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Abstract

Large language models (LLMs) are increas-
ingly integrated into users’ daily lives, leading
to a growing demand for personalized outputs.
Previous work focuses on leveraging a user’s
own history, overlooking inter-user differences
that are crucial for effective personalization.
While recent work has attempted to model such
differences, the reliance on language-based
prompts often hampers the effective extraction
of meaningful distinctions. To address these is-
sues, we propose Difference-aware Embedding-
based Personalization (DEP), a framework that
models inter-user differences in the latent space
instead of relying on language prompts. DEP
constructs soft prompts by contrasting a user’s
embedding with those of peers who engaged
with similar content, highlighting relative be-
havioral signals. A sparse autoencoder then
filters and compresses both user-specific and
difference-aware embeddings, preserving only
task-relevant features before injecting them
into a frozen LLM. Experiments on person-
alized review generation show that DEP con-
sistently outperforms baseline methods across
multiple metrics. Our code is available at
https://github.com/SnowCharmQ/DEP.

1 Introduction

With continuous advancements in general-
purpose intelligence, large language models
(LLMs) (Achiam et al., 2023; Grattafiori et al.,
2024; Yang et al., 2025; Team et al., 2025; Guo
et al., 2025) are increasingly integrated into every-
day life, assisting users in making decisions (Yao
et al., 2023; Zhao et al., 2025d), retrieving infor-
mation (Zhao et al., 2024a; Fang et al., 2025b),
and task management (Shen et al., 2024a,c). This
growing presence has raised expectations for
LLMs to go beyond generic, one-size-fits-all
responses and instead produce responses that
align with individual users’ unique preferences.

*Corresponding Authors

To meet these heightened expectations, there has
been a growing interest in LLM personalization
(Kirk et al., 2024; Chen et al., 2024b; Zhang
et al., 2024b; Xu et al., 2025b; Liu et al., 2025b),
which aims at tailoring model outputs based on
user-specific information.

Most existing methods adopt the memory-
retrieval paradigm (Salemi et al., 2024; Richard-
son et al., 2023a), where user history is stored in
memory, and key information is then retrieved as
a steering prompt to guide model generation. Ear-
lier works (Li et al., 2023; Mysore et al., 2024)
focused solely on retrieving information about the
user themselves for personalization. However, re-
cent work such as DPL (Qiu et al., 2025) argues that
effective personalization should also capture how
a user differs from others. This view is grounded
in insights from psychology and behavioral sci-
ence (Snyder and Fromkin, 1977, 2012; Irmak et al.,
2010), which highlight that inter-user variability
determines individuality and shapes users’ distinct
preferences. Accordingly, DPL incorporates inter-
user comparison in the retrieval history, formulat-
ing the comparison as a natural language inference
task performed by the LLM.

Despite DPL’s demonstrated effectiveness, we
argue that its language-based inter-user compari-
son paradigm using LLMs is structurally ill-suited
for accurately extracting inter-user differences. On
one hand, controlling the extraction of differences
using an LLM is challenging; although providing
extraction criteria can help, some aspects of distinc-
tion may be missed due to the difficulty of defining
comprehensive standards. On the other hand, in-
cluding other users’ raw data for comparison in
LLMs can result in verbose prompts that strain the
model’s context window, ultimately hindering the
extraction of meaningful inter-user differences.

To address these limitations, we propose shifting
to latent-space difference modeling, where task-
relevant differences between users are structurally
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represented and compared in the latent embedding
space (Doddapaneni et al., 2024; Liu et al., 2025c;
Zeldes et al., 2025; Ning et al., 2025). Compared to
natural language, latent embeddings offer two key
advantages: (1) they encode fine-grained, context-
dependent behavioral patterns in a compact form;
and (2) they inherently support inter-user compari-
son through vector operations, enabling direct in-
tegration of comparison signals. Together, these
properties make latent embeddings a more suitable
medium for modeling inter-user differences within
LLMs.

Building on this idea, we propose a new method
called Difference-aware Embedding-based Person-
alization (DEP), which models task-relevant inter-
user differences in the latent space and injects
them into LLMs as soft prompts for personaliza-
tion. DEP extracts a difference-aware embedding
as a soft prompt by subtracting and aggregating the
user’s embedding against those of other users who
engaged with similar items. At the same time, the
original user-specific embedding is provided as a
reference to supply contextual information. Both
embeddings are essential: the user-specific em-
bedding defines the behavioral context, while the
difference-aware embedding captures deviations
from that context. Together, they form a contextu-
alized inter-user signal that reflects both individu-
alized preferences and relative differences.

Taking a step further, latent differences can be re-
dundant, as not all aspects are task-relevant—some
may simply introduce noise. To extract essential in-
formation while filtering out irrelevant signals, we
process both user-specific and difference-aware em-
beddings using a sparse autoencoder (SAE) (Huben
et al., 2024), which enforces sparsity to retain only
key features. The resulting compressed represen-
tations are then injected into a frozen LLM as soft
prompts. The SAE is fine-tuned to align these repre-
sentations with the LLM’s internal understanding,
allowing the model to effectively leverage inter-
user differences for improved personalization. We
conduct extensive experiments on a representative
task, review generation (Ni et al., 2019), where
DEP achieves state-of-the-art performance across
multiple evaluation metrics.

Our main contributions are as follows:

• We propose modeling inter-user differences in
the latent space to enable more comprehensive
and flexible extraction of preference signals for
LLM personalization.

• We introduce a novel method, DEP, to achieve
latent inter-user difference modeling, equipped
with a sparse autoencoder to extract task-relevant
differences while filtering out noise.

• Extensive experiments show that our DEP con-
sistently outperforms baseline methods with sig-
nificant improvements.

