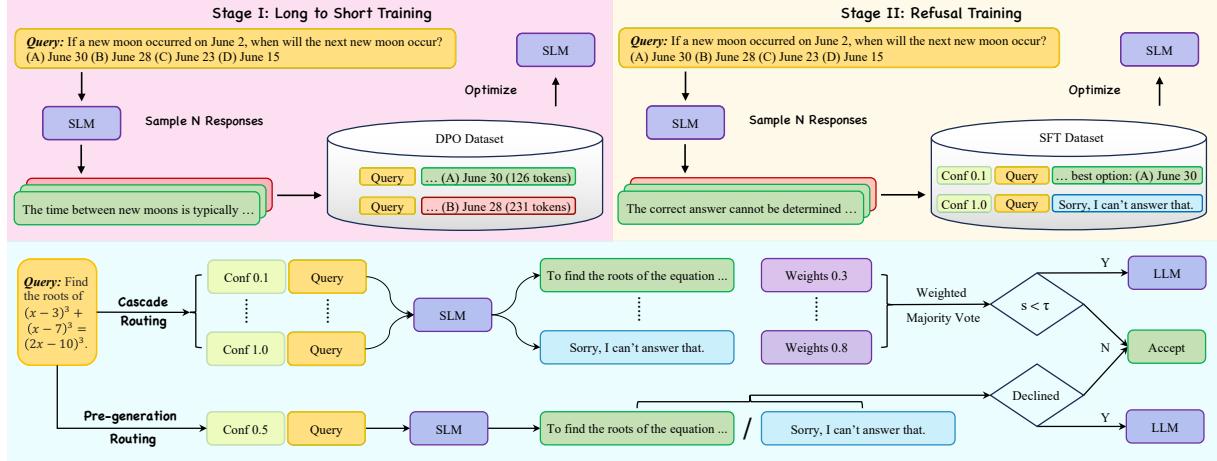


Figure 1: Illustration of SATER. We train the SLM in two stages for optimal cost, accuracy, and latency. Stage I performs preference optimization with the shortest correct and longest incorrect responses, while Stage II employs prompt-based fine-tuning to teach the SLM to reject complex tasks. During inference, rejected queries are either routed directly to LLMs (pre-generation) or processed via weighted majority voting (cascade) for refined routing.

differentials between SLMs and LLMs. To overcome these limitations, we introduce two metrics: Tradeoff Area (ToA) and Tradeoff Gain Ratio (ToGR), designed to provide more robust evaluation of pre-generation routing strategies. For cascade routing, current methods typically rely on coarse estimates based on cost per million tokens and the number of samples. In the context of increasing emphasis on output length and generation efficiency, such simplifications fail to accurately capture the impact of generation length on cost and latency. To address this gap, we introduce an evaluation framework based on actual generation length, incorporating two new metrics: Average Generation Latency (AGL) and Average Routing Overhead Latency (AROL), to establish a more comprehensive assessment mechanism.

To enhance the performance of existing routing strategies and address their limitations, we introduce SATER, a two-stage training approach. In the first stage, shortest-response preference optimization reduces redundant tokens by over 50% with minimal performance degradation. In the second stage, confidence-based refusal-aware tuning (Zhang et al., 2023; Cheng et al., 2024; Zhang et al., 2024) empowers SLMs to proactively reject complex queries based on confidence thresholds, significantly reducing invalid outputs and latency in cascade routing. Refusal instructions based on different confidence levels can also be approximately applied to pre-generation routing without complex threshold calibration. Evaluations across six widely used benchmarks show that SATER achieves su-

perior ToA and ToGR in pre-generation routing compared to baseline methods. In cascade routing, SATER cuts AGL by over 50% and AROL by over 80%, while optimizing cost and accuracy. In summary, our main contributions are as follows:

- We formalize a comprehensive evaluation framework to assess routing strategies between small and large language models.
- We propose SATER, a versatile approach for both pre-generation and cascade routing that shows improved performance while significantly reducing latency.
- We investigate the comparative advantages of pre-generation and cascade routing under varying conditions, providing practical insights for optimal strategy selection.

2 Problem Formulation

2.1 Problem Setting

Routing Decision Function. We denote SLM and LLM as M_s and M_l , respectively, and focus on their routing problem. The routing decision function is then defined as:

$$r(i) = \begin{cases} 1, & \text{if } s_i < \tau \text{ (routed to } M_l\text{)} \\ 0, & \text{if } s_i \geq \tau \text{ (routed to } M_s\text{)} \end{cases}$$

where s_i represents the confidence score predicted for the question i of M_s , and $\tau \in [0, 1]$ is the routing threshold. A higher τ routes more questions to M_l , improving answer quality at the cost of increased computational resources.

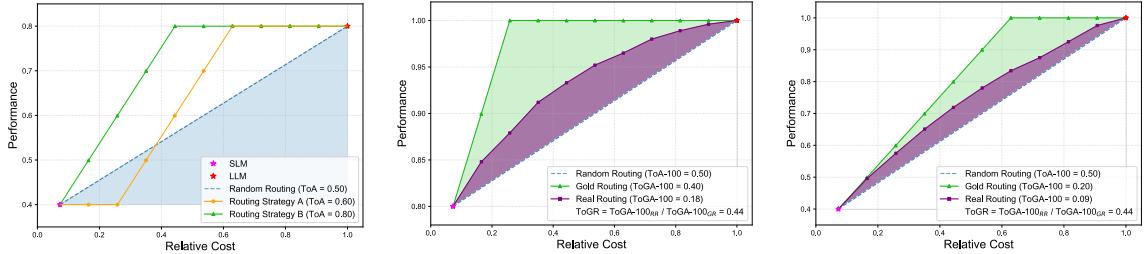


Figure 2: Introduction to Routing Strategies and Metrics. Strategy A routes the hardest questions (beyond LLM’s capability) to LLM first, while Strategy B only routes questions the SLM cannot solve but the LLM can.

Cost and Performance. To achieve a more precise evaluation, we perform calculation at the token level. Let c_s^{in} and c_l^{in} denote the per-token input costs for M_s and M_l , and c_s^{out} and c_l^{out} denote their per-token output costs. For a given question i requiring t_i^{in} input tokens, if M_s generates t_i^s output tokens, its total cost is $C_i^s = c_s^{\text{in}} \times t_i^{\text{in}} + c_s^{\text{out}} \times t_i^s$. Similarly, if M_l generates t_i^l output tokens, its total cost is $C_i^l = c_l^{\text{in}} \times t_i^{\text{in}} + c_l^{\text{out}} \times t_i^l$.

The total cost for pre-routing is:

$$\tilde{C}_{\text{pre}} = \frac{\sum_{i=1}^N [(1 - r(i))C_i^s + r(i)C_i^l]}{\sum_{i=1}^N C_i^l} \quad (1)$$

The total cost for cascade routing is:

$$\tilde{C}_{\text{cascade}} = \frac{\sum_{i=1}^N [K \cdot C_i^s + r(i) \cdot C_i^l]}{\sum_{i=1}^N C_i^l} \quad (2)$$

Here, N is the total number of questions, and K is the number of samples. The costs are normalized relative to the cost of using only M_l (set to 1). We define p_i^s and p_i^l as the quality(accuracy) of the answer of M_s and M_l for the question i . So, the average quality for both routing methods is:

$$\tilde{P} = \frac{1}{N} \sum_{i=1}^N [(1 - r(i))p_i^s + r(i)p_i^l] \quad (3)$$

Since M_l may generate excessively long outputs for complex problems, causing a significant rightward shift in the cost-performance curve if raw token counts are used, thus skewing evaluation results. To address this, we use the average number of output tokens at the dataset level as the per-question cost metric for M_l , while M_s maintains actual token counts. Additionally, in cascade routing, the KV cache ensures that inputs are computed only once, regardless of the number of samples.

