
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 10809–10833
November 4-9, 2025 ©2025 Association for Computational Linguistics

From Scores to Steps: Diagnosing and Improving LLM Performance in
Evidence-Based Medical Calculations

Benlu Wang* 1, Iris Xia* 1, Yifan Zhang 2,3, Junda Wang 2,4,
Feiyun Ouyang 2,3, Shuo Han 3, Arman Cohan 1, Hong Yu† 2,3,4, Zonghai Yao† 2,4

1Department of Computer Science, Yale University, CT, USA
2Center for Healthcare Organization and Implementation Research, VA Bedford Health Care

3Miner School of Computer and Information Sciences, UMass Lowell, MA, USA
4Manning College of Information and Computer Sciences, UMass Amherst, MA, USA

benlu.wang@yale.edu, iris.xia@yale.edu, zonghaiyao@umass.edu

Abstract

Large language models (LLMs) have demon-
strated promising performance on medical
benchmarks; however, their ability to perform
medical calculations, a crucial aspect of clinical
decision-making, remains underexplored and
poorly evaluated. Existing benchmarks often
assess only the final answer with a wide numeri-
cal tolerance, overlooking systematic reasoning
failures and potentially causing serious clinical
misjudgments. In this work, we revisit med-
ical calculation evaluation with a stronger fo-
cus on clinical trustworthiness. First, we clean
and restructure the MedCalc-Bench dataset and
propose a new step-by-step evaluation pipeline
that independently assesses formula selection,
entity extraction, and arithmetic computation.
Under this granular framework, the accuracy
of GPT-4o drops from 62.7% to 43.6%, reveal-
ing errors masked by prior evaluations. Sec-
ond, we introduce an automatic error analysis
framework that generates structured attribution
for each failure mode. Human evaluation con-
firms its alignment with expert judgment, en-
abling scalable and explainable diagnostics. Fi-
nally, we propose a modular agentic pipeline,
MedRaC, that combines retrieval-augmented
generation and Python-based code execution.
Without any fine-tuning, MedRaC improves the
accuracy of different LLMs from 16.35% up to
53.19%. Our work highlights the limitations
of current benchmark practices and proposes
a more clinically faithful methodology. By en-
abling transparent and transferable reasoning
evaluation, we move closer to making LLM-
based systems trustworthy for real-world medi-
cal applications.

1 Introduction

Clinical calculation matters, but benchmarks miss
the point. While large language models (LLMs)
are increasingly used in clinical settings (Achiam

*Equal contribution, alphabetical order
†Co-corresponding authors

et al., 2023; Goodman et al., 2023; Decker et al.,
2023; Ayers et al., 2023; Thirunavukarasu et al.,
2023b; Singhal et al., 2023; Sun et al., 2024;
Yao and Yu, 2025) for question answering (Jin
et al., 2021), medical documentation summariza-
tion (Shaib et al., 2023), and even decision sup-
port (Thirunavukarasu et al., 2023a; Tu et al.,
2025), many of these applications hinge on the
model’s ability to perform reliable medical calcu-
lations (Goodell et al., 2025). Such tasks, like
computing glomerular filtration rate or cardiovas-
cular risk, require high numerical accuracy, cor-
rect formula use, and context-aware data extrac-
tion (Cockcroft and Gault, 1976; Initiative, 2010;
Gage et al., 2001). Yet existing benchmarks for
evaluating LLMs in this domain fall short of these
requirements.

MedCalc-Bench (Khandekar et al., 2024) re-
cently introduced a collection of real-world medi-
cal calculation tasks, drawn from widely used cal-
culators that surveys show were regularly used by
over 80% of healthcare professionals today (MDC,
2025). However, its current evaluation protocol
only checks whether the final answer falls within
a ±5% tolerance. This overlooks critical failures
in intermediate steps, such as selecting the wrong
formula, misreading patient attributes, or miscal-
culating values, creating an illusion of high perfor-
mance while masking real risks. Additionally, we
observed corrupted data points that hindered the
analysis of model performance.

We address this problem by first cleaning errors
in the original benchmark and proposing a three-
part framework for more faithful evaluation and
performance enhancement:
• A step-by-step evaluation pipeline that assesses

each reasoning stage: formula selection, entity
extraction, and numerical computation. 1

1Our code and data are released here: https://github.
com/Super-Billy/EMNLP-2025-MedRaC with Apache-2.0 li-
cense.

10809

mailto:benlu.wang@yale.edu
mailto:iris.xia@yale.edu
mailto:zonghaiyao@umass.edu
https://github.com/Super-Billy/EMNLP-2025-MedRaC
https://github.com/Super-Billy/EMNLP-2025-MedRaC

• An LLM-based automatic error analysis frame-
work that attributes mistakes to specific steps
and generates structured explanations, validated
against human experts.

• A training-free, agentic enhancement method
that decomposes medical calculation into distinct
stages and leverages retrieval-augmented ground-
ing with executable code generation to reduce
hallucinations and boost accuracy.
While many recent benchmarks report steady

gains in accuracy, it remains unclear how much
these improvements translate into safer or more
deployable systems in high-stakes domains (Kung
et al., 2023; Jin et al., 2024; Yang et al., 2025). By
rethinking how we evaluate and support LLMs in
medical calculation, an essential, tool-heavy aspect
of real clinical practice, we offer a more transfer-
able and trustworthy pathway from NLP progress
to clinical impact.

