
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 10630–10653
November 4-9, 2025 ©2025 Association for Computational Linguistics

Are Checklists Really Useful for Automatic Evaluation of Generative Tasks?

Momoka Furuhashi1,2　 Kouta Nakayama2　 Takashi Kodama2　 Saku Sugawara3,2

1Tohoku University　2Research and Development Center for Large Language Models,
National Institute of Informatics　3National Institute of Informatics

furuhashi.momoka.p4@dc.tohoku.ac.jp　{nakayama,tkodama,saku}@nii.ac.jp

Abstract

Automatic evaluation of generative tasks using
large language models faces challenges due to
ambiguous criteria. Although automatic check-
list generation is a potentially promising ap-
proach, its usefulness remains underexplored.
We investigate whether checklists should be
used for all questions or selectively, generate
them using six methods, evaluate their effec-
tiveness across eight model sizes, and identify
checklist items that correlate with human evalu-
ations. Through experiments on pairwise com-
parison and direct scoring tasks, we find that
selective checklist use tends to improve evalu-
ation performance in pairwise settings, while
its benefits are less consistent in direct scor-
ing. Our analysis also shows that even check-
list items with low correlation to human scores
often reflect human-written criteria, indicat-
ing potential inconsistencies in human evalua-
tion. These findings highlight the need to more
clearly define objective evaluation criteria to
guide both human and automatic evaluations. 1

1 Introduction

Automatic evaluation using large language models
(LLMs) has been widely adopted for generative
tasks (Chang et al., 2024; Ferraz et al., 2024; Gu
et al., 2025; Li et al., 2025). This approach pro-
vides an efficient and scalable alternative to costly
and time-consuming human evaluation. However,
it faces two major challenges. First, establishing
clear and consistent evaluation criteria remains dif-
ficult, leading to potential ambiguity in scoring.
Second, the correlation between LLM-based au-
tomatic evaluation and human evaluation is often
unstable, limiting its reliability.

To address these challenges, previous studies
have introduced a checklist approach that decom-
poses evaluation criteria into specific, fine-grained

1Our code is available at https://github.com/
momo0817/checklist-effectiveness-study

Are checklists necessary
for evaluating response?

Pairwise Comparison

Answer the following
question: How do you say
“good evening” in French?

Task Responses

Scoring

What is 15
divided by 3?

It is five.

It is four.

How can I improve my time management skills?

Improving your time management skills
can help you to be more productive
and less stressed …

Here are some tips to improve your time
management skills: 1. Create a schedule:
Make a to-do list for the day, …

Task

Responses

1

2

Checklists

ChecklistsThe tone of the email should
be changed and rewritten in
a more professional manner.
Asking for Vacation Time
Hi [Employer],
I hope all is well.
I am writing to …
Thank you for your time,
[Your name]

Request for Vacation Time
Dear [Employer],
I hope this email finds you
well. I am writing to request
a day off on [date]. …
Thank you for your time,
[Your name]

The French translation for
"good evening" is "bonsoir”.

Evaluation Model

・Does the rewritten
email maintain a
professional tone
throughout? …

・Does the response
correctly translate
"good evening" into
French as "bonsoir"?

・Does the response provide specific, actionable
strategies for improving time management? …

・Is the numerical
response correct ?…

Figure 1: Examples of using checklists in automatic
evaluation by LLMs. Existing studies use checklists
even in situations where fine-grained criteria may be
unnecessary for evaluating the responses.

items (Lee et al., 2024; Qin et al., 2024; Lin et al.,
2025). As shown in Figure 1, when an LLM eval-
uates responses to mathematical problems, evalu-
ator models can refer to a detailed checklist with
items such as “Does the calculated value match the
correct answer?” and “Does the response contain
unnecessary decimal points?” Although checklists
are easy to use and understand, previous studies
have not fully investigated three key aspects: when
checklists are necessary, how we can create them,
and how checklist items relate to alignment with
human evaluation. We examine the usefulness of
checklists in automatic evaluation by answering the
following three questions shown in Figure 2. RQ1:
Can we determine whether a checklist is necessary
for LLM evaluators? RQ2: How can we create
useful checklists? RQ3: Which checklist items con-

10630

https://github.com/momo0817/checklist-effectiveness-study
https://github.com/momo0817/checklist-effectiveness-study

RQ2: How can we create
useful checklists?

RQ3: Which checklist items contribute to
alignment with human evaluation?

• Baseline
• Specify
• Length
• Self-refine

Checklist Type

RQ1: Can we determine whether a
checklist is necessary for LLM evaluators?

determine
・Does the response include methods

for prioritizing tasks effectively?
・ Does the response state that

Mount Everest’s height is 8,849m ?

Task

Response
Correlation

PositiveNegative

Checklist is necessary!!

Checklist is unnecessary!!

Figure 2: Our research questions. First, we investigate whether we can identify which responses require checklist
evaluation (RQ1). Next, we study how checklist generation affects alignment with human evaluations by evaluating
eight models of different sizes (RQ2), comparing six different generation methods. Finally, we analyze which
checklist items contribute most to alignment with human evaluation (RQ3).

tribute to alignment with human evaluation?

To investigate RQ1 and RQ2, we conduct three
controlled experiments. First, focusing on the con-
sistency of multiple automatic evaluations, we set
a threshold to decide whether a checklist is neces-
sary for each evaluation case. Second, we investi-
gate which checklist features improve correlation.
In this process, we create three methods (control
checklist length, more specified generation, and
self-refine) in addition to the baseline and existing
method. Third, we evaluate a total of eight models,
including gpt-4o-2024-08-06 (OpenAI, 2024) and
Qwen2.5-7B-Instruct (Yang et al., 2025), to investi-
gate which checklist items contribute to alignment
with human evaluation. For each of these three
aspects, we test their effect on alignment using two
types of human evaluation data: pairwise compari-
son and direct scoring. To investigate RQ3, we also
conduct a more detailed checklist-based analysis
on the smallest model. We analyze checklist items
both quantitatively and qualitatively, focusing on
their overlap with human-written ones.

Our experiments yield three key findings: First,
we observe that the effectiveness of selective check-
list application varies by task; in some cases, it
achieves comparable or better correlations than full
application, while in others it does not. This sug-
gests that checklist use is not universally beneficial.
Second, our analysis reveals that the most useful
checklist creation method varies across different
evaluation models and tasks, suggesting that no sin-
gle approach works best in all settings. Third, our
analysis shows that many checklist items, although
useless for improving human correlation, still over-
lap substantially with human-written items. This
suggests that inconsistencies may stem from the
subjective nature of human evaluations and under-

scores the need to rethink the objective criteria we
expect from responses.

Our contributions are summarized as follows:

• We find that selective checklist use some-
times improves evaluation outcomes, suggest-
ing that omitting checklists can be justified in
specific settings.

• We show that no universally optimal check-
list generation method exists, as usefulness
varies significantly depending on the evalua-
tion model and use case.

• We find that even checklist items with low
correlation to human evaluations often overlap
with human-written ones, indicating they may
still capture valid criteria. This highlights the
subjective nature of human evaluations and
calls for more objective evaluation design.

2 Related Work

Recent studies have investigated the use of LLMs
as evaluators for generative tasks (Chang et al.,
2024; Gu et al., 2025; Li et al., 2025). Automatic
evaluation methods using LLMs fall into two meth-
ods: pairwise comparison (Wei et al., 2022; Wang
et al., 2024; Zeng et al., 2024; Lambert et al., 2025;
Tan et al., 2025) and direct scoring (Ye et al., 2024;
Kim et al., 2024; Liu et al., 2024). These ap-
proaches rely on human evaluation as gold labels
and assess performance via correlation and agree-
ment rates. However, both methods have inherent
limitations: pairwise comparison suffers from am-
biguity in evaluation criteria, while direct scoring
faces difficulties in metric definition.

Fine-grained Evaluation Criteria Previous
studies have explored breaking down evaluation

10631

criteria into smaller components to improve corre-
lation. Min et al. (2023) evaluate factual accuracy
by splitting responses into individual statements,
each containing a single piece of information. Kim
et al. (2024) manually create 50 scoring rubrics
focusing on critical aspects of response evaluation
and then expand these rubrics using GPT-4. Ye
et al. (2024) enhances evaluation reliability by de-
composing their evaluation into skill-level scoring
sets for each instruction.

Checklist-based Evaluation Previous studies
have proposed a checklist-based approach that
breaks down complex evaluation criteria into
smaller, more specific points of evaluation (Lee
et al., 2024; Qin et al., 2024; Lin et al., 2025; Cook
et al., 2024)． CheckEval (Lee et al., 2024) decom-
poses evaluation criteria such as fluency into man-
ually created checklists for summarization tasks,
where each item requires a binary yes/no response,
with the final score derived from the ratio of yes
responses. Additionally, Qin et al. (2024) manu-
ally create 2,500 checklists based on 500 distinct
instructions and conduct comprehensive evalua-
tions using six evaluation models. Furthermore,
WildBench (Lin et al., 2025) establishes a bench-
mark for evaluating LLMs on real-world-inspired
tasks, generating five to ten checklist items for each
question task by using GPT-4-Turbo and Claude-3-
Opus. While Cook et al. (2024) shows that LLM-
generated checklists improve correlations, previous
studies have not investigated when checklists are
actually needed or how useful they are.

3 Dissecting Checklist-based Evaluation

To investigate RQ1 and RQ2, we conduct three con-
trolled experiments: First, we investigate whether
it is possible to identify instances where check-
lists are unnecessary for automated evaluation (Ses-
sion 3.1); second, we evaluate six different check-
list generation methods to determine which types
of checklists are most useful (Session 3.2); third,
we examine the usefulness of checklists using eight
different models, ranging from small to large size,
to assess their practicality (Session 3.3).

3.1 Identifying When Responses Need
Checklist Evaluation

To address RQ1: Can we determine whether a
checklist is necessary for LLM evaluators?, we
compare how well model evaluations correlate with
human evaluation both with and without check-

lists. We hypothesise that checklists are necessary
when LLM evaluations lack consistency. Therefore,
we conduct multiple evaluations without checklists
and apply checklists only to responses that receive
inconsistent labels above a threshold. We then
compare this selective approach against two base-
lines: using no checklists at all (None) and using
checklists for every response (All). Through this
comparison, we determine if targeting the checklist
use to low-reliability cases improves overall cor-
relation. We conduct this analysis across different
checklist variations described in Section 3.2.

