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Abstract

Visual Question Answering (VQA) is increas-
ingly used in diverse applications ranging
from general visual reasoning to safety-critical
domains such as medical imaging and au-
tonomous systems, where models must pro-
vide not only accurate answers but also expla-
nations that humans can easily understand and
verify. Prototype-based modeling has shown
promise for interpretability by grounding pre-
dictions in semantically meaningful regions for
purely visual reasoning tasks, yet remains un-
derexplored in the context of VQA. We present
ProtoVQA, a unified prototypical framework
that (i) learns question-aware prototypes that
serve as reasoning anchors, connecting answers
to discriminative image regions, (ii) applies
spatially constrained matching to ensure that
the selected evidence is coherent and semanti-
cally relevant, and (iii) supports both answering
and grounding tasks through a shared prototype
backbone. To assess explanation quality, we
propose the Visual–Linguistic Alignment Score
(VLAS), which measures how well the model’s
attended regions align with ground-truth evi-
dence. Experiments on Visual7W show that
ProtoVQA yields faithful, fine-grained explana-
tions while maintaining competitive accuracy,
advancing the development of transparent and
trustworthy VQA systems.

1 Introduction

Visual Question Answering (VQA) is a key chal-
lenge in AI, requiring systems to understand and
reason about both visual content and natural lan-
guage queries (Zhu et al., 2016; Kafle and Kanan,
2017; Li et al., 2024a). Recent advances in vision
transformers (Dosovitskiy et al., 2021; Touvron
et al., 2021) have significantly improved perfor-
mance by enhancing multimodal feature learning,
leading to better accuracy on VQA benchmarks.

♢contributed equally

As VQA systems are applied in critical fields
such as medical diagnosis (Wang et al., 2022; Don-
nelly et al., 2024; Yang et al., 2024), autonomous
driving (Ramos et al., 2017) and criminal justice
(Berk et al., 2019), model transparency is essential.
Current state-of-the-art models operate as black
boxes, making it difficult to interpret their reason-
ing or verify reliability. Traditional VQA inter-
pretability approaches, primarily using attention
visualization or post-hoc explanation methods, of-
ten fail to faithfully represent the internal decision-
making process of the model (Chen et al., 2019;
Ma et al., 2023, 2024).

Prototype-based learning has emerged as a
promising approach to improving interpretability
(Chen et al., 2019; Barnett et al., 2021; Donnelly
et al., 2022; Ma et al., 2023). The latest work
like ProtoViT (Ma et al., 2024) shows that Vision
Transformers can enable flexible prototype learn-
ing while maintaining interpretability. In ProtoViT,
each prototype is a learned embedding representing
a recurring semantic concept, such as an object part
or texture. At inference, the model matches image
patches to prototypes and visualizes these regions
to expose the reasoning process. For example, a
“beak” prototype often activates on bird-head areas,
grounding the decision in interpretable visual cues.

While these methods have shown success in
purely visual tasks, extending prototype-based rea-
soning to multimodal settings introduces unique
challenges. In particular, VQA requires aligning
visual evidence with language queries, which com-
plicates prototype learning and interpretability. Key
challenges include: (i) Prototype-based approaches
often focus on single modality (visual/textual) inter-
pretability, struggling to bridge the visual-textual
semantic gap; (ii) Rigid prototypical features fail to
capture geometric variations and dynamic visual-
question relationships; (iii) These methods lack the
ability to provide fine-grained explanations at both
the component level and system level, making it dif-
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Figure 1: Overview of ProtoVQA. ProtoVQA extracts visual features through DeiT Extractor and encodes questions
through DeBERTa Extractor. Image patch features undergo greedy matching with question-aware prototypes
generated through a feature projector. For answering, the model processes either coordinate inputs (Type 1) through
another projector, or textual answers (Type 2) through DeBERTa and a frozen feature projector sharing weights
from the question branch. The matched patch features are concatenated with answer features for final classification.

ficult to understand how individual parts contribute
to the final decision.

To address these issues, we propose ProtoVQA.
Our contributions are:

• We introduce an adaptable prototypical frame-
work capable of seamlessly handling diverse
visual-linguistic downstream tasks, including
both visual question answering and grounding,
through a shared prototype-based backbone with
task-specific answer processing modules.

• We employ a spatially-constrained greedy match-
ing strategy to model dynamic visual-question
relationships and geometric variations.