2 Background and Related Work

Limitations of Final-Answer Medical Bench-
marks Early benchmarks, such as MedQA (Jin
et al., 2021), PubMedQA (Jin et al., 2019), and
MedMCQA (Pal et al., 2022), primarily focus on
factual recall and multiple-choice question answer-
ing. However, these benchmarks do not test mod-
els’ ability to perform quantitative or step-by-step
reasoning. MedIQ introduces a question-asking
dataset that encourages models to seek missing
information, though this often degrades perfor-
mance (Li et al., 2024b). MedCalc-Bench (Khan-
dekar et al., 2024) improves upon this by introduc-
ing real-world medical calculation tasks. It draws
from 55 widely used MDCalc calculators and in-
cludes 1047 patient vignettes covering scenarios
such as glomerular filtration rate (GFR) estimation
and body mass index (BMI) calculation. These
tasks require selecting the correct formula, extract-
ing clinical variables, and performing numerical
computations. Despite its innovation, MedCalc-
Bench only evaluates the final numeric answer, al-
lowing a ±5% margin of error. This can obscure
errors such as formula misapplication, omission of
key patient factors, or hallucinated arithmetic. As
our reanalysis reveals, many answers marked as
“correct” under the original metric contain faulty
reasoning chains, thereby limiting their clinical reli-
ability. We extend MedCalc-Bench by introducing
a step-wise evaluation pipeline that inspects each
reasoning component—formula, extraction, com-

putation, and answer formatting—independently,
revealing deeper reasoning failures that would oth-
erwise go undetected.

Evaluating Intermediate Reasoning with LLM-
as-Judge Step-wise evaluation has gained trac-
tion in general NLP tasks (Lightman et al., 2023;
Chen et al., 2022; Huang et al., 2025; Shen et al.,
2025), with LLMs increasingly used as automated
judges (Li et al., 2024a; Gu et al., 2024). Studies
show that models like GPT-4 (Achiam et al., 2023;
Liu et al., 2023; Fu et al., 2023) and critique-tuned
variants (Ke et al., 2023) can approximate human
judgment in summarization (Chen et al., 2023), di-
alogue (Zheng et al., 2024; Zhang et al., 2024), and
translation (Kocmi and Federmann, 2023). In the
medical domain, LLM-as-judge has been applied
to clinical conversations (Tu et al., 2025; Arora
et al., 2025; Wang et al., 2023), medical documen-
tation (Croxford et al., 2025; Chung et al., 2025;
Brake and Schaaf, 2024), exam question answering
& generation (Yao et al., 2024a,b), and medical
reasoning (Jeong et al., 2024; Tran et al., 2024).
Inspired by these works, we introduce the first step-
wise LLM-as-Judge framework for clinical calcu-
lation tasks.

Retrieval-Augmented and Execution-Based En-
hancements In clinical NLP, hallucinations are
a key concern, particularly in high-stakes appli-
cations. Retrieval-augmented generation meth-
ods (Nori et al., 2023a; Xiong et al., 2024a,b;
Wang et al., 2024) address this by grounding
generation in trusted sources. Visual RAG ap-
proaches further improve reliability in imaging
tasks (Chu et al., 2025). Surveys confirm that
RAG systematically reduces fabrication (Zhu et al.,
2024; Miao et al., 2025). Program-aided reason-
ing and broader tool-use approaches have been
extensively studied in recent work, highlighting
the value of integrating external tools into LLM
workflows (Mialon et al., 2023; Gao et al., 2023).
Parallel to retrieval, execution-based techniques
like Self-Consistency (Wang et al., 2022) and Self-
Refine (Madaan et al., 2023) offer tools for reduc-
ing arithmetic and logical errors. These methods
are often applied in math and symbolic reasoning,
but have not been widely tested in clinical computa-
tions. We unify both strategies into a plug-and-play
agentic pipeline tailored to medical calculations.
By combining formula retrieval with Python code
execution, our method corrects both hallucination-
driven and computation-driven errors—without re-

10810

quiring any model fine-tuning.

3 Methods

3.1 Step-wise Evaluation

As shown in Figure 1, medical calculations typ-
ically involve multiple sequential steps, such as
retrieving relevant medical knowledge and identi-
fying the appropriate formula. We propose a struc-
tured evaluation pipeline for medical calculation
tasks that decomposes the reasoning process into
four sequential, individually validated steps:

Formula selection. The candidate response must
employ the correct medical calculation formula,
as defined among the 55 calculators in MedCalc-
Bench, and specify it fully, including appropriate
units, boundary conditions, and any relevant con-
straints. We constructed a reference formula li-
brary corresponding to these 55 calculators, against
which each model-proposed formula is evaluated.
We use an evaluator to compare the predicted for-
mula to its canonical counterpart in this library and
assign a binary correctness score.

Value extraction. We ask the evaluator to ex-
tract every numerical and categorical variable from
both the clinical vignette and the model’s re-
sponse. These extracted variables are then com-
pared against the gold-standard answers provided
in the dataset’s JSON annotations. Using a closed-
book LLM evaluator, we compute the alignment
and assign a binary correctness score: full agree-
ment is required to pass, while any mismatch, such
as a missing, hallucinated, or incorrectly labeled
variable, results in failure.

Mathematical calculation. The evaluator veri-
fies whether each arithmetic step is valid, based
on the extracted formula and values. UUnlike
MedCalc-Bench, which allows a 5% margin of
error, we adopt a stricter criterion, following the
tolerance defined on the original calculators’ web-
site, MDCalc. Specifically, the allowed numerical
tolerance depends on the number of decimal places
in the LLM’s answer, capped at two decimal places.
For example, an answer of 10.65 is evaluated with
a ±0.005 tolerance, while answers with more than
two decimals (e.g., 10.6512) are rounded and as-
sessed with the same ±0.005 threshold. A binary
correctness score is then assigned.

Final Answer. We evaluate whether the model’s
final prediction is equivalent to the ground-truth

answer in the dataset, allowing for valid unit con-
versions.

To ensure that the model focuses solely on eval-
uating the correctness of the mathematical compu-
tation, we provide only the LLM-generated answer
as input, excluding the ground-truth answer or any
reference formulas, to avoid potential bias or leak-
age that could influence judgment.

Let Si denote the result of the ith step in the
calculation process, each step is dependent on the
previous steps: Si = f(Si−1, . . . ,S1). Define a
validation function V(·) ∈ {True, False}. We
propose that a step Si can only possibly be correct
if and only if the immediately preceding step is
correct, that is,

3V(Si) ⇐⇒ V(Si−1).