3.2 Checklist Generation Policy

To address RQ2: How can we create useful check-
lists?, we vary the level of detail and number of
items. To better control these factors, we gener-
ate checklists for evaluating generative tasks using
three methods. We analyze how each method corre-
lates to identify the most useful checklist types. Be-
low, we describe each checklist generation method.

Baseline In this study, we examine how limit-
ing the number of items and adjusting the level of
detail affect checklist generation. We incorporate
the following three elements: (1) Each item must
allow a simple yes or no answer, where yes con-
firms success. (2) Criteria must directly relate to
essential task requirements. (3) Questions must
use specific wording and reference input phrasing
directly, concrete wording that directly relates to
the task, avoiding vague or ambiguous language.

Specify Previous studies distinguish between two
types of checklist items: surface-level evaluation
(e.g., response correctness) and content-specific
evaluation (e.g., Does the response state that Mount
Everest’s height is 8,849m?). Therefore, we add
to the baseline that checklist questions should be
designed considering possible answers to the input.

Checklist Length While previous studies (Lin
et al., 2025; Cook et al., 2024) use a fixed number
of items in their checklists, we hypothesize that
the optimal number of items depends on the task
and should be adjusted accordingly. Therefore,
we evaluate how performance changes when we
generate checklists containing 0.5 and 1.5 times
the number of items for given Baseline checklists.

Self-refine Cook et al. (2024) use LLMs to
generate both responses and checklists for tasks,
then evaluate responses using these checklists and

10632

perform multiple rounds of self-refine on the re-
sponses. However, they do not apply self-refine
to the checklist generation process itself. In this
study, we extend their approach by implementing
self-refine for the checklists to improve their qual-
ity. Specifically, our checklist generation model
generates a Likert scale evaluation and accompany-
ing feedback based on the baseline prompt and uses
this feedback to regenerate improved checklists.

Ticking As a representative of existing methods,
we use Cook et al. (2024)’s original prompts. This
prompt includes several examples and a limit on
the number of checklist items, ranging from two
to eight. However, since the original paper does
not specify the examples they use, we remove them
from our implementation.

3.3 Evaluator Models of Different Sizes

Previous studies have used a limited variety of eval-
uation models. While the InFoBench (Qin et al.,
2024) uses LLMs such as GPT-4 for evaluation,
their smallest model is vicuna-13b-v1.5 (Chiang
et al., 2023), limiting practical applications. More-
over, their analysis includes only a single smaller
model without comparing different sizes of the
same model or exploring how checklist usage af-
fects correlation across varying model sizes. To
address these limitations, we evaluate the useful-
ness of checklists across eight models ranging from
7B to 32B parameters, including multiple sizes of
the same model family, as detailed in Section 4.3.

4 Experiments

To investigate the usefulness of checklist-based au-
tomatic evaluation, this study conducts experiments
on two tasks: (1) a pairwise comparison task, in
which pairs of LLM’s responses are judged for rel-
ative quality, and (2) a direct scoring task, in which
LLM’s responses are rated using a Likert scale.

4.1 Dataset

We use datasets with human-annotated LLM re-
sponses, which include reliable evaluation labels
and cover diverse real-world tasks with multiple
subsets. Such datasets are rare, as it is uncommon
to find ones that combine both high-quality hu-
man evaluation and broad task diversity. The two
datasets we employ sufficiently meet these criteria.

Pairwise Comparison For the pairwise com-
parison task, we use the LLMBar (Zeng et al.,

2024) dataset, which comprises eight English sub-
sets, including three major categories: Adversarial,
Natural, and Processed. The Adversarial subset
includes inputs specifically designed to mislead
LLMs when used as evaluators, while the Natural
subset contains inputs collected and modified from
existing human preference datasets. the LLMBar
dataset exhibits an inter-annotator agreement ex-
ceeding 90%, demonstrating its reliability. The
Processed subset consists of processed versions
of three existing datasets (FairEval (Wang et al.,
2024), LLMEval-2 (Zhang et al., 2023), and MT-
Bench (Zheng et al., 2023)). These datasets have
been refined by Zheng et al. (2023) to improve data
fairness. Finally, we obtained manual annotations
for 885 response pairs.

Direct Scoring For the direct scoring task, we
use the InFoBench (Qin et al., 2024) dataset. the
InFoBench dataset uses a Likert scale (1 to 5) as
its metric and consists of two English subsets: a
simpler section (Easy subset) and a more challeng-
ing section (Hard subset). For each input prompt,
responses are collected from five distinct language
models (GPT-3.5-turbo (Ouyang et al., 2022), GPT-
4, Claude-v1 (Bai et al., 2022), Alpaca-7B (Taori
et al., 2023), and Vicuna-13B (Chiang et al., 2023)).
The responses are then manually annotated by three
expert evaluators, who are natural language pro-
cessing specialists according to prior research. The
correlation coefficient is reported as 0.353 for the
Easy set and 0.519 for the Hard set. This dataset
consists of the manual evaluation results for five
LLMs’ responses across 50 tasks, resulting in a to-
tal of 250 annotated samples. In this study, we de-
termine the gold label for each sample by rounding
the mean of the three manually annotated labels.

4.2 Checklist Generation

Regardless of the variation, each checklist item is
formatted to allow for either a yes or no response.
We employ six different checklist generation poli-
cies (detailed in Section 3.2) using gpt-4o-2024-08-
06 (OpenAI, 2024) as the generation model.

4.3 Automatic Evaluation

To investigate the usefulness of checklists across
different model sizes, we evaluate eight mod-
els: gpt-4o-2024-08-06 (GPT-4o), Qwen2.5-
32B-Instruct (Qwen2.5-32B-it), Qwen2.5-7B-
Instruct (Qwen2.5-7B-it) (Yang et al., 2025),
Mistral-Small-24B-Instruct-2501 (Mistral-Small-

10633

(a) Pairwise comparison (the LLMBar)

60

70

80

GPT-4o Qwen2.5-32B-it gemma-2-27b-it Mistral-Small-24B-it

None
k = 5

k = 4
k = 3

k = 2
k = 1 All

60

70

80
gemma-2-9b-it

None
k = 5

k = 4
k = 3

k = 2
k = 1 All

Llama-3.1-8B-it

None
k = 5

k = 4
k = 3

k = 2
k = 1 All

Ministral-8B-it

None
k = 5

k = 4
k = 3

k = 2
k = 1 All

Qwen2.5-7B-it

Threshold k for applying checklists

Ac
cu

ra
cy

 (%
)

(b) Direct scoring (the InFoBench)

0.25
0.00
0.25
0.50
0.75

GPT-4o Qwen2.5-32B-it gemma-2-27b-it Mistral-Small-24B-it

None
k=0.70

k=0.60
k=0.50

k=0.45
k=0.40

k=0.35
k=0.30 All

0.25
0.00
0.25
0.50
0.75 gemma-2-9b-it

None
k=0.70

k=0.60
k=0.50

k=0.45
k=0.40

k=0.35
k=0.30 All

Llama-3.1-8B-it

None
k=0.70

k=0.60
k=0.50

k=0.45
k=0.40

k=0.35
k=0.30 All

Ministral-8B-it

None
k=0.70

k=0.60
k=0.50

k=0.45
k=0.40

k=0.35
k=0.30 All

Qwen2.5-7B-it

Threshold k for applying checklists

Kr
ip

pe
nd

or
ff'

s A
lp

ha

Checklist Length * 0.5 Self-refine Baseline Ticking Checklist Length * 1.5 Specify

Figure 3: Comparison of accuracy for checklist application method. None indicates that the checklist is not used
during evaluation, while All signifies that the checklist is applied to every evaluation. The parameter k represents
the threshold for applying the checklist; the smaller the value of k, the more frequently the checklist is employed.

24B-it), Ministral-8B-Instruct-2410 (Ministral-8B-
it) 2, Gemma-2-27b-it, gemma-2-9b-it (Gemma
Team, 2024), Llama-3.1-8B-Instruct (Llama-3.1-
8B-it) (Dubey et al., 2024). These models represent
different parameter sizes and capabilities.

For evaluations without checklists, we use Chain-
of-Thought prompting (Wei et al., 2022). We first
prompt the model to output the reason for its eval-
uation, and then obtain the final result. For eval-
uations with checklists, we first ask the evalua-
tion model to choose the evaluation result for each
checklist item from yes, no, or n/a, and then obtain
the final evaluation result. n/a indicates the item is
skipped as it does not apply to the response.

For both tasks, we evaluate each response ten
times. To mitigate position bias in pairwise com-
parison, we use each order five times. The checklist

2https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501,
https://huggingface.co/mistralai/
Ministral-8B-Instruct-2410

generation prompts are provided in Appendix A.8.

4.4 Evaluation Metrics

For the pairwise comparison dataset, we use ac-
curacy as the evaluation metric for evaluating the
performance of our automatic evaluation. The final
evaluation result is determined by a majority vote
across multiple evaluations; if the votes are evenly
split, the outcome is considered a tie. However,
because the LLMBar (Zeng et al., 2024) provides
only binary labels (win or lose) and does not in-
clude a tie label, we assign a score of 0.5 to a tie
when calculating accuracy. This allows us to treat
accuracy as an expected value under realistic de-
ployment scenarios. This adjustment reflects our
goal of evaluating the potential practical benefits
of checklist-based evaluation.

For the direct scoring dataset, we use Krippen-
dorff’s alpha (Hayes and Krippendorff, 2007) to
measure the agreement between automatic and hu-
man labels. The final evaluation result of automatic

10634

https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410

evaluation is obtained by taking the mean of ten
evaluations and rounding the value.

5 Results

In total, we generate 22,985 checklist items, specif-
ically 21,475 items in the LLMBar and 1,510 from
the InFoBench. For detailed statistical analysis of
variations and thresholds, see Appendix A.1.