2.2 Evaluation Metrics

Cost-Performance Curve. As shown in Figure 2, we select threshold points at intervals of 0.1 over τ and include two points corresponding to using only the M_s and M_l : (C_s, P_s) and (C_l, P_l) . The curve formed by connecting these points, together with the reference lines $\text{Cost} = C_l$ and $\text{Performance} = P_s$, encloses the **Trade-off Area (ToA)**, which can be calculated by accumulating trapezoidal areas. The ToA for random routing is 0.5. The **Trade-off Gain Area (ToGA)** is defined as the ToA improvement over random routing.

ToA-100 and ToGR. As illustrated in the left part of Figure 2, the most challenging questions—those that M_l fails to answer—significantly affect the evaluation results. Although Strategy B yields superior metric performance, it has notable limitations. First, even when M_l provides less accurate answers, its responses are generally more informative and insightful than those of M_s . Second, M_l possesses a higher capability ceiling, and ongoing advancements are likely to address its current shortcomings. Third, a robust routing strategy should not artificially exclude difficult questions to inflate metrics. Therefore, we propose that Strategy A is the more principled choice. To facilitate a fairer evaluation, we extend ToA and ToGA by introducing **ToA-100** and **ToGA-100**, which assume perfect performance of M_l on all questions.

Moreover, as shown in Figure 2 (middle and right), traditional cost-performance metrics (such as APGR and CPT in RouteLLM(Ong et al., 2024)) are prone to performance gap bias: when the performance difference between M_s and M_l is narrow on a benchmark with easily distinguishable question types or difficulties, routing just a few questions can create the illusion that “low cost approximates high performance.” This leads to an overestimation of the router’s performance, masking cases where

many simple questions are misrouted, while also affecting cross-benchmark evaluation. To mitigate this, we propose the **Tradeoff Gain Ratio (ToGR)**, which enables fair comparisons by calculating the ratio of ToGA-100 between the current routing and the golden routing. Although the current metric assumes perfect performance of M_l on all questions, our evaluation can naturally extend to alternative scenarios. While we generally believe that harder questions should be routed to the large model to obtain better answers, from a purely cost-saving perspective, it is actually cheaper not to route these questions at all. Our evaluation framework easily accommodates this case: one only needs to compute ToGR using ToGA instead of ToGA-100.

Latency. In cascade routing, latency should be a key consideration. (It is important to note that, in this paper, we define cascade routing as requiring the small model to generate a complete output first. This definition may differ from those used in other works.) In non-long-text scenarios, the time required for the generation phase typically far exceeds that of the prefill phase. Moreover, to eliminate the impact of hardware differences, we adopt the number of output tokens as a proxy for latency and define two distinct metrics: 1) **Average Generation Latency (AGL)**: This represents the latency incurred when the response is ultimately completed by M_s . 2) **Average Routing Overhead Latency (AROL)**: This quantifies the extra latency when M_s fails and the system must fall back to M_l , compared to calling M_l directly. The AGL reflects the processing efficiency of M_s , while the AROL measures the overhead of routing switches. During parallel sampling, early stopping is triggered when the threshold is either exceeded or cannot be reached. Otherwise, the system should default to the longest sample, as it needs to wait for all sampling to complete before making final decisions.

3 Methodology

Stage I: Long to Short Training. Although many previous studies have reported that Direct Preference Optimization (DPO) (Rafailov et al., 2023) struggles to reduce output length in reasoning models, our experiments demonstrate its strong effectiveness in non-reasoning models. Specifically, we integrate standard SFT loss \mathcal{L}_{SFT} with DPO loss \mathcal{L}_{DPO} , where the latter learns shortest-response preference while the former stabilizes training. The total loss is:

$$\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{DPO}} + \lambda \mathcal{L}_{\text{SFT}} \quad (4)$$

where \mathcal{L}_{DPO} is defined as:

$$-\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w | x)}{\pi_{\text{ref}}(y_w | x)} \right. \right. \\ \left. \left. - \beta \log \frac{\pi_\theta(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \right] \quad (5)$$

where x is the input text, y_w and y_l are positive and negative responses, π_θ is the policy model, π_{ref} is the reference model, β is the temperature coefficient, and σ is the sigmoid function.

To construct training data, we sample each question ten times, selecting the shortest correct response as the positive example and the longest incorrect response, exceeding 1.5 times the length of the positive sample, as the negative example. This method trains the model to differentiate between concise, correct responses and verbose, incorrect ones. Experiments reveal that DPO is highly sensitive to response length: if β and λ are set too low, the model generates overly short, low-quality outputs. Thus, we set $\beta = 1$ and $\lambda = 0.2$ to ensure stable training. Additionally, including the longest correct response as a negative example reduces average accuracy by over 2%.

Stage II: Refusal Training. We first use the model trained in Stage I to resample each question ten times, computing its accuracy on a scale from 0 to 1.0. Next, we define ten confidence thresholds ranging from 0.1 to 1.0. For each question and threshold, we generate new training samples by prepending the prompt: “Please respond with a confidence level of [threshold]:”. If the question’s accuracy exceeds the threshold, we randomly select a correct answer; otherwise, we apply a rejection template: “Sorry, I can’t answer that.” Using this training set, we employ the standard SFT loss \mathcal{L}_{SFT} to fine-tune the model, enabling it to adjust its responses based on confidence levels.

This method can be flexibly applied to various routing strategies. In pre-generation routing, questions rejected by M_s are automatically redirected to M_l . For cascade routing, we propose a confidence-based dynamic weighted voting mechanism. For a given question i , with K total votes where the k -th answer is $a_k \in A$

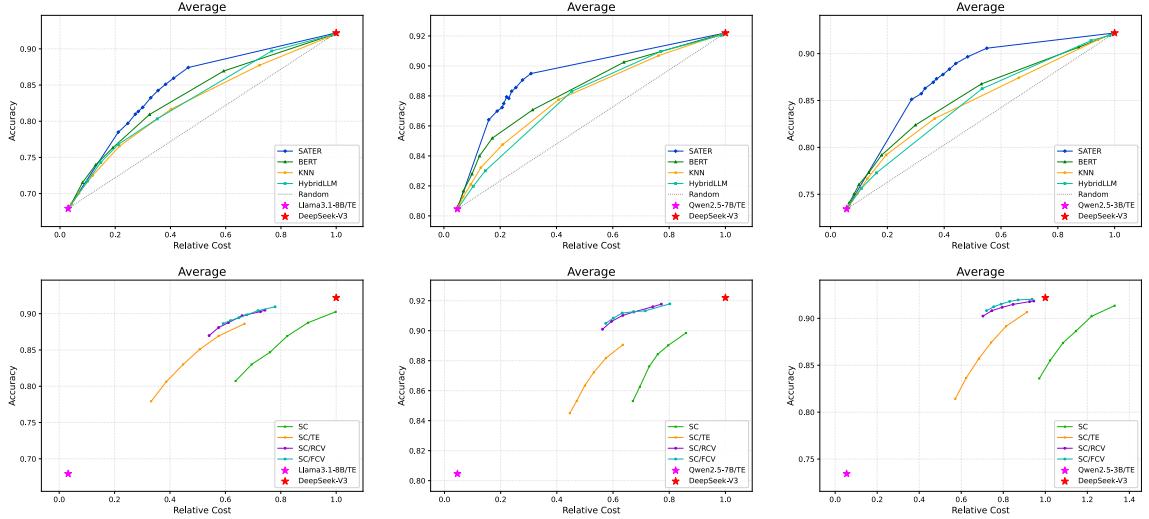


Figure 3: Average Cost-Accuracy Plot. Results are based on the average of six benchmarks. The top three curves represent pre-generation routing, while the bottom three display cascade routing (cost ratio: 1:13.75). The Average Cost-Accuracy(100) Plot and the individual results for each benchmark are presented in Appendix A.1.