Our evaluation metric ensures correctness by ver-
ifying the validity of each step in the MedCalc
Bench dataset. Specifically, we evaluate the follow-
ing steps sequentially: formula correctness V(F),
extraction correctness V(E), calculation correct-
ness V(C), and final answer correctness V(A). We
define the correctness of the calculation task for
one case κ ∈ {True, False}, as the conjunction of
validity across all individual steps:

κ = V(F) ∧ V(E) ∧ V(C) ∧ V(A)

Further, we define the Conditional Correctness
of each step Si as the probability that the step is
correct given that all preceding steps are correct:

CCi = P (V(Si) | V(S1) ∧ . . . ∧ V(Si−1)) .

We also define the First Error Attribution Rate of
step Si as the proportion of examples in which Si

is the first step to fail, i.e., all previous steps are
correct but Si is incorrect:

FEi = P(V(S1) ∧ . . . ∧ V(Si−1) ∧ ¬V(Si) | ¬κ).

This decomposition enables fine-grained error
diagnosis and quantitative comparison across mod-
els and methods. Figure 1 illustrates the whole
pipeline.

3.2 LLM-aided Evaluation and Structured
Error Attribution

Building upon the step-wise evaluation pipeline,
we design an LLM-aided judge to assess correct-
ness at each stage. Given an input–output pair from
the LLM Test Taker and a ground-truth reference

10811

Figure 1: Step-wise LLM-aided Evaluation Pipeline. Each reasoning stage is checked by an LLM-Judge against a
reference explanation to determine its correctness.

Figure 2: Categorization of Reasoning Errors in Clinical
Calculation Tasks. Incorrect outputs can stem from
diverse sources of failure across reasoning stages.

(e.g., extracted variable, formula used, computed
value), we prompt a high-performance LLM Judge
to determine semantic alignment and provide bi-
nary correctness feedback.

To further analyze the failure patterns behind in-
correct answers, we define a taxonomy of common
medical calculation errors, visualized in Figure 2.

Each failure is assigned to one or more of the fol-
lowing categories:

Formula Misselection or Hallucination: The an-
swer chooses a formula that does not fit the clinical
scenario or distorts the correct formula by invent-
ing, omitting, or misplacing terms, coefficients, or
operators (e.g. using Cockcroft–Gault instead of
CKD-EPI for an AKI patient).

Incorrect Variable Extraction: A wrong value,
unit, or time-point is pulled from the note (e.g.
yesterday’s creatinine, or treating µmol L−1 as
mgdL−1).

Clinical Misinterpretation (Rule-based): Num-
bers are captured correctly, but their clinical mean-
ing is misjudged—wrong severity, threshold, or
presence/absence decision (e.g. calling “trace as-
cites” “no ascites”).

Missing Variable(s): One or more required in-
puts (weight, race, age group, etc.) are absent, yet
the calculation proceeds, rendering the result unre-
liable.

Demographic Adjustment Failure: A mandatory
sex, race, BSA, pregnancy, or age multiplier is
skipped or applied to the wrong group (e.g. omit-
ting the 0.85 female factor).

Unit Conversion Error (Equation-based): A
value is used without the necessary unit change,

10812

or with an incorrect factor/direction, before substi-
tution into the formula (e.g. using 134 µmol L−1

as 134 mgdL−1).
Arithmetic Error: Pure math is wrong despite

correct formula and inputs, basic addition, order
of operations, exponentiation, or duplication/omis-
sion of terms.

Rounding / Precision Error (Equation-based):
The final number is outside the allowed tolerance
solely because of over- or under-rounding (rule of
1–2 d.p.: ±0.05 for one decimal place, ±0.005 for
two).

These error types enable structured analysis of
model behavior and inform targeted interventions
in later modules.

3.3 MedRaC: Multi-Agent Enhancement with
Formula-RAG and Code

Guided by the diagnostic insights from the step-
wise evaluation and error analysis, we propose
MedRaC, a modular agentic pipeline (Figure 3) to
improve LLM performance on medical calculation
tasks without any additional training. MedRaC
combines Formula RAG, which embeds and in-
dexes MDCalc formulas and task-specific descrip-
tions so that relevant formulas can be retrieved and
injected into the prompt before reasoning begins,
thereby addressing formula selection errors and
mitigating hallucination, and Python Code Exe-
cution, where the LLM is instructed to generate
Python code representing the equation and this
code is executed to produce the final result, elimi-
nating arithmetic and rounding errors. MedRaC is
designed to be plug-and-play, requiring no model
fine-tuning and allowing it to be layered on top
of existing LLM inference APIs. Each compo-
nent targets a specific error type identified in our
earlier analysis, enabling explainable and modular
improvements.

4 Experiments

We conduct all experiments on MedCalc-Bench,
a benchmark comprising 1,048 physician-curated
clinical calculation cases. Because the original
release contains several obsolete or internally in-
consistent records, we manually reviewed the data
and had a board-certified clinician re-audit every
questionable item. After filtering out 108 faulty or
deprecated entries, we retained 940 valid cases for
evaluation. A detailed list of the removed items,
along with the rationale for each exclusion, is pro-

Figure 3: MedRaC Pipeline

vided in the Appendix A.
Our primary metric is the Step-wise LLM Evalu-

ation proposed in Section 3.1, which separately
grades formula selection, entity extraction, and
arithmetic computation.

Following the benchmark guidelines, we treat
zero-shot Chain-of-Thought (CoT) prompting as
the main baseline. In addition to the “direct” set-
ting, where models output only the final numer-
ical answer, we evaluate four reasoning-oriented
variants. In CoT, the model produces a detailed
chain of thought along with the final answer. One-
shot uses the same output format but augments the
prompt with a single worked example based on
the same calculator as the test case. MedPrompt
implements the k-nearest-neighbor retrieval com-
ponent of MedPrompt with k=3 (Nori et al., 2023b),
without option-ordering heuristics since calculation
tasks lack a multiple-choice structure. Finally, Self-
Refine asks the model to critique its own response
and revise the solution if an error is detected, ter-
minating early when no error is reported, with at
most five refinement rounds.