2 Preliminary

Problem Formulation. This work studies the task
of LLM personalization, where the goal is to pro-
duce user-aligned output that reflects the individual
preferences of a given user. We assume that each
user has a set of historical texts. These histori-
cal texts are utilized to help the LLM infer the
user’s interests and generate personalized content.
Formally, let D denote the collection of historical
records from all users. Each record in D is repre-
sented as (u, i, yiu), where u is a user, i is an item
(or object) the user has focused on, and yiu denotes
the text written or preferred by user u for item i.
When the target user u′ submits a request to gener-
ate text for a target item i′, the LLM is expected to
produce an output that aligns with the preference
of u′ based on D.

Without loss of generality, this work focuses on
review generation, a representative personalization
task. The goal is to generate reviews tailored to
a user’s style and preferences, ensuring the out-
put aligns with how the user typically expresses
opinions on items such as movies or products.

Memory-retrieval framework. A common ap-
proach to enabling LLMs to perform personalized
generation is to store users’ history and retrieve
relevant signals at inference. Following DPL (Qiu
et al., 2025), effective personalization should cap-
ture both a user’s own behavioral patterns and how
they differ from others. This involves extracting
key preference signals from two sources: the user’s
own history, which reflects individual tendencies,
and other users’ behaviors, which provide materi-
als for modeling inter-user differences. Formally,
given a target user u′ and a target item i′, the per-
sonalized generation process can be formulated as:

ŷi
′
u′ = LLM(u′, i′, ϕ(Du′ ;D)), (1)

where ŷi
′
u′ denotes the generated text, Du′ denotes

the history of the target user u′, and ϕ(Du′ ;D) de-
notes the process that extracts user-specific and
difference-aware preference signals from Du and
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Figure 1: Overview of the proposed DEP method, which introduces user-specific and difference-aware embeddings
to capture both individual preferences and inter-user differences. A sparse autoencoder (SAE) refines these
representations, which are then injected into a frozen LLM as soft prompts to guide personalized text generation.

D. This memory retrieval framework supports life-
long user modeling without requiring LLM retrain-
ing, making it both adaptable and resource-efficient
for real-world personalization scenarios.

3 Methodology

This section introduces our proposed Difference-
aware Embedding-based Personalization (DEP).
We begin with its motivation and an overview of
the framework, followed by detailed descriptions
of each key steps.

3.1 Overview

Personalization modeling requires capturing not
only a user’s own behavioral patterns, but also how
this user differs from others. In modeling inter-
user differences, existing work (Qiu et al., 2025)
relies on LLMs to summarize inter-user compar-
isons in natural language, which may miss some
key aspects of distinctions during the summariza-
tion. To address this limitation, we propose the
DEP method, which aims to model inter-user dif-
ferences in the latent space. DEP has three main
parts: (1) constructing two representations to cap-
ture difference-aware preference: a user-specific
embedding to model the behavioral context, and
a difference-aware embedding to model how the
user deviates from others within that context; (2)
distilling the representations with a sparse autoen-
coder to retain informative preference signals; and
(3) injecting the compressed representation into a
frozen LLM as soft prompts and fine-tuning the

autoencoder to align this representation with the
LLM’s internal understanding. Figure 1 provides
an overview of our proposed DEP. Next, we elabo-
rate the three parts in detail.

3.2 Difference-aware Embedding-based
Personalization (DEP)

In this section, we introduce three key steps of
DEP: constructing latent difference-aware repre-
sentations, distilling them via a sparse autoencoder,
and injecting them into an LLM for personaliza-
tion.

3.2.1 Latent-space Difference-aware
Representation Modeling

The core of DEP is to model inter-user differ-
ences in the latent space through contrastive signals
grounded in shared item contexts. To achieve this,
following the memory-retrieval paradigm (Salemi
et al., 2024; Kumar et al., 2024; Qiu et al., 2025),
DEP first retrieves a set of representative interac-
tions from the user’s history, which serve as an-
chors for inter-user comparison. For a given user u′,
we assume a subset of N key interactions, denoted
as D∗

u′ , can be obtained via retrieval (Zhang et al.,
2024b) from Du′ . Then, for each retrieved interac-
tion (u′, i, yiu′) ∈ D∗

u′ , we aim to compare it with
reviews written by other users for the same item i,
which provides a natural basis for inter-user com-
parison. To this end, we first encode the user’s own
review yiu′ using a frozen text embedding model
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femb(·) to obtain the user-specific embedding:

eihis = femb(y
i
u′), (2)

where eihis denotes the user-specific embedding
that reflects the preference pattern of user u′ on
item i. Next, to construct inter-user embeddings,
we identify the set of peer users who also interacted
with item i, excluding u′, as {u1, u2, . . . , um},
where uj denotes the j-th peer user of item i. Each
peer user uj provides a review yiuj

, which is en-
coded into an embedding:

eiuj
= femb(y

i
uj
)). (3)

Then we compute the difference-aware embedding
by aggregating the vector differences between the
target user and each peer:

eidiff =
1

m

m∑

j=1

(eihis − eiuj
), (4)

where eidiff denotes the difference-aware embed-
ding. These two embeddings capture complemen-
tary perspectives: the user-specific embedding eihis
represents the behavior pattern of the target user
and serves as a reference of context, while the
difference-aware embedding eidiff models how this
behavior pattern relatively deviates from others un-
der the context. Together, they form a structured
representative to capture the inter-user differences.

3.2.2 Sparse Representation Distillation
While the user-specific and difference-aware em-
beddings capture rich semantic and contrastive
signals, they may contain redundant or irrelevant
information that hinders efficient personalization.
To address this, we apply a sparse autoencoder
(SAE) (Huben et al., 2024) to compress the high-
dimensional embeddings into informative repre-
sentations. The SAE adopts an encoder-decoder
architecture with an ℓ1-based sparsity constraint
on the latent space, encouraging the model to re-
tain only the most salient features. Given a history
embedding eihis and a difference-aware embedding
eidiff, the encoder produces their respective low-
dimensional latent vectors, zihis and zidiff, formally:

zihis = fenc(e
i
his), êihis = fdec(z

i
his),

zidiff = fenc(e
i
diff), êidiff = fdec(z

i
diff),

(5)

where fenc(·) and fdec(·) denote the encoder and de-
coder networks, respectively. The encoder outputs
zihis and zidiff are used as sparse preference represen-
tations for downstream soft prompt construction.