$(A = \{A_1, \dots, A_M\})$, each discretized confidence score $p_k \in \{0.1, 0.2, \dots, 1.0\}$ is assigned a weight $w_k = 0.55 + \alpha(p_k - 0.55)$, where 0.55 represents the average confidence and $\alpha = 0.5$ is a coefficient that ensures higher-confidence answers receive greater weight while mitigating decision bias from individual high-confidence errors. The final confidence score for candidate answer A_m is:

$$\delta(A_m) = \frac{\sum_{k=1}^K w_k \cdot \mathbb{I}(a_k = A_m)}{\sum_{k=1}^K w_k} \quad (6)$$

and the answer with the highest score is selected. Based on this, we propose two voting schemes: **Ranged Confidence Voting (RCV)**, which samples confidences uniformly from 0.1 to 1.0 for 10 times, and **Fixed Confidence Voting (FCV)**, which samples only at a confidence of 1.0 for 10 times.

In a pure LLM scenario, refusal training can lead to over-rejection, significantly reducing usability. In contrast, over-rejection in routing systems differs fundamentally: First, it increases computational costs without compromising system availability, as all questions ultimately receive answers. Second, in pre-generation routing, over-rejection resembles an imperfect classifier, whereas in cascade routing, avoiding repeated sampling of unsolvable questions offsets additional costs to a certain extent.

4 Experiments

4.1 Experiment Setup

Models. We conduct experiments on three SLMs: Llama-3.1-8B-Instruct (Grattafiori et al., 2024),

Qwen2.5-7B-Instruct, and Qwen2.5-3B-Instruct (Yang et al., 2024), as well as one LLM: DeepSeek-V3-0324 (Liu et al., 2024), a highly cost-effective and high-performing model. To simplify cost comparisons amid opaque API pricing, we adopt Groq’s pricing for SLMs at \$0.08 per million output tokens and DeepSeek’s official rate for the LLM at \$1.10. Input pricing is set at one-quarter of the respective output price, resulting in a cost ratio of 1:13.75.

Datasets. We conduct experiments on six widely used datasets, covering various types of tasks such as knowledge-based question answering, scientific reasoning, mathematical reasoning, and logical reasoning. These include: MMLU (Hendrycks et al., 2020), ARC-Challenge and ARC-Easy (Clark et al., 2018), GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021), and Reclor (Yu et al., 2020). For MMLU, lacking a training set, we use its 14,042-question test set for training and 1,531-question validation set for testing. For ReClor, with unavailable test set answers, we use its 500-question validation set for testing. The models are trained on the training sets of MMLU, ARC-Challenge, GSM8K, and MATH-500, with their test sets used for in-domain evaluation. ARC-Easy and ReClor served as out-of-domain datasets.

Baselines. In pre-generation routing, we compare three mainstream approaches: a BERT-based classifier (Ong et al., 2024), a KNN classifier (Hu et al., 2024), and HybridLLM (Ding et al., 2024), which trains DeBERTa-v3-large (300M) (He et al.,

Model	Method	MMLU		MATH-500		GSM8K		ARC_C		ReClor		ARC_E	
		ToA-100	ToGR										
Llama-3.1-8B-Instruct	HybridLLM	0.604	0.313	0.504	0.018	0.503	0.007	0.550	0.125	0.532	0.111	0.527	0.062
	KNN	0.596	0.290	0.583	0.415	0.519	0.050	0.542	0.107	0.522	0.076	0.518	0.041
	BERT	0.618	0.358	0.606	0.529	0.618	0.308	0.569	0.173	0.554	0.190	0.535	0.079
	SATER	0.655	0.469	0.622	0.607	0.643	0.373	0.702	0.512	0.594	0.326	0.667	0.379
Qwen2.5-7B-Instruct	HybridLLM	0.586	0.239	0.502	0.006	0.494	-0.014	0.465	-0.080	0.512	0.032	0.455	-0.098
	KNN	0.619	0.332	0.666	0.498	0.576	0.168	0.512	0.026	0.467	-0.090	0.481	-0.042
	BERT	0.643	0.396	0.702	0.605	0.650	0.334	0.566	0.148	0.545	0.124	0.544	0.095
	SATER	0.692	0.533	0.770	0.810	0.708	0.461	0.631	0.294	0.639	0.385	0.593	0.201
Qwen2.5-3B-Instruct	HybridLLM	0.618	0.352	0.512	0.042	0.483	-0.043	0.497	-0.006	0.512	0.039	0.486	-0.030
	KNN	0.620	0.358	0.648	0.520	0.538	0.096	0.493	-0.016	0.509	0.028	0.492	-0.017
	BERT	0.630	0.389	0.660	0.562	0.641	0.361	0.537	0.090	0.528	0.087	0.569	0.151
	SATER	0.687	0.560	0.711	0.740	0.741	0.615	0.685	0.445	0.600	0.311	0.639	0.307

Table 1: ToA-100 and ToGR results across in-domain and out-of domain datasets. Bold indicates the best.

Model	Method	MMLU		MATH-500		GSM8K		ARC_C		ReClor		ARC_E		Average	
		AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL
Llama-3.1-8B-Instruct	SC	186	293	365	638	226	306	140	216	150	177	128	195	199	304
	SC/TE	68	100	173	211	139	133	49	58	90	90	38	72	93	111
	SC/RCV	48	6	142	31	133	75	40	4	76	4	30	2	78	20
	SC/FCV	47	1	125	7	126	22	38	1	74	2	29	1	73	6
Qwen2.5-7B-Instruct	SC	182	437	477	825	342	432	126	227	335	421	98	189	260	422
	SC/TE	114	240	361	533	271	313	75	130	172	262	60	142	176	270
	SC/RCV	104	12	310	83	250	108	78	7	142	17	64	6	158	39
	SC/FCV	96	4	291	18	243	37	77	6	133	10	63	4	150	13
Qwen2.5-3B-Instruct	SC	281	425	481	794	369	425	231	341	432	483	188	327	330	466
	SC/TE	148	272	346	504	251	273	101	166	287	345	74	146	201	284
	SC/RCV	99	9	284	32	225	71	84	12	233	21	62	10	164	26
	SC/FCV	87	2	255	3	207	12	78	4	214	3	60	4	150	5

Table 2: AGL and AROL results with threshold $\tau = 0.6$. Results with $\tau = 1.0$ are provided in Table 4.

2020) using soft labels derived from BART scores and multiple sampling. As routing modules often operate in resource-constrained environments, we avoid larger classification models, which are impractical and directly using a larger SLM, such as Qwen2.5-14B-Instruct is generally more effective. In cascade routing, we compare the original model (SC), the model trained only in stage I (SC/TE), and the model after full two-stage training with two voting methods (RCV, FCV). For more implementation details, please refer to Appendix C.

4.2 Main Results

SATER demonstrates superior performance and adaptability in pre-generation routing. Experiments reveal that SATER consistently outperforms baseline methods across three SLMs and six datasets. As illustrated in Figure 3 and 6, SATER achieves significantly higher average performance, with Figure 7, 8 and Table 1 confirming stable advantages in all single-dataset evaluations. Notably, SATER exhibits strong task adaptability and generalizability: It automatically adjusts routing intervals based on task complexity and performs well in out-of-distribution tests, achieving ToGR scores averaging 0.2 higher than the BERT classifier on both

the complex ReClor and simpler ARC_E datasets.

ToGR serves as a superior metric, underscoring the necessity of fine-grained task difficulty differentiation in pre-generation routing. As shown in Figure 7 and Table 1, Llama-3.1-8B-Instruct scores higher on ToA-100 for datasets with smaller performance gaps, such as GSM8K and ARC, than those with larger gaps, such as MATH and MMLU. However, ToGR exhibits an opposite trend, revealing a performance gap bias and proving a more robust metric. Although all methods struggle with small-gap datasets, necessitating further improvement, SATER significantly outperforms baselines, suggesting that SATER not only enables coarse-grained domain classification, but also possesses finer-grained difficulty discrimination capabilities.