4.1 Evaluation Results

Table 1 summarizes performance across a diverse
suite of closed- and open-source LLMs of varying
sizes. For the direct setting, we score only the
final answer, whereas all reasoning-based variants
are assessed with the automatic step-wise rubric
described above.

Our MedRaC method outperforms One-shot
prompting across most settings. For equation-
based questions, the improvement is substantial
regardless of model size, confirming the benefit
of external formula retrieval and modular reason-
ing. For rule-based questions, the performance
gains are more nuanced. Smaller models (e.g.,

10813

Model Direct CoT One-shot Self-Refine Medprompt MedRaC

Rule Calc Rule Calc Rule Calc Rule Calc Rule Calc Rule Calc

Phi-4-mini 16.52 2.16 5.01 2.16 12.09 16.47 2.06 6.16 3.24 10.32 35.10 68.39
LLaMA3.2-3B 12.39 0.83 1.47 3.99 14.75 18.47 0.88 2.83 2.95 16.31 -2 -
Qwen3-4B 23.30 26.79 9.73 25.79 49.85 59.57 9.44 26.29 10.32 45.92 45.72 68.72
Qwen3-8B 29.20 42.26 16.52 38.10 58.70 62.90 19.76 40.10 15.93 53.74 46.61 74.54
LLaMA3.1-8B 19.17 2.50 6.78 8.32 25.07 20.97 5.90 6.82 11.21 28.45 31.27 70.22
Qwen3-14B 39.53 46.59 26.55 43.43 60.77 67.05 27.14 47.25 8.55 22.30 50.44 78.37
GPT-4o-mini 22.42 7.99 23.89 34.61 52.80 49.58 26.55 33.94 11.80 42.43 50.44 72.71
GPT-4o 24.48 13.98 43.07 43.93 62.24 54.24 44.84 44.93 25.96 56.91 51.03 64.39

Table 1: Performance comparison across models and prompting strategies using LLM-aided automatic evaluation.
Accuracy is reported under both rule-based and calculation-based metrics.

Phi-4-mini, LLaMA series) benefit significantly
from our method over One-shot, whereas stronger
models (e.g., Qwen-3, GPT-3.5) show marginal
improvements or even slightly worse results. We
hypothesize two reasons for this pattern: (1) Larger
models possess richer internal medical knowledge
and are less reliant on external formulas, reducing
the added value of MedRaC for rule-based cases.
(2) The One-shot examples include not only scor-
ing rules but also a worked-out example mapping
patient notes to scores, which involves clinical rea-
soning. Stronger models are more capable of ex-
tracting and generalizing such implicit knowledge,
enabling better transfer to new inputs.

4.2 Validation of LLM-aided Evaluation

We validate our evaluation pipeline from two per-
spectives: its ability to more effectively identify
reasoning errors, and its high agreement with ex-
pert human annotations, demonstrating both im-
proved diagnostic capability and alignment with
clinical judgment.

Improved Detection of Reasoning Failures.
The original MedCalc-Bench evaluates only the
final numeric answer and allows a wide tolerance
margin, often obscuring hallucinations or logical er-
rors in intermediate steps. In contrast, our pipeline
evaluates each stage, formula selection, variable ex-
traction, arithmetic computation, and final answer
formatting independently. This granular evaluation
enables the detection of clinically significant errors
that would be overlooked under final-answer-only
metrics. Appendix G presents a case study where
an LLM generated the correct final value but intro-
duced multiple hallucinations during intermediate
reasoning; our system successfully identified these
inconsistencies.

Alignment with Expert Annotations. To eval-
uate the reliability of our step-wise evaluation
pipeline, we compare its outputs against human
annotations. We randomly sampled 46 clinical cal-
culation questions across five calculators, spanning
both rule-based and equation-based tasks. Each
step in our pipeline was independently annotated
for correctness by both expert and non-expert eval-
uators.

We assessed the alignment between our evalua-
tion pipeline and human judgments by computing
pairwise agreement scores. Specifically, we mea-
sured agreement among all human annotator pairs,
as well as between our error analysis pipeline and
expert annotators. Agreement is defined as simple
percent agreement:

Agreement(a, b) =
1

n

n∑

i=1

⊮[ai = bi],

where ai and bi are binary correctness labels from
two sources (e.g., expert and pipeline), and ⊮[·] is
the indicator function.

Our results in Table 2 show that LLM-based er-
ror analysis achieves higher agreement with expert
annotators than non-experts, and outperforms all
human annotator pairs except on the extraction task.
We attribute this to the LLM’s careful, step-by-step
consistency in evaluating responses. These find-
ings support the validity of our evaluation pipeline
in better reflecting expert clinical judgment.

Agreement Type Formula Extraction Calculation Answer

Expert–Expert 84.8% 84.8% 89.1% 95.7%
Expert–Non-Expert 72.3% 78.1% 66.6% 91.3%
LLM–Expert 90.2% 78.3% 88.1% 97.8%
All Pairs (Overall) 77.2% 81.9% 75.7% 92.5%

Table 2: Agreement scores (%) across evaluation stages.

10814

Error Type LLM Non-Expert

Arithmetic 73.9% 95.7%
Clinical Misinterpretation 76.1% 87.0%
Formula 73.4% 89.1%
Variable Extraction 75.0% 76.1%
Missing Variables 90.2% 100.0%
Precision Errors 79.4% 93.5%

Table 3: Average agreement (%) between expert–LLM
and expert–non-expert across error types.

4.3 Error Type Experiments
We compare the error type annotations produced
by our LLM-based pipeline with those from hu-
man evaluators, as detailed in Appendix C, using
the same experimental setup. Each annotator was
asked to label all applicable error types in LLM-
generated answers, and agreement was computed
using Jaccard similarity:

Agreement(A,B) =
|A ∩B|
|A ∪B|

where A and B are the sets of error types identified
by two annotators.

Table 3 shows the average agreement between
the LLM Judge and experts, as well as between
experts and non-experts. While LLM–expert agree-
ment is not consistently higher than human–human
agreement, we observe that the LLM is reason-
ably aligned with expert decisions, particularly on
well-defined tasks such as variable extraction and
missing inputs.