5.1 Identifying When Responses Need
Checklist Evaluation

We define a threshold k to determine when to apply
checklists based on evaluation inconsistency. Due
to the different nature of our evaluation tasks, we
use different inconsistency metrics xpairwise and
xdirect for each setting.

Pairwise Comparison Setting We define the in-
consistency value xpairwise as the number of votes
the less-preferred response receives. For example,
if the evaluations for Response 1 and Response
2 are [1, 1, 1, 1, 1, 1, 1, 2, 2, 2], xpairwise = 3; for
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2], xpairwise = 5. We apply
checklists only when xpairwise ≥ k, where k is
selected from {1, 2, 3, 4, 5}.

Direct Scoring Setting We define the inconsis-
tency value xdirect as the standard deviation of
these evaluations. For example, if the evalua-
tion labels are [3, 3, 3, 3, 4], xdirect = 0.4; for
[2, 3, 3, 3, 4], xdirect = 0.63. We apply check-
lists only when xdirect ≥ k. Based on our ob-
servations, most xdirect values fall in the range
of 0.3 to 0.8, with a notable concentration be-
tween 0.3 and 0.5. Therefore, we select k from
{0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7}.

Figures 3a and 3b show the experimental results.
None indicates that no checklist is used during eval-
uation, while All denotes that all available check-
lists are applied. Detailed checklist application
rates are provided in Appendix A.2.

Our results demonstrate that the impact of se-
lective checklist application varies across datasets.
In the pairwise comparison, we observe that selec-
tive checklist application often improves evaluation
performance over both the None and All, for sev-
eral models, including GPT-4o, Qwen2.5-32B-it,
Gemma-2-27B-it, Gemma-2-9B-it, and Qwen2.5-
7B-it. In the direct scoring, we observe no im-
provements from selective checklist usage in direct
scoring, where its performance often matches or
falls below that of the None and All.

Bootstrap Sampling We also conduct a boot-
strap test to evaluate whether the selective appli-
cation of checklists leads to improvements. For
pairwise comparison, we observe statistically sig-
nificant differences in 20 out of 48 cases, suggest-
ing that selectively applying checklist items can be
beneficial under certain conditions. On the other
hand, for direct scoring, we observe no statisti-
cally significant differences across any of the six
checklist-generation policies evaluated with eight
evaluation models, indicating that this approach
does not yield measurable improvements under the
tested conditions. For detailed settings and results,
see Appendix A.3.

5.2 Checklist Generation Policy

Next, we present the results of the checklist gener-
ation policy in Figures 3a, 3b, and Appendix A.2.
We do not find any specific variation that consis-
tently outperforms others. The best checklist vari-
ation depends on the evaluation tasks and eval-
uator models. For pairwise comparison, Spec-
ify works well with GPT-4o and Gemma-2-27b-it,
while Ticking suits Ministral-24B-it, Ministral-8B-
it, and Llama-3.1-8B-it. In direct scoring, Spec-
ify is effective for GPT-4o and Llama-3.1-8B-it,
whereas Self-refine performs best with Ministral-
24B-it, Ministral-8B-it, and Qwen2.5-7B-it. These
findings suggest that checklist methods should be
adapted to specific evaluator models and tasks.

Useful and Not Useful Checklist Settings We
do not find any checklist generation policies that
are consistently superior or inferior across all set-
tings. However, we conduct an in-depth analysis
of which policies are useful or useless for datasets.

Tables 1 and 2 summarize the best and worst per-
forming checklist generation methods, including
None for each dataset. Both Self-refine and Spec-
ify tend to perform well across the two datasets.
Specify is useful because it produces checklists
containing more detailed information, which helps
clarify the evaluation criteria. Self-refine, on the
other hand, involves having the LLMs revise the
baseline checklist, often resulting in more refined
and input-relevant items. This iterative refinement
may improve evaluation quality.

Conversely, in the LLMBar, the worst-
performing approach is None. For 6 out of 8 eval-
uation models, None results in the lowest perfor-
mance. In the InFoBench, Baseline shows the low-
est correlation for half of the evaluation models.

10635

Model GPT-4o Qwen2.5-32B-it gemma-2-27b-it Ministral-24B-it gemma-2-9b-it Ministral-8B-it Llama-3.1-8B-it Qwen2.5-7B-it

Best Policy Specify Length * (0.5, 1.5) Specify Ticking Self-refine Ticking Ticking Self-refine

Worst Policy Self-refine None None None None None None Length * 0.5

Table 1: Best and worst settings of checklist use for each evaluation model in the pairwise comparison.

Model GPT-4o Qwen2.5-32B-it gemma-2-27b-it Mistral-Small-24B-it gemma-2-9b-it Llama-3.1-8B-it Ministral-8B-it Qwen2.5-7B-it

Best Policy Specify Length * 1.5 Length * 1.5 Self-refine Length * 0.5 Specify Self-refine Self-refine

Worst Policy Baseline Baseline Length * 1.5 Length * 1.5 Specify Baseline Baseline Ticking

Table 2: Best and worst settings of checklist use for each evaluation model in the direct scoring.

These findings suggest that using any checklist ben-
efits pairwise comparison evaluation, whereas the
choice of generation method requires more careful
consideration for direct scoring evaluation.

5.3 Model Sizes
Finally, we analyze how much correlation with
human evaluation improves when small evaluator
models use checklists. In the direct scoring dataset,
we observe that increasing checklist usage (i.e.,
lowering the threshold k) contributes to higher cor-
relation with human ratings for some models, such
as Gemma-2-27b-it and Mistral-8B-it. In contrast,
for other models—including both larger and smaller
ones—checklist application does not substantially
affect correlation, suggesting a limited contribution
to alignment with human evaluation. In the pair-
wise comparison dataset, checklists only slightly
improve the accuracy of small models, indicating
limited usefulness since evaluators may already
implicitly consider checklist elements.

6 Analysis

To investigate RQ3: Which checklist items con-
tribute to alignment with human evaluation?, We
conduct ablation and qualitative analyses to iden-
tify factors affecting evaluation performance.

6.1 Ablation on Checklist Effectiveness
Experimental Setup We define two types of
checklist items. A positive item is one whose re-
moval from the checklist leads to a decrease in
correlation with human evaluation, while a nega-
tive item is one whose removal leads to an increase
in correlation. These definitions indicate whether
the presence of a checklist item contributes to or
hinders alignment with human evaluation. Since
ablating each individual checklist item is computa-
tionally expensive, we adopt a two-step approach.

In the first step, we classify each checklist–not indi-
vidual items–based on whether its use improves
alignment with human evaluation. To measure
alignment, we define a score ∆s̄all as:

∆s̄all = |s̄gold − s̄none| − |s̄gold − s̄all| (1)

where s̄gold represents the mean score given by
human annotators, while s̄all and s̄none are mean
scores from the model (Qwen2.5-7B-it) with and
without checklists, respectively. Based on ∆s̄all
and predefined thresholds, we classify each check-
list as positive (it improves alignment with human
evaluations) or negative (it reduces alignment).

In the second step, we analyze individual check-
list items within each group. To quantify the con-
tribution of each item, we define another score:

∆s̄abl = |s̄gold − s̄all| − |s̄gold − s̄abl| (2)

where s̄abl is the mean evaluation score after remov-
ing a specific checklist item. If the removal of an
item leads to lower alignment, it is classified as a
positive checklist item; if it leads to higher align-
ment, it is classified as a negative one. For details
on the classification and analysis of checklist items,
see Appendix A.5.1 and A.5.2.

Quantitative Results We first report the classi-
fication result of the checklist items contained in
generated checklists for the LLMBar and the In-
FoBench. In the LLMBar, 53.5% of the checklists
used in positive checklists are classified as positive
checklist items (1,079 out of 2,018), while 42.0%
of the items in negative checklists are classified
as negative checklist items (3,847 out of 9,157).
In the InFoBench, all items in positive checklists
are classified as positive checklist items (56 out of
56), while 40.7% of the items in negative check-
lists are classified as negative (599 out of 1,472).

10636

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

50

100

150

200

250

300
Fr

eq
ue

nc
y

Negative Checklist Items
(S_all > 0)
Mean: 0.041
Median: 0.000

Total: 954
Mean: 0.041
Median: 0.000
Std: 0.324
Negative Checklist Items: 388
Negative Rate: 40.67%

Figure 4: Negative checklists ablation results on LLM-
Bar dataset. Each plot shows how removing checklist
items impacts correlation with human evaluation. Nega-
tive checklist items (∆s̄abl) are highlighted in red. About
40% of checklist items fall in the negative region.

Dataset Open Closed

LLMBar 75 10
InFoBench 43 7

Table 3: Open vs. closed classification of questions. the
LLMBar questions are sampled as 10% from each of
the 8 subsets (85 in total), while all 50 questions from
the InFoBench are classified.

We then examine the impact of the negative check-
list items on alignment with human evaluations, as
shown in Figure 4, using results generated by the
Baseline. These figures show how removing such
items affects evaluation scores compared to using
all checklist items. For a comprehensive view of
the effects across different checklist types and gen-
eration methods, including positive and negative
items, refer to Appendix A.5.3.

These results indicate that a substantial portion
of the generated checklist items in negative check-
lists contribute to reduced alignment with human
evaluations. However, the impact of such negative
items-measured by the change in ∆s̄abl is gener-
ally small, suggesting that they do not significantly
degrade evaluation quality even when present.

6.2 Open vs. Closed Question Classification

We hypothesize that the effectiveness of check-
lists may depend on the type of question: closed
questions may yield more consistent evaluations,
whereas open-ended ones can introduce greater
variability. To explore this, we manually classify
questions in each dataset based on whether their re-
sponses tend to converge (closed) or diverge (open).
For the LLMBar, we sample 10% of questions from
each of its eight subsets, while for the InFoBench,
we analyze all 50 questions. Table 3 shows the clas-
sification results. In both datasets, open questions
outnumber closed ones, suggesting that subjective

Label Positive Negative

B H G B H G

H 17 3 - 50 46 -
G 29 - 27 75 - 27

Table 4: Checklist quality comparison in the InFoBench.
We analyze 274 items (116 human-written, 158 gen-
erated). B, H, and G denote items appearing in both,
only human, and only generated checklists, respectively.
More than half of the items appear in both sets, indi-
cating a notable overlap between human and generated
checklist items.

or ambiguous questions are more prevalent. Such
questions are more likely to lead to unstable evalu-
ation outcomes and lower agreement with human
evaluations, even when using checklists.

