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Abstract

Training data plays a crucial role in Large Lan-
guage Models (LLM) scaling, yet high quality
data is of limited supply. Synthetic data tech-
niques offer a potential path toward sidestep-
ping these limitations.We conduct a large-scale
empirical investigation (>1000 LLMs with
>100k GPU hours) using a unified protocol and
scaling laws, comparing natural web data, di-
verse synthetic types (rephrased text, generated
textbooks), and mixtures of natural and syn-
thetic data. Specifically, we found pre-training
on rephrased synthetic data alone is not faster
than pre-training on natural web texts; while
pre-training on 1/3 rephrased synthetic data
mixed with 2/3 natural web texts can speed
up 5-10x (to reach the same validation loss) at
larger data budgets. Pre-training on textbook-
style synthetic data alone results in notably
higher loss on many downstream domains espe-
cially at small data budgets. “Good” ratios of
synthetic data in training data mixtures depend
on the model size and data budget, empirically
converging to ~30% for rephrased synthetic
data. Larger generator models do not neces-
sarily yield better pre-training data than ~8B-
param models. These results contribute mixed
evidence on “model collapse" during large-
scale single-round (n=1) model training on syn-
thetic data—training on rephrased synthetic data
shows no degradation in performance in fore-
seeable scales whereas training on mixtures
of textbook-style pure-generated synthetic data
shows patterns predicted by “model collapse".
Our work demystifies synthetic data in pre-
training, validates its conditional benefits, and
offers practical guidance.

1 Introduction

The remarkable advancements in Large Language
Models (LLMs) are closely tied to the scale and,
critically, the quality of their training data. As
computational demands for training state-of-the-
art models escalate and the finite nature of high-

quality natural text becomes increasingly appar-
ent (Villalobos et al., 2024), significant interest
has turned towards synthetic data (Ben Allal et al.,
2024; Eldan and Li, 2023; Patel et al., 2024; Chen
et al., 2024; Long et al., 2024; Thrush et al., 2024;
Havrilla et al., 2024; Maini et al., 2024; Li et al.,
2023b; Abdin et al., 2024; Javaheripi et al., 2023;
Cheng et al., 2024; Gu et al., 2023). Defined as
text generated by pre-existing models or automated
pipelines, synthetic data presents a compelling po-
tential avenue for augmenting—or perhaps even-
tually replacing—traditional human-generated cor-
pora during the foundational pre-training phase.
While the utility of synthetic data is increasingly
established in post-training stages like instruction-
tuning and alignment (Taori et al., 2023; Li et al.,
2023a; Ge et al., 2024)—where objectives are tar-
geted and natural data may be scarce—its role and
effects during the crucial pre-training phase remain
largely uncharacterized and poorly understood (Liu
et al., 2024b). This knowledge gap represents a sig-
nificant barrier to optimizing LLM development
pipelines and motivates fundamental questions:

(RQ1) Can synthetic data effectively enhance LLM

pre-training performance at large data scales
and under what conditions?

(RQ2) How do different types and generation

methodologies for synthetic data influence
pre-training dynamics and scaling behavior?

(RQ3) What principles guide the effective deploy-

ment of synthetic data in pre-training, includ-
ing “good” mixture ratios, the impact of gen-
erator model capabilities, and the statistics of
the training corpus?

Despite the straightforward nature of these ques-
tions, clear answers remain elusive. This ambigu-
ity stems from several factors. Firstly, the land-
scape is marked by inconsistent empirical find-
ings and considerable methodological heterogene-
ity (Long et al., 2024; Liu et al., 2024b). Proposed
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approaches often rely on bespoke setups, obscuring
direct comparability and generalizability. Even for
simple open-sourced methods, Yang et al. (2024)
reports models trained on synthetic data from Maini
et al. (2024) saturates early on in continued pre-
training without much performance gain. Sec-
ondly, synthetic data generation involves complex
tradeoffs between targeted quality enhancement
and broad distributional diversity. Recent studies
present a contradiction regarding synthetic data:
while some argue it improves training data quality
at the expense of diversity (Havrilla et al., 2024),
others suggest that diversity itself is a key predictor
of model performance (Chen et al., 2024). Thirdly,
theoretical concerns persist, notably “model col-
lapse” from recursive training (Dohmatob et al.,
2024b,a), even if catastrophic failures are not yet
widespread. This confluence of potential benefits,
inconsistent evidence, methodological variance,
and theoretical risks underscores a critical need
for systematic investigation.

To address this critical gap and provide empiri-
cally grounded answers , we undertake a system-
atic, large-scale investigation into the role and ef-
fective use of synthetic data in LLM pre-training.
Our study involves training over 1000 LLM vari-
ants (up to 3B parameters) on datasets comprising
up to 200B tokens, utilizing over 100,000 GPU
hours, enabling evaluation on the effect of model
size and data regimes in its scaling laws.

Our principal findings reveal that:

1. Strategically incorporating specific synthetic
data types can significantly accelerate pre-
training convergence. Compared to pre-
training on natural web texts, training on 1/3
rephrased synthetic data mixed with 2/3 natu-
ral web texts can speed up 5-10x (to reach the
same validation loss) at larger data budgets.

2. However, the impact is highly dependent on
the synthetic data’s type and characteris-
tics: Pre-training on rephrased synthetic data
alone is not faster than pre-training on natural
web texts; whereas pre-training on textbook-
style synthetic data alone results in notably
higher validation loss.

3. “Good” ratios of synthetic data in training data
mixtures are nuanced, varying with data type,
target model scale, and budget, converging to
~ 30% for rephrased synthetic data. Counter-
intuitively, larger or more capable genera-
tor models do not necessarily yield superior

synthetic data than ~8B-param models for
pre-training downstream models.

4. We interpret the results with a focus on low-
level statistics. Some unigrams that are fre-
quent in test datasets but rare or absent in train-
ing datasets result in higher evaluation loss,
whereas no single training set offers complete
coverage. CommonCrawl has wider unigram
coverage and the lowest KL-divergence to test
datasets; however, it did not yield superior per-
formance, suggesting ''good" training data
mixtures depend on factors beyond simple
similarity and pointing to more complex
diversity-quality trade-offs.

2 Related Work

Our research intersects with several key areas in
LLM development, particularly concerning the gen-
eration and use of synthetic data for pre-training,
data mixture strategies, the application of scaling
laws, and concerns around model collapse.

Synthetic Data in LLM Pre-training The util-
ity of synthetic data is well-recognized in targeted
later stages of training, such as instruction tuning
(Taori et al., 2023), alignment (Li et al., 2023a; Ge
et al., 2024), and increasingly for enhancing reason-
ing capabilities (Muennighoff et al., 2025). Meta
(2025) detail a dedicated “mid-training” stage using
synthetic reasoning data, occurring after initial pre-
training and prior to subsequent post-training with
reinforcement learning (RL). In contrast, synthetic
data’s role in foundational pre-training for general
capabilities is less established and characterized
by varied approaches. The Phi series (Li et al.,
2023b; Javaheripi et al., 2023) pioneered the use
of “textbook-style” synthetic data for pre-training
production-grade models. Abdin et al. (2024), dis-
cussing later Phi models (e.g., Phi-4), argue this
approach particularly boosts reasoning with large
training budgets where natural web text offers di-
minishing returns, while also acknowledging poten-
tial downsides like limited factual grounding and in-
creased hallucination risks. Other foundational pre-
training explorations include Eldan and Li (2023)’s
story generation for smaller models, rephrasing ex-
isting texts (Maini et al., 2024), and employing
diverse prompts for generation (Chen et al., 2024;
Patel et al., 2024; Gu et al., 2023). Despite these
explorations (see survey by Havrilla et al. (2024)),
the landscape is characterized by methodological
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heterogeneity and sometimes conflicting outcomes
(e.g., Long et al. (2024) and Liu et al. (2024b) on di-
versity and quality; Yang et al. (2024) on saturation
with rephrased data from Maini et al. (2024)). Our
study differentiates itself by systematically eval-
uating multiple distinct synthetic data generation
paradigms (rephrased web text, generated “text-
books”) and their mixtures with natural data under
a unified pre-training protocol and rigorous scal-
ing law analysis across substantial data and model
scales, aiming to clarify these ambiguities.