3.2.3 Representation Injection
After obtaining the distilled latent representations
from the sparse autoencoder, we aim to integrate
personalized signals into the generation process
of a frozen LLM. To achieve this, we adopt a
soft prompt injection mechanism, where the com-
pressed user-specific and difference-aware embed-
dings are projected into the input space of the LLM
and used to condition its output without updating
model parameters.
Soft Prompt Construction and Injection. For
each retrieved history (u′, i, y), we obtain zihis
and zidiff from the SAE encoder, corresponding to
the user-specific and difference-aware embeddings.
These representations are projected into the LLM
input space via a lightweight projection network
Mp(·), which aligns their dimensionality with that
of the LLM’s embedding layer:

pihis = Mp(z
i
his), pidiff = Mp(z

i
diff), (6)

where pihis and pidiff are resulting soft prompt vec-
tors, which are injected into the input sequence at
designated positions. Then, the personalized gener-
ation process given the target user u′ and the target
item i′ is performed as:

ŷi′
u′ = LLM

(
S(i′, {i, pihis, p

i
diff}i∈I∗

u′ )
)
, (7)

where I∗u′ denotes the top-N retrieved items
from the target user’s interacted history, and
S(i′, {i, pihis, p

i
diff}i∈I∗u′ ) is a textual prompt con-

structed from both the target item i′ and the soft
prompts to model inter-user differences, and the
original user’s original review history to model
user’s own writing patterns. The template can be
found in Figure 6 in Appendix F.
Training Objectives. To guide the SAE learn-
ing informative representation for LLM personal-
ization and make the soft prompts align with the
LLM’s internal understanding, we jointly optimize
two components: the SAE for latent representation
learning and the projection network that maps its
output into the LLM’s input space for personal-
ized generation. Specifically, we employ a stan-
dard generation loss Lgen, computed by the frozen
LLM based on its generated output and the ground-
truth personalized text, to supervise the training
of the SAE and the projection network. The SAE
is trained with two standard objectives: a recon-
struction loss to ensure information preservation,
and a sparsity loss to promote selective preference
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encoding. For the reconstruction loss, we adopt the
Smooth L1 loss, which is formulated as follows:

Lrecon = SmoothL1(eihis, ê
i
his) + SmoothL1(eidiff, ê

i
diff).

(8)

The sparsity loss is applied to the distilled latent
vector zihis ∈ Rd′ and zidiff ∈ Rd′ , encouraging the
preservation of the most informative signals. For
each, we compute the average activation ρ̂his and
ρ̂diff as:

ρ̂his =
1

N

N∑

i=1

zihis, ρ̂diff =
1

N

N∑

i=1

zidiff. (9)

We then compute the sparsity loss by applying KL
divergence between each of ρ̂his and ρ̂diff and a
predefined sparsity target ρ.

Lsparse =
1

d′

d′∑

j=1

KL(ρ||ρ̂jhis) +
1

d′

d′∑

j=1

KL(ρ||ρ̂jdiff).

(10)

The final training objective combines the genera-
tion loss from the LLM and the SAE loss, including
both reconstruction and sparsity terms:

Ltotal = Lgen + λ · (Lrecon + γ · Lsparse). (11)

where λ and γ balance the contributions of the SAE
loss and the sparsity constraint, respectively.

4 Experiment

We conduct experiments in real-world datasets to
answer the following research questions:
• RQ1: How does DEP compare with baseline

methods on the personalized text generation task?

• RQ2: What is the contribution of each individual
component of DEP to its overall effectiveness?

• RQ3: What is the impact of the number of re-
trieved histories on the performance of DEP?

• RQ4: How does DEP perform under different
levels of user uniqueness compared to DPL?

4.1 Experimental Setup
Datasets. Building upon prior work, we focus
on the representative task of item review gener-
ation for LLM personalization (Ni et al., 2019;
Peng et al., 2024; Kumar et al., 2024; Au et al.,
2025). Specifically, we adopt the Amazon Reviews
2023 dataset1 (Hou et al., 2024) preprocessed by
DPL2 (Qiu et al., 2025), which covers three cate-
gories: Books, Movies & TV, and CDs & Vinyl. To

1https://amazon-reviews-2023.github.io/
2https://huggingface.co/datasets/SnowCharmQ/

DPL-main & https://huggingface.co/datasets/
SnowCharmQ/DPL-meta

maximize data utilization, we follow the setting of
REST-PG (Salemi et al., 2025) to train a unified
model across categories. For training, we retain
each user’s most recent interaction per category.
For validation, we randomly select 512 instances
from the merged validation set across all three cat-
egories, while for testing, we follow the original
test splits provided by DPL. More details about the
dataset are provided in Appendix A.

Baselines. We compare our proposed DEP with
the following baseline methods. Further imple-
mentation details of all baselines can be found in
Appendix B.

• Non-Perso: A non-personalized baseline that
generates reviews using only item information,
along with the review’s title and rating.

• RAG (Salemi et al., 2024): A retrieval-based
method that incorporates the user’s history
records to provide contextual personalization.

• PAG (Richardson et al., 2023b): An extension of
RAG that summarizes the user’s history records
into a compact profile and combines it with re-
trieved content for higher-level personalization.

• DPL (Qiu et al., 2025): A prompt-based method
that enhances personalization by explicitly com-
paring a user’s recent behavior with representa-
tive peers and summarizing the differences into a
profile integrated into the LLM input.

• PPlug (Liu et al., 2025c): A plug-and-play ap-
proach that encodes user history into a dense
embedding, which is projected into the LLM’s
input space to guide generation.

Evaluation Metrics. Following previous works on
personalized text generation (Salemi et al., 2024;
Kumar et al., 2024; Zhang et al., 2025a; Au et al.,
2025; Peng et al., 2024), we evaluate all methods
using ROUGE-1 (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), BLEU3 (Papineni et al., 2002),
and BERTScore4 (Zhang et al., 2020).