Models can assess question difficulty and refuse to answer, even in reasoning tasks. ToGR in Table 1 reveals an interesting phenomenon: Model performance on reasoning tasks is comparable to knowledge-based tasks, with all models achieving best results on MATH-500. This suggests that models can not only identify the knowledge blind spot, but also anticipate question difficulty in reasoning tasks and proactively decline to answer.

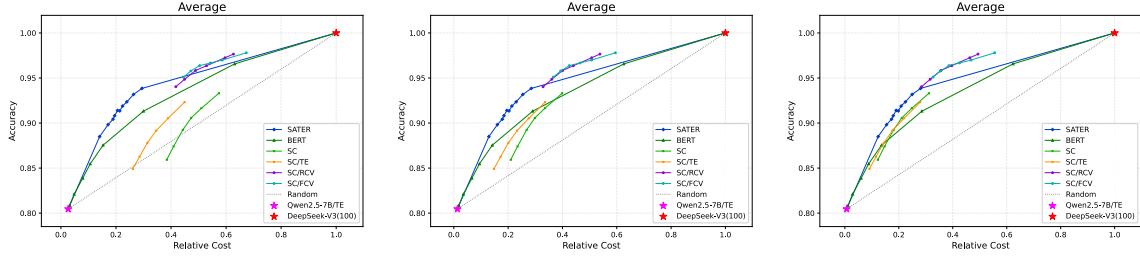


Figure 4: Comparison plot of cost-accuracy(100) between pre-generation and cascade routing, averaged across all benchmarks. Results are based on Qwen2.5-7B-Instruct, with three subplots depicting cost ratios of 1:25, 1:50, and 1:100 from left to right. Detailed results for individual benchmarks are available in Appendix A.2 (Figure 9, 10, 11).

SATER continuously reduces latency and cost while improving performance in cascade routing. As presented in Tables 2, both voting methods significantly reduce latency, with AGL decreasing by over 50% and AROL by over 80%. Furthermore, Figure 3 and 8 illustrate that SATER surpasses vanilla SC in both cost and accuracy. For stronger SLMs, such as Qwen2.5-7B-Instruct, RCV is more effective in lowering costs by increasing voting opportunities. For weaker SLMs, FCV improves efficiency by swiftly declining to respond. In particular, when LLMs are assumed to deliver optimal responses, the advantages of SATER become even more evident, indicating that the overconfidence of vanilla SC is partially masking by the insufficiency of LLM.

5 Analysis

5.1 Comparison Between Pre-generation Routing and Cascade Routing

Different Cost Ratios. Since SLMs are typically deployed privately, which is also a basic requirement of our method, their actual costs can be much lower than \$0.08. In contrast, LLMs generally rely on API calls, with fixed pricing and the potential to use models more expensive than DeepSeek-V3. So we further explore scenarios with cost ratios of 1:25, 1:50, and 1:100 in Figure 4. At low cost ratios, cascade routing is less cost-effective than pre-generation routing due to multiple sampling. As cost ratios rise, cascade routing’s benefits emerge: RCV and FCV outperform pre-generation routing at a 1:25 ratio, while SC/TE equals BERT classifier at 1:50 and surpasses it at 1:100. Thus, pre-generation routing excels at low cost ratios, but cascade routing offers superior cost control and accuracy at high ratios. Although RCV and FCV’s cost advantages diminish at high ratios, they remain more cost-effective than vanilla SC, with signifi-

cant advantages in latency control and accuracy.

Different Tasks. Besides overall performance across six benchmarks, we further analyze the suitability of different routing strategies for various types of tasks. As shown in Figure 9, 10, and 11, cascade routing demonstrates a clear advantage in complex reasoning tasks such as mathematical reasoning. In contrast, for knowledge-intensive tasks like factual question answering, direct routing based on question classification exhibits higher reliability, since self-consistency may not adequately reflect answer accuracy. Notably, SATER consistently outperforms vanilla SC in one or more aspects of cost, accuracy, and latency across all experimental scenarios.

Different Capabilities. Figure 12 illustrates that under the same cost ratio, the weaker the capabilities of an LLM, the sooner the advantages of cascade routing become evident. This is primarily because, despite overconfidence issues in voting-based routing, some misjudged difficult queries are actually unsolvable by the LLM, in which case no routing saves costs instead. A secondary reason is that the inherent randomness in LLM outputs may lead to incorrect responses for simple queries in a single sampling, whereas the SLM’s accurate voting helps narrow the accuracy gap.

5.2 When Does SATER Help? A Case Study

In pre-generation routing, SATER resembles embedding a classifier within the model, fully leveraging its parameters. Compared to methods that rely on additional small classifiers, SATER significantly enhances performance under resource-constrained conditions. In addition, the consistency between the model and classifier aids in a fine-grained awareness of capability boundaries. In cascade routing, long-to-short training accelerates the generation process, while refusal training

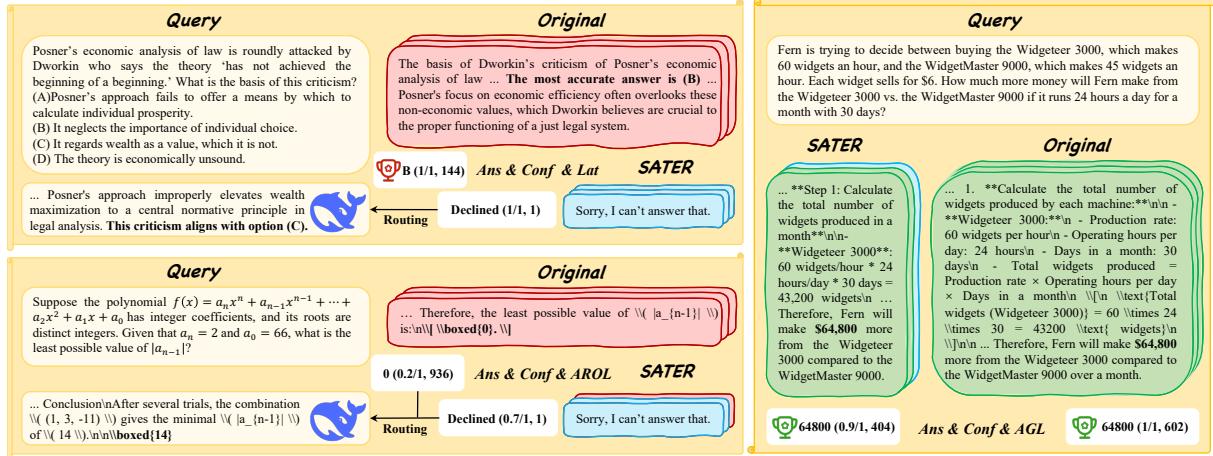


Figure 5: Three examples from SATER. Responses are color-coded: red (incorrect), green (correct), blue (refused). White box shows the majority-voted answer, confidence score, and AGL or AROL, based on routing decisions.

enables the model to decline complex queries. Together, two-stage training not only reduces costs and latency, but also improves accuracy. Figure 5 illustrates several examples from MMLU, Math-500, and GSM8K. For overconfident queries, especially knowledge-based ones, SATER firmly rejects them; for challenging reasoning tasks, SATER halts generation with a high rejection probability, reducing ineffective sampling and AROL; for medium and simple queries, SATER swiftly generates responses, further boosting overall efficiency.

5.3 Other Experiments

Table 5 and 6 in Appendix B.2 demonstrate that SATER reduces token count by over 40% in first-stage DPO training while preserving high accuracy. Table 3 compares SATER and TokenSkip on GSM8K and MATH-500, showing SATER’s superior token compression, accuracy retention, and readability. These findings highlight DPO’s effectiveness in shortening output without compromising performance. Additionally, Figure 13 indicates that lower sampling temperatures reduce output diversity, leading to accuracy declines in high-threshold intervals. However, RCV and FCV still maintain a relatively significant advantage.