These results reflect the inherent difficulty of
multi-label error attribution: humans often con-
verge on the most salient error, while LLMs evalu-
ate each category independently and systematically.
Although imperfect, the LLM’s error analysis is
structured, reproducible, and offers a valuable ref-
erence point for reviewing model failures.

Error-type comparison. We evaluated differ-
ences in output error types between Zero-Shot and
MedRaC across four models, as detailed in Ap-
pendix E. Figure 4, using the Llama3.1-8B-Instruct
model as an example, illustrates that the proposed
MedRaC pipeline substantially reduces the main er-
ror types relative to the Zero-Shot CoT baseline. Al-
most all error categories showed decreases; among
them, the steepest drops were in Formula Misse-
lection/Hallucination (−587, −77.5%), Arithmetic

2The model fails to output executable code

Error (−352, −82.6%), and Demographic Adjust-
ment Failure (−105, −70.9%). These decreases
can be understood to stem from using grounded
formulas and precise programmatic calculation. A
slight increase in the low-frequency Rounding/Pre-
cision Error category likely reflects our stricter eval-
uation tolerance rather than a true decline in numer-
ical performance. We also provide the error anal-
ysis of other methods evaluated with LLaMA3.1-
8B in Table 4. Oneshot reduces many errors be-
cause curated examples guide step-by-step reason-
ing, though it cannot fix arithmetic mistakes since
examples do not improve raw computation. Self-
Refine performs better in math-heavy categories
by iteratively correcting outputs, directly address-
ing numerical slips. In contrast, MedPrompt often
underperforms Oneshot because noisy retrieved ex-
amples dilute key signals.

Figure 4: Error Type Counts for Llama3.1-8B-Instruct

Attribution of gains. Formula retrieval provides
the model with the exact equation and relevant de-
mographic terms, which reduces hallucinations and
incorrect formulations, thereby lowering formula-
related and adjustment errors. Code execution del-
egates arithmetic operations to Python, preventing
mistakes such as incorrect operation order or unit
miscalculations and yielding roughly an 83% re-
duction in arithmetic errors along with fewer unit
conversion issues. An ablation study demonstrating
the individual contributions of these two techniques
will be presented in Section F.

Residual challenges. Error types that depend on
nuanced clinical understanding, such as Incorrect
Variable Extraction (−64, −21.3%) and Clinical
Misinterpretation (−82, −26.9%), show relatively
limited improvement. These cases often require
background medical knowledge or familiarity with
clinical reasoning, which current LLMs lack. Even
when a correct formula is available, models may

10815

Method Formula
Error

Missing
Variables

Missing/
Misused
Demographic
Coeff.

Unit
Conversion
Error

Arithmetic
Errors

Rounding/
Precision

Incorrect
Variable
Extraction

Clinical
Mis-
interpretation

CoT 757 308 148 204 426 11 301 305
Oneshot 295 152 44 82 455 5 194 241
Self-Refine 818 716 29 46 101 5 370 118
Medprompt 477 271 60 97 430 54 307 295
MedRaC 170 131 43 83 74 22 237 223
code-only 776 430 93 181 91 17 416 318
rag-only 211 142 44 107 318 35 213 238

Table 4: Error counts by method and error type.

struggle if the necessary medical context is implicit
or not explicitly encoded. This indicates that up-
stream information extraction remains a bottleneck.

5 Ablation Studies

To analyze the contribution of each MedRaC com-
ponent, we conduct controlled ablations.

Formula RAG We compare MedRaC with and
without retrieval, keeping the rest of the pipeline
fixed. In the no-retrieval variant, the LLM is
prompted to infer relevant background information
before extracting the value. As shown in Table 5,
accuracy drops sharply from 64.68% to 25.64%
without retrieval. The formula stage becomes the
primary failure point, with its First Error Attribu-
tion Rate (FE) rising to 71.96% and its Conditional
Correctness (CC) falling to 7.34%. These results
suggest that retrieval is crucial for selecting accu-
rate formulas and for subsequent reasoning.

Components MedRaC MedRaC w/o RAG
Acc % ↑ 64.68 25.64
Formula FE % ↓ 20.78 71.96
Formula CC % ↑ 92.66 46.49

Table 5: Comparing accuracies w/ and w/o RAG

Code We compare variants with and without
code execution. In place of code generation, the
model is asked to produce chain-of-thought rea-
soning to calculate the requested value. Since
DeepSeek-v3 struggles to accurately assess Python
code, we rely on reasoning models as judges; re-
sults for DeepSeek-v3 are shown here, with the
rest reported in Appendix F. Across different judge
models, the inclusion of the Code component con-
sistently reduces error rates.

Memory Scaling We expand the formula bank
from 55 to 785 formulas and evaluate retrieval per-

Components MedRaC MedRaC w/o Code
Acc % ↑ 64.68 53.09
Calc FE % ↓ 3.23 31.88
Calc CC % ↑ 97.82 76.52

Table 6: Comparing accuracies w/ and w/o Code

formance using OpenAI’s embedding models. The
smaller set corresponds exactly to the 55 calcu-
lators in MedCalc-Bench, while the larger set in-
cludes nearly all formulas from the MDCalc web-
site’s evidence sections.3

Retrieval is considered successful if any of the
top-k retrieved formulas match the ground-truth
formula for a given question. As shown in Table 7:

• All three embedding models achieve 100%
top-2 accuracy in both the 55- and 785-
formula settings.

• Even with a 14× increase in formula count,
top-1 accuracy remains high. For in-
stance, text-embedding-ada-002 maintains
100%, while text-embedding-3-large and text-
embedding-3-small still achieve over 96%.

These results suggest that retrieval-augmented
methods are especially well-suited for medical cal-
culation tasks, not because of any inherent superi-
ority of RAG itself, but due to the unique nature of
medical formulas. These formulas are highly struc-
tured, semantically distinct, and domain-specific,
which allows embedding-based retrieval to remain
robust even as the size of the knowledge base in-
creases. This makes our method practically scal-
able to a much broader range of clinical calculators
beyond those in MedCalc-Bench.