Implementation Details. We utilize the
Qwen2.5-Instruct5 (Yang et al., 2024) series
models (7B and 32B) as backbone LLMs for base-
line methods and DEP. To retrieve user histories,

3We use the standard SacreBLEU (Post, 2018) library to
calculate the BLEU score: https://github.com/mjpost/
sacrebleu.

4We adopt the led-base-16384 (Beltagy et al., 2020)
model to obtain embeddings.

5https://huggingface.co/Qwen
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Table 1: Performance comparison between the baselines and our DEP across the three datasets. 7B and 32B
represent the size of base LLMs. The best results are highlighted in bold, and the second-best results are underlined.
“R-1”, “MET.”, “BL.”, and “BS.” respectively denote ROUGE-1, METEOR, BLEU, and BERTScore. Higher values
indicate better performance across all metrics.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. BS. R-1 MET. BL. BS. R-1 MET. BL. BS.

32B

Non-Perso 0.3025 0.1949 2.6728 0.4970 0.2608 0.1666 1.1226 0.4702 0.2765 0.1767 1.6597 0.4742
RAG 0.3404 0.2735 6.8178 0.5159 0.2983 0.2142 2.8680 0.4822 0.3092 0.2177 3.1588 0.4868
PAG 0.3276 0.2830 6.8920 0.5051 0.2816 0.2130 2.7751 0.4746 0.2971 0.2215 3.2164 0.4787
DPL 0.3392 0.3003 7.7423 0.5156 0.2967 0.2238 3.2965 0.4855 0.3119 0.2337 3.8271 0.4910

7B

Non-Perso 0.2907 0.1735 1.9766 0.5004 0.2469 0.1503 0.7242 0.4713 0.2604 0.1561 1.0997 0.4753
RAG 0.3149 0.2101 3.6874 0.5083 0.2693 0.1701 1.3021 0.4787 0.2796 0.1733 1.6129 0.4824
PAG 0.3136 0.2378 4.6762 0.4992 0.2761 0.1905 1.9360 0.4735 0.2882 0.1979 2.4740 0.4789
DPL 0.3194 0.2459 5.6623 0.5050 0.2845 0.1958 2.2451 0.4795 0.2952 0.2003 2.6943 0.4838

PPlug 0.3033 0.2234 7.0469 0.5152 0.2530 0.1724 3.2291 0.4767 0.2619 0.1711 3.0753 0.4806
DEP (ours) 0.3745 0.3156 13.5300 0.5557 0.3092 0.2381 6.6835 0.5114 0.3165 0.2364 6.5166 0.5151

we adopt a recency-based strategy, selecting the
most recent history for each user. Additionally,
we employ bge-m36 (Chen et al., 2024a) as the
embedding model to map user reviews into vector
representations. We train DEP for 5 epochs and
select the checkpoint with the highest METEOR
score on the validation set for testing. For more
details, please refer to Appendix C.

4.2 Main Results (RQ1)
We first evaluate the overall performance of all
compared methods. Table 1 presents the main ex-
perimental results across three datasets, from which
we draw the following observations:

• Incorporating context information signifi-
cantly improves the model’s capability for per-
sonalized text generation. Methods like RAG
and PAG leverage retrieved user information for
generation, significantly outperforming the Non-
Perso baseline. DPL further improves upon
these by explicitly modeling inter-user differ-
ences, achieving the relatively best performance
among all ICL-based methods. This shows that
capturing user differences yields better personal-
ization than simple relevance or summarization.

• Scaling up the model size leads to stronger
performance across different personalization
methods. For methods where both 7B and 32B
models are evaluated, we observe consistent im-
provements across three metrics. This trend high-
lights the capacity of larger models to capture
more nuanced personalization patterns.

6https://huggingface.co/BAAI/bge-m3

• Using a single soft prompt for user history,
PPlug lacks informative signals and overlooks
inter-user differences. Although PPlug out-
performs the Non-Perso baseline by introduc-
ing lightweight user modeling through the soft
prompt, its gains remain limited. This limita-
tion motivates our design of a more effective soft
prompt strategy.

• DEP consistently outperforms all baselines
across datasets and metrics. Despite operating
on a much smaller model scale, DEP not only sig-
nificantly outperforms all 7B-based methods, but
also surpasses all baselines under the 32B back-
bone. Notably, averaged across three datasets,
DEP yields relative improvements of 5.05%
in ROUGE-1, 4.21% in METEOR, 82.59% in
BLEU, and 6.01% in BERTScore compared to
the strongest baseline. This substantial perfor-
mance gain is primarily attributed to the inte-
gration of implicit modeling of user history and
inter-user differences, which provides more in-
formative and discriminative signals for person-
alization.

4.3 Ablation Studies (RQ2)

To better understand the contribution of different
components in our personalization framework, we
conduct extensive ablation studies from two per-
spectives: user embedding configuration and repre-
sentation refinement.

We report METEOR scores on all three datasets
here, and leave results for the other two metrics in
Appendix D.
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Table 2: Ablation study on different configurations of
user embeddings. his_emb and diff_emb denote user
history and difference-aware embeddings. w/o text and
w/ text refer to the exclusion or inclusion of retrieved
review texts.

Datasets (→) Books Movies
& TV

CDs &
VinylMethods (↓)

Non-Perso-7B 0.1735 0.1503 0.1561

w
/o

te
xt his_emb 0.1718 0.1625 0.1711

diff_emb 0.1839 0.1546 0.1616
his_emb + diff_emb 0.2227 0.1871 0.1853

w
/t

ex
t his_emb 0.3110 0.2332 0.2268

diff_emb 0.2781 0.2128 0.2108
his_emb + diff_emb

(ours) 0.3156 0.2381 0.2364

Table 3: Ablation study on representation refinement.
w/o DR uses raw embeddings, w/ AE uses a standard
autoencoder, and w/ SAE is our implementation.