Data Curation, Mixing Strategies, and Scaling
Laws Meticulous data curation and strategic mix-
ing of diverse natural data sources are established
as critical for LLM pre-training (Touvron et al.,
2023; Raffel et al., 2020; Penedo et al., 2024; Xie
etal., 2023; Ye et al., 2024; Liu et al., 2024a). How-
ever, the systematic integration and scaling behav-
ior of synthetic data with natural corpora remain
comparatively underexplored, despite promising
initial findings suggesting benefits from such mix-
tures (Maini et al., 2024; Javaheripi et al., 2023).
Seminal scaling laws describe predictable relation-
ships between LLM performance and factors like
model size, dataset size, and compute (Kaplan et al.,
2020; Hoffmann et al., 2022) and have recently
been extended to model natural data mixing strate-
gies (Kang et al., 2024b). The scaling dynamics of
pre-training specifically with synthetic data have
been described as “mysterious” (Liu et al., 2024b).
For instance, models trained on certain synthetic
data types can exhibit early performance satura-
tion (Yang et al., 2024), highlighting the need for a
clearer understanding. Our work distinctively ad-
dresses these gaps by employing scaling law analy-
sis as a primary evaluative tool. We systematically
investigate optimal mixture ratios of different syn-
thetic data types with a natural web text baseline,
examining how these ratios and overall pre-training
effectiveness interact with synthetic data character-
istics and varying data budgets. This approach
aims to demystify the role of synthetic data in
scalable LLM pre-training and provide empirically
grounded guidance for its effective integration.

Model Collapse and Generational Degradation
The prospect of training models predominantly
on model-generated data has spurred theoretical
investigations into “model collapse” or “genera-
tional degradation,” where recursive training might
lead to a decline in model quality due to reduced
diversity or amplified biases (Shumailov et al.,

2023; Dohmatob et al., 2024b,a). While these risks
are highlighted in theoretical analyses and simula-
tions, large-scale empirical evidence from practical
pre-training scenarios, especially those still incor-
porating significant natural data, remains limited.
Our study contributes direct empirical insights on
“model collapse” during large-scale single-round
(n=1) training on synthetic data by pre-training
models on substantial datasets with varying propor-
tions and types of synthetic data.

3 Synthetic Data Generation Methods

We investigate two distinct paradigms for generat-
ing synthetic data: web rephrasing and textbook-
style pure synthetic data. These paradigms repre-
sent different philosophies for augmenting or re-
placing natural text in pre-training.

3.1 Web Rephrasing

Inspired by techniques such as WRAP (Maini et al.,
2024), web rephrasing leverages a pre-trained Lan-
guage Model (LM) to refine existing web docu-
ments into a potentially more valuable pre-training
resource. In our study, we implemented web
rephrasing by sampling documents from the Com-
monCrawl dataset. A pre-trained generator LM
was prompted to rewrite these documents. Draw-
ing inspiration from variants explored in Maini et al.
(2024), we generated two distinct styles intended to
probe different potential benefits for pre-training:
* High-Quality (HQ) Rephrasing: Prompts in-
structed the generator model to rewrite the source
text into clear, coherent, well-structured English,
mimicking the style often found in high-quality
sources like Wikipedia. This targets improving
general text quality for foundational pre-training,
akin to an aggressive data filtering or quality
enhancement step. HQ rephrasing aims to in-
crease the effective density and quality of infor-
mation already present within the web corpus,
aligning with the broader goal of improving data
efficiency for pre-training.

* Question-Answering (QA) Rephrasing: Prompts
instructed the generator model to restructure the
source text’s information into a conversational
question-answering format. This explores incor-
porating instruction-following or dialogue-like
structures directly into the pre-training phase, po-
tentially accelerating the development of align-
ment capabilities. This QA rephrasing approach
relates to the growing interest in ‘instruction pre-
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training’ (Cheng et al., 2024), where downstream
objectives like instruction-following or dialogue
capabilities are incorporated early via synthetic
data formatting.

3.2 Synthetic Textbooks (TXBK)

This paradigm is driven by the hypothesis that
dense, high-quality, educational content might be
more compute-efficient for instilling certain capa-
bilities (e.g., reasoning, coding, factual recall) com-
pared to diffuse web text. The goal is to gener-
ate entirely novel content that mimics the struc-
ture, style, and information density of textbooks or
high-quality educational materials. For our exper-
iments, we generated novel “textbook-style” doc-
uments. The generation process was seeded using
keywords randomly sampled from CommonCrawl
to provide diverse starting points for various top-
ics. A pre-trained generator LM (e.g., Mistral-7B)
was then prompted using structured instructions to
produce text resembling textbook chapters or tuto-
rials on the seeded topic. These prompts explicitly
encouraged the generation of clear explanations,
definitions, illustrative examples (including code
snippets with explanations where relevant), and
potentially associated exercises or reasoning steps.
Throughout the generation process, an emphasis
was placed on striving for factual accuracy, coher-
ence, and a clear pedagogical structure.

4 Empirical Results

4.1 Experimental Setup

We conduct large-scale pre-training experiments
comparing models trained on: (1) a natural web
corpus baseline, (2) purely synthetic datasets gen-
erated using our distinct Web Rephrasing and Syn-
thetic Textbook paradigms (see Section 3 for gen-
eration methodologies), and (3) various mixtures
of natural and synthetic data. Approximately 600
LLM variants, with sizes up to 3 billion parameters,
were trained on datasets of up to 200 billion tokens.
This effort consumed over 70,000 GPU hours on
NVIDIA A100 80G hardware.

4.1.1 Datasets

Natural Data Baseline: Our natural data con-
sists of English text sourced from unfiltered
CommonCrawl (CC) dumps, processed via the
RedPajama-v2 pipeline (Weber et al., 2024).

Synthetic Data: All synthetic datasets were
generated using a Mistral-Instruct-7b-v0.1 model

(Jiang et al., 2023), with input documents for

rephrasing or seeding sampled from our unfiltered

CC baseline. Standard generation sampling param-

eters and light heuristic post-filtering were applied.

Generation details, prompt templates, and sample

generations are provided in Appendix B.3.

The following synthetic types were produced:

e Web Rephrasing (Maini et al. (2024)-like):
Generated by rephrasing CC documents using
prompts optimized from Maini et al. (2024) to
produce longer texts in two styles: High-Quality
(HQ) and Question-Answering (QA).

» Synthetic Textbooks ((Li et al., 2023b)-like):
Novel multi-chapter “textbooks” (TXBK) gener-
ated from CC-derived outlines, employing varied
prompts targeting different audiences to encour-
age diversity. Each chapter averaged ~450 to-
kens and often included exercises.

Training Data Mixtures: For each synthetic
data type (HQ, QA, or TXBK), we prepared
datasets by concatenating and shuffling source data
under these conditions: 100% Natural (Unfiltered
CC baseline); 100% Synthetic (consisting entirely
of one synthetic type: HQ, QA, or Textbook); 67%
Synthetic / 33% Natural; 33% Synthetic / 67%
Natural. For each experimental point (defined by
model size and data budget), models were trained
on these different mixtures, enabling direct compar-
ison. 5+ model variants were trained per condition
for robust scaling law analysis.