3Formulas were obtained via web scraping. Ensure proper
licensing and data usage compliance.

10816

6 Discussion and Conclusion

Medical calculations are not just a numeric task.
They represent structured, high-stakes reasoning
in clinical workflows. Our study reveals that ex-
isting evaluation metrics, which focus solely on
final answer accuracy, often fail to capture critical
reasoning failures such as formula misuse, variable
misinterpretation, or arithmetic errors. These over-
sights may result in overly optimistic assessments
of model safety and applicability.

We introduce a stepwise evaluation framework
and a structured error taxonomy that enable more
transparent, diagnostic, and actionable feedback
on model behavior. Furthermore, our MedRaC
pipeline improves performance without additional
training by augmenting model reasoning with ex-
plicit retrieval and executable code. Through con-
trolled ablations and human-aligned validation, we
show that each component directly mitigates failure
modes in clinical computation.

Importantly, our findings point to a broader
methodological shift: as language models are de-
ployed in safety-critical domains, evaluating in-
termediate reasoning and domain-grounded cor-
rectness becomes essential. This work advocates
for domain-aware, explanation-oriented evaluation
practices that bridge the gap between model devel-
opment and real-world deployment. By prioritiz-
ing interpretability and modular error analysis over
end-task scores, we take a step toward safer, more
trustworthy AI systems that serve beyond NLP’s
traditional boundaries.

7 Limitations

While our step-wise evaluation framework and
MedRaC pipeline provide more granular insight
into LLM reasoning in medical calculations, sev-
eral limitations remain. First, our benchmark cur-
rently focuses on structured, single-turn tasks in-
volving well-defined formulas. This setup may not
accurately capture the ambiguity, context switch-
ing, or exception handling that are common in real-
world clinical reasoning.

Second, although our dataset covers 55 diverse
calculators and our RAG component scales to hun-
dreds more, all experiments were conducted in En-
glish, using curated clinical notes. The generaliz-
ability of our results to multilingual settings, noisy
EHR data, or patient-facing dialogue remains to be
studied.

Third, the correctness judgments at each reason-

ing step rely on LLM-as-Judge evaluation. While
we validated this against expert annotations, LLM-
based evaluation may still be prone to error propa-
gation, especially for subtle clinical misinterpreta-
tions.

Finally, while MedRaC enhances factual relia-
bility through modular design, it assumes access
to accurate formula banks and structured variables.
Future work should explore more open-ended clin-
ical reasoning and integrate real-time human over-
sight in deployment settings.

8 Ethics Statement

This study uses only publicly available and
anonymized clinical data, including physician-
written vignettes and structured case reports from
sources such as PubMed Central. No identifiable
patient data were accessed or used.

The MedCalc-Bench dataset and the associated
MedRaC framework are designed solely for evalu-
ating and improving LLM capabilities in medical
calculations under controlled conditions. They are
not intended for diagnostic use or direct clinical
deployment. All outputs must be reviewed and
interpreted by licensed healthcare professionals.

To validate our evaluation pipeline, we engaged
two medical experts in the United States to annotate
reasoning steps and provide structured feedback on
LLM outputs. They were compensated for their
time at a rate of $40 per hour, following academic
ethical standards.

Finally, given the high-stakes nature of clini-
cal MedCalc-Bench disqualifies a model for any
real-world medical calculation task, while passing
should be considered a necessary but not sufficient
condition for use. We caution against deploying
LLMs for clinical decision-making without rigor-
ous benchmarking, error attribution, and domain-
specific oversight. Our work is intended to con-
tribute to the responsible development of AI for
healthcare, rather than replacing expert judgment.

Acknowledgments

This material is the result of work supported with
resources and the use of facilities at the Center
for Healthcare Organization and Implementation
Research, VA Bedford Health Care.

10817

References
2025. About us - mdcalc. https://www.mdcalc.com/

about-us. Accessed: 2025-09-19.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rahul K Arora, Jason Wei, Rebecca Soskin Hicks, Pre-
ston Bowman, Joaquin Quiñonero-Candela, Foivos
Tsimpourlas, Michael Sharman, Meghan Shah, An-
drea Vallone, Alex Beutel, et al. 2025. Healthbench:
Evaluating large language models towards improved
human health. arXiv preprint arXiv:2505.08775.

John W Ayers, Adam Poliak, Mark Dredze, Eric C
Leas, Zechariah Zhu, Jessica B Kelley, Dennis J
Faix, Aaron M Goodman, Christopher A Longhurst,
Michael Hogarth, et al. 2023. Comparing physician
and artificial intelligence chatbot responses to pa-
tient questions posted to a public social media forum.
JAMA internal medicine, 183(6):589–596.

Nathan Brake and Thomas Schaaf. 2024. Comparing
two model designs for clinical note generation; is an
llm a useful evaluator of consistency? arXiv preprint
arXiv:2404.06503.

Hong Chen, Duc Minh Vo, Hiroya Takamura, Yusuke
Miyao, and Hideki Nakayama. 2023. Storyer: Au-
tomatic story evaluation via ranking, rating and rea-
soning. Journal of Natural Language Processing,
30(1):243–249.

Wenhu Chen, Hongmin Wang, Yuwei Fang, et al. 2022.
Program of Thoughts Prompting: Disentangling com-
putation from reasoning for numerical reasoning
tasks. Preprint, arXiv:2211.12588.

Yun-Wei Chu, Kai Zhang, Christopher Dyer, et al. 2025.
Reducing hallucinations of medical multimodal large
language models with visual retrieval-augmented
generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition.

Philip Chung, Akshay Swaminathan, Alex J Goodell,
Yeasul Kim, S Momsen Reincke, Lichy Han, Ben
Deverett, Mohammad Amin Sadeghi, Abdel-Badih
Ariss, Marc Ghanem, et al. 2025. Verifact: Verifying
facts in llm-generated clinical text with electronic
health records. arXiv preprint arXiv:2501.16672.

Donald W Cockcroft and Henry Gault. 1976. Predic-
tion of creatinine clearance from serum creatinine.
Nephron, 16(1):31–41.