6.3 Overlap Analysis of Human and
Generated Checklists in the InFoBench

We manually check the InFoBench checklist items
to analyze the extent of overlap between human-
written and generated items (274 in total: 116
human-written, 158 generated). Over half of the
items appear in both sets, indicating substantial
overlap. Here, both means checklist items that are
semantically equivalent and correspond to the same
question. For instance, the generated checklist item

“Does the letter have approximately 250 words?”
closely corresponds to the human-written item “Is
the generated recommendation letter around 250
words? (Output Attribute)”. Table 4 summarizes
the distribution of items by checklist type. Items
unique to the generated set—those without over-
lap with human-written items—often reflect addi-
tional perspectives or considerations that, while not
explicitly stated in the question, are important for
evaluating the response. In contrast, checklist items
exclusive to the human-written set tend to focus
more on verifying the output format.

6.4 Human Annotation of Checklist Items

To identify checklist item characteristics affecting
alignment with human evaluations, we qualitatively
analyze 293 items, including 89 positive and 102
negative items (see Appendix A.6.1). We define
six functional labels for positive items and four for
negative ones. Representative examples of gener-
ated checklist items are shown in Figure 5. Our
annotation shows that 60% of positive items ex-
plicitly reflect key question elements, aligning with
essential response components, while about 30%

10637

・Does the response identify “they” in sentence (a) as referring to “the authorities”?
・Does the response identify "they" in sentence (b) as referring to "the demonstrators"?
・Does the response provide reasoning for the identification of "they" in each sentence?

Q1: What does "they" refer to in each of the following two sentences:
a) "The authorities have denied authorization to the demonstrators

because they feared violence."
b) "The authorities have denied authorization to the demonstrators

because they appeared belligerent.”

・Does the response correctly translate "good evening" into French as "bonsoir"?
・Is the translation appropriate for the context typically
associated with greeting someone in the evening?

Q3: Answer the following question: How do you say "good evening" in French.

Q2: The tone of the email should be changed and rewritten in a more professional manner.
Subject: Asking for Vacation Time
Hi [Employer],
I hope all is well. I am writing to request a day off on [date]. …Thank you for your time,
[Your name]

・Does the rewritten email maintain a professional tone throughout?
・Does the email clearly state the request for a day off, including the specific date?
・Does the email address the employer politely and respectfully?

Q4: Summarize the movie The Shining in a snarky way. Try to explain it in just one sentence.

・Does the response summarize “The Shining” in one sentence?
・Is the response humorous or witty, reflecting a playful critique or observation?

Closed questions and Positive checklist items (From Question1)

Closed questions and Negative checklist items (From Question3)

Open questions and Positive checklist items (From Question2)

Open questions and Negative checklist items (From Question4)

Figure 5: Examples of positive and negative checklist items by question type (open vs. closed).

capture important evaluative aspects not explicitly
mentioned. For negative items, around 10% fail
to adequately address response content, suggest-
ing room for improvement; however, over 85% are
consistent and deemed usable upon manual review.
Furthermore, 77% of these non-negative items over-
lap with criteria created by human-written check-
lists (see Appendix A.6.2 for details).

6.5 Analysis by Checklist Generation Policy

We also analyze checklist generation policies to
examine their characteristics. For example, when
handling mathematical problems like “Compute
the derivative of 2x2 + 5x”, the Baseline method
generates checklists that break down elements into
individual items, such as “Does the response cor-
rectly apply the power rule to compute the deriva-
tive of 2x2?”． For this problem, we observe little
difference in the generated checklists among the
Checklist Length * 0.5, Length * 1.5, and Self-
refine methods. In contrast, the Specify method
can generate more specific check items that include
correct responses while maintaining itemization
similar to the Baseline, such as “Did the response
simplify the derivative correctly to 4x + 5?” We
also find that different generation methods generate
similar checklists. For example, when asking to ex-
plain machine learning and its types—supervised,
unsupervised, and reinforcement learning—with
real-world examples, all methods generate simi-
lar items checking basic elements, such as “Does
the response elaborate on the differences between
supervised, unsupervised, and reinforcement learn-
ing?”. In contrast, for the task asks how to in-
crease productivity while working from home, the
Baseline generates abstract items, such as “Are the
suggestions in the response actionable and clear?”,
while the Checklist Length * 1.5 includes more
specific requirements, such as “Is there guidance

on setting goals or prioritizing tasks while working
from home?”. For detailed checklist examples, see
Appendix A.7.

Discussion These findings suggest two key di-
rections for future work. First, human evaluations
sometimes rely on checklist items with ambiguous
criteria or unclear scoring methods that fail to accu-
rately capture response quality. This highlights the
need to improve the design of human evaluation
protocols. Notably, even negative checklist items
often overlap with human-written ones, underscor-
ing the difficulty of establishing clear evaluation
standards. This observation aligns with Hosking
et al. (2024), who highlight inconsistencies and
biases in human evaluations. Second, the over-
lap between generated and human-written check-
list items suggests that LLMs can produce reliable
and interpretable ones. Combining such generated
checklists with human evaluation could improve
overall evaluation reliability, rather than relying ex-
clusively on either human or automatic evaluation.

7 Conclusion

We investigate checklist usefulness by focusing on
three key questions: determining whether a check-
list is necessary for LLM evaluators, designing
useful checklists, and analyzing which items are
effective. Our experiments show that checklists do
not always improve evaluations, and even negative
items often overlap with human-written ones, re-
vealing limitations in current human evaluations.
This highlights the need to reconsider what makes
an ideal checklist item that effectively combines
human insight and automatic methods, targets rel-
evant criteria, and adapts to different responses.
Future work should focus on improving checklist
creation and evaluation practices to ensure more
reliable and meaningful evaluations.

10638

Limitations

Despite the comprehensiveness of our study, sev-
eral limitations should be acknowledged. First,
while our datasets encompass a diverse range of
input tasks, we utilize only a single English dataset
for both the pairwise comparison and direct scoring
tasks. This constraint may limit the generalizabil-
ity of our findings across different generative tasks
and languages. Second, although we design our
checklist generation policies to ensure broad cover-
age of possible checklist generation methods, there
may exist alternative methods that we have not
considered, such as those explicitly based on prede-
fined evaluation criteria. Finally, while the models
used in our experiments cover multiple families of
LLMs, they may still be insufficient to fully capture
the necessary features of current LLMs, potentially
limiting the scope of our conclusions.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their helpful comments. This work
was supported by JST FOREST Grant Number
JPMJFR232R. In this work, we used the “mdx:
a platform for building data-empowered society”.
We thank Satoru Katsumata, Hiroaki Sugiyama,
Yugo Murawaki, and Sadao Kurohashi for their
constructive comments and suggestions that helped
improve this paper.

References
Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda

Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022. Training
a helpful and harmless assistant with reinforce-
ment learning from human feedback. Preprint,
arXiv:2204.05862.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1–45.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion

Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jonathan Cook, Tim Rocktäschel, Jakob Foerster, Den-
nis Aumiller, and Alex Wang. 2024. Ticking all the
boxes: Generated checklists improve llm evaluation
and generation. Preprint, arXiv:2410.03608.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin,
Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek
Subramanian, Tagyoung Chung, Mohit Bansal, and
Nanyun Peng. 2024. LLM self-correction with De-
CRIM: Decompose, critique, and refine for enhanced
following of instructions with multiple constraints.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 7773–7812, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Gemma Team. 2024. Gemma.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun
Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni,
and Jian Guo. 2025. A survey on llm-as-a-judge.
Preprint, arXiv:2411.15594.

Andrew F. Hayes and Klaus Krippendorff. 2007. An-
swering the call for a standard reliability measure for

10639

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2410.03608
https://arxiv.org/abs/2410.03608
https://arxiv.org/abs/2410.03608
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/v1/2024.findings-emnlp.458
https://doi.org/10.18653/v1/2024.findings-emnlp.458
https://doi.org/10.18653/v1/2024.findings-emnlp.458
https://doi.org/10.34740/KAGGLE/M/3301
https://arxiv.org/abs/2411.15594
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1080/19312450709336664

coding data. Communication Methods and Measures,
1(1):77–89.

Tom Hosking, Phil Blunsom, and Max Bartolo. 2024.
Human feedback is not gold standard. In The Twelfth
International Conference on Learning Representa-
tions.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
4334–4353, Miami, Florida, USA. Association for
Computational Linguistics.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
Noah A. Smith, and Hannaneh Hajishirzi. 2025. Re-
wardBench: Evaluating reward models for language
modeling. In Findings of the Association for Compu-
tational Linguistics: NAACL 2025, pages 1755–1797,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Yukyung Lee, Joonghoon Kim, Jaehee Kim, Hyowon
Cho, and Pilsung Kang. 2024. Checkeval: Robust
evaluation framework using large language model
via checklist. Preprint, arXiv:2403.18771.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
Kai Shu, Lu Cheng, and Huan Liu. 2025. From gen-
eration to judgment: Opportunities and challenges of
llm-as-a-judge. Preprint, arXiv:2411.16594.

Bill Yuchen Lin, Yuntian Deng, Khyathi Raghavi
Chandu, Abhilasha Ravichander, Valentina Pyatkin,
Nouha Dziri, Ronan Le Bras, and Yejin Choi. 2025.
Wildbench: Benchmarking llms with challenging
tasks from real users in the wild. In ICLR.

Yixin Liu, Alexander Fabbri, Jiawen Chen, Yilun Zhao,
Simeng Han, Shafiq Joty, Pengfei Liu, Dragomir
Radev, Chien-Sheng Wu, and Arman Cohan. 2024.
Benchmarking generation and evaluation capabili-
ties of large language models for instruction control-
lable summarization. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
4481–4501, Mexico City, Mexico. Association for
Computational Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076–12100, Singa-
pore. Association for Computational Linguistics.