4.1.2 Models, Training, and Evaluation

We use a standard decoder-only Transformer ar-
chitecture based on Llama 3 (Grattafiori et al.,
2024), with model sizes ranging logarithmically
from 100M to 3B parameters. All models were
trained from scratch using the Meta Lingua library
(Videau et al., 2024) on PyTorch (Paszke, 2019).
Following the line of research on scaling laws for
LLMs (Kaplan et al., 2020), we define the size
of all models being trained as their count of non-
embedding parameters, which are learnable pa-
rameters in the model except for those associated
with the input and output token embeddings. A
consistent training regime was applied for fair com-
parison, including a cosine learning rate schedule
(10% warmup), a context length of 4096 tokens, an
effective batch size of 1M tokens, and the Llama
3 pre-trained TikToken tokenizer (128k vocabu-
lary) (Grattafiori et al., 2024). The primary per-
formance measure is per-token average perplexity
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(cross-entropy loss) calculated on a held-out di-
verse set of 14 non-code/math English text domains
from The Pile (Gao et al., 2020) and the Wikitext-
103 dataset (Merity et al., 2016), evaluated at the
final checkpoint. Complete details are provided in
Appendix A.2.

4.1.3 Data Scaling

For a fixed model size (1B parameters), data scal-
ing is modeled as: £(D) = % + E, where L
is validation loss, D is training data budget, and
B, 3, E are fitted coefficients.

We trained 1B-parameter models on various data
mixtures with data budgets from 1B up to 200B
tokens. The scaling formula was fitted using data
points up to 100B tokens; predictions were then
validated on runs trained with 200B tokens. Six
data mixtures (CommonCrawl, 33% HQ + 67%
CC, 33% QA + 67% CC, Textbook (TXBK), 67%
TXBK + 33% CC, and 33% TXBK + 67% CC)
were trained to 200B tokens for this validation, as
our HQ and QA synthetic datasets were limited
to 100B tokens each. The fit demonstrated high
precision, as shown in Fig. 6 (deferred to Appen-
dices), achieving a low Relative Mean Absolute Er-
ror (RMABE) of 0.41% when predicting for 200B
tokens.

With reasonably reliable fits validated, we ex-
trapolated data scaling (fitted up to 100B tokens)
to predict loss for larger data budgets (up to 8T
tokens), covering training regimes of state-of-the-
art LLMs (Meta, 2025; DeepSeek-Al, 2024). Key
findings are presented in Fig. 1 and summarized
below:

1. Pure synthetic data is not superior to Com-
monCrawl (CC): Training solely on HQ or QA
synthetic data does not significantly outperform
training only on CC. Training only on TXBK
performs notably worse than trainng on CC.

2. Mixtures outperform pure synthetic types:
Mixing any synthetic data type with CC sub-
stantially improves performance over using that
synthetic type alone.

3. Rephrased data mixtures show low sensitivity
to ratio (33% vs. 67 % synthetic): For HQ and
QA, both 33% and 67% synthetic mixtures with
CC yield similar performance.

4. Textbook mixtures favor less synthetic data:
For TXBK, a 33% synthetic mixture signifi-
cantly outperforms a 67% mixture. The 33%
TXBK mixture surpasses pure CC performance

after ~20B tokens, while the 67% TXBK mix-
ture underperforms pure CC.

Scaling with Data Sizes (showing 1B-param models)

CommonCrawl (CC)
HQ-rephrased (HQ)
==+ -67% HQ+33% CC
—— -33% HQ+67% CC
QA-rephrased (QA)

5x10°

-67% QA+33% CC

4 -33% QA+67% CC
. Generated Textbook (TXBK)

hg -67% TXBK+33% CC

» . —— -33% TXBK+67% CC

4x10°

Validation Loss

3x10°

10° 10t 102 103 104
Data Budget/billion tokens (extrapolating to 8T training tokens)

Figure 1: Extrapolated data scaling performance for 1B-
parameter models across various data mixtures. (Fitted
coefficients can be found in Table 4 in Appendices.)

4.1.4 Model Scaling

For a fixed data budget (50B tokens), model scaling
is modeled as: £(N) = A+ E, where N is model
parameter size, and A, a, F are fitted coefficients.
We trained models from 100M to 3B parame-
ters for 50B tokens on all 10 data mixtures. The
formula was fitted using models up to 2B parame-
ters and validated on 3B-parameter models. This
fit also proved highly precise (Fig. 7, deferred to
Appendices), with an RMABE of 0.30% for 3B-
parameter model predictions. Extrapolating model
scaling (fitted with models up to 3B parameters) to
predict performance for larger models (up to 200B
parameters) on a S0B token budget (Fig. 2) revealed
several differences from data scaling patterns:

1. Pure synthetic data remains non-advantageous
over CC; notably, models trained on pure
rephrased synthetic data will underperform
those trained on CC at larger models.

2. For rephrased data mixtures, sensitivity to the
mix ratio changes: while a 67% synthetic mix
was marginally better for larger data budgets
(data scaling), it becomes marginally disadvan-
tageous for larger model sizes (model scaling)
compared to a 33% mix.

3. For TXBK mixtures, 33% synthetic consistently
outperforms 67%. The advantage of 33% TXBK
over pure CC appears to diminish with larger
models, a trend not observed in data scaling.

Overall, these model scaling results suggest syn-

thetic data appears comparably less favorable

for pre-training larger LMs relative to its utility
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in data scaling scenarios. Despite outperforming
training on CC, larger models are not as tolerant to
a higher ratio synthetic data as larger data budgets.
This observation aligns with practices where syn-
thetic data is effective for smaller LMs or specific
pre-training phases, but less predominantly used
for the largest models.

6x 107 Scaling with Model Sizes (showing 50B training tokens)

CommonCraw! (CC)
HQ-rephrased (HQ)
==+ -67% HQ+33% CC
—— -33% HQ+67% CC
QA-rephrased (QA)
. -67% QA+33% CC
- 33% QA+67% CC
Generated Textbook (TXBK)
a ==+ -67% TXBK+33% CC
. — -33%TXBK+67% CC

4x10° -

Validation Loss

3x10°

10° 10? 10?
Model size/billion parameters (extrapolating to 400B-param models)

Figure 2: Extrapolated model scaling performance for
training on 50B tokens across various data mixtures.
(Fitted coefficients are provided in Table 5.)

4.1.5 Compute Scaling and Irreducible Loss

We also fit joint scaling laws incorporating both
model size (/V) and data budget (D) using data
from all ~700 training runs (details in Ap-
pendix A): L(N, D) = % + % + E. An example
loss landscape for CC data is shown in Fig. 8. The
coefficient E represents the irreducible loss—the
theoretical minimum loss achievable with infinitely
large models and data.

Estimations of F for each data mixture (Fig. 3)
indicate their ultimate potential. Notably, any
mixture involving synthetic data, or pure syn-
thetic data (except pure QA), is projected to
achieve a lower irreducible loss than train-
ing only on CommonCrawl. This empirically
challenges theoretical concerns about “model col-
lapse” in single-round training, which predict any
synthetic data inclusion would ultimately degrade
performance (Dohmatob et al., 2024a). Among
the studied mixtures, 33% HQ rephrased data +
67% CC shows the lowest projected irreducible
loss. Conversely, pure QA rephrased data exhibits
a high irreducible loss, second only to pure Com-
monCrawl.

5 Additional Studies: A Broader View

Beyond the primary scaling law analysis, we con-
duct targeted experiments to deepen our under-

Estimated Irreducible Loss from Scaling Laws

14 CommonCrawl (CC)

HQ-rephrased (HQ)
B - 67% HQ+33% CC

. - 33% HQ+67% CC (*Best*)
QA-rephrased (QA)
- 67% QA+33% CC
- 33% QA+67% CC
Generated Textbook (TXBK)
BN - 67% TXBK+33% CC
N - 33% TXBK+67% CC

Estimated Irreducible Loss
o o o g
'S o ® o

°
N}

o°
o

CC HQ HQHQ* QA QA QA TX TX TX
67 33 67 33 67 33
Training Corpus

Figure 3: Estimated irreducible loss (F) for different
data mixtures. Lower values are better.

standing of specific factors influencing the effective
use of synthetic data in pre-training.