• Our model achieves comprehensive explainabil-
ity through explicit visual evidence and system-
atic validation of visual-linguistic alignment.

2 ProtoVQA

We present ProtoVQA (Figure 1), a prototype-based
approach to visual question answering that achieves
interpretability through question-aware prototype
learning and spatially-constrained patch matching.
By explicitly mapping prototypes to discriminative
image regions, ProtoVQA can provide transparent
reasoning paths from questions to visual evidence.

2.1 Feature Extraction Module

The visual feature extraction leverages pre-trained
DeiT (Touvron et al., 2021) as a backbone to
extract patch-level visual features. Let I ∈
RH×W×3 denote the input image. The DeiT
backbone processes I to produce a feature map
F = [fCLS, f1, . . . , fN ] ∈ R(N+1)×D, where

fCLS ∈ RD is the global CLS token feature and
fn ∈ RD for n ∈ {1, ..., N} are the image patch
features. Patch feature representation is enhanced
by forming Fvisual = [f1−fCLS, . . . , fN −fCLS].

For textual input, ProtoVQA utilizes a pre-trained
DeBERTa model (He et al., 2021). The question
Q, represented as a token sequence [q1, q2, ..., qlq ],
is encoded by DeBERTa, yielding embeddings
Eq ∈ Rlq×Dtext , where Dtext is the DeBERTa hid-
den dimension. These embeddings are then pro-
jected into the shared visual-linguistic space RD

via a learnable feature projector F . For answer
processing, there are two pathways: For question
answering tasks, answer candidates are encoded
by DeBERTa and projected to RD using the same
feature projector F with frozen parameters whose
weights are copied from the question encoding.
This weight-sharing mechanism ensures consis-
tent representation of question and answer candi-
dates in the shared visual-linguistic space, while
the frozen parameter design prevents potential over-
fitting. For visual grounding tasks, the coordinate
inputs P ∈ R4 are directly projected to the same
feature space through a separate feature projector.

2.2 Interpretable Prototypical Part Selection
Module

This module constitutes the core novelty and inter-
pretability mechanism of ProtoVQA. It introduces
sub-patch prototypes and a greedy matching algo-
rithm with spatial constraints to select salient image
parts.

2.2.1 Sub-patch Prototypes
To link question semantics with visual evidence,
we reshape the first m×k projected question tokens
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into a 3D tensor:

P = Reshape(F(Eq[: m× k])) ∈ Rm×k×D. (1)

This forms m prototypes, each composed of k sub-
patches prototypes sharing the same dimensionality
as visual features. These prototypes act as semantic
anchors, capturing discriminative visual concepts
conditioned on the question. A learnable weight-
ing mechanism modulates the relevance of each
sub-patch, enabling context-aware patch selection.
The resulting prototypes are then used in the match-
ing process (Section 2.2.2), where their alignment
with the image regions directly influences the final
prediction.

2.2.2 Greedy Matching for Patch Selection

The core matching mechanism employs a spatially-
constrained greedy algorithm (Ma et al., 2024) to
establish correspondences between sub-patch pro-
totypes and image regions. For each prototype
Pi ∈ Rk×D from our prototype set P , the algo-
rithm iteratively constructs a spatially coherent set
of matched image patches through k iterations.

At each iteration t, we first calculate the similar-
ity matrix St ∈ RN×k between all patch features
Fvisual and prototype sub-patches Pi:

St
n,j =

Fvisual,n · Pi,j

∥Fvisual,n∥∥Pi,j∥
, (2)

where n ∈ {1, ..., N} indexes image patches and
j ∈ {1, ..., k} indexes sub-patches.

The algorithm then identifies the optimal patch-
subpatch pair (n∗, j∗) that maximizes the similarity
score:

(n∗, j∗) = argmax
n,j

St
n,j ·M t

n ·At
n, (3)

where M t ∈ {0, 1}N is a binary mask that indi-
cates available patches in iteration t (1 for available
patches, 0 for unavailable), and At ∈ {0, 1}N is
an adjacency mask that enforces spatial continu-
ity with previously selected patches. After each
selection, the masks are updated: M t+1 marks the
selected patch as unavailable by setting M t+1

n∗ = 0
to prevent repeated selection in subsequent itera-
tions, and At+1 is updated to mark as valid only
those patches within a spatial constraint radius r
from position n∗, ensuring spatial coherence in the
matching process.