Emma Croxford, Yanjun Gao, Elliot First, Nicholas
Pellegrino, Miranda Schnier, John Caskey, Madeline
Oguss, Graham Wills, Guanhua Chen, Dmitriy Dli-
gach, et al. 2025. Automating evaluation of ai text
generation in healthcare with a large language model
(llm)-as-a-judge. medRxiv, pages 2025–04.

Hannah Decker, Karen Trang, Joel Ramirez, Alexis
Colley, Logan Pierce, Melissa Coleman, Tasce Bon-
giovanni, Genevieve B Melton, and Elizabeth Wick.
2023. Large language model- based chatbot vs
surgeon-generated informed consent documentation
for common procedures. JAMA network open,
6(10):e2336997–e2336997.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166.

Brian F Gage, Amy D Waterman, William Shannon,
Michael Boechler, Michael W Rich, and Martha J
Radford. 2001. Validation of clinical classifica-
tion schemes for predicting stroke: results from
the national registry of atrial fibrillation. Jama,
285(22):2864–2870.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Alex J Goodell, Simon N Chu, Dara Rouholiman, and
Larry F Chu. 2025. Large language model agents can
use tools to perform clinical calculations. npj Digital
Medicine, 8(1):163.

Rachel S Goodman, J Randall Patrinely, Cosby A Stone,
Eli Zimmerman, Rebecca R Donald, Sam S Chang,
Sean T Berkowitz, Avni P Finn, Eiman Jahangir,
Elizabeth A Scoville, et al. 2023. Accuracy and
reliability of chatbot responses to physician questions.
JAMA network open, 6(10):e2336483–e2336483.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. 2024. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594.

Yu Huang, Xin Wang, and Fei Wu. 2025. Evaluating
step-by-step reasoning traces: A survey. Preprint,
arXiv:2502.12289.

Collaborative Initiative. 2010. 2010 rheumatoid arthri-
tis classification criteria. Arthritis & Rheumatism,
62(9):2569–2581.

Minbyul Jeong, Jiwoong Sohn, Mujeen Sung, and Jae-
woo Kang. 2024. Improving medical reasoning
through retrieval and self-reflection with retrieval-
augmented large language models. Bioinformatics,
40(Supplement_1):i119–i129.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2021. What disease
does this patient have? a large-scale open domain
question answering dataset from medical exams. Ap-
plied Sciences, 11(14).

10818

https://www.mdcalc.com/about-us
https://www.mdcalc.com/about-us
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://arxiv.org/abs/2502.12289
https://arxiv.org/abs/2502.12289
https://doi.org/10.3390/app11146421
https://doi.org/10.3390/app11146421
https://doi.org/10.3390/app11146421

Qiao Jin, Fangyuan Chen, Yiliang Zhou, Ziyang Xu,
Justin M Cheung, Robert Chen, Ronald M Summers,
Justin F Rousseau, Peiyun Ni, Marc J Landsman, et al.
2024. Hidden flaws behind expert-level accuracy of
multimodal gpt-4 vision in medicine. npj Digital
Medicine, 7(1):190.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Pei Ke, Bosi Wen, Zhuoer Feng, Xiao Liu, Xuanyu Lei,
Jiale Cheng, Shengyuan Wang, Aohan Zeng, Yuxiao
Dong, Hongning Wang, et al. 2023. Critiquellm:
Scaling llm-as-critic for effective and explainable
evaluation of large language model generation. arXiv
preprint arXiv:2311.18702.

Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren
Dunn, Serina S Applebaum, Zain Anwar, Maame
Sarfo-Gyamfi, Conrad W Safranek, Abid A An-
war, Andrew Zhang, Aidan Gilson, Maxwell B
Singer, Amisha Dave, Andrew Taylor, Aidong Zhang,
Qingyu Chen, and Zhiyong Lu. 2024. Medcalc-
bench: Evaluating large language models for medical
calculations. In Advances in Neural Information Pro-
cessing Systems, volume 37, pages 84730–84745.
Curran Associates, Inc.

Tom Kocmi and Christian Federmann. 2023. Large
language models are state-of-the-art evaluators of
translation quality. arXiv preprint arXiv:2302.14520.

Tiffany H Kung, Morgan Cheatham, Arielle Medenilla,
Czarina Sillos, Lorie De Leon, Camille Elepaño,
Maria Madriaga, Rimel Aggabao, Giezel Diaz-
Candido, James Maningo, et al. 2023. Performance
of chatgpt on usmle: potential for ai-assisted medical
education using large language models. PLoS digital
health, 2(2):e0000198.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
et al. 2024a. From generation to judgment: Op-
portunities and challenges of llm-as-a-judge. arXiv
preprint arXiv:2411.16594.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin
Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
Koh, and Yulia Tsvetkov. 2024b. Mediq: Question-
asking LLMs and a benchmark for reliable interactive
clinical reasoning. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:
Nlg evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

Aman Madaan, Niket Tandon, Prakhar Gupta, et al.
2023. Self-refine: Iterative refinement with self-
feedback. Preprint, arXiv:2303.17651.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented lan-
guage models: a survey. Transactions on Machine
Learning Research. Survey Certification.

Haoran Miao, Yifan Liu, and Fei Liu. 2025. Retrieval-
augmented generation in healthcare: A systematic
review and meta-analysis. Journal of the American
Medical Informatics Association, 32(4):605–619.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carig-
nan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, et al.
2023a. Can generalist foundation models outcom-
pete special-purpose tuning? case study in medicine.
arXiv preprint arXiv:2311.16452.

Harsha Nori, Allison Webster, Matthew McInnis, et al.
2023b. Medprompt: Large language models are rea-
soning engines with structured prompts. Preprint,
arXiv:2307.13880.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248–260. PMLR.

Chantal Shaib, Millicent L Li, Sebastian Joseph, Iain J
Marshall, Junyi Jessy Li, and Byron C Wallace. 2023.
Summarizing, simplifying, and synthesizing medi-
cal evidence using gpt-3 (with varying success). In
Proceedings of the conference. Association for Com-
putational Linguistics. Meeting, volume 2023, page
1387.