5.1 “Good” Synthetic Data Mixture Ratios

Motivation Our main scaling law analysis tested
limited discrete mixture ratios (0%, 33%, 67%,
100%) of synthetic and natural data. To identify
“good” ratios with finer granularity, we performed a
fine-grained grid search, motivated by indications
that optimal mixtures vary with synthetic data type,
model scale, and data budget.

Methodology We trained approximately 400 ad-
ditional LLMs (200M to 1B parameters) on data
budgets from 1B to 50B tokens. For each synthetic
data type (HQ, QA, TXBK) and each (model size,
data budget) configuration, we varied the percent-
age of synthetic data mixed with CommonCrawl
across ten exponentially spaced points: 0%, 0.5%,
1%, 2%, 5%, 10%, 15%, 20%, 50%, and 100%.
The “good” ratio was defined as the mixture yield-
ing the lowest validation loss on the evaluation sets.

Findings Figure 4 visualizes the results. Best-
found ratios are all below 50% appear to converge
~30%. Key observations include:

* HQ Rephrased Data: The optimal mixture is
consistently ~30% HQ synthetic data with 70%
CommonCrawl across tested scales. This 30%
mixture generally outperformed the 50% mixture
suggested by Maini et al. (2024) in our setups.

* QA Rephrased Data: The preferred ratio of
QA data tends to decrease with increasing
model/data sizes, shifting from ~50% for smaller
configurations towards 30% for larger ones.

* Textbook (TXBK) Data: Benefits are most ap-
parent at larger scales. Optimal ratios are often
minimal (<5%) for smaller configurations, in-
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HQ Synthetic Data

200m-param
—-e- 500m-param
35.0 1 —+— 1B-param

37.51

32.5 1

30.0

27.5 1

25.0 1

Best-found Mixing Ratio /%

22.5 1

20.0 T T T T .
0 10 20 30 40 50
Data Budget/billion tokens

QA Synthetic Data

200m-param
—e - 500m-param
50 | —+— 1B-param

w
w

Best-found Mixing Ratio /%
w N
S )

N
w

N
o

0 10 20 30 40 50
Data Budget/billion tokens

10 TXBK Synthetic Data

200m-param
—e - 500m-param
—+— 1B-param

Best-found Mixing Ratio /%

0 10 20 30 40 50
Data Budget/billion tokens

Figure 4: Best-found mixture ratios (percentage of syn-
thetic data with CommonCrawl) from grid search for
HQ, QA, and TXBK data types across different model
sizes and data budgets. Best-found ratios are all below
50% appear to converge ~ 30%.

creasing with scale but generally remaining be-
low those for rephrased data.

These findings refine our scaling law observations,
emphasizing the sensitivity of effective synthetic
data deployment to its type and the training regime.

5.2 Impact of Generator Model Capability

Motivation It is often assumed that larger, more
capable generator models produce higher-quality
synthetic data, leading to better downstream perfor-
mance. We empirically tested this hypothesis.

Methodology We used Llama-3 models of vary-
ing scales (3B, 8B, and 70B parameters) as genera-
tors to recreate subsets of our HQ (High-Quality)
and QA (Question-Answering) rephrased datasets.
Generation prompts and source CommonCrawl
documents were kept consistent with our origi-
nal pipeline, which utilized Mistral-7B-Instruct as
the generator. A fixed 1B-parameter downstream
model, with the same architecture as in previous ex-
periments, was then trained for 5 billion tokens. For
each generator (Llama3-3B/8B/70B), we evaluated
the synthetic data produced by training the down-
stream model on mixtures with CommonCrawl.
The percentage of synthetic data in these mixtures
was varied across eight exponentially spaced points:
0.5%, 1%, 2%, 5%, 10%, 15%, and 20%. Approx-
imately 200 models were trained for this ablation
study to compare the efficacy of synthetic data gen-
erated by models of different capabilities.

Findings The results, illustrated by trends similar
to those shown in Figure 5 (which would now repre-
sent these detailed mixture evaluations), challenge
the “bigger is always better” intuition for generator
models and reveal a nuanced relationship:

* A certain level of generator capability appears
beneficial: synthetic data from Llama-3-8B
generators consistently outperformed data from
Llama-3-3B generators. This finding suggests
a baseline capability is necessary and contrasts
with suggestions from Maini et al. (2024) that
rephrasing costs could be significantly reduced
by using smaller generator LMs without a loss in
downstream performance.

* However, increasing generator size further to
Llama-3-70B did not yield superior synthetic
data for pre-training compared to data from the
Llama-3-8B generator, when assessed by the
trained model’s validation loss.

* In specific instances, the Llama-3-70B genera-
tor proved less effective. For HQ rephrased
data, synthetic data generated by Llama-3-
70B models led to consistently worse evalua-
tion results than data from Llama-3-8B models.
For QA rephrased data, the 70B generator’s out-
put resulted in comparable performance than that
from the 8B generator.

This suggests that factors beyond sheer generator
scale—such as instruction following fidelity at dif-
ferent scales, the diversity of generated outputs, or
potential introduction of stylistic artifacts—play a
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crucial role in determining the utility of synthetic
data for pre-training. Simply employing the largest
available generator may not be the most effective
or efficient strategy.
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Figure 5: Generator model capability ablation. Compares
validation loss of 1B-parameter models trained for 5B to-
kens using mixtures of HQ/QA rephrased data from Llama3-
3B/8B/70B generators with CommonCrawl. The percentage
of synthetic data in these mixtures was varied across seven
exponentially spaced points from 0.5% to 20%.

5.3 Interpretation via Low-level Statistics

The impact of synthetic data on pre-training effi-
ciency, particularly how "good" mixing ratios vary
with synthetic data type, budget, and model size,
necessitates investigation into underlying mecha-
nisms. While synthetic data may improve “data
quality” (e.g., coherence, reduced noise) at the cost
of diversity (Long et al., 2024), the generation pro-
cess reflects the generator LM’s output distribution,
potentially shrinking the support of distribution
from natural expressions or introducing artifacts
like model collapse (Dohmatob et al., 2024a).

We investigate via low-level statistical analysis:

(Q1) Does synthetic data exhibit reduced lexical
diversity (i.e., a "shrunk support") compared
to natural web text?

(Q2) Can improvements in test performance with

synthetic data be attributed to smaller training-
test distributional distance?

(Q3) Are optimal mixing ratios due to minimized
distributional distance or a more complex
diversity-quality trade-oft?

Inspired by Magnusson et al. (2024)’s finding that a
small fraction of high-frequency strings contributes
significantly to LM loss, we conduct unigram fre-
quency analysis across training and test corpora.
Full results and analyses are provided in Ap-
pendix 5.3. We summarize the key findings:

* Vocabulary Mismatches and High-Loss To-
kens: Unigrams frequent in test sets but rare
or absent in some training sets (e.g., “\n\n”, “
hvor” (Danish), “ don” (Turkish), etc.) cause
higher evaluation loss. This issue is pervasive;
no single training set offers complete coverage.

e Synthetic Data and Unigram Distribution:
Synthetic data slightly shrinks unigram distri-
bution compared to broad web corpora like
CommonCrawl—yet CommonCrawl’s wider
coverage did not yield superior performance.

* Distributional Distance to Test Sets: KL-
divergence on unigram distributions did not show
synthetic data closer to test distributions; Com-
monCrawl appears closest to test datasets.

Preliminary conclusions are:

[u—

. Inherent Limitations of Single Data Sources:
All data sources, including CommonCrawl,
have distributional gaps causing high evalua-
tion losses on underrepresented tokens. This
favors mixed corpora with broad lexical cov-
erage with reasonable frequencies, helping ex-
plain why mixed-source corpora often outper-
form single-source ones.