The final matching score for prototype Pi is com-
puted as a weighted combination of individual sub-
patch similarities:

score(Pi) =
k∑

t=1

wt · St
n∗
t ,j

∗
t
, (4)

where wt are learnable slot weights that modu-
late the importance of each sub-patch match, and
(n∗

t , j
∗
t ) denotes the optimal pair selected at iter-

ation t. This spatially-aware matching strategy
ensures the selected patches form coherent visual
regions while maintaining semantic relevance to
the prototype.

2.3 Answer Processing
ProtoVQA supports two types of answer processing:
Type 1 (Visual Grounding) for tasks requiring pre-
cise coordinate-based answers, where input coordi-
nates P ∈ R4 are projected directly into the feature
space through a dedicated projector; and Type 2
(Descriptive QA) for tasks requiring textual an-
swers, where candidates are encoded by DeBERTa
and projected using a frozen feature projector that
shares weights with the question branch, ensuring
consistent representation while preventing overfit-
ting. In both cases, the matched patch features are
concatenated with the processed answer features
and fed directly through a classification layer for
final prediction.

2.4 Visual–Linguistic Alignment Evaluation
A key requirement for interpretable VQA is that
models not only produce the correct answer but
also ground their reasoning process in semantically
relevant visual evidence. Existing evaluation proto-
cols typically rely on Intersection-over-Union (IoU)
or other pixel-level overlap metrics that are primar-
ily designed for detection or segmentation tasks.
While effective for measuring localization accu-
racy, these metrics are poorly aligned with the goal
of explanation because they may penalize valid but
partially overlapping evidence, are highly sensitive
to annotation scale, and fail to capture whether the
selected regions are conceptually meaningful in the
context of the question.

To address these limitations and systemat-
ically evaluate the alignment between visual
and linguistic components, we introduce the Vi-
sual–Linguistic Alignment Score (VLAS), an
interpretability-oriented metric that directly evalu-
ates whether a model’s attended regions are seman-
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Method Vision Encoder Text Encoder Accuracy (%)↑
SUPER (Han et al., 2023) FasterRCNN GRU 64.07

QOI_Attention (Gao et al., 2018) FasterRCNN GRU 65.90
SDF of VLT (Ding et al., 2022) ViT-patch16 BERT 65.93

STL (Wang et al., 2018) ResNet200 n-gram 68.20
CFR (Nguyen et al., 2022) FasterRCNN GRU 71.90

BriVL (Fei et al., 2022) Custom image patch+CNN RoBERTa 72.06
CTI (Do et al., 2019) FasterRCNN LSTM/GRU 72.30

Bi-CMA (Upadhyay and Tripathy, 2025) ViT-patch16 BERT 70.53
Bi-CMA (Upadhyay and Tripathy, 2025) ViT-patch16 (finetune) BERT 73.07

ProtoVQA (Ours) ViT-patch16 DeBERTa 70.23

Table 1: Accuracy comparison with representative state-of-the-art foundation VQA models on the Visual7W (Zhu
et al., 2016) test set. The table lists the vision encoder backbone, the text encoder backbone, and the accuracy of
each method, with accuracy reported in percentages (indicated by the % symbol). The evaluated methods span
both traditional CNN–RNN pipelines and modern Transformer-based vision–language architectures. The result of
ProtoVQA is shown in the final row. The ↑ symbol indicates that higher values represent better performance.

tically consistent with the ground-truth evidence.
For each QA pair i, we compute:

VLAS =

∑N
i=1 I(Mi ∩Gi > θ)

NQA
, (5)

where Mi denotes the model-attended region, rep-
resented as the union of matched patch boxes, and
Gi is the corresponding ground truth region. The
indicator function I(·) returns 1 if the intersection-
over-union (IoU) between Mi and Gi exceeds the
threshold θ, and 0 otherwise. We follow standard
practice in object detection and set θ = 0.5.

VLAS offers several advantages compared with
traditional IoU-based metrics: (i) it captures the
binary nature of human judgments by measuring
whether an explanation is acceptable rather than re-
warding incremental overlap; (ii) it mitigates biases
caused by variable annotation scales; and (iii) it en-
ables robust dataset-level evaluation by aggregating
the proportion of QA pairs with satisfactory align-
ment instead of averaging raw IoU values, which
can be skewed by a few large regions.