OpenAI. 2024. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. 2024. InFoBench:
Evaluating instruction following ability in large lan-
guage models. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 13025–
13048, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery,
William Y. Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Ada Popa, and Ion Stoica. 2025.
Judgebench: A benchmark for evaluating llm-based
judges. Preprint, arXiv:2410.12784.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Lingpeng Kong, Qi Liu,
Tianyu Liu, and Zhifang Sui. 2024. Large Language
Models are not Fair Evaluators. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9440–9450, Bangkok, Thailand. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeon-
bin Hwang, Seungone Kim, Yongrae Jo, James
Thorne, Juho Kim, and Minjoon Seo. 2024. FLASK:
Fine-grained language model evaluation based on

10640

https://doi.org/10.1080/19312450709336664
https://openreview.net/forum?id=7W3GLNImfS
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2025.findings-naacl.96
https://doi.org/10.18653/v1/2025.findings-naacl.96
https://doi.org/10.18653/v1/2025.findings-naacl.96
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://openreview.net/forum?id=MKEHCx25xp
https://openreview.net/forum?id=MKEHCx25xp
https://doi.org/10.18653/v1/2024.findings-naacl.280
https://doi.org/10.18653/v1/2024.findings-naacl.280
https://doi.org/10.18653/v1/2024.findings-naacl.280
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://arxiv.org/abs/2410.12784
https://arxiv.org/abs/2410.12784
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.18653/v1/2024.acl-long.511
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=CYmF38ysDa
https://openreview.net/forum?id=CYmF38ysDa

alignment skill sets. In The Twelfth International
Conference on Learning Representations.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following. In
International Conference on Learning Representa-
tions (ICLR).

Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv,
Tingwen Liu, Fei Huang, Hongbo Xu, and Yongbin
Li. 2023. Wider and Deeper LLM Networks are
Fairer LLM Evaluators. Preprint, arXiv:2308.01862.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
Preprint, arXiv:2306.05685.

A Appendix

A.1 Checklist Statistics
Tables 5 and 6 show the statistical metrics of check-
lists for the LLMBar and the InFoBench, respec-
tively. Also, if a checklist cannot be obtained due
to an API error or a formatting issue in the re-
sponse, we regenerate it up to three times. To en-
sure meaningful comparisons, we filter the datasets
to include only questions with consistent checklist
counts across all evaluation instances.

Variations Min Max Ave S.D Sum

Baseline 1 19 4.63 1.51 3,488
Ticking 2 10 4.92 1.02 3,710
Specify 1 16 5.05 1.54 3,807
Length * 0.5 1 10 2.27 0.74 1,714
Length * 1.5 2 28 6.98 2.38 5,266
Self-refine 1 19 4.62 1.55 3,490

Table 5: Statistical breakdown of generated checklists
for each version of the LLMBar. We generate checklists
for 754 inputs.

A.2 Checklists Application Rate
Figures 6 and 7 present the checklist application
rates for different threshold values in pairwise com-
parison and direct scoring tasks, illustrating how
the threshold k influences the proportion of re-
sponses evaluated with checklists.

A.3 Bootstrap Sampling
We conduct a bootstrap test to evaluate whether the
selective application of checklists leads to improve-
ments． For the bootstrap procedure, we perform

Variations Min Max Ave S.D Sum

Baseline 2 9 4.9 1.64 245
Ticking 3 9 5.3 1.32 265
Specify 2 9 5.32 1.69 266
Length * 0.5 1 4 2.46 0.85 123
Length * 1.5 3 14 7.34 2.53 367
Self-refine 2 9 4.88 1.65 244

Table 6: Statistical breakdown of generated checklists
for each version of the InFoBench. We generate check-
lists for 250 tasks.

1,000 resampling iterations, fix the random seed to
42, and determine statistical significance based on
95% confidence intervals.

For pairwise comparison, we observe statisti-
cally significant differences in 20 out of 48 cases．
The detailed results for each model are presented
below.

• GPT-4o: Shows statistically significant dif-
ferences for all checklist-generation policies
(6/6).

• Qwen2.5-32B-it: Shows significant differ-
ences for Baseline, Length×0.5, and Self-
refine (3/6).

• Gemma-2-27B-it: Shows no significant dif-
ference for any checklist-generation policies
(0/6).

• Gemma-2-9B-it: Shows significant differ-
ences for all checklist-generation policies
(6/6).

• Qwen2.5-7B-it: Shows significant differences
for all checklist-generation policies except
Ticking (5/6).

• The other three models (Mistral-Small-24B-It,
Ministral-8B-It, and Llama-3.1-8B-It) do not
show any significant differences (0/6 for each
model).

A.4 Checklist Retention Rates after Filtering
The filtering process results in different checklists
retention rates across our datasets, as shown in Ta-
ble 7. In the LLMBar dataset, approximately 90%
of checklists are retained for the Ticking and Spec-
ify checklist policies, while other categories expe-
rience a significant reduction to around 25% of the
original checklist count. In contrast, the InFoBench
dataset maintains 100% of checklists across all

10641

https://openreview.net/forum?id=CYmF38ysDa
https://arxiv.org/abs/2308.01862
https://arxiv.org/abs/2308.01862
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

0

50

100 GPT-4o Qwen2.5-32B-it gemma-2-27b-it Mistral-Small-24B-it

Non
e

k=5
k=4

k=3
k=2

k=1 All
0

50

100 gemma-2-9b-it

Non
e

k=5
k=4

k=3
k=2

k=1 All

Llama-3.1-8B-it

Non
e

k=5
k=4

k=3
k=2

k=1 All

Ministral-8B-it

Non
e

k=5
k=4

k=3
k=2

k=1 All

Qwen2.5-7B-it

Threshold k for applying checklists

Ap
pl

yi
ng

 c
he

ck
lis

ts
 ra

te
 (%

)

Figure 6: Checklists application rate in the pairwise comparison (LLMBar).

0

50

100 GPT-4o Qwen2.5-32B-it gemma-2-27b-it Mistral-Small-24B-it

No
ne

k=
0.7

0
k=

0.6
0

k=
0.5

0
k=

0.4
5

k=
0.4

0
k=

0.3
5

k=
0.3

0 All

0

50

100 gemma-2-9b-it

No
ne

k=
0.7

0
k=

0.6
0

k=
0.5

0
k=

0.4
5

k=
0.4

0
k=

0.3
5

k=
0.3

0 All
Llama-3.1-8B-it

No
ne

k=
0.7

0
k=

0.6
0

k=
0.5

0
k=

0.4
5

k=
0.4

0
k=

0.3
5

k=
0.3

0 All

Ministral-8B-it

No
ne

k=
0.7

0
k=

0.6
0

k=
0.5

0
k=

0.4
5

k=
0.4

0
k=

0.3
5

k=
0.3

0 All

Qwen2.5-7B-it

Threshold k for applying checklists

Ap
pl

yi
ng

 c
he

ck
lis

ts
 ra

te
 (%

)

Figure 7: Checklists application rate in the direct scoring (InFoBench).

policies, indicating more consistent checklist ap-
plication in this dataset. A detailed breakdown
of the checklist classification can be found in Fig-
ures 8 and 9. In the LLMBar dataset, both pos-
itive and negative checklists each constitute ap-
proximately 20% of the total checklists, with the
remainder falling into the neutral category. The
InFoBench dataset shows a different distribution,
with positive and negative checklists each represent-
ing only about 2% across most checklist policies.
The Length * 1.5 and Self-refine policies stand out
as exceptions, with negative checklists surpassing
5% in these cases.

A.5 Ablation Checklist

A.5.1 Selecting Checklist for Ablation

We determine which checklists to use for the ab-
lation of checklist items. To this end, we classify
each checklist as:

• Positive Checklists: ∆s̄all ≥ threshold (sig-
nificantly improves accuracy)

• Negative Checklists: ∆s̄all ≤ −threshold
(significantly degrades accuracy)

We set different threshold values for each dataset:
0.3 for the pairwise comparison dataset and 1.5 for
the direct scoring dataset. We then use the selected
positive and negative checklists for checklist item
ablation.

A.5.2 Ablation Checklist Items
Based on ∆s̄abl, we select the final positive and
negative checklist items as follows:

• Positive Checklist Item: checklist item with
∆s̄abl < 0, indicating that removing this check-
list item degrades performance compared to
using all checklists.

• Negative Checklist Item: checklist item with
∆s̄abl > 0, indicating that removing this check-
list item improves performance compared to
using all checklists.

A.5.3 Results of Checklists After Ablation
Figure 10 shows that positive checklist items pre-
dominantly cluster around the 0.0 score, indicat-
ing their limited impact on evaluation performance.
Similarly, Figure 11 illustrates that nearly half of
the negative checklist items have final scores be-
tween 0.0 and 0.1, suggesting that their negative

10642

1.20 0.96 0.72 0.48 0.24 0.00 0.24 0.48 0.72 0.96 1.20
0

10

20

30

40

50

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Baseline - All Subsets
Mean: -0.016
Median: 0.000
No Change
Threshold (+0.3)
Threshold (-0.3)
Positive
Negative

Total: 224
Positive: 34 (15.2%)
Negative: 38 (17.0%)
Neutral: 152 (67.9%)
Mean: -0.016
Median: 0.000
Std: 0.310

1.20 0.96 0.72 0.48 0.24 0.00 0.24 0.48 0.72 0.96 1.20
0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Ticking - All Subsets
Mean: 0.004
Median: 0.000
No Change
Threshold (+0.3)
Threshold (-0.3)
Positive
Negative

Total: 788
Positive: 121 (15.4%)
Negative: 88 (11.2%)
Neutral: 579 (73.5%)
Mean: 0.004
Median: 0.000
Std: 0.277

1.20 0.96 0.72 0.48 0.24 0.00 0.24 0.48 0.72 0.96 1.20
0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Specify - All Subsets
Mean: 0.013
Median: 0.000
No Change
Threshold (+0.3)
Threshold (-0.3)
Positive
Negative

Total: 783
Positive: 132 (16.9%)
Negative: 126 (16.1%)
Neutral: 525 (67.0%)
Mean: 0.013
Median: 0.000
Std: 0.291