2. Beyond Distributional Matching for “Good”
Mixtures: Models often train best with signif-
icant synthetic data proportions (e.g., ~30%)
even if it does not minimize unigram distribu-
tional distance to test sets. This suggests factors
beyond simple similarity, pointing to more com-
plex diversity-quality trade-offs.

6 Conclusion

This large-scale empirical investigation (over 1000
LLM variants) demonstrates that synthetic data
in foundational pre-training presents a nuanced
trade-off. Strategically mixing specific synthetic
types (e.g., ~ 30% high-quality rephrased text
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with natural data) can significantly accelerate pre-
training convergence up to 5-10x and potentially
achieve lower irreducible loss than natural data
alone. These results contribute mixed evidence on
“model collapse" during large-scale single-round
(n=1) model training on synthetic data—training on
rephrased synthetic data shows no degradation in
performance in foreseeable scales whereas train-
ing on mixtures of textbook-style pure-generated
synthetic data shows patterns predicted by “model
collapse". However, effectiveness is also condi-
tional on generation method, mixture strategy, and
generator models. Larger generator models did not
guarantee superior pre-training data. Downstream
model performance cannot be simply explained
by training data’s diversity or similarity to test
corpora, but pointing to more complex diversity-
quality tradeoffs.

Our findings underscore that synthetic data re-
quires careful, empirically-informed deployment,
rather than being a universal solution to data con-
straints. Essential next steps involve developing
more targeted synthetic data generation techniques
and dynamic mixing strategies. Rigorous evalua-
tion of their long-term impacts on diverse model
capabilities (reasoning, robustness, alignment) at
frontier scales is crucial, alongside pinpointing key
beneficial characteristics of generator models be-
yond sheer size.

7 Discussions

On ""Model Collapse' for Large-Scale Single-
Round (n=1) Model Training on Synthetic Data.
This paper contributes new evidence on large-scale
single-round (n=1) model training on synthetic
data, rejecting certain conjectures from prior re-
search on “model collapse" and helping refine their
range of application.

The notion, “model collapse", was formalized by
Shumailov et al. (2023), characterizing the effect of
iterative training on self-generated (or mixed) data.
Subsequent works such as Dohmatob et al. (2024b)
studies the effect for n-fold iterative synthetic train-
ing, where the main results show training on syn-
thetic data even for n=1 (one-round) leads to signif-
icant flare-up in test perplexity compared to train-
ing on the original data. Further, Dohmatob et al.
(2024a) shows that even the smallest fraction of
synthetic data (e.g., as little as 1% of the total train-
ing dataset) can still lead to model collapse while
training 124M-parameter GPT-2 small on BabySto-

ries. Based on theoretical derivations, the authors
conjecture that larger "models may mitigate the
collapse, although they do not entirely prevent it."
With strong conclusions on the important topic, the
theoretical analysis is based on stylized models
(e.g., regression models) and the language model-
ing experiments are simplistic (e.g., fine-tuning for
one task). There remains a significant gap between
these forecasts from “model collapse" and the ad-
vancement in generation/training on synthetic data.

This work brings more clarity to this evolving
topic. In this work, we found that for one-round
(n=1) model training on synthetic data:

* when using rephrased synthetic data in pre-
training contemporary LMs, we do not see pat-
terns of degradation in performance in foresee-
able scales, and pre-training on rephrased syn-
thetic data mixed with natural data can lead to
significant speed-up in reducing validation loss.

e training on mixtures of textbook-style pure-
generated synthetic data did lead to notably
higher loss on downstream domains, especially
at small data budgets. This is largely consistent
with the patterns and predictions reported in the
“model collapse" papers.

This shows that in large-scale LM pre-training,
training on synthetic data for one-round does not
necessarily degrade validation performance, con-
fining the extrapolation of theoretical results from
“model collapse" papers.

* Despite the shrinking support on n-gram distri-
butions, with the right type of synthetic data and
a mixing ratio with natural data, the benefits for
including synthetic data could outweigh the is-
sues from “model collapse" and deliver substan-
tial benefits. This adds counter evidence to the
conjecture that including synthetic data would
always lead to worse model performance.

* However, most benefits observed are from
rephrased synthetic data, whereas textbook-style
synthetic data often leads to performance degra-
dation even when mixed with a large proportion
of natural data. Empirical results on textbook-
style synthetic data show patterns characterized
in "model collapse", suggesting the generalizabil-
ity of theoretical results in “model collapse” may
depend on the nature of synthetic data.

Together, results and findings contributed in this
work reject certain claims from “model collapse”
and help refine their range of application.
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Limitations

Our study, while extensive, has limitations influ-
encing the scope and generalizability of findings:

* Limited Scope of Synthetic Data: We ana-
lyzed three specific synthetic data types (HQ/QA
rephrased, TXBK). Findings may not directly ap-
ply to other generation methods (e.g., synthetic
code, dialogues) or prompting strategies.

» Evaluation Focus: Analysis heavily relied on
perplexity/loss for scaling. It lacked in-depth
human evaluations for nuanced capabilities or
safety, and assessment on highly specialized
tasks. Additional evaluations on NLP bench-
marks would be a desirable addition as loss is
not our final goal.

* Temporal Effects: We examined a single pre-
training stage. Potential long-term effects, sub-
tle degradation, or multi-generational dynamics
(“model collapse”) were not investigated.

* Scale Constraints: Experiments reached 3B pa-
rameters and 200B tokens. Scaling trends ob-
served regarding synthetic data utility at larger
model sizes require validation at frontier model
scales (>100B parameters, >10T tokens).

* Impact of Tokenizers: Studies in Section 5.3
show that different training datasets have differ-
ent coverage of tokens, where certain tokens rare
in the training data may be associated with a
higher loss in evaluation. Though not significant
enough to affect the main results in this paper
(such as the "good" mixing ratios), the impact
of tokenizer may become more visible in finer-
grained analysis on validation loss.

Ethical Considerations

The generation and use of synthetic data in LLM
pre-training warrant careful ethical reflection:

* Bias Propagation: Synthetic data risks inherit-
ing and amplifying biases from generator models.
Auditing generators and generated data for fair-
ness is crucial but was outside this study’s scope.

e Factual Accuracy: Generated content can in-
clude inaccuracies (hallucinations). Large-scale
use could embed misinformation in models, ne-
cessitating robust quality control.

* Data Diversity: Over-reliance on potentially ho-
mogeneous synthetic data could reduce model
robustness and diversity compared to training on
varied real-world text.

* Transparency & Reproducibility: We mitigate
some concerns by committing to open-sourcing
our full recipe to facilitate reproducibility and
further community research.
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A Experimental Setup and
Implementation Details

A.1 Datasets

A.1.1 Natural Data Baseline

Our natural data baseline consists of English
text sourced from unfiltered CommonCrawl (CC)
dumps processed via the RedPajama-v2 pipeline
(Weber et al., 2024). This serves as our reference
point representing widely used, large-scale web
data.

A.1.2 Synthetic Data Generation

To ensure consistency, a single generator model,
Mistral-Instruct-7b-v0.1 (Jiang et al., 2023), was
used for generating all synthetic datasets described
below. Input documents for generation methods
requiring a source were sampled from our unfil-
tered CommonCraw! baseline data. Standard sam-
pling parameters (temperature=0.7, top-p=0.95)
were generally used, unless otherwise specified
(see Appendix B for more details on prompts and
post-filtering).

Method A: Web Rephrasing (WRAP-like) In-

spired by WRAP (Maini et al., 2024), we generated

two stylistic variants by prompting Mistral-Instruct-
7b-v0.1 to rewrite input CC documents (up to 2k
tokens):

* High-Quality (HQ) Rephrasing: Used prompts
optimized from the original WRAP work to pro-
duce longer (~550 tokens avg.) and more coher-
ent synthetic texts, mimicking high-quality, well-
structured English (e.g., Wikipedia style). The
prompt aimed for clarity, coherence, and quality
improvement while preserving core information.