Datasets (→) Books Movies
& TV

CDs &
VinylMethods (↓)

w/o DR 0.3016 0.2325 0.2283
w/ AE 0.2994 0.2350 0.2355

w/ SAE (ours) 0.3156 0.2381 0.2364

4.3.1 User Embedding Configuration

To assess the effectiveness of incorporating dif-
ferent types of user embeddings, we conduct a
detailed study comparing various configurations
of personalized signals. Specifically, we consider
two types of embeddings: (1) user-specific embed-
dings (his_emb), which represent the user’s past
interactions, and (2) difference-aware embeddings
(diff_emb), which encode inter-user differences by
contrasting the target user’s review history with
those of other users. We examine these embedding
configurations individually and in combination, un-
der two settings: with retrieved review text (w/ text)
and without it (w/o text).

Results in Table 2 show that both his_emb
and diff_emb individually outperform the non-
personalized baseline, demonstrating the effective-
ness of modeling both user history and inter-user
differences. Combining the two leads to further
improvements, suggesting that user-specific em-
bedding and difference-aware embedding capture
complementary aspects of personalization. Addi-
tionally, incorporating retrieved texts (w/ text) con-
sistently enhances all configurations, highlighting
the benefit of contextual grounding.

Figure 2: Effect of the number of retrieved user histories
(K) on BLEU performance across datasets.

4.3.2 Representation Refinement
We further evaluate the impact of different strate-
gies for refining user embeddings before soft
prompt injection. Specifically, we compare three
variants: (1) w/o DR, where raw high-dimensional
embeddings are directly projected without dimen-
sionality reduction, (2) w/ AE, which uses a stan-
dard autoencoder for compression without sparsity,
and (3) w/ SAE, which applies our sparse autoen-
coder to introduce the sparsity constraint.

Table 3 shows that removing dimensionality re-
duction (w/o DR) generally results in weaker per-
formance. While the standard autoencoder (w/ AE)
brings partial improvements on Movies & TV and
CDs & Vinyl datasets, it does not consistently out-
perform the raw embedding variant, suggesting that
compression alone is insufficient. In contrast, we
introduce a sparse autoencoder (w/ SAE), achieving
the best results across all datasets, highlighting the
effectiveness of sparsity constraint in enhancing
representation quality for personalization.

4.4 In-Depth Analysis

We conduct additional experiments to further study
the design and effectiveness of our approach.

4.4.1 Impact of History Number (RQ3)
Figure 2 shows how the number of retrieved user
histories (K) affects the performance on BLEU
across datasets. A key observation is the substantial
jump in performance from K = 0 to K = 1, which
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Figure 3: Results of the performance of DEP across
different levels of uniqueness. The experiments are
conducted on CDs & Vinyl and evaluated in METEOR.

marks the transition from the non-personalized set-
ting to the personalized framework of DEP. This
single-step increase highlights the substantial bene-
fit of incorporating even one user-specific history
with both the user-specific and difference-aware
embeddings, demonstrating the effectiveness of our
method once personalization is engaged. As K in-
creases further, performance continues to improve,
though with diminishing returns.

For a more comprehensive view, we provide
more detailed results across other evaluation met-
rics and datasets in Appendix D.3.

4.4.2 Impact of User Uniqueness (RQ4)

Following the procedure in DPL, we further inves-
tigate how user uniqueness affects personalization
performance. Similarly, we adopt a grouping strat-
egy based on the user embedding derived from
historical reviews. Specifically, we compute the
Euclidean distance between each user’s review em-
bedding and the global average embedding across
all users, and divide users into two groups: the
top 50% as Unique users and the bottom 50% as
Non-Unique users.

As shown in Figure 3, both DPL and DEP out-
perform the non-personalized baseline across user
groups. DEP consistently achieves the best results
and maintains stable improvements for both Unique
and Non-Unique users. Similar to DPL, larger
gains are observed in the Unique group, highlight-
ing the importance of modeling user distinctiveness.
Unlike DPL, which relies on prompt-level repre-
sentations, DEP models inter-user differences in
the latent space, enabling more compact and robust
personalization, leading to better performance.

5 Related Work

Recent advancements (Zeng et al., 2025; Liang
et al.; Zhang et al., 2023, 2024a; Zhao et al.,
2024b; Liu et al., 2025d; Chen et al., 2025b; Yao
et al., 2025) in large language models (LLMs) have
demonstrated their strong generalization capabili-
ties across diverse tasks (Zheng et al., 2023; Zhang
et al., 2025b,c; Du et al., 2025; Liu et al., 2025a;
Zhao et al., 2025b; He et al., 2025; Fang et al.,
2025c,a; Sheng et al., 2025). However, their ability
to reflect personalized user intent remains limited.
Consequently, the personalization of LLMs has be-
come a critical research direction, aiming to adapt
general-purpose models to individual user prefer-
ences (Kirk et al., 2024; Chen et al., 2025a; Lin
et al., 2025; Mok et al., 2025; Zhao et al., 2025a,c,e;
Shen et al., 2024b; Xu et al., 2025a,c). Among
various approaches, the memory-retrieval frame-
work (Salemi et al., 2024) is widely adopted for
its interpretability and scalability. It retrieves user-
specific signals from interaction history to guide
the model without changing its parameters. Meth-
ods under this framework generally fall into two
types: retrieval-augmented generation (RAG) and
profile-augmented generation (PAG). RAG-based
approaches retrieve relevant past interactions to
construct a personalized prompt. For example,
HYDRA (Zhuang et al., 2024) employs a person-
alized reranker to refine retrieval quality, while
PERAL (Mysore et al., 2024) trains a retriever
with a scale-calibrated objective to select useful
information. In contrast, PAG-based methods sum-
marize the user’s behavior into a condensed profile,
which is then integrated into the prompt to guide
generation (Richardson et al., 2023b).