Chengyu Shen, Zhen Hao Wong, Runming He, Hao
Liang, Meiyi Qiang, Zimo Meng, Zhengyang Zhao,
Bohan Zeng, Zhengzhou Zhu, Bin Cui, et al. 2025.
Let’s verify math questions step by step. arXiv
preprint arXiv:2505.13903.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature, 620(7972):172–180.

Mengxuan Sun, Ehud Reiter, Anne E Kiltie, George
Ramsay, Lisa Duncan, Peter Murchie, and Rosalind
Adam. 2024. Effectiveness of chatgpt in explaining
complex medical reports to patients. arXiv preprint
arXiv:2406.15963.

10819

https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://proceedings.neurips.cc/paper_files/paper/2024/file/99e81750f3fdfcaf9613db2dbf4bd623-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/99e81750f3fdfcaf9613db2dbf4bd623-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/99e81750f3fdfcaf9613db2dbf4bd623-Paper-Datasets_and_Benchmarks_Track.pdf
https://openreview.net/forum?id=W4pIBQ7bAI
https://openreview.net/forum?id=W4pIBQ7bAI
https://openreview.net/forum?id=W4pIBQ7bAI
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://arxiv.org/abs/2307.13880
https://arxiv.org/abs/2307.13880
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html

A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, et al.
2023a. Large language models in medicine. Nature
Medicine, 29:1930–1940. Published 17 July 2023,
Accepted 08 June 2023, Received 24 March 2023.

Arun James Thirunavukarasu, Refaat Hassan, Shathar
Mahmood, Rohan Sanghera, Kara Barzangi, Mo-
hanned El Mukashfi, and Sachin Shah. 2023b. Tri-
alling a large language model (chatgpt) in general
practice with the applied knowledge test: observa-
tional study demonstrating opportunities and limi-
tations in primary care. JMIR Medical Education,
9(1):e46599.

Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang,
Zhichao Yang, and Hong Yu. 2024. Rare: Retrieval-
augmented reasoning enhancement for large lan-
guage models. arXiv preprint arXiv:2412.02830.

Tao Tu, Mike Schaekermann, Anil Palepu, Khaled Saab,
Jan Freyberg, Ryutaro Tanno, Amy Wang, Brenna
Li, Mohamed Amin, Yong Cheng, et al. 2025. To-
wards conversational diagnostic artificial intelligence.
Nature, pages 1–9.

Junda Wang, Zhichao Yang, Zonghai Yao, and Hong
Yu. 2024. Jmlr: Joint medical llm and retrieval
training for enhancing reasoning and professional
question answering capability. arXiv preprint
arXiv:2402.17887.

Junda Wang, Zonghai Yao, Zhichao Yang, Huixue Zhou,
Rumeng Li, Xun Wang, Yucheng Xu, and Hong Yu.
2023. Notechat: a dataset of synthetic doctor-patient
conversations conditioned on clinical notes. arXiv
preprint arXiv:2310.15959.

Xuezhi Wang, Jason Wei, Dale Schuurmans, et al. 2022.
Self-consistency improves chain-of-thought reason-
ing in language models. Preprint, arXiv:2203.11171.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong
Zhang. 2024a. Benchmarking retrieval-augmented
generation for medicine. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
6233–6251.

Guangzhi Xiong, Qiao Jin, Xiao Wang, Minjia Zhang,
Zhiyong Lu, and Aidong Zhang. 2024b. Improving
retrieval-augmented generation in medicine with it-
erative follow-up questions. In Biocomputing 2025:
Proceedings of the Pacific Symposium, pages 199–
214. World Scientific.

Zhichao Yang, Zonghai Yao, Mahbuba Tasmin, Parth
Vashisht, Won Seok Jang, Feiyun Ouyang, Beining
Wang, David McManus, Dan Berlowitz, and Hong
Yu. 2025. Unveiling gpt-4v’s hidden challenges be-
hind high accuracy on usmle questions: Observa-
tional study. Journal of Medical Internet Research,
27:e65146.

Zonghai Yao, Aditya Parashar, Huixue Zhou, Won Seok
Jang, Feiyun Ouyang, Zhichao Yang, and Hong Yu.

2024a. Mcqg-srefine: Multiple choice question gen-
eration and evaluation with iterative self-critique, cor-
rection, and comparison feedback. arXiv preprint
arXiv:2410.13191.

Zonghai Yao and Hong Yu. 2025. A survey on llm-
based multi-agent ai hospital.

Zonghai Yao, Zihao Zhang, Chaolong Tang, Xingyu
Bian, Youxia Zhao, Zhichao Yang, Junda Wang,
Huixue Zhou, Won Seok Jang, Feiyun Ouyang, et al.
2024b. Medqa-cs: Benchmarking large language
models clinical skills using an ai-sce framework.
arXiv preprint arXiv:2410.01553.

Chen Zhang, Luis Fernando D’Haro, Yiming Chen,
Malu Zhang, and Haizhou Li. 2024. A comprehen-
sive analysis of the effectiveness of large language
models as automatic dialogue evaluators. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19515–19524.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Zongyao Zhu, Jiangtao Feng, and Jingyi Zhang. 2024.
Hallucination mitigation for retrieval-augmented
large language models: A survey. Mathematics,
13(5):856.

10820

https://doi.org/10.1038/s41591-023-02448-8
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171

A Removed Data List and Reasons

From the original 1 048 examples, we excluded
108 records (10.3%) after a double-blinded review
by two expert clinicians. Retaining these flawed
items would have distorted both step-wise and end-
to-end accuracy, so they were discarded before any
model-level analysis.

Calculator ID 13 — Estimated Due Date
(Equation-Based).
Rows removed: all.
The gestational-age equation in the benchmark
spreadsheet was mis-typed, yielding uniformly in-
correct targets; therefore, every instance was re-
moved.

Calculator ID 28 — APACHE II Score (Rule-
Based).
Rows removed: all.
The ground-truth rule assigned +4 points when the
alveolar–arterial gradient exceeded 349 mmHg,