* Question-Answering (QA) Rephrasing: Used
prompts optimized to restructure the input doc-
ument’s content into a conversational QA for-
mat (~550 tokens avg.), embedding instruction-
following patterns.

Method B: Synthetic Textbooks (Phi-like) In-

spired by Phi (Li et al., 2023b) and related com-

munity efforts (e.g., Cosmopedia (Ben Allal et al.,

2024)), we generated novel textbook-style content.

This involved a two-step process:

1. An outline for a 10-chapter “book™ was con-
structed based on keywords or themes extracted
from input CC documents.

2. Based solely on the outline, each chapter
was generated (~450 tokens/chapter, ~5k to-

kens/book), often including exercises and refer-
ence answers. We employed 4 prompt variations
targeting different audiences (e.g., “grade school
students”, “college students”, “domain experts”,

“general audience”) to encourage diversity.

Light heuristic filtering was applied post-
generation to remove clearly malformed outputs
(details in Appendix B).

A.1.3 Data Mixtures

We created training datasets for various conditions
by concatenating and shuffling the source data. For
each synthetic data type (HQ, QA, Textbook), we
prepared the following conditions relative to the
unfiltered CC baseline:

¢ 100% Natural (Unfiltered CC)

* 100% Synthetic (consisting entirely of one syn-
thetic type: HQ, QA, or Textbook)

* 67% Synthetic / 33% Natural

* 33% Synthetic / 67% Natural

For each experimental point (model size, data bud-
get), models were trained on these different mixture
ratios corresponding to one synthetic type, allow-
ing for direct comparison against the 100% natural
baseline. We typically trained 3-5 model variants
per condition to enable robust scaling law analysis.

A.2 Models and Training Configuration
A.2.1 Model Architecture

We employ a standard decoder-only Transformer
architecture based on Llama 3 models (Grattafiori
et al., 2024). Key architectural features include
SwiGLU activation functions, RMSNorm for layer
normalization, and Rotary Position Embeddings
(RoPE). We train models at multiple sizes, ranging
logarithmically from approximately 100 Million to
3 Billion parameters, to facilitate scaling law anal-
ysis. In the research of scaling laws for large lan-
guage models (LLMs), model sizes are counted as
non-embedding parameters, which refers to all the
learnable parameters in the model except for those
associated with the input and output token embed-
dings (Kaplan et al., 2020). This work follows this
setup and the size of all models being trained refers
to their count of non-embedding parameters. Table
1 outlines the architectural parameters for various
model sizes explored.

A.2.2 Training Hyperparameters

All models were trained from scratch (random ini-
tialization) using the Meta Lingua library (Videau
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Table 1: Model Architecture for Different Parameter
Sizes

Model Dimension Layers Heads
Size (dimoder) (nlayers) (Mheads)
100M 576 7 9
200M 832 10 13
500M 1280 16 20
1B 1792 22 28
2B 2240 28 35
3B 2624 32 41

et al., 2024) on PyTorch (Paszke, 2019) for effi-
cient distributed training. We used the AdamW op-
timizer with 5; = 0.9, 85 = 0.95, a weight decay
of 0.1. A cosine learning rate schedule was used
with a linear warmup equivalent to 10% of the total
training steps. A consistent context length of 4096
tokens with an effective batch size of 1M tokens
was used across all training runs. The Llama 3 pre-
trained TikToken tokenizer with a 128k vocabulary
size was used (Grattafiori et al., 2024). Specific
global batch sizes and gradient accumulation strate-
gies were maintained consistently for comparable
experimental settings to ensure fair comparisons.
The models were trained using the hyperparameters
detailed in Table 2.

Table 2: Training Hyperparameters

Hyperparameter Value
Optimizer AdamW
Peak Learning Rate 3.0 x 107
Warmup Steps 10%
Min. LR Ratio 1.0 x 1076
Gradient Clipping 1.0
Batch Size (per device) 4
Accumulation Steps 8
Sequence Length 4096
(Effective Batch Size) (1M tokens)
Prefetch Size 1024
Add BOS token True
Add EOS token True
Model Data Type bf16
Epochs 1
GPU Hardware 8x NVIDIA A100 80GB

Training time scales linearly with the training
data size and scales nearly linearly with the model
size (provided that it fits into GPU RAM without
changing the batch size). Typically, we were able

to train a 1B-parameter model for ~ 15B tokens
per day on a single node with 8x NVIDIA A100
80GB GPUs.

A.2.3 Evaluation Protocol

Model performance was evaluated using intrinsic
metrics during training and a suite of downstream
tasks post-training. Validation perplexity (log ppl
equivalent to cross-entropy loss) was tracked dur-
ing training. Final perplexity was calculated on a
diverse set of 14 non-code/math English text do-
mains from The Pile (Gao et al., 2020) (specifically:
NIH ExPorter, Pile-CC, Wikipedia (en), USPTO
Backgrounds, PubMed Central, PubMed Abstracts,
PhilPapers, OpenWebText2, OpenSubtitles, Guten-
berg (PG-19), FreeLaw, BookCorpus2, Books3,
ArXiv) and also on the Wikitext-103 dataset (Merity
et al., 2016). Per-token average perplexity across
these domains serves as a key intrinsic performance
measure. For model evaluation, the generator set-
tings detailed in Table 3 were used.

Table 3: Hyperparameters for Perplexity Evaluation

Hyperparameter Value
Max Tokens to Generate 2048
Generator Data Type (dtype) bfl6

B Synthetic Data Generation: Prompts,
Samples, and Parameters

This section provides further details on the syn-
thetic data generation process, including the
prompts used, sample outputs, and specific gen-
eration/filtering parameters.

B.1 Prompt Templates for Synthetic Data
Generation

For HQ Rephrasing, prompts were adapted from
Maini et al. (2024) and modified to encour-
age longer, high-quality text. For QA Rephras-
ing, prompts were designed to convert informa-
tional text into a question-answer dialogue format,
adapted from Maini et al. (2024) and modified to
promote better format-following and conversion
for complete information. For Synthetic Textbooks,
prompts guided the generation of chapter content
based on outlines, with variations for different tar-
get audiences (grade school, college, expert, gen-
eral).
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B.2 Sample Generations

This would ideally showcase the stylistic differ-
ences and typical output quality.

B.3 Generation Parameters and Post-Filtering

All synthetic data was generated using a Mistral-
Instruct-7b-v0.1 model.

Sampling Parameters: Unless specified other-
wise (e.g., for particular prompt explorations not
detailed in the main paper), the following sampling
parameters were used:

* Temperature: 0.7
* Top-p (nucleus sampling): 0.95

These parameters were chosen to balance creativity
and coherence in the generated text.

Post-Filtering: Light heuristic post-filtering was
applied to all generated synthetic datar, removing
documents that were excessively short (e.g., less
than 50 tokens) or excessively long relative to the
target length for that generation type, if such out-
puts occurred despite prompt length guidance. The
goal of this light filtering was to remove egregious
generation errors without overly sanitizing the data
or significantly altering its distribution.

C Supplementary Discussion on Related
Work

This appendix provides supplementary details to
the related work discussed in Section 2, offering
further context on synthetic data applications, data
curation practices, and model collapse theories.

C.1 Synthetic Data in Post-training

The use of synthetic data is particularly well-
established and successful in post-training phases,
primarily for aligning LL.Ms with human instruc-
tions and preferences. This success stems from the
ability to generate large amounts of targeted data
for specific, often narrow, objectives where human
annotation is costly or slow. Key examples include:

Instruction Generation (Self-Instruct): Tech-
niques like Self-Instruct (Wang et al., 2022) use an
LLM to bootstrap instruction-following data (in-
struction, input, output tuples) from a small seed
set, enabling effective instruction fine-tuning with-
out extensive human labeling.
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B.1.1 Prompt Template HQ Rephrasing

e System Prompt: Provide direct and detailed re-
sponse to the instructions without adding additional
notes.