3 Experiments

3.1 Setup
Dataset (i) Visual7W (Zhu et al., 2016) is a
large-scale grounded VQA benchmark compris-
ing 327,939 question–answer pairs collected over
47,300 COCO images. Each question is paired
with four human-curated multiple-choice options,
totaling over 1.3M candidate answers, and 561,459
object-level groundings spanning 36,579 unique
categories. These rich annotations enable fine-
grained evaluation of both answer prediction and

visual grounding, making Visual7W a widely
adopted and challenging benchmark for studying
multimodal reasoning.

Baselines Detailed descriptions for all baselines
are provided in Appendix Section A.

Configuration The model was trained on an
NVIDIA A800 GPU (80GB) for 200 epochs us-
ing Adam optimizer (lr=1× 10−4, batch size=64).
The vision transformer processed 224×224 images
with 16× 16 patches. The prototype learning used
m = 10 prototypes per class (each with k = 3 sub-
patches prototypes) and a spatial constraint radius
of r = 3. Other hyperparameters remained default.

3.2 Comparison with Baselines

As shown in Table 1, among the methods using
ViT-patch16 as the visual backbone, ProtoVQA
(70.23%) achieves performance comparable to Bi-
CMA (70.53% without fine-tuning, 73.07% with
fine-tuning) and outperforms the SDF of VLT
(65.93%). This demonstrates that our framework,
while primarily designed to provide transparent
and interpretable reasoning, still delivers accuracy
that remains within the expected range of strong
Transformer-based baselines. In particular, al-
though fine-tuned Bi-CMA achieves slightly higher
performance, ProtoVQA offers the additional ad-
vantage of prototype-grounded explanations, show-
ing that interpretability can be introduced without
incurring a substantial drop in competitiveness.
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(a) Which item can be used for
communication?

(b) Which is framing a white
sideways boat?

(c) Which ear is the left ear of
the right giraffe?

(d) Which flower tub, with red
flowers in it, is beside a parking
meter?

Figure 2: Visualization of explanation results on Visual7W (Zhu et al., 2016) test set. The red bounding box
indicates the ground truth answer box provided by the dataset. The blue, green and yellow bounding boxes show
the top-3 best-matched patches projected back to the original image space. More visualization results on diverse
visual question answering scenarios can be found in Appendix Section D.

3.3 Qualitative Visualization
Figure 2 provides qualitative examples from the Vi-
sual7W test set, showing how ProtoVQA grounds
its reasoning in semantically relevant image re-
gions. The model-attended regions (blue, green,
and yellow boxes) align closely with the dataset-
provided ground-truth annotations (red boxes).

For instance, in Figure 2(a), when asked which
item can be used for communication, the model
correctly highlights the telephone region, focusing
on the same area as the ground truth. In Figure 2(b),
the model identifies the frame of the sideways boat,
with matched patches overlapping the annotated
boundary. In Figure 2(c), for the question about
the giraffe’s left ear, the model consistently selects
patches concentrated on the ear region, demon-
strating fine-grained part-level reasoning. In Fig-
ure 2(d), the model highlights the flower tub with
red flowers near the parking meter, showing its abil-
ity to handle relational queries that involve both
object attributes and spatial context.

Overall, these qualitative examples demonstrate
that ProtoVQA consistently grounds its answers in
semantically relevant visual evidence across di-
verse scenarios, thereby providing explanations
that are both human-verifiable and closely aligned
with the questions.

3.4 Evaluation of Visual–Linguistic
Alignment

As shown in Table 2, ProtoVQA significantly out-
performs baseline methods on VLAS (0.4103
vs 0.2466 on VLAS@1, 0.2466 vs 0.1123 on
VLAS@3), representing a 66.4% and 119.6%
improvement over Bi-CMA respectively, thereby
clearly and consistently demonstrating superior
visual-linguistic alignment capability.

Method VLAS@1↑ VLAS@3↑
SDF of VLT 0.2013 0.0847

Bi-CMA 0.2466 0.1123
ProtoVQA (Ours) 0.4103 0.2466

Table 2: Visual–Linguistic Alignment Score (VLAS) on
Visual7W (Zhu et al., 2016). Values for VLAS@1 and
VLAS@3 are reported, with ↑ indicating that higher
scores correspond to better alignment.