Beyond retrieving individual histories, recent
studies have explored incorporating other users’
information as auxiliary signals to enhance indi-
vidual personalization. CFRAG (Shi et al., 2025),
Persona-DB (Sun et al., 2025), and AP-Bots (Yazan
et al., 2025) borrow the concept of collaborative fil-
tering (He et al., 2017; Wang et al., 2019) to retrieve
similar users’ histories and incorporate them into
the prompt to guide the generation. DPL (Qiu et al.,
2025) further highlights that individual uniqueness
lies in the differences from others and proposes to
model such differences by formulating inter-user
comparison as a language modeling task performed
directly by the LLM. While this method has shown
promising results, modeling inter-user differences
through prompt engineering poses challenges. In
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contrast, our method shifts this process to the la-
tent embedding space (Doddapaneni et al., 2024;
Liu et al., 2025c; Zeldes et al., 2025; Ning et al.,
2025), which avoids prompt-length constraints and
enables more structured and nuanced modeling of
user differences.

6 Conclusion

In this work, we propose DEP, a novel person-
alization framework that models inter-user dif-
ferences in the latent embedding space to guide
LLMs for personalized text generation. Unlike
prior approaches that rely only on prompt-level
construction to integrate user histories and inter-
user contrastive signals, our method jointly en-
codes both user-specific and difference-aware em-
beddings, and refines them through a sparse autoen-
coder to retain only task-relevant personalization
cues. These embeddings are then injected into a
frozen LLM via soft prompts, enabling efficient per-
sonalization. Experimental results across multiple
domains show that DEP achieves state-of-the-art
performance, especially for users with distinctive
behavior patterns, confirming the effectiveness of
latent inter-user difference modeling. For future
work, we plan to explore privacy-preserving inter-
user comparison, real-time embedding updates, and
extensions to tasks such as conversational agents.

Limitations

While our proposed method DEP demonstrates
strong performance in personalized text genera-
tion, it also introduces several limitations. First,
the method relies on sufficient user history to con-
struct meaningful embeddings; in cold-start or
data-sparse settings, its effectiveness may degrade.
Second, although more efficient than language-
based comparison methods, the computation of
difference-aware embeddings and the sparse au-
toencoder introduces additional overhead com-
pared to standard prompting pipelines. Lastly, our
evaluation is centered on review generation, where
preferences are explicit; adapting the approach to
broader tasks like dialogue or recommendation re-
quires further study.

Ethical Statements

This work explores user-level personalization
through the use of retrieved historical data and inter-
user relational modeling. While effective for im-
proving generation quality, such approaches raise

important ethical considerations. In particular, ac-
cessing and processing users’ historical interactions
requires careful attention to data privacy, consent,
and security. Moreover, modeling inter-user dif-
ferences may inadvertently expose sensitive behav-
ioral patterns or amplify existing biases.

To mitigate these concerns, any real-world de-
ployment of our method should incorporate privacy-
preserving techniques such as anonymization, en-
cryption, and transparent consent protocols. Spe-
cial care should be taken to avoid unintended infer-
ences or misuse of user-level representations.

All experiments are conducted on publicly avail-
able datasets that have been preprocessed and re-
leased by prior work. The original raw data is
open-source and distributed under the MIT license.
We ensure that our use of the data adheres to estab-
lished ethical standards and respects the original
data usage guidelines.

We use AI assistants (e.g., ChatGPT) as auxiliary
tools for writing refinement and coding support,
while all research ideas, experimental designs, and
final decisions are made by the authors.
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A Dataset Details

In this paper, we focus on the task of review gen-
eration. Specifically, we adopt the Amazon (Hou
et al., 2024) dataset preprocessed by DPL (Qiu
et al., 2025). We select each user’s most recent
interaction from the training sets of the three cat-
egories and merge them into a unified training
dataset, which is used to train the model. For vali-
dation, we also aggregate the three categories and
randomly sample 512 instances. For testing, we
directly use the test splits preprocessed by DPL.
During data preprocessing, we construct complete
prompts as model inputs by concatenating the tar-
get item title, target item description, output review
title, output review rating, and the retrieved user’s
past reviews. For clarity, we provide an example
of the dataset preprocessed by DPL as shown in
Figure 4, and dataset statistics after processing are
summarized in Table 4.

B Baseline Details

We compare our proposed DEP with several base-
line methods. The comparison between different
baselines and our method is shown in Table 5. In
this section, we further introduce each baseline
method in detail:

• Non-Perso: This method generates reviews with-
out leveraging any user-specific information. The
input to the model includes only the item’s title
and description, along with the output review’s
rating and title.

• RAG (Salemi et al., 2024): This method uses a
simple recency-based retrieval strategy to select
the most recent reviews from the user’s history.
The retrieved reviews are then directly formatted
and incorporated into the LLM’s input to provide
contextual personalization.

• PAG (Richardson et al., 2023b): Building upon
RAG, this method first summarizes the most re-
cent reviews from the user’s history into a com-
pact profile. The generated profile, along with

Figure 4: An example of the user review from the main
dataset (above) and the corresponding item from the
meta dataset (below).

Table 4: Overview of dataset statistics across the three
benchmark categories.

Categories (↓) #data Profile Size Output Length

Training Dataset 3996 37.47±33.53 1608.82±1476.99

Validation Dataset 512 39.14±36.01 1557.29±1378.43

Test
Dataset

Books 317 34.84±22.55 1194.90±802.44
Movies & TV 1925 41.11±35.90 1704.61±1752.44
CDs & Vinyl 1754 38.50±32.37 1600.04±1419.89

the retrieved records, is included in the input to
the LLM, allowing it to generate personalized
reviews guided by a higher-level understanding
of the user.

• DPL (Qiu et al., 2025): The method prompts the
LLM to find inter-user differences by compar-
ing the target user’s most recent interactions with
representative users selected via clustering from
predefined dimensions (e.g., writing, emitional
tone, and semantics), and summarizes them with
the user’s history to form a user profile. This pro-
file, along with recent reviews, is incorporated
into the model input to enhance generation. To
select representative users, DPL employs an em-
bedding model; in our implementation, we use
the same embedding model as in our method.

• PPlug (Liu et al., 2025c): A plug-and-play per-
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Table 5: We provide a comparison between the different baseline methods and our proposed DEP, focusing on the
following aspects: (1) retrieval augmentation, (2) embedded representation, and (3) inter-user difference.