1.20 0.96 0.72 0.48 0.24 0.00 0.24 0.48 0.72 0.96 1.20
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Length*0.5 - All Subsets
Mean: -0.015
Median: -0.025
No Change
Threshold (+0.3)
Threshold (-0.3)
Positive
Negative

Total: 181
Positive: 28 (15.5%)
Negative: 26 (14.4%)
Neutral: 127 (70.2%)
Mean: -0.015
Median: -0.025
Std: 0.281

1.20 0.96 0.72 0.48 0.24 0.00 0.24 0.48 0.72 0.96 1.20
0

5

10

15

20

25

30

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Length*1.5 - All Subsets
Mean: 0.005
Median: 0.000
No Change
Threshold (+0.3)
Threshold (-0.3)
Positive
Negative

Total: 225
Positive: 52 (23.1%)
Negative: 43 (19.1%)
Neutral: 130 (57.8%)
Mean: 0.005
Median: 0.000
Std: 0.331

1.20 0.96 0.72 0.48 0.24 0.00 0.24 0.48 0.72 0.96 1.20
0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Self-refine - All Subsets
Mean: 0.009
Median: 0.000
No Change
Threshold (+0.3)
Threshold (-0.3)
Positive
Negative

Total: 216
Positive: 42 (19.4%)
Negative: 34 (15.7%)
Neutral: 140 (64.8%)
Mean: 0.009
Median: 0.000
Std: 0.300

Figure 8: This figure presents the improvement scores computed for LLMBar across different policies. For each
policy, the positive and negative checklists respectively comprise approximately 20% of the total items.
The subfigures are arranged as follows: the top row shows the Baseline, Ticking, and Specify checklist policies; the
bottom row shows the Length * 0.5, Length * 1.5, and Self-refine policies.

10643

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
0

10

20

30

40

50

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Baseline - All Subsets
Mean: -0.140
Median: 0.000
No Change
Threshold (+1.5)
Threshold (-1.5)
Positive
Negative

Total: 250
Positive: 4 (1.6%)
Negative: 8 (3.2%)
Neutral: 238 (95.2%)
Mean: -0.140
Median: 0.000
Std: 0.670

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
0

10

20

30

40

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Ticking - All Subsets
Mean: -0.250
Median: -0.200
No Change
Threshold (+1.5)
Threshold (-1.5)
Positive
Negative

Total: 250
Positive: 3 (1.2%)
Negative: 4 (1.6%)
Neutral: 243 (97.2%)
Mean: -0.250
Median: -0.200
Std: 0.669

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
0

5

10

15

20

25

30

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Specify - All Subsets
Mean: -0.192
Median: -0.300
No Change
Threshold (+1.5)
Threshold (-1.5)
Positive
Negative

Total: 250
Positive: 2 (0.8%)
Negative: 6 (2.4%)
Neutral: 242 (96.8%)
Mean: -0.192
Median: -0.300
Std: 0.706

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
0

10

20

30

40

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Length*0.5 - All Subsets
Mean: -0.138
Median: -0.100
No Change
Threshold (+1.5)
Threshold (-1.5)
Positive
Negative

Total: 250
Positive: 3 (1.2%)
Negative: 6 (2.4%)
Neutral: 241 (96.4%)
Mean: -0.138
Median: -0.100
Std: 0.605

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
0

5

10

15

20

25

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Length*1.5 - All Subsets
Mean: -0.179
Median: -0.100
No Change
Threshold (+1.5)
Threshold (-1.5)
Positive
Negative

Total: 250
Positive: 1 (0.4%)
Negative: 13 (5.2%)
Neutral: 236 (94.4%)
Mean: -0.179
Median: -0.100
Std: 0.706

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
0

5

10

15

20

25

Fr
eq

ue
nc

y

Distribution of Improvement Scores - Self-refine - All Subsets
Mean: -0.201
Median: -0.233
No Change
Threshold (+1.5)
Threshold (-1.5)
Positive
Negative

Total: 250
Positive: 3 (1.2%)
Negative: 14 (5.6%)
Neutral: 233 (93.2%)
Mean: -0.201
Median: -0.233
Std: 0.766

Figure 9: This figure shows improvement scores calculated on InFoBench. For each evaluation policy, approximately
5% of checklists are classified as positive or negative.
The subfigures are arranged as follows: the top row shows the Baseline, Ticking, and Specify checklist policies; the
bottom row shows the Length * 0.5, Length * 1.5, and Self-refine policies.

10644

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

5

10

15

20

25

30

35

40
Fr

eq
ue

nc
y

Positive Checklist Items
 (S_all < 0)
Mean: -0.200
Median: -0.125

Total: 160
Mean: -0.200
Median: -0.125
Std: 0.314
Positive Checklist Items:100
Positive Rate: 62.5%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.154
Median: -0.071

Total: 598
Mean: -0.154
Median: -0.071
Std: 0.331
Positive Checklist Items:319
Positive Rate: 53.34%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

25

50

75

100

125

150

175

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.206
Median: -0.167

Total: 656
Mean: -0.206
Median: -0.167
Std: 0.335
Positive Checklist Items:361
Positive Rate: 55.03%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

10

20

30

40

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.092
Median: 0.000

Total: 137
Mean: -0.092
Median: 0.000
Std: 0.327
Positive Checklist Items:53
Positive Rate: 38.69%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.189
Median: -0.100

Total: 264
Mean: -0.189
Median: -0.100
Std: 0.333
Positive Checklist Items:142
Positive Rate: 53.79%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

10

20

30

40

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.143
Median: -0.056

Total: 203
Mean: -0.143
Median: -0.056
Std: 0.334
Positive Checklist Items:104
Positive Rate: 51.23%

Figure 10: Positive checklist ablation results on the LLMBar dataset. Each plot shows how removing checklist
items impacts correlation with human evaluation. Positive checklist items (∆s̄abl < 0) are highlighted in green. Most
scores lie between -0.1 and 0.1. The six generation policies—Baseline, Ticking, Specify, Length*0.5, Length*1.5,
Self-Refine—are arranged top-left to bottom-right. All but Length0.5 have over 50% positive checklist items;
Length0.5 falls below 40%.

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.041
Median: 0.000

Total: 954
Mean: 0.041
Median: 0.000
Std: 0.324
Negative Checklist Items: 388
Negative Rate: 40.67%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

200

400

600

800

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.055
Median: 0.000

Total: 2887
Mean: 0.055
Median: 0.000
Std: 0.333
Negative Checklist Items: 1235
Negative Rate: 42.78%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.059
Median: 0.000

Total: 2812
Mean: 0.059
Median: 0.000
Std: 0.343
Negative Checklist Items: 1211
Negative Rate: 43.07%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

50

100

150

200

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.032
Median: 0.000

Total: 765
Mean: 0.032
Median: 0.000
Std: 0.311
Negative Checklist Items: 312
Negative Rate: 40.78%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.073
Median: 0.000

Total: 864
Mean: 0.073
Median: 0.000
Std: 0.331
Negative Checklist Items: 351
Negative Rate: 40.62%

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Contribution Score

0

50

100

150

200

250

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.033
Median: 0.000

Total: 875
Mean: 0.033
Median: 0.000
Std: 0.320
Negative Checklist Items: 350
Negative Rate: 40.0%

Figure 11: Negative checklist ablation results on the LLMBar dataset. Each plot shows how removing checklist
items impacts correlation with human evaluation. Negative checklist items (∆s̄abl > 0) are highlighted in red. Most
scores lie between -0.1 and 0.1. The order of plots matches that of the positive checklist items. For all checklist
generation policies, the proportion of checklists in the final negative region is around 40%.

10645

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0

1

2

3

4

5

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.631
Median: -0.700

Total: 16
Mean: -0.631
Median: -0.700
Std: 0.179
Positive Checklist Items:16
Positive Rate: 100.0%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -1.008
Median: -1.000

Total: 13
Mean: -1.008
Median: -1.000
Std: 0.262
Positive Checklist Items:13
Positive Rate: 100.0%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.940
Median: -0.900

Total: 5
Mean: -0.940
Median: -0.900
Std: 0.206
Positive Checklist Items:5
Positive Rate: 100.0%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.943
Median: -0.900

Total: 7
Mean: -0.943
Median: -0.900
Std: 0.090
Positive Checklist Items:7
Positive Rate: 100.0%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.875
Median: -0.850

Total: 8
Mean: -0.875
Median: -0.850
Std: 0.139
Positive Checklist Items:8
Positive Rate: 100.0%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Positive Checklist Items
 (S_all < 0)
Mean: -0.743
Median: -0.700

Total: 7
Mean: -0.743
Median: -0.700
Std: 0.090
Positive Checklist Items:7
Positive Rate: 100.0%

Figure 12: Positive checklist ablation results on the InFoBench dataset. Each plot shows how removing checklist
items impacts correlation with human evaluation. Positive checklist items (∆s̄abl < 0) are highlighted in green. All
checklists are positive checklist items.

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: -0.053
Median: -0.083

Total: 266
Mean: -0.053
Median: -0.083
Std: 0.569
Negative Checklist Items: 117
Negative Rate: 43.98%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: 0.020
Median: -0.000

Total: 266
Mean: 0.020
Median: -0.000
Std: 0.693
Negative Checklist Items: 127
Negative Rate: 47.74%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0

5

10

15

20

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: -0.114
Median: -0.200

Total: 266
Mean: -0.114
Median: -0.200
Std: 0.602
Negative Checklist Items: 93
Negative Rate: 34.96%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: -0.004
Median: 0.000

Total: 142
Mean: -0.004
Median: 0.000
Std: 0.503
Negative Checklist Items: 47
Negative Rate: 33.1%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0

5

10

15

20

25

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: -0.111
Median: -0.200

Total: 266
Mean: -0.111
Median: -0.200
Std: 0.767
Negative Checklist Items: 98
Negative Rate: 36.84%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Contribution Score

0

5

10

15

20

25

Fr
eq

ue
nc

y

Negative Checklist Items
(S_all > 0)
Mean: -0.016
Median: -0.067

Total: 266
Mean: -0.016
Median: -0.067
Std: 0.583
Negative Checklist Items: 117
Negative Rate: 43.98%

Figure 13: Negative checklist ablation results on the InFoBench dataset. Each plot shows how removing checklist
items impacts correlation with human evaluation. Negative checklist items (∆s̄abl > 0) are highlighted in red. Most
scores lie between -0.5 and 0.5. For all checklist generation policies, the proportion of checklists in the final negative
region is from 30% to 50%.