6 Related Work

Pre-generation Routing Pre-generation routing intelligently assigns tasks by evaluating query features, mainly through two approaches: domain expert routing (Stripelis et al., 2024; Lu et al., 2024; Chen et al., 2024), which identifies the query’s domain and assigns it to a specialized model for improved performance, and complexity-adaptive

routing (Ding et al., 2024; Ong et al., 2024), which allocates queries to models of varying sizes based on task complexity, optimizing the balance between quality and cost. Both rely on similar frameworks, such as supervised classifiers or unsupervised clustering, but differ in implementation details, including input query types and label annotations.

Cascade Routing Cascade routing starts with a smaller model generating a response, evaluated for quality. If it falls short of a set threshold, the query is passed to a stronger model until satisfactory. Decisions use either task-specific evaluation models for simple classification tasks (Chen et al., 2023; Ramírez et al., 2024) or confidence scores for more complex tasks (Aggarwal et al., 2024; Yue et al., 2024), which generally require multiple samplings.

LLM Honesty Honesty in LLMs refers to their ability to produce truthful and reliable outputs. Current approaches, including supervised fine-tuning (Zhang et al., 2024; Cheng et al., 2024), reinforcement learning (Xu et al., 2024), and probing (Kosken et al., 2024), encourage models to admit uncertainty by saying “I don’t know” or giving better confidence estimates. While most studies target knowledge-intensive tasks like factual question answering, our work shows that for complex, multi-step reasoning tasks, models can proactively decline to answer, thereby optimizing two types of routing across diverse tasks.

Efficient Reasoning Long CoT reasoning models often “overthink”, producing redundant steps that reduce efficiency. Current training solutions include length-penalized reinforcement learning for

concise reasoning (Luo et al., 2025; Aggarwal and Welleck, 2025), and supervised fine-tuning with compact CoT for succinct outputs (Xia et al., 2025; Munkhbat et al., 2025). Studies like TokenSkip also indicate that output redundancy persists, even in non-reasoning models, though less severely.

7 Conclusion

In this work, we introduce a comprehensive evaluation framework and propose SATER, a simple yet effective two-stage training approach. Extensive experiments across various SLMs and tasks demonstrate SATER’s effectiveness, achieving significant improvements in performance, cost efficiency, and latency for both pre-generation routing and cascade routing. When the cost ratio between LLM and SLM exceeds 50, SATER delivers performance comparable to pure LLM at around 50% of the cost while maintaining low latency. Further analysis highlights the suitability of both routing strategies under diverse conditions, offering a flexible and cost-effective solution for LLM applications.

Limitation

Although our work demonstrates strong results, certain limitations remain. First, we primarily focus on the routing mechanism between a single small language model and a single large language model. Future research could explore multi-model collaborative routing or cascading to enhance scalability. Secondly, the prompt-based refusal training struggles to achieve effective routing when the threshold falls below 0.1. However, cross-dataset experiments demonstrate that setting the threshold at 0.1 maintains the overall cost at less than 30% of the LLM’s cost, indicating that SATER consistently delivers a practical range of routing costs. Finally, SATER’s rejection mechanism faces challenges in scenarios where a response is mandatory but cannot be routed. In such cases, maintaining an untrained model copy may be necessary to ensure the system can still provide complete responses when required.

References

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappagantu, Yiming Yang, et al. 2024. Automix: Automatically mixing language models. *Advances in Neural Information Processing Systems*, 37:131000–131034.

Pranjal Aggarwal and Sean Welleck. 2025. L1: Controlling how long a reasoning model thinks with reinforcement learning. *arXiv preprint arXiv:2503.04697*.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023. Frugalgpt: How to use large language models while reducing cost and improving performance. *arXiv preprint arXiv:2305.05176*.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. 2024. Routerdc: Query-based router by dual contrastive learning for assembling large language models. *Advances in Neural Information Processing Systems*, 37:66305–66328.

Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li, Linyang Li, Zhengfu He, Kai Chen, and Xipeng Qiu. 2024. Can ai assistants know what they don’t know? In *International Conference on Machine Learning*, pages 8184–8202. PMLR.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reichiro Nakano, et al. 2021. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks VS Lakshmanan, and Ahmed Hassan Awadallah. 2024. Hybrid llm: Cost-efficient and quality-aware query routing. In *The Twelfth International Conference on Learning Representations*.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. 2024. The llama 3 herd of models. *arXiv e-prints*, pages arXiv–2407.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. Deberta: Decoding-enhanced bert with disentangled attention. *arXiv preprint arXiv:2006.03654*.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2020. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem solving with the math dataset. *arXiv preprint arXiv:2103.03874*.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer, and Shriyash Kaustubh Upadhyay. 2024. Routerbench: A benchmark for multi-llm routing system. *arXiv preprint arXiv:2403.12031*.

Lynn H Kaack, Priya L Donti, Emma Strubell, George Kamiya, Felix Creutzig, and David Rolnick. 2022. Aligning artificial intelligence with climate change mitigation. *Nature Climate Change*, 12(6):518–527.

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal. 2024. Semantic entropy probes: Robust and cheap hallucination detection in llms. *arXiv preprint arXiv:2406.15927*.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou. 2024. Routing to the expert: Efficient reward-guided ensemble of large language models. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 1964–1974.

Sasha Luccioni, Bruna Trevelin, and Margaret Mitchell. 2024. The environmental impacts of ai-primer. *Hugging Face Blog*.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and Dacheng Tao. 2025. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. *arXiv preprint arXiv:2501.12570*.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. 2025. Self-training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed Kadous, and Ion Stoica. 2024. Routellm: Learning to route llms from preference data. In *The Thirteenth International Conference on Learning Representations*.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. 2023. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741.

Guillem Ramírez, Alexandra Birch, and Ivan Titov. 2024. Optimising calls to large language models with uncertainty-based two-tier selection. *arXiv preprint arXiv:2405.02134*.

Dimitris Stripelis, Zhaozhuo Xu, Zijian Hu, Alay Shah, Han Jin, Yuhang Yao, Jipeng Zhang, Tong Zhang, Salman Avestimehr, and Chaoyang He. 2024. Tensoropera router: A multi-model router for efficient llm inference. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pages 452–462.

Clovis Varangot-Reille, Christophe Bouvard, Antoine Gourru, Mathieu Ciancone, Marion Schaeffer, and François Jacquet. 2025. Doing more with less—implementing routing strategies in large language model-based systems: An extended survey. *arXiv preprint arXiv:2502.00409*.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. 2025. Tokenskip: Controllable chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*.

Hongshen Xu, Zichen Zhu, Situo Zhang, Da Ma, Shuai Fan, Lu Chen, and Kai Yu. 2024. Rejection improves reliability: Training llms to refuse unknown questions using rl from knowledge feedback. *arXiv preprint arXiv:2403.18349*.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. 2020. Reclor: A reading comprehension dataset requiring logical reasoning. *arXiv preprint arXiv:2002.04326*.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. 2024. Large language model cascades with mixture of thought representations for cost-efficient reasoning. In *The Twelfth International Conference on Learning Representations*.

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng Ji, and Tong Zhang. 2024. R-tuning: Instructing large language models to say ‘i don’t know’. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 7106–7132.

Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter Abbeel, and Joseph E Gonzalez. 2023. The wisdom of hindsight makes language models better instruction followers. In *International Conference on Machine Learning*, pages 41414–41428. PMLR.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYanhan YeYanhan, and Zheyuan Luo. 2024. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting of*

A Additional Plots

A.1 Average Cost-Accuracy(100) Plot and Cost-Accuracy(100) Plot for Each Benchmark

Figure 6 displays the average cost-accuracy(100) plot across all benchmarks. The detailed cost-accuracy(100) performance for individual benchmarks is shown in Figure 7 (pre-generation routing) and Figure 8 (cascade routing). All results are obtained using Qwen2.5-7B-Instruct, with a cost ratio of 1:13.75.

A.2 Comparison Plot of Cost-Accuracy(100) between Pre-generation Routing and Cascade Routing for Each Benchmark

Figure 9, 10 and 11 present comparison plots of cost-accuracy(100) between pre-generation routing and cascade routing across multiple benchmarks on Qwen2.5-7B-Instruct, with cost ratios of 1:25, 1:50, and 1:100, respectively.