4 Conclusion

We present ProtoVQA, a novel framework for vi-
sual question answering that addresses the need
for model transparency and cross-modal reasoning.
ProtoVQA achieves comprehensive explainability
by (i) introducing adaptable prototypes capable of
seamlessly handling diverse visual-linguistic down-
stream tasks through a shared prototype-based
backbone; (ii) employing a spatially-constrained
greedy matching strategy to model dynamic visual-
question relationships and geometric variations;
and (iii) providing explicit visual evidence and sys-
tematic validation of visual-linguistic alignment.
Our work provides a fundamental step towards
VQA systems that achieve strong performance
while maintaining comprehensive explainability.
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Limitations

While this study shows promising results, several
limitations remain. (1) Although ProtoVQA pro-
vides comprehensive interpretability, improving
the faithfulness of prototype-based explanations un-
der the constraint of preserving task performance
remains an open problem. Future work could ex-
plore jointly optimized training objectives, adap-
tive prototype initialization, or more expressive
matching strategies to balance accuracy and trans-
parency. (2) Our evaluation is restricted to general-
purpose VQA benchmarks; transferring the frame-
work to domain-specific or safety-critical settings
(e.g., medical imaging, autonomous driving) may
require curating specialized prototype vocabularies,
domain-adaptive calibration, and additional fine-
tuning to account for distributional shifts. (3) The
current architecture is designed for multiple-choice
and grounding-style tasks and has not yet been
extended to prompt-based or free-form generative
VQA supported by large language models. Integrat-
ing prototype reasoning with instruction-tuned gen-
erative models and multi-step reasoning pipelines
is a promising direction for enabling more general
and scalable interpretability. We leave these chal-
lenges for future work, aiming to advance VQA
systems that achieve strong performance while of-
fering faithful and transparent reasoning.
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A Baselines

• SUPER (Han et al., 2023): Introduces a
semantic-aware modular capsule routing frame-
work for Visual Question Answering (VQA) to
enhance adaptability to semantically complex in-
puts. It features five specialized modules and
dynamic routers that refine vision-semantic rep-
resentations, offering a novel approach to archi-
tecture learning and representation calibration for
VQA tasks.

• QOI_Attention (Gao et al., 2018): Proposes
a Multi-task Learning with Adaptive-attention

(MTA) model for multiple-choice (MC) VQA. It
mimics human reasoning by integrating answer
options and adapting attention to visual features,
achieving remarkable performance on MC VQA
benchmarks.

• SDF of VLT (Ding et al., 2022): Presents
a Vision-Language Transformer (VLT) frame-
work for referring segmentation, introducing a
Query Generation Module to dynamically pro-
duce input-specific queries. It improves handling
diverse language expressions with a Query Bal-
ance Module and masked contrastive learning,
setting new benchmarks on five datasets.

• STL (Wang et al., 2018): Proposes a VQA model
focused on the multiple-choice task, incorporat-
ing part-of-speech (POS) tag-guided attention,
convolutional n-grams, and triplet attention inter-
actions between the image, question, and candi-
date answer. The model also employs structured
learning for triplets based on image-question
pairs.

• CFR (Nguyen et al., 2022): Introduces a reason-
ing framework for Visual Question Answering
(VQA) that bridges the semantic gap between im-
age and question by jointly learning features and
predicates in a coarse-to-fine manner. The model
achieves superior VQA accuracy and provides an
explainable decision-making process.

• BriVL (Fei et al., 2022): Develops a founda-
tion model pre-trained on multimodal data for
artificial general intelligence (AGI), focusing on
self-supervised learning with weak semantic cor-
relation data. The model demonstrates strong
imagination ability, achieving promising results
across various downstream tasks including VQA.

• CTI (Do et al., 2019): Introduces a trilinear
interaction model for Visual Question Answer-
ing (VQA) to learn associations between im-
age, question, and answer modalities, using PAR-
ALIND tensor decomposition for efficiency. For
free-form VQA, knowledge distillation transfers
learnings to a bilinear student model, achieving
state-of-the-art results on TDIUC and Visual7W
datasets.

• Bi-CMA (Upadhyay and Tripathy, 2025): Pro-
poses a Bidirectional Cascaded Multimodal At-
tention network for VQA, utilizing bidirectional
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attention and sparsity to enhance feature integra-
tion between image and text. The model per-
forms competitively on multiple-choice VQA
tasks, providing insightful attention maps that
reveal the model’s decision-making focus.