10646

Checklist Policy Original Verified Reduced Verified Ratio (%) Dataset

Baseline 3488 879 2609 25.2 LLMBar
Ticking 3722 3365 357 90.4 LLMBar
Specify 3821 3467 354 90.7 LLMBar
Length * 0.5 1714 391 1323 22.8 LLMBar
Length * 1.5 5266 1349 3917 25.6 LLMBar
Self-refine 3490 862 2628 24.7 LLMBar

Baseline 245 245 0 100 InFoBench
Ticking 265 265 0 100 InFoBench
Specify 266 266 0 100 InFoBench
Length * 0.5 123 123 0 100 InFoBench
Length * 1.5 367 367 0 100 InFoBench
Self-refine 244 244 0 100 InFoBench

Table 7: Checklist verification results for each method on the LLMBar and the InFoBench, including the number
of original, verified, and reduced checklists, and the reduced ratio for each checklist policy. The results show
significant variation in checklist reduction, with Ticking and Specify methods achieving the highest reduction ratios
on both datasets, while other methods like Length*0.5 show lower reductions.

impact is also minimal. Across different policies,
negative checklist items consistently represent ap-
proximately 40% of all negative checklists.

However, the proportion of positive checklists
that qualify as positive checklist items varies signif-
icantly across policies. For example, in the Base-
line, over 60% of positive checklists (100 out of
160), whereas in the Length * 0.5, less than 40%
meet this criterion (53 out of 137).

In the InFoBench dataset, we identify 56 items
as positive checklists and 1472 items as negative
checklists in Figure 12 and 13. Notably, all posi-
tive checklists qualify as positive checklist items,
while 599 items (40.7%) qualify as negative check-
list items. The majority of these negative check-
list items have final scores between -0.5 and 0.5.
Across different policies, negative checklist items
represent between 30% and 50% of all negative
checklists. Almost all positive checklist items in
the InFoBench dataset demonstrate final scores be-
low -0.5, suggesting they consistently bring evalua-
tion results closer to gold labels, albeit by a small
margin.

A.6 Qualitative Analysis
A.6.1 Threshold Determination for

Qualitative Analysis of Checklist
Effectiveness

We detail the specific criteria used to identify check-
lists with a substantial impact on evaluation perfor-
mance in each dataset. These thresholds serve as
the basis for our qualitative analysis.

For the LLMBar dataset, we analyze the follow-
ing:

• Positive checklist items with ∆s̄abl < 0.9

• Negative checklist items with ∆s̄abl > 0.9

Applying these stringent criteria, we identify 33
items (1.6% of checklists) and 102 items (2.6% of
negative checklists) as having a substantial impact
on evaluation.

For the InFoBench dataset, we examine the fol-
lowing:

• All positive checklist items Negative checklist
items with ∆s̄abl > 0.9

These thresholds yield 56 items (All positive check-
list items) and 102 items (6.9% of negative check-
lists) that show notable influence on evaluation
quality.

A.6.2 In-Depth Qualitative Analysis of
Generated Checklist Items

We conduct a qualitative analysis focusing on
checklist items that significantly impact evaluation
performance, aiming to identify which characteris-
tics contribute to alignment with human evaluation.
Based on this analysis, we identify six labels for
positive checklist items and four labels for negative
ones.

The following are the positive labels:

• Explicit Focus (Explicit): The checklist item
clearly states which aspect of the question the
response should focus on.

• Implicit Focus (Implicit): The focus is not
explicitly stated in the item, but it reflects an
important aspect necessary for answering or
evaluating the question.

10647

Task

Positive

The tone of the email should be changed and rewritten in a more professional manner.

Subject: Asking for Vacation Time
Hi [Employer],
I hope all is well. I am writing to request a day off on [date]. I have already taken care of my work
responsibilities for that day and will be available to answer any questions or concerns you may have.
Thank you for your time,
[Your name]}

Neither

Negative

Baseline

Baseline Specify

Specify

Length
* 0.5

Length
* 0.5

Length
* 1.5

Length
* 1.5

Self-
refine

Self-
refine

Ticking

Ticking

Does the rewritten email maintain a
professional tone throughout?

Is the subject line appropriate and
relevant to the content of the email?

Does the email clearly state the request for
a day off, including the specific date?

Does the rewritten email maintain a
professional tone throughout?

Is the subject line appropriate and
relevant to the content of the email?

Does the email clearly state the request
for a day off, including the specific date?

Does the response maintain the subject
line relevant to requesting vacation time?

Does the response rewrite the email in a
more professional tone?

Is the subject line appropriate and
relevant to the content of the email?

Does the rewritten email maintain a
professional tone throughout?

Does the rewritten email maintain a
professional tone throughout?

Is the subject line appropriate and
relevant to the content of the email?

Ablation Result

Figure 14: All checklist policies’ checklist items. We use Qwen2.5-7B-it as the evaluation model and select the
following task from the InFoBench. In the ablation result, we categorize outputs as Positive, Negative, or Neither,
and we show one example. For this task, the Baseline, Length*0.5, and Self-refine variants produce outputs labeled
as Positive. In contrast, only the Ticking variant produces Negative checklist items.

• Proposal Answer (Ans): The item encour-
ages or expects a concrete answer, such as a
proposal or opinion, in the response.

• Clarity: The item evaluates how easy the re-
sponse is to understand, such as “Is the re-
sponse informative and provides a clear expla-
nation?”.

• Additional Content (Add): The item in-
cludes aspects not strictly required to answer
the question, but still useful for checklist-
based evaluation.

• Tone: The item assesses the appropriateness
of the response’s tone or style, such as “Is the
language clear and formal, appropriate for a
legal notice?”.

The following are the negative labels:

• Non-negative: Although classified as a neg-
ative item, it is still reasonably usable as a
checklist item for the given question.

• Limited Content (Limited): The item re-
flects only a narrow or insufficient aspect of

the response, failing to adequately capture its
quality.

• Clarity: The item evaluates how easy the re-
sponse is to understand, such as “Is the re-
sponse logically consistent with the analogy
format presented in the question?”.

• Additional Content (Add): The item in-
cludes aspects not strictly required to answer
the question, but still useful for checklist-
based evaluation.

Tables 9 and 10 present the distribution of posi-
tive and negative checklist item labels for the LLM-
Bar and the InFoBench, respectively. These tables
illustrate how frequently each label type appears in
the generated checklists.

A.7 Generate Checklist Example
Table 8 shows an analysis of evaluators and check-
lists in the InFoBench. This example illustrates
how the evaluation results change for multiple eval-
uators when comparing the cases without a check-
list (N) and with a checklist (C), in relation to hu-
man labels (H). It also presents the corresponding

10648

Evaluator Task H N C Checklist

Qwen2.5-
7B-it

Identify the programming language used to write
the given code.

if (20 > 18) printf(“20 is greater than 18”);

5 5 3 □ Does the response correctly identify the use of the
‘printf’ function as characteristic of the C programming
language?
□ Does the response recognize the syntax of the condi-
tional statement as typical of C-style languages?

gemma-2-
27b-it

A confirmation email should be written appro-
priately for the situation. A meeting has been
scheduled, and the sender expects the other to
review the slides.

5 3 5 □ Does the response confirm the details of the scheduled
meeting?
□ Does the response mention that the recipient is ex-
pected to review the slides before the meeting?

Ministral-
8B-it

Think of alternatives and paraphrases for the
underlined word.

what we have _expected

5 3 5 □ Does the response provide alternatives to the word
“expected”?
□ Does the response offer paraphrases that fit in the
context of “what we have expected”?

Table 8: Analysis of evaluator and checklists in InFoBench: examples of models with significant changes in
correlation when using checklists (H: human labels, N: without checklists, C: checklists applied to a response).

Pos Explicit Implicit Ans Clarity Add Tone

LLMBar 18 5 3 2 5 0
InFoBench 33 20 0 0 2 1
Sum 51 25 3 2 7 1
Rare(%) 57.3 28.1 3.4 2.2 7.9 1.1

Table 9: Label distribution of checklist items classified
as positive. The majority (≈60%) are Explicit Focus
(Explicit) items, clearly aligning with elements explic-
itly stated in the question. About 30% are Implicit
Focus (Implicit), reflecting important but implicit eval-
uation criteria.

checklists used in each case. Qwen2.5-7B-it shows
lower evaluation performance when using a check-
list, reducing its alignment with human judgments.
In contrast, Gemma-2-27B-it and Mistral-8B-it im-
prove their alignment with human evaluations when
using checklists.

Figure 14 shows all the checklist policies’ check-
list items. We use Qwen2.5-7B-it as an evaluation
model and one of the open questions as a task.
The column labeled “Ablation Result” reports the
outcome of ablation studies conducted on individ-
ual checklist items. Items marked as Positive con-
tribute to alignment with human evaluations, while
those marked as Negative do not. Items labeled
Neither show no clear effect in either direction. For
each policy, we provide two representative exam-
ples to illustrate the effects.

A.8 Prompts for Checklist Generation and
Response Evaluation

Figures 15, 16, 17, 18, and 19 present the prompt
used for generating checklists(Baseline, Specify,

Neg Non-negative Limited Clarity Add

LLMBar 85 11 3 3
InFoBench 92 10 0 0
Sum 177 21 3 3
Rare(%) 86.8 10.3 1.5 1.5

Table 10: Distribution of textitnegative checklist item
labels. While more than 85% of the checklist items la-
beled as Non-negative are still aligned with the question
and valid upon manual inspection, about 10% are found
to be Limited Content (Limited) in evaluating the re-
sponse, suggesting room for improvement in checklist
quality.

Length,Self-refine, and Ticking). We use GPT-4o
as the generation model.