A.3 Different Capabilities

In Figure 12, we compare the impact of large language models (LLMs) with varying capabilities—specifically, the actual results from DeepSeek-V3 versus the assumption that LLMs always deliver optimal responses—on the performance of prefix routing and cascade routing.

A.4 Different Temperature Settings

We show the comparison under different temperature settings in Figure 13.

B Additional Tables

B.1 AGL and AROL Results with Different Thresholds

We present AGL and AROL results with threshold $\tau = 1.0$ in Table 4. In mathematical reasoning tasks, a threshold of 0.6 usually yields satisfactory results. For other types of tasks, further performance improvements can be achieved by adjusting the threshold within the range of 0.6 to 1.0.

B.2 Effectiveness of Long to Short Training

Table 3 presents the efficiency comparison between SATER and TokenSkip on the GSM8K and MATH-500 benchmarks. In Table 5, we report the average accuracy and average Chain-of-Thought

(CoT) token count across both in-domain and out-of-domain datasets. Table 6 displays the average accuracy percentage change ($\Delta\%$) and the average CoT token count percentage change ($\Delta\%$) across in-domain and out-of-domain datasets.

Method	GSM8K		MATH-500	
	Accuracy	Tokens	Accuracy	Tokens
SATER	83.0	117	41.2	212
TokenSkip (0.5)	78.2	113	40.2	292

Table 3: Efficiency comparison between SATER and TokenSkip on GSM8K and MATH-500 benchmarks.

C Implementation Details

All sampling is conducted using the vLLM framework (Kwon et al., 2023) with a maximum generation length of 1024 tokens and sampling parameters set to temperature = 0.7 and top_p = 1.0. For DeepSeek-V3, on the GSM8K and MATH-500 datasets, we set temperature = 0 and max_length = 8192, while other datasets use official default parameters.

The training process utilizes the LLaMA-Factory framework (Zheng et al., 2024) and is performed on four NVIDIA RTX 3090 GPUs. For long-to-short training, we employ the DPO method with LoRA fine-tuning (rank = 8, alpha = 16, dropout = 0.1) for one epoch, using the AdamW optimizer (learning rate = 1e-4) with a cosine learning rate schedule (10% warmup ratio). The per-device batch size is set to 1 with 4 gradient accumulation steps, a length limit of 1024 tokens, a Sigmoid preference loss ($\beta = 1.0$), and an auxiliary loss coefficient of 0.2. For refusal training, we use a pure SFT task with the same LoRA fine-tuning parameters as the DPO stage, excluding preference loss parameters, and train for one epoch.

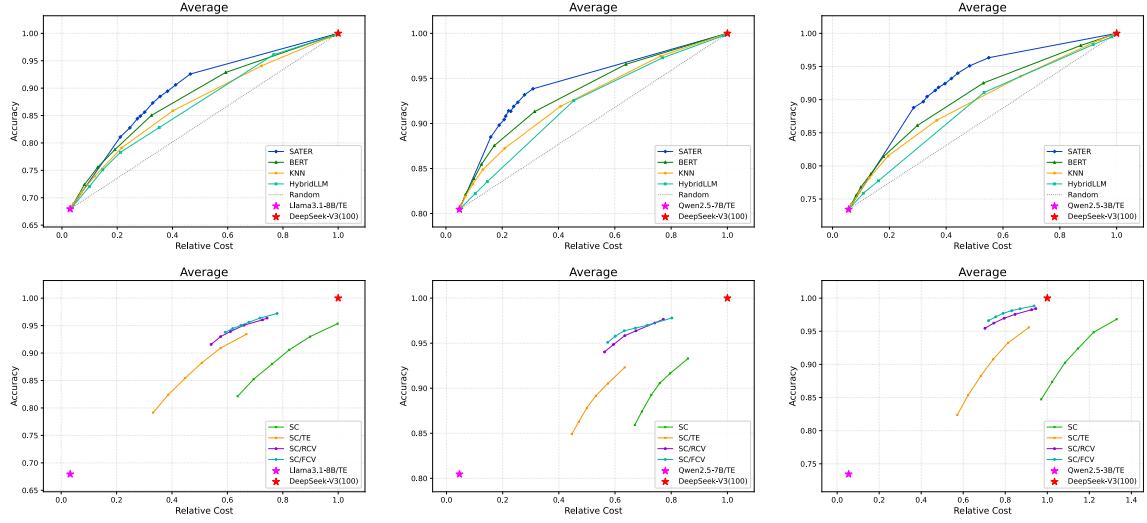


Figure 6: Average Cost-Accuracy(100) Plot.

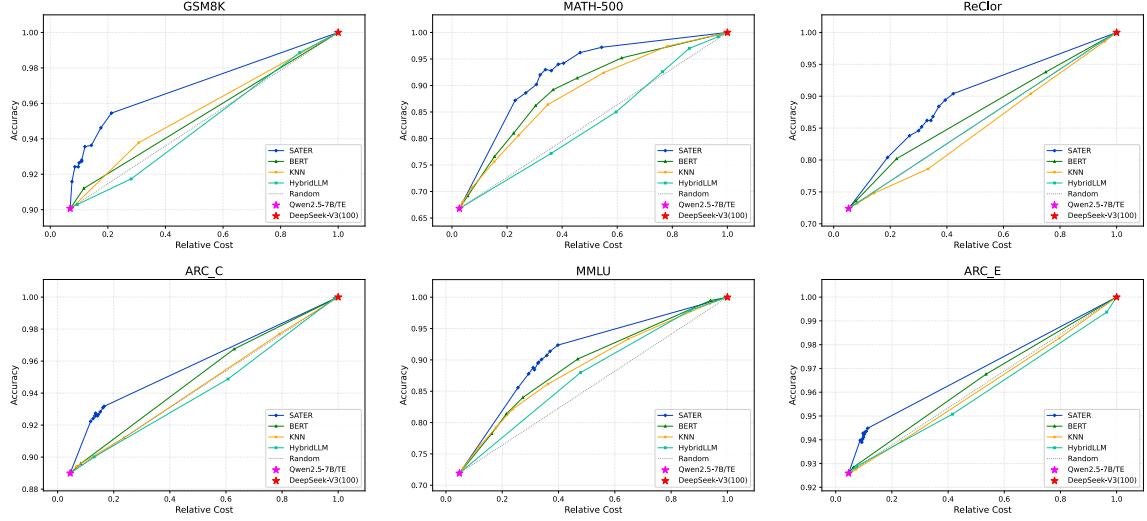


Figure 7: Cost-Accuracy(100) plot for each benchmark in pre-generation routing. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:13.75.

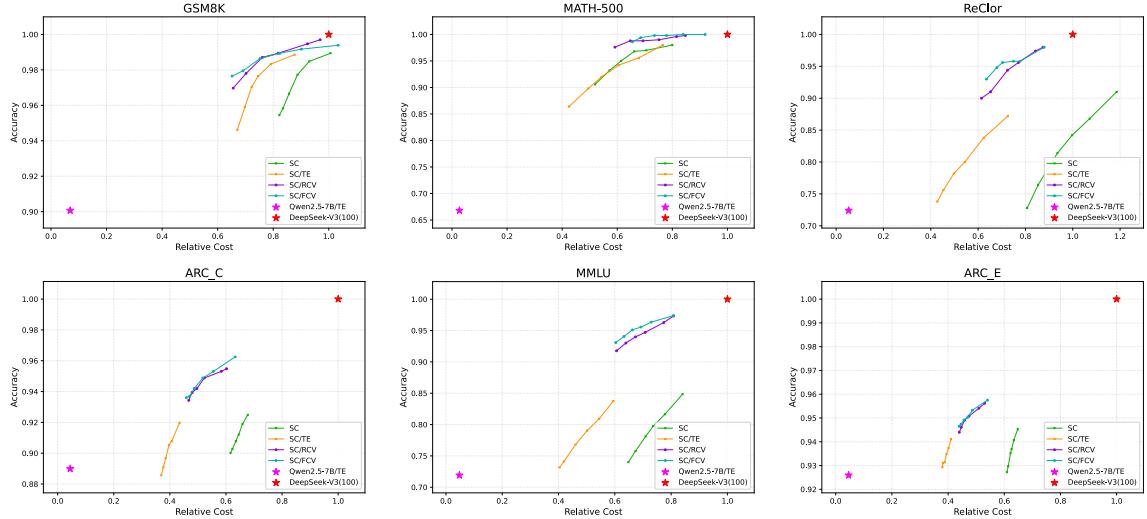


Figure 8: Cost-Accuracy(100) plot for each benchmark in cascade routing. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:13.75.