¢ [USER]: For the following document, regardless of
its original content or formatting, write a full article of
the same content in high quality English language as
in texts on Wikipedia: [xxxx]. Provide the rephrased
article without any additional notes. Long article with
full length and complete details. Rephrased article:

B.1.2 Prompt Template QA Rephrasing

e System Prompt: Provide direct and detailed re-
sponse to the instructions without adding additional
notes.

e [USER]: For the following document, regardless
of its original content or formatting, convert it into
a comprehensive list of question-answer pairs with
multiple tags of “Question:” followed by “Answer:”,
where questions and answers cover complete infor-
mation of the original document. Document: [xxxx].
Provide the converted question-answer pairs without
any additional notes. Question-answer pairs with
corresponding tags (“Question:”, “Answer:”):

B.1.3 Prompt Template for Generating Textbook-style

Synthetic Data: Step 1, Outline Generation

¢ Step 1: generate an outline based on input text.

¢ System Prompt: Provide direct and detailed re-
sponse to the instructions without adding additional
notes.

[USER] <4 versions>: Imagine you are a prolific
author tasked with writing a textbook. You are work-
ing on writing a textbook involving the knowledge
and information of the following text. Text: [xxxx]\n
Your task is to write an outline for the textbook. Your
target audiences are <grade school students/college
students/field experts/general public>. The textbook
has 10 chapters in total plus title, introduction, and
appendices. Textbook outline:

B.1.4 Prompt Template for Generating Textbook-style

Synthetic Data: Step 2, Chapter Generation

¢ Step 2: generate each section based on outline.

¢ System Prompt: Provide a direct and detailed re-
sponse to the instructions without adding additional
notes.

* [USER]: Imagine you are a prolific author tasked
with writing a textbook. You are working on writ-
ing a textbook with the following outline.\n Outline:
[xxxx] \n Your task is to write Chapter x of the text-
book. Your target audiences are grade school students.
Include exercises at the end of the chapter to test the
reader’s knowledge of the chapter and then provide
reference answers to each question.




B.2.1 Sample Generation for HQ Rephrasing

* [Input text]: Porsche® 911 B&B Hi-Capacity In-
tercooler, 1978-1989 Home

/ Porsche® 911 B&B Hi-Capacity Intercooler,
1978-1989

Porsche® 911 B&B Hi-Capacity Intercooler, 1978-
1989 More Views

The B & B intercooler offers 100% more cooling
area than the stock unit, and 35% more than any
other aftermarket cooler. Due to this increased size,
the cooler has greater thermal efficiency, which
means cooler air to the engine. This will reduce the
chance of detonation and allow for greater boost
pressure for more power. Bolts in stock location
with minor modifications. Choose from Silver Alu-
minum or Black Powder Coated (allow 2-weeks).
APPLICATIONS

PORSCHE 911 (930) 1978, 1979, 1980, 1981,
1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989

HQ Rephrased: The Porsche® 911 B&B Hi-
Capacity Intercooler is a high-performance cooling
system designed for the Porsche 911 (930) model
from 1978 to 1989. This intercooler offers 100%
more cooling area than the stock unit, and 35%
more than any other aftermarket cooler. This in-
creased size allows for greater thermal efficiency,
which means cooler air to the engine. This, in turn,
reduces the chance of detonation and allows for
greater boost pressure, resulting in more power.

The B&B intercooler is designed to bolt into the
stock location with minimal modifications. It is
available in two finishes: Silver Aluminum and
Black Powder Coated. Customers should allow
2-weeks for delivery of the Black Powder Coated
finish.

The applications for the Porsche® 911 B&B Hi-
Capacity Intercooler are the Porsche 911 (930)
models from 1978 to 1989. This intercooler is
designed to provide superior cooling performance,
making it an ideal choice for those looking to im-
prove the performance of their Porsche 911.

B.2.2 Sample Generation for QA Rephrasing

* [Input text]: Porsche® 911 B&B Hi-Capacity In-

tercooler, 1978-1989 Home

/ Porsche® 911 B&B Hi-Capacity Intercooler,
1978-1989

Porsche® 911 B&B Hi-Capacity Intercooler, 1978-
1989 More Views

The B & B intercooler offers 100% more cooling
area than the stock unit, and 35% more than any
other aftermarket cooler. Due to this increased size,
the cooler has greater thermal efficiency, which
means cooler air to the engine. This will reduce the
chance of detonation and allow for greater boost
pressure for more power. Bolts in stock location
with minor modifications. Choose from Silver Alu-
minum or Black Powder Coated (allow 2-weeks).
APPLICATIONS

PORSCHE 911 (930) 1978, 1979, 1980, 1981,
1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989
QA Rephrased: Question: What is the name of
the product?

Answer: Porsche® 911 B&B Hi-Capacity Inter-
cooler, 1978-1989

Question: What is the cooling area of the stock
unit?

Answer: 100% more cooling area than the stock
unit

Question: What is the cooling area of the B&B
intercooler compared to other aftermarket coolers?

Answer: 35% more than any other aftermarket
cooler

Question: What is the purpose of the increased size
of the cooler?

Answer: Greater thermal efficiency, which means
cooler air to the engine

Question: What effect will this have on the engine?

Answer: Reduced chance of detonation and allow
for greater boost pressure for more power

Question: Where will the bolts for the cooler be
installed?

Answer: Bolts in stock location with minor modifi-
cations

Question: What are the two options for the color
of the cooler?

Answer: Silver Aluminum or Black Powder Coated

Question: How long will it take for the cooler to
arrive?
Answer: 2-weeks for Black Powder Coated

Question: What are the applications of the B&B
intercooler?

Answer: Porsche 911 (930) 1978, 1979, 1980,
1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988,
1989.

10754




B.2.3 Sample Generation for Textbook-style Syn-

thetic Data: Step 1, Outline Generation

* [Sample outline <general public>]: Title: The
Baltimore Orioles’ Spring Training

Introduction:

* Brief overview of the Orioles’ history and recent
successes

* Importance of spring training in preparing for the
regular season

* Purpose of the textbook: To provide readers with

an in-depth look at the Orioles’ spring training
activities

Chapter 1: Overview of the Orioles’ Spring Train-
ing Facilities

* Description of the team’s two main spring train-
ing fields: Ed Smith Stadium and the Gulf Coast
League

* Explanation of the new artificial turf field at Ed
Smith Stadium

* Importance of having multiple fields for in-
clement weather and rehabbing injured players

Chapter 2: Injury Updates and Rehabilitation

* Overview of the Orioles’ key injuries and their
status during spring training

Chapter 10: The Future of Orioles Baseball

* Qverview of the team’s current roster and their
potential for success in the upcoming season

* Description of the team’s prospects and their po-
tential to develop into top Major League players

* Explanation of the importance of continued in-
vestment in player development and team building
for long-term success

Conclusion:

* Recap of the key takeaways from the Orioles’
spring training
* Final thoughts on the importance of spring train-
ing and the team’s potential for success in the up-
coming season

Appendices:

* List of Orioles’ major league roster and key
prospects

* Glossary of baseball terms and concepts dis-
cussed in the textbook

* Additional resources for further reading on base-
ball and the Orioles.

\. J

Preference Data for RLHF: Reinforcement
Learning from Human Feedback (RLHF) requires
data indicating preferences between model outputs.
Synthetic data generation can augment or replace
human effort in creating these preference pairs, fa-
cilitating large-scale alignment (Taori et al., 2023).

Al Feedback and Constitutional AI: Methods
like Reinforcement Learning from Al Feedback

(RLAIF) and Constitutional Al (Bai et al., 2022)
utilize Al models themselves, guided by principles
or rules, to provide feedback or generate preferred
responses, further automating the alignment pro-
cess.