B Greedy Matching

We adopted greedy matching as a simple yet effi-
cient baseline to demonstrate how our framework
functions in practice. The strategy selects the re-
gion with the highest similarity to a prototype at
each step, making it computationally inexpensive,
easy to implement, and naturally interpretable since
every decision can be visualized as part of the rea-
soning trail. Its low complexity also makes it suit-
able for large-scale experiments and real-time in-
ference, where maintaining both speed and trans-
parency is crucial. This balance of efficiency, scal-
ability, and interpretability highlights why greedy
matching serves as a strong and practical choice
for validating the effectiveness of our prototype-
based framework. In addition, it establishes a clear
benchmark that future improvements can be di-
rectly compared against. This makes greedy match-
ing an integral component in demonstrating the
overall practicality of our approach.

C Potential Applications

Interpretable VQA has broad potential across do-
mains where both accurate answers and transpar-
ent reasoning are essential. In media forensics,
explanation-aware VQA can help detect and verify
manipulated or misleading short videos by aligning
visual evidence with textual claims (Wang et al.,
2025a,b; Gao et al., 2024). In transportation and
civil engineering, interpretable models can sup-
port safety-critical decisions, such as predicting
pavement conditions from visual cues while pro-
viding human-verifiable justifications (Lu et al.,
2025a,b). For general machine learning tasks, in-
terpretable VQA can benefit incomplete or multi-
view multi-label classification (Xie et al., 2024,
2025) as well as multimodal representation learn-
ing, where pruning, efficient adaptation, and align-
ment with language supervision remain active di-
rections (Guo et al., 2025; Liu et al., 2024; Jian
et al., 2023; Liu et al., 2023; Chen et al., 2024;
Liu et al., 2025; Zhang et al., 2025a). In video
understanding, explanation-guided alignment can
improve temporal grounding, multimodal reason-
ing, and working memory in instructional or com-
plex video scenarios (Li et al., 2024b; Diao et al.,

2025b; Zhou et al., 2025b). In human–AI interac-
tion and robotics, transparent reasoning is crucial
for building trustworthy assistants that combine
long-horizon planning and personalized interaction
with multimodal evidence (Zhang et al., 2025b;
Zhou et al., 2025a; Xiang et al., 2025). Finally,
in creative and cultural applications, interpretable
VQA can support tasks such as music performance
understanding and question answering, or semantic
analysis of non-standard scripts and pictograms,
where human-verifiable explanations are indispens-
able for reliability and adoption (You et al., 2025;
Diao et al., 2025a; Bi et al., 2025).

D Additional Visualization Results

In addition to the results shown in Figure 2 in Sec-
tion 3, we further provide 10 representative sam-
ples from the Visual7W (Zhu et al., 2016) test set
to illustrate the breadth of interpretability achieved
by ProtoVQA. These additional cases cover a wide
spectrum of question types and visual reasoning
demands, offering a more complete view of how
the model grounds its predictions in semantically
meaningful evidence.

Specifically, the examples span multiple cate-
gories of visual–linguistic reasoning. For questions
involving human and animal anatomy (Figures 3,
4), the model is able to precisely highlight fine-
grained parts, such as arms or ears, showing that
prototype matching is sensitive to localized seman-
tic cues. For object identification tasks (Figures
5, 6, 7), the model consistently selects patches
that coincide with the relevant object boundaries,
even when distractors are present in the scene. For
interaction-related questions (Figures 8, 9, 10), the
highlighted regions demonstrate the model’s abil-
ity to capture contextual relationships, such as a
person holding an item or an object being actively
manipulated. Finally, in spatial relationship queries
(Figures 11, 12), the attended patches illustrate how
the model disambiguates relative positions, ground-
ing its answer in spatially coherent regions.

Overall, these qualitative examples highlight that
ProtoVQA is not limited to generic visual cues but
adapts its evidence selection to the specific seman-
tics of each question. The consistency between the
model-attended patches and the dataset-provided
ground truth shows that the framework provides
reliable, human-verifiable explanations across a di-
verse set of VQA scenarios, further validating the
interpretability and robustness of our approach.
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Figure 3: Question: Which part helps the elephant hear?
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Figure 4: Question: Which is the players arms?
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Figure 5: Question: Which plant is hanging in the room?
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Figure 6: Question: Which is the glass containing?
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Figure 7: Question: Which object is a large beige cylinder next to the dirt?

Figure 8: Question: Which object is she wearing on her face?
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Figure 9: Question: Which object is being flown?
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Figure 10: Question: Which hand is holding a knife?
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Figure 11: Question: Which blue chair behind the table?
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Figure 12: Question: Which hose is sticking out of the wall?
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