Figures 20, 21, 22, and 23 present the prompts
used for evaluating responses. Figures 20 and 21
show the evaluation prompts for the pairwise com-
parison datasets, while Figures 22 and 23 show the
prompts for the direct scoring datasets.

10649

In order to evaluate the AI's response to the input, please create a checklist based on the input.

Checklist questions should:
- **Be answerable by “yes” or “no”**, with “yes" meaning that the response successfully met the corresponding requirement.
- **Be comprehensive, but concise**, meaning that all criteria directly relevant to the input should be represented by a question,

but only questions that are very clearly relevant should be included.
- **Be precise**, meaning that checklist questions should avoid vague wording and evaluate specific aspects of a response,

directly using the phrasing of the input where appropriate.

You should always analyze the input before providing an evaluation checklist.
Please enclose each checklist item in double square brackets and output in the following format:

Analysis: Please state the analysis for the input
Checklist:
- [[Item 1]]
- [[Item 2]]

[Start of Input]
{question}
[End of Input]

Figure 15: Prompt used in the Baseline.

In order to evaluate the AI's response to the input, please create a checklist based on the input.

Checklist questions should:
- **Be answerable by “yes” or “no”**, with “yes” meaning that the response successfully met the corresponding requirement.
- **Be comprehensive, but concise**, meaning that all criteria directly relevant to the input should be represented by a question,

but only questions that are very clearly relevant should be included.
- **Be precise**, meaning that checklist questions should avoid vague wording and evaluate specific aspects of a response,

directly using the phrasing of the input where appropriate.
- **Be considerate of expected answers**, meaning that checklist questions should be designed while taking into account

possible answers to the input.

You should always analyze the input before providing an evaluation checklist.
Please enclose each checklist item in double square brackets and output in the following format:

Analysis: Please state the analysis for the input
Checklist:
- [[Item 1]]
- [[Item 2]]

[Start of Input]
{question}
[End of Input]

Figure 16: Prompt used in the Specify.

In order to evaluate the AI's response to the input, please create a checklist based on the input.

Checklist questions should:
- **Be answerable by “yes” or “no”**, with “yes” meaning that the response successfully met the corresponding requirement.
- **Be comprehensive, but concise**, meaning that all criteria directly relevant to the input should be represented by a question,

but only questions that are very clearly relevant should be included.
- **Be precise**, meaning that checklist questions should avoid vague wording and evaluate specific aspects of a response,

directly using the phrasing of the input where appropriate.
- **Be comprised of {n} items**, meaning that the checklist must contain {n} questions.

You should always analyze the input before providing an evaluation checklist.
Please enclose each checklist item in double square brackets and output in the following format:

Analysis: Please state the analysis for the input
Checklist:
- [[Item 1]]
- [[Item 2]]

[Start of Input]
{question}
[End of Input]

Figure 17: Prompt used in the Checklist Length. First, the number of checklist items for the Baseline method is
calculated. Then, the prompt instructs to generate a checklist with the number of items multiplied by 0.5 or 1.5.

10650

Please refine the given checklist for evaluating the AI's response according to the following steps:

1. Evaluate each checklist item based on the requirements below.

Checklist questions should:
- **Be answerable by “yes” or “no”**, with “yes” meaning that the response successfully met the corresponding requirement.
- **Be comprehensive, but concise**, meaning that all criteria directly relevant to the input should be represented by a question,

but only questions that are very clearly relevant should be included.
- **Be precise**, meaning that checklist questions should avoid vague wording and evaluate specific aspects of a response,

directly using the phrasing of the input where appropriate.

2. Rate each checklist item on a 5-point size (1 = lowest, 5 = highest) and provide feedback. Present your evaluation using the format below:

Checklist Evaluation:
1. [Item 1] - [Rating]: [Feedback]
2. [Item 2] - [Rating]: [Feedback]

3. Refine the checklist based on this feedback. Enclose each checklist item in double square brackets and output them in the following format:

Refined Checklist:
- [[Item 1]]
- [[Item 2]]

[Start of Input]
{question}
[End of Input]

[Start of Base Checklist]
{checklist}
[End of Base Checklist]

Figure 18: Prompt used in the Self-refine. First, LLM generates checklists using the Baseline method. Next,
LLM outputs a Likert scale (1-to-5) evaluation and its rationale for the generated checklists. Finally, based on this
rationale, LLM regenerates checklists.

Please help judge an AI assistant's response to an instruction by providing an evaluation checklist.
To write a specific evaluation checklist, you get given the following entity each time:
INSTRUCTION: An instruction that has been given to an AI assistant.

Task Details
Your task is to come up with an evaluation checklist list for a given INSTRUCTION.
This evaluation checklist should be a list of questions that ask whether or not specific criteria relevant to the INSTRUCTION were met by an AI assistant's response.
Criteria covered by your checklist could be explicitly stated in the INSTRUCTION, or be generally sensible criteria for the problem domain.
You should, however, try to be concise and not include unnecessary entries in your checklist.

Checklist questions should:
- **Be answerable by “yes” or “no”**, with “yes” meaning that the response successfully met the corresponding requirement.
- **Be comprehensive, but concise**, meaning that all criteria directly relevant to the INSTRUCTION should be represented by a question,

but only questions that are very clearly relevant should be included.
- **Be precise**, meaning that checklist questions should avoid vague wording and evaluate specific aspects of a response,

directly using the phrasing of the INSTRUCTION where appropriate.

You should always analyze the INSTRUCTION before providing an evaluation checklist.
Response Format
Analysis: xxx
Checklists:
- [[item1]]
- [[item2]]

Real Task

INSTRUCTION
{question}

Response
Please analyze the instruction and provide an answer in the correct format.
Remember that each question should be phrased such that answering with “yes” would mean that the response **successfully** fulfilled the criteria being assessed by the question.
In most cases, your checklist should contain at least two questions, but no more than eight.

Figure 19: Prompt uses in the Ticking. We use TICKing’s (Cook et al., 2024) prompt. Since their paper does not
contain examples that they use, we remove the specific in-context examples to use this prompt.

10651

Please evaluate the answers according to the following procedure:

1. Evaluate the two responses to the input.
2. First, state the reason for your evaluation. Then decide which answer is better: 1 or 2.
3. Output your response in the following JSON format:
“““ json
{{

“reason“: “Please state the reason for evaluation“,
“judge“: 1,

}}
“““
4. Do NOT output anything other than the JSON format.

[Start of Input]
{question}
[End of Input]

[Start of Response 1]
{response_1}
[End of Response 1]

[Start of Response 2]
{response_2}
[End of Response 2]

Figure 20: Prompt used for pairwise response comparison, conducted without any checklist-based evaluation
criteria.

Please evaluate the answers according to the following procedure:

1. Evaluate the two responses to the input.
2. Use the given checklist for your evaluation.
3. For each item in the checklist, output “yes”, “no”, or “n/a” if it does not apply.
4. Compare the two responses based on the checklist.
5. Decide which answer is better: 1 or 2.
6. Output your response in the following JSON format:
“““json
{{

{{
“checklist”:

“response_1”: {{
“1”: “yes”,
“2”: “no”,
“3”: “n/a”
}},
“response_2”: {{
“1”: “no”,
“2”: “n/a”,
“3”: “yes”
}}

}}
“judge”: 1,

}}
”””
7. Do not output anything other than the JSON format.

[Start of Input]
{question}
[End of Input]

[Start of Checklist]
{checklist}
[End of Checklist]

[Start of Response 1]
{response_1}
[End of Response 1]

[Start of Response 2]
{response_2}
[End of Response 2]

Figure 21: Prompt used to evaluate response pairs using checklist-based criteria.

10652

Please evaluate the following response according to the procedure below:

1. Evaluate the response to the input on a size of 1 (lowest) to 5 (highest).
2. First, state the reason for your evaluation. Then provide the overall rating (1-5).
3. Use the following guidelines for each rating:

Rating-1 (Very Bad): The model's response is entirely irrelevant to the input posed. It demonstrates no understanding of the requested task.
Rating-2 (Bad): While there is a minimal degree of relevance to the original input, the response is predominantly incorrect, confusing, or both.
Rating-3 (Okay): The response shows some relation to the posed input but lacks critical details or includes inaccuracies.
Rating-4 (Good): This rating is given when the response is mostly accurate and comprehensive. However, it might include slight errors or omit minor details.
Rating-5 (Excellent): A response receiving this rating is entirely accurate, detailed, and aligns perfectly with the requirements of the input.

4. Output your response in the following JSON format:
```json
{{

`reason': `Explain the rationale for the rating',
`rating': 3

}}
```
5. Do NOT output anything other than the JSON format.

[Start of Input]
{question}
[End of Input]

[Start of Response]
{response}
[End of Response]

Figure 22: Prompt used for direct scoring evaluation without checklists.

Please evaluate the following response according to the procedure below:

1. Evaluate the response to the input on a size of 1 (lowest) to 5 (highest).
2. Use the given checklist for your evaluation.
3. For each item in the checklist, output “yes,” “no,” or “n/a” if it does not apply.
4. Evaluate the response based on the checklist.
5. Use the following guidelines for each rating:

Rating-1 (Very Bad): The model’s response is entirely irrelevant to the input posed. It demonstrates no understanding of the requested task.
Rating-2 (Bad): While there is a minimal degree of relevance to the original input, the response is predominantly incorrect, confusing, or both.
Rating-3 (Okay): The response shows some relation to the posed input but lacks critical details or includes inaccuracies.
Rating-4 (Good): This rating is given when the response is mostly accurate and comprehensive. However, it might include slight errors or omit minor details.
Rating-5 (Excellent): A response receiving this rating is entirely accurate, detailed, and aligns perfectly with the requirements of the input.

6. Output your response in the following JSON format:
“““json
{{

“checklist”: {{
“1”: “yes”,
“2”: “no”,
“3”: “n/a”

}}
“rating”: 3,

}}
“““
7. Do NOT output anything other than the JSON format.

[Start of Input]
{question}
[End of Input]

[Start of Checklist]
{checklist}
[End of Checklist]

[Start of Response]
{response}
[End of Response]

Figure 23: Prompt used for direct scoring evaluation with checklists.

10653