C.2 Data Curation Practices

The quality and composition of pre-training data
are paramount. Major dataset development efforts
highlight common practices:

Large-Scale Corpora Examples:

* C4 (Colossal Clean Crawled Corpus) (Raffel
et al., 2020): Derived from Common Crawl us-
ing heuristics like language filtering (retaining
primarily English text), removing code/markup,
filtering based on blocklists, and deduplication at
the document level.

¢ The Pile (Gao et al., 2020): A diverse dataset
combining 22 different high-quality sources, in-
cluding academic papers (PubMed, arXiv), books
(Books3), code (GitHub), web text (Pile-CC),
and conversational data, with source-specific fil-
tering.

¢ RefinedWeb (Penedo et al., 2024): Focused on
rigorous filtering and aggressive fuzzy deduplica-
tion of web data from Common Crawl to create
a high-quality, large-scale web corpus, arguing
against heuristic domain mixing.

Domain Mixing: Research actively explores the
impact of mixing data from different sources (Liu
et al., 2024a; Xie et al., 2023; Kang et al., 2023).
For example, including code data (Touvron et al.,
2023) or synthetic reasoning data (Abdin et al.,
2024) has been shown to improve reasoning, while
the optimal ratio of web text, books, and other
domains may vary depending on evaluation met-
rics and model scale (Ye et al., 2024; Kang et al.,
2024b,a).

C.3 Model Collapse Mechanisms

The theoretical concern of model collapse (Shu-
mailov et al., 2023; Dohmatob et al., 2024b,a)
posits that training generative models on their own
output can lead to degenerative feedback loops.
Proposed mechanisms include:

Distributional Drift: The distribution of synthet-
ically generated data may subtly differ from the
true underlying data distribution. Iterative training
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can amplify these differences, causing the model’s
learned distribution to drift further away.

Loss of Diversity: Models might over-represent
common modes in the data they generate, leading
to a gradual loss of information about less frequent
phenomena or the tails of the distribution (“tail-
forgetting”).

Artifact Amplification: Flaws, biases, or stylis-
tic quirks of the generator model may be replicated
and amplified in subsequent generations trained
on its output. Understanding the empirical condi-
tions under which these theoretical risks manifest
in large-scale LLM training is an ongoing research
effort.

D Additional Experiment Results

We provide some additional results and analyses to
experiments and studies in Sections 4 and 5.

D.1 Additional Results on Section 4.1.3

We trained 1B-parameter models on various data
mixtures with data budgets from 1B up to 200B
tokens. The scaling formula was fitted using data
points up to 100B tokens; predictions were then
validated on runs trained with 200B tokens. Six
data mixtures (CommonCrawl, 33% HQ + 67%
CC, 33% QA + 67% CC, Textbook (TXBK), 67%
TXBK + 33% CC, and 33% TXBK + 67% CC)
were trained to 200B tokens for this validation, as
our HQ and QA synthetic datasets were limited to
100B tokens each. The fit demonstrated high preci-
sion, as shown in Fig. 6, achieving a low Relative
Mean Absolute Error (RMABE) of 0.41% when
predicting for 200B tokens.

D.2 Additional Results on Section 4.1.4

We trained models from 100M to 3B parameters for
50B tokens on all 10 data mixtures. The formula
was fitted using models up to 2B parameters and
validated on 3B-parameter models. This fit also
proved highly precise (Fig. 7), with an RMABE of
0.30% for 3B-parameter model predictions.

D.3 Additional Results on Section 4.1.5

Figure 8 shows joint fitted scaling law predictions
for models trained only on CommonCrawl (CC)
with visualization for loss contours.

Validating Scaling Law Predictions (1B-parameter models)

@ CommonCrawl (CC)
—— - 33% HQ+67% CC
- 33% QA+67% CC
) Generated Textbook (TXBK)
\ — - - 67% TXBK+33% CC
: —— - 33% TXBK+67% CC
¢ Validation datapoints (2008)

5x10° )\ £y

4x10°

Validation Loss

3x10°

10° 10! 102 103
Data Budget/billion tokens (fitted up to 100B tokens; verify at 200B)

Figure 6: Validation of the data scaling formula. Predic-
tions for 200B tokens (fitted using up to 100B tokens)
achieve an RMABE of 0.41%. Solid dots display actual

loss values while the fitted curves shows predicted loss.
Validation datapoints are illustrated by diamond marks.

Validating Scaling Law Predictions (50B training tokens)

CommonCrawl (CC)
HQ-rephrased (HQ)
==+ -67% HQ+33% CC
—— -33% HQ+67% CC
QA-rephrased (QA)
-67% QA+33% CC
-33% QA+67% CC
Generated Textbook (TXBK)
==+ -67% TXBK+33% CC
—— - 33% TXBK+67% CC
¢ \Validation datapoints (38)

6x10°

4 x10° ©

Validation Loss

3x10°

10° 10t
Model size/billion parameters (fitted up to 2B-param models; verify at 3B)

Figure 7: Validation of the model scaling formula. Pre-
dictions for 3B-parameter models (fitted using up to

2B-parameter models) achieve an RMABE of 0.30% on
validation datapoints illustated with diamond marks.
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Figure 8: Joint fitted scaling law predictions for models
trained only on CommonCrawl (CC). Yellow lines are
loss contours.
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Table 4: Fitted coefficients for Figure 1, Data Scaling.

Fitted CommonCrawl | HQ-rephrased 67% HQ+ 33% HQ+ | QA-rephrased 67% QA+ 33% QA+ Generated 67% TXBK+ 33% TXBK+
Coefficients: (CO) (HQ) 33% CC 67% CC (QA) 33% CC 67% CC | Textbook (TXBK) 33% CC 67% CC
B 1.75424788 2.08762692 1.87764133 1.78983191 1.95783297 1.73878781 1.71111225 2.25602694 2.2130317 2.06636438
B 0.55550749 0.48937729 0.51033911  0.48672269 0.45444664 0.48231484  0.50447156 0.38402667 0.42750747 0.44700694
E 2.82671678 2.74887338  2.53811788 2.50490252 | 2.70446033  2.53989634 2.54857649 3.26734143 2.73600177 2.6117112
Table 5: Fitted coefficients for Figure 2, Model Scaling.
Fitted CommonCrawl | HQ-rephrased 67% HQ+ 33% HQ+ | QA-rephrased 67% QA+ 33% QA+ Generated 67% TXBK+ 33% TXBK+
Coefficients: (CC) (HQ) 33% CC 67% CC (QA) 33% CC 67% CC | Textbook (TXBK) 33% CC 67% CC
A 0.56088365 0.41624816 0.44475769  0.43919198 0.35099494 0.49017589  0.69735727 0.60660315 0.55037357 0.48812362
a 0.37639592 0.48890806 0.45415438  0.4587784 0.59004325 0.40797778  0.31327323 0.41653062 0.42453172 0.45212858
E 2.491062 2.6459769 2.35668164  2.3364956 2.68957867  2.31629037 2.09815169 3.17632391 2.61596734 2.49067997

D.4 Additional Results on Section 5.3

Figure 9 shows analyses of token distributions across datasets and methods. Figure 10 visualizes per-token
loss and rolling avergage in evaluation for models trained on respective corpus.
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(a) Unigram analysis with Zipf function fitting for unigram (to-
ken) frequencies of different training data corpora. CC appears
to have wider and slight more uniform coverage of tokens than
other training corpora, whereas the test corpora have wider cov-

erage of tokens than training corpora.
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(b) KL-divergence beween unigram distributions of the
test dataset and each training corpus. CC appears to have
the smallest KL-divergence from test data, suggesting the
highest distribution similarities, but does not yield high

dowmstream model performance.

Test Sorted Token

—e— HQ

(c) All estimated token frequencies for each training and test corpus, sorted by the frequency of test tokens. Some methods have
relatively lower representation of certain tokens (e.g., CC’s “. \n\n”) and others increase certain token frequencies (e.g., QA’s

«, ”)

Figure 9: Analysis of token distributions across datasets and methods.
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