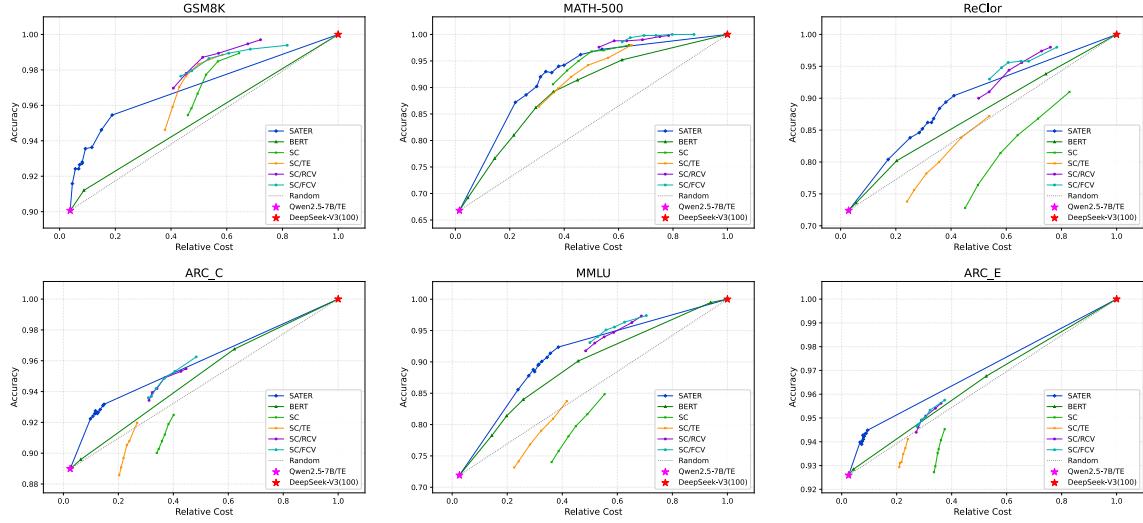


Figure 9: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:25.

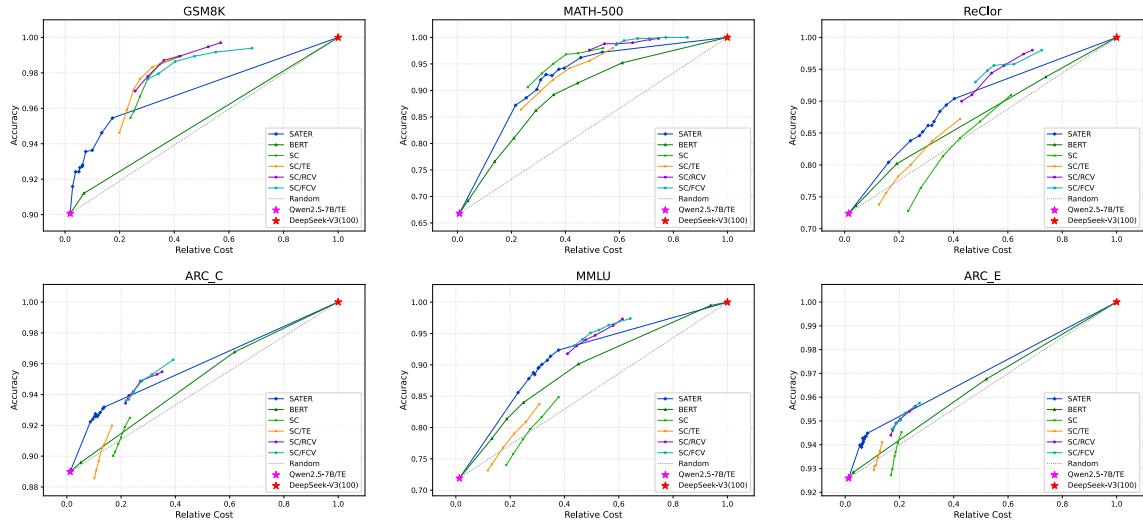


Figure 10: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:50.

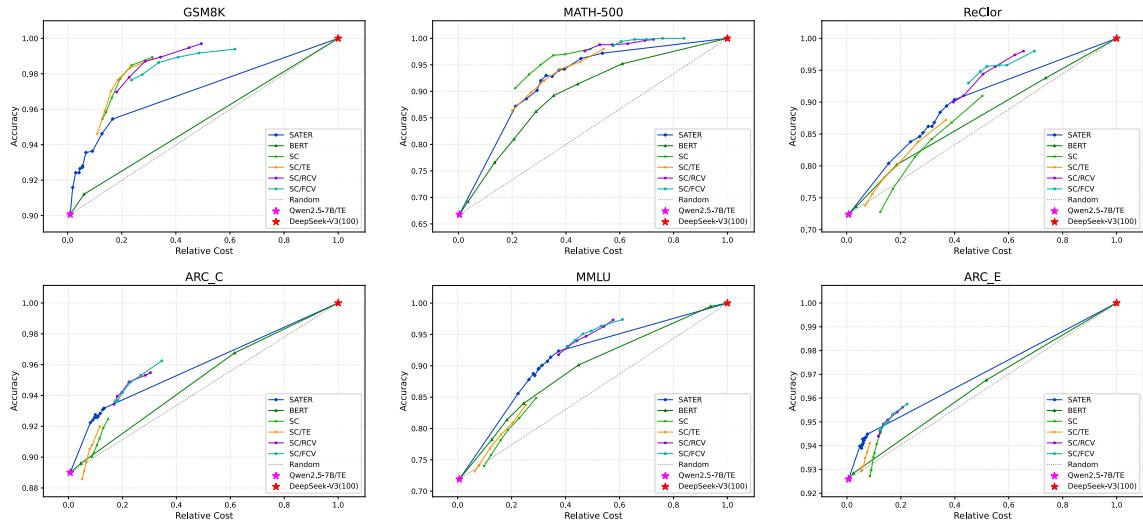


Figure 11: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:100.

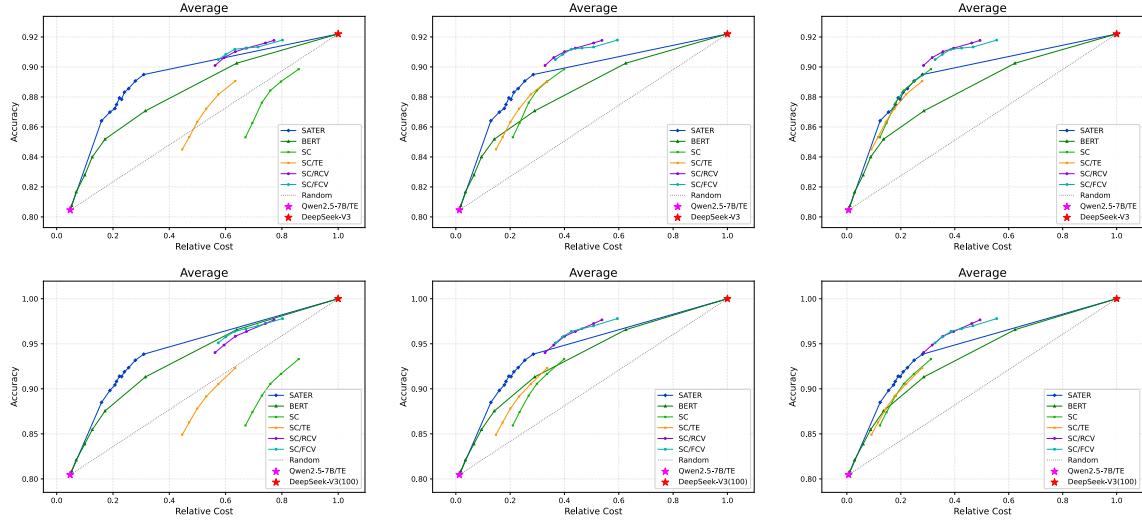


Figure 12: Comparison between the cost-accuracy plots and the cost-accuracy(100) plots, averaged across all benchmarks. The upper section presents the actual results from the LLM (DeepSeek-V3), while the lower section assumes LLMs deliver optimal responses. The results are based on Qwen2.5-7B-Instruct, with three subplots illustrating cost ratios of 1:13.75, 1:50, and 1:100 (from left to right).