Methods (↓) Retrieval Augmentation Embedded Representation Inter-User Difference

Non-Perso ✗ ✗ ✗

RAG ✓ ✗ ✗

PAG ✓ ✗ ✗

DPL ✓ ✗ ✓
PPlug ✗ ✓ ✗

DEP ✓ ✓ ✓

sonalization method that encodes a user’s history
into a dense user-specific embedding through a
lightweight user embedder. This embedding is
constructed via input-aware attention over user
histories. The resulting embedding, along with
an instruction embedding, is projected into the
LLM input space via a trainable projector and
prepended to the input to guide a frozen LLM. In
our implementation of PPlug, we adopt the same
user embedder as used in our proposed method.

C Implementation Details

C.1 Running Environments

We implement all baseline methods and DEP
with Python 3.11.11, PyTorch7 (Paszke et al.,
2019), transformers8 (Wolf et al., 2020), and
vLLM9 (Kwon et al., 2023). To train the model,
we utilize the transformers library. Besides, we
employ the vLLM library as the inference engine for
both validation and testing, and adapt our model
accordingly to ensure compatibility.

C.2 Hyperparameter Configurations

C.2.1 Method Parameters
In our implementation, the SAE model is im-
plemented as a two-layer feed-forward network,
consisting of an encoder that projects input em-
beddings from dimension d = 1024 to a lower-
dimensional latent space of size d′ = 512, and a
decoder that reconstructs the input. For the sparsity
parameter ρ, we set it to 0.05. To align the SAE
output with the LLM input space, we employ two
independent projection networks Mhis and Mdiff,
each implemented as a two-layer MLP with GELU
activations, mapping the latent representation z to

7https://pytorch.org/
8https://huggingface.co/
9https://github.com/vllm-project/vllm

the LLM embedding space. Additionally, we use
λ = 100 and γ = 1e−3 to balance the reconstruc-
tion and sparsity losses during training.

At most 8 user history entries are retrieved for
each instance. If the input exceeds the context
length limit, excess histories are discarded to en-
sure compatibility.

C.2.2 Training Settings
Before training, we initialize the model param-
eters using Xavier uniform initialization (Glorot
and Bengio, 2010). We train the model using the
AdamW (Loshchilov and Hutter, 2019) optimizer for
a maximum of 8 epochs. The learning rate is set
to 1e-5 with a weight decay of 0.025. We apply a
warmup ratio of 0.01 at the beginning of training.
The batch size per device is 1, and the gradient accu-
mulation steps are 16 to achieve an effective batch
size of 16. We also enable bfloat16 mixed pre-
cision and incorporate flash attention (Dao, 2023).
Additionally, the training is conducted using Deep-
Speed10 (Rajbhandari et al., 2020; Rasley et al.,
2020) ZeRO Stage 1 optimization.

C.2.3 Inference Settings
We configure the model with a maximum length of
2048 tokens for both input and output. During in-
ference for both validation and test, the temperature
is set to 0.8, and the parameter top_p is 0.95.

D Complete Ablation Studies &
Additional Experiments

D.1 User Embedding Configuration

In this section, we provide the complete results for
different user embedding configurations evaluated
in our ablation study. While the main paper only re-
ports METEOR scores in Table 2, we include here

10https://github.com/deepspeedai/DeepSpeed
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Table 6: Complete ablation study on different configurations of user embeddings.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

Non-Perso-7B 0.2907 0.1735 1.9766 0.2469 0.1503 0.7242 0.2604 0.1561 1.0997

w
/o

te
xt his_emb 0.2912 0.1718 2.4364 0.2545 0.1625 1.7048 0.2726 0.1711 2.1962

diff_emb 0.3022 0.1839 2.6648 0.2542 0.1546 0.8574 0.2690 0.1616 1.2601
his_emb + diff_emb 0.2970 0.2227 5.5622 0.2586 0.1871 3.5629 0.2713 0.1853 3.3092

w
/t

ex
t his_emb 0.3722 0.3110 12.9361 0.3026 0.2332 6.0120 0.3051 0.2268 5.3390

diff_emb 0.3596 0.2781 10.6435 0.2964 0.2128 5.1985 0.3049 0.2108 4.9141
his_emb + diff_emb

(ours) 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

Table 7: Complete ablation study on representation refinement.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

w/o DR 0.3704 0.3016 13.3651 0.3091 0.2325 6.5149 0.3039 0.2283 5.6812

w/ AE 0.3691 0.2994 12.5453 0.3084 0.2350 6.5949 0.3167 0.2355 6.4352

w/ SAE 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

the full results for all three metrics (ROUGE-1,
METEOR, and BLEU) across all datasets. The re-
sults in Table 6 offer a more comprehensive view of
how different embedding types (his_emb, diff_emb)
and the presence or absence of retrieved text affect
personalization performance.

D.2 Representation Refinement

This section presents the complete results for the
different representation refinement strategies dis-
cussed in our ablation study. Table 7 reports
ROUGE-1, METEOR, and BLEU scores for the
w/o DR, w/ AE, and w/ SAE settings across all
datasets, providing a more detailed understanding
of their relative effectiveness.

D.3 Impact of History Number

We provide the full results across all evaluation met-
rics in Figure 5. As shown in the figure, all three
evaluation metrics (ROUGE-1, METEOR, and
BLEU) exhibit a consistent upward trend across the
three datasets as the number of retrieved histories
(K) increases. This improvement can be attributed
to the additional contextual information provided
by retrieved histories, along with our injected user-
specific embedding and difference-aware embed-
ding. Notably, the most significant gains occur
when K increases from 0 to 3, especially for the
BLEU metric. Beyond this range, the performance
tends to plateau, with only marginal improvements

or slight fluctuations. A slight dip is observed in
METEOR on the CDs & Vinyl dataset when K in-
creases from 0 to 1, which may result from noise or
limited informativeness in the single retrieved his-
tory. As more histories are incorporated, the signal
becomes more stable and representative, leading to
consistent improvements.