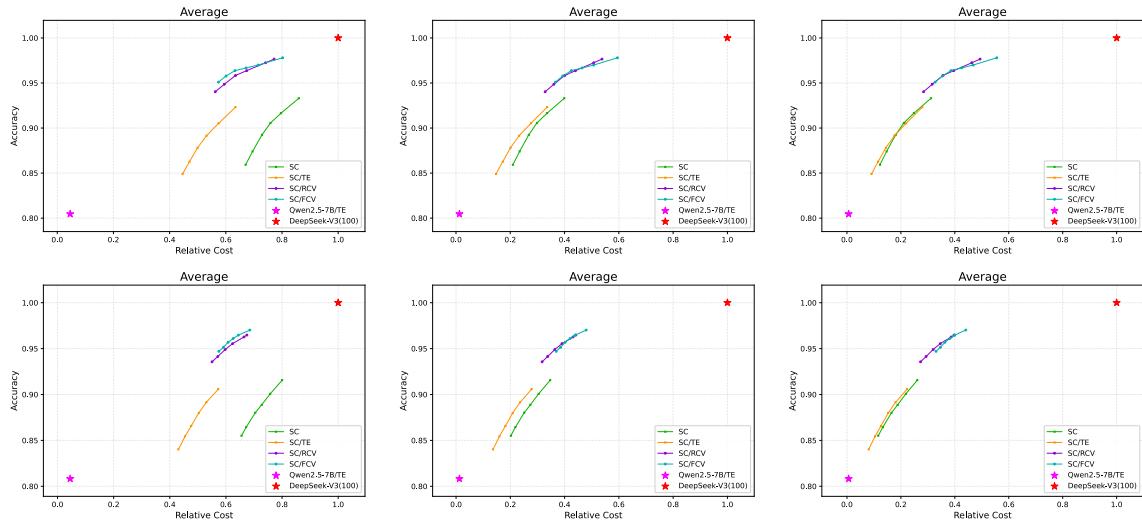


Figure 13: Comparison between different temperature settings, averaged across all benchmarks. The upper section shows results at temperature 0.7, while the lower section displays results at temperature 0.3. The results are based on Qwen2.5-7B-Instruct, with three subplots illustrating cost ratios of 1:13.75, 1:50, and 1:100 (from left to right).

Model	Method	MMLU		MATH-500		GSM8K		ARC_C		ReClor		ARC_E		Average	
		AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL	AGL	AROL
Llama-3.1-8B-Instruct	SC	232	138	310	327	192	180	200	110	184	113	186	105	217	162
	SC/TE	87	50	149	125	127	94	75	32	107	59	63	27	101	65
	SC/RCV	64	1	148	8	122	28	60	2	95	3	47	1	89	7
	SC/FCV	63	1	126	2	117	11	58	1	93	1	46	1	84	3
Qwen2.5-7B-Instruct	SC	218	243	503	597	324	312	176	159	390	309	146	126	293	291
	SC/TE	129	142	375	396	258	249	96	88	216	176	79	79	192	188
	SC/RCV	109	5	312	19	234	35	96	3	175	4	80	2	168	11
	SC/FCV	106	1	278	3	225	14	94	1	168	5	80	1	159	4
Qwen2.5-3B-Instruct	SC	312	267	504	542	338	306	291	228	455	380	260	216	360	323
	SC/TE	161	151	359	362	231	201	145	105	325	246	113	94	222	193
	SC/RCV	108	2	259	6	201	16	108	5	272	8	87	4	173	7
	SC/FCV	107	1	256	2	193	4	104	2	278	5	86	2	171	3

Table 4: AGL and AROL results with threshold $\tau = 1.0$.

Model	Method	MMLU		MATH-500		GSM8K		ARC_C		ReClor		ARC_E		Average	
		Acc	Tokens	Acc	Tokens	Acc	Tokens	Acc	Tokens	Acc	Tokens	Acc	Tokens	Acc	Tokens
Llama-3.1-8B-Instruct	Original	70.1	186	47.2	457	85.1	174	83.3	140	62.8	130	89.8	128	73.1	202.5
	SATER	68.1	67	41.2	212	83.0	117	81.7	44	60.6	86	89.2	34	70.6	93.3
Qwen2.5-7B-Instruct	Original	72.5	180	73.0	530	92.5	280	89.1	121	74.0	321	92.5	95	82.3	254.5
	SATER	71.5	111	69.2	392	91.0	226	88.9	73	73.2	163	92.8	58	81.1	170.5
Qwen2.5-3B-Instruct	Original	69.1	262	63.0	555	86.0	297	83.9	214	62.6	415	90.8	176	75.9	319.8
	SATER	68.6	138	61.8	391	81.5	212	84.4	94	63.2	266	90.7	69	75.0	195.0

Table 5: Average accuracy and average CoT token count (Tokens) across both in-domain and out-of-domain datasets.

Model	Method	MMLU		MATH-500		GSM8K		ARC_C		ReClor		ARC_E		Average	
		Δ Acc	Δ Tokens												
Llama-3.1-8B	SATER	-2.0	-64.2	-6.0	-53.6	-2.1	-32.5	-1.6	-68.2	-2.2	-34.4	-0.6	-73.2	-2.4	-54.4
Qwen2.5-7B	SATER	-1.0	-38.3	-3.8	-26.1	-1.5	-19.0	-0.2	-39.6	-0.8	-49.0	+0.3	-38.3	-1.2	-35.1
Qwen2.5-3B	SATER	-0.5	-47.3	-1.2	-29.4	-4.5	-28.6	+0.5	-56.1	+0.6	-36.1	-0.1	-60.6	-0.9	-43.0

Table 6: Average accuracy percentage change ($\Delta\%$) and average CoT token count percentage change ($\Delta\%$) across both in-domain and out-of-domain datasets, where a negative value indicates a decrease and a positive value indicates an increase.

Model	Method	MMLU		MATH-500		GSM8K		ARC_C		ReClor		ARC_E		Average	
		ToA-100	ToGR	ToA-100	ToGR										
Qwen2.5-7B	SATER	0.692	0.533	0.770	0.810	0.708	0.461	0.631	0.294	0.639	0.385	0.593	0.201		
	FrugalGPT	0.654	0.428	0.712	0.636	0.657	0.348	0.553	0.120	0.553	0.146	0.540	0.087		
	BERT	0.629	0.360	0.690	0.568	0.532	0.070	0.549	0.111	0.554	0.150	0.529	0.062		
	Automix	0.499	-0.002	0.582	0.246	0.567	0.148	0.490	-0.021	0.472	-0.076	0.458	-0.090		
	Margin Sampling	0.531	0.085	0.505	0.014	0.511	0.024	0.567	0.151	0.535	0.098	0.556	0.121		

Table 7: Additional ToA-100 and ToGR results across in-domain and out-of-domain datasets. Bold indicates the best.