Overall, these results demonstrate that our
method substantially enhances the RAG pipeline.
The retrieve-and-inject paradigm we adopt proves
to be a strong and effective framework for person-
alization.

D.4 Retrieval Method

To investigate the impact of different retrieval
strategies and identify the most effective one for use
in both the baselines and our method, we evaluate
four retrieval approaches: random, BM25 (Robert-
son et al., 2009), Contriever (Izacard et al., 2022),
and recency (the most recent). Experiments are con-
ducted using the Qwen2.5-32B-Instruct model,
and the results are presented in Table 8.

As shown in Table 8, the choice of retrieval
strategy has a notable impact on generation per-
formance. The random retrieval baseline yields the
lowest performance, indicating the importance of
relevant context in guiding generation. BM25 and
Contriever perform comparably, with slight advan-
tages in different metrics. Among the four methods
evaluated, the recency-based retrieval consistently
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Table 8: Performance comparison between different retrieval strategies across the three datasets.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

Random 0.3287 0.2573 5.4657 0.2955 0.2125 2.6946 0.3064 0.2138 2.9218

BM25 0.3325 0.2650 5.9851 0.2953 0.2123 2.7802 0.3066 0.2148 2.9832

Contriever 0.3325 0.2608 5.7479 0.2958 0.2128 2.7584 0.3077 0.2160 3.0204

Recency 0.3404 0.2735 6.8178 0.2983 0.2142 2.8680 0.3092 0.2177 3.1588

Table 9: Performance comparison with and without system prompt guidance.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

w/o Guidance 0.3704 0.3016 13.3651 0.3091 0.2325 6.5149 0.3039 0.2283 5.6812

w/ Guidance 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

+Improvement 0.0041 0.0140 0.1649 0.0001 0.0056 0.1686 0.0126 0.0081 0.8354

Figure 5: Detailed evaluation results across all three
datasets (Books, Movies & TV, CDs & Vinyl) with
varying numbers of retrieved user histories (K). The
left figure shows ROUGE-1 and METEOR scores, and
the right figure demonstrates BLEU scores.

outperforms the others across all metrics. Based on
these results, we adopt the recency retrieval strat-
egy in all subsequent experiments.

D.5 System Prompt Guidance

As shown in Figure 6, we incorporate additional
information into the system prompt to help the
model better understand the injected personaliza-
tion prompts. To assess its effectiveness, we con-

duct experiments to analyze the impact of this guid-
ance. Table 9 reports the results across all datasets
and evaluation metrics. We observe that incorporat-
ing system prompt guidance consistently improves
performance across the board. Hence, we adopt the
system prompt guidance by default in all experi-
ments.

E Further In-Depth Analysis

E.1 Interpretability Analysis
To further examine how personalization is achieved,
we conducted an interpretability analysis compar-
ing DEP with the baseline DPL. The results show
that DEP better captures users’ word choice, se-
mantic information, and overall writing patterns,
thereby aligning generated reviews more closely
with users’ authentic writing style.

Table 10 presents an illustrative example. Com-
pared with DPL, which produces a more formal
and detached review, DEP generates text that re-
flects the user’s actual phrasing, tone, and evalu-
ative stance. This demonstrates DEP’s ability to
internalize and reproduce the personalized linguis-
tic patterns of users.

E.2 Practical Applicability
To assess the practical applicability of our method,
we further examine its training cost. Importantly,
our approach does not involve tuning the LLM it-
self; instead, the backbone model remains fixed
while only the input component is tuned. This de-
sign substantially reduces the number of trainable
parameters to approximately 0.4% of the LLM’s
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Source Review Text

DPL-
generated
Review

On the positive side, the film does a good job of
maintaining a level of respect for its audience by
not overloading with graphic gore, which is a relief
for those who might find that kind of content too
disturbing.

DEP-
generated
Review

I’ll give it that, it is not full of gore and disgust. If
you are looking for a good horror film, this is not it.

User’s
Actual
Review

Not something I’m eager to watch again, but in a
pinch, it is at least not full of gore and disgust. I’ll
give it that.

Table 10: Comparison between reviews generated by
DPL and DEP and the user’s actual review.

total parameters. Consequently, the additional com-
putational overhead is minimal. In practice, the
training cost is comparable to the soft prompt tun-
ing baseline PPlug, with both methods requiring
around 40 minutes per epoch on our datasets using
a single GPU.

F Overview of Templates & Prompts

In this section, we illustrate the prompt de-
sign used in our framework. As shown in Fig-
ure 6, the upper part depicts the system prompt,
which defines the model’s global behavior and
task instruction. The lower part shows an ex-
ample of the input prompt, including retrieved
user histories and object descriptions, which
are fed into the model for generation. This
prompt structure follows the retrieve-and-inject
paradigm, where both user-specific and difference-
aware embeddings are embedded via soft
prompts [HIS_TOKEN_i] and [DIFF_TOKEN_i]
to guide the generation. The four spe-
cial tokens <his_token_start>, <his_token_end>,
<diff_token_start>, and <diff_token_end> are in-
troduced to explicitly mark the boundaries of user-
specific and difference-aware embeddings in the
input sequence. The note part is the system prompt
guidance described in Section D.5.

G Case Study

In this section, we present a case study to illustrate
the output generated by our framework as shown
in Figure 7.

In this example, the review generated by DEP
closely aligns with the user’s real review in both
content and sentiment. Both reviews highlight the
central observation that Avengers: Age of Ultron
feels very similar to the first Avengers movie, with

Figure 6: The system prompt template and input tem-
plate for the base LLM.

the main difference being the villain. Moreover,
DEP incorporates additional signals such as the
user’s familiarity with the franchise and a moder-
ately positive tone that matches the provided 3-star
rating. This case demonstrates that DEP can gener-
ate reviews that are not only coherent but also well-
aligned with the user’s original opinion, supporting
the effectiveness of difference-aware modeling in
the embedding space for personalization.
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Figure 7: A case study which compares the DEP-generated review and the user’s real review for the item movie
Avengers: Age of Ultron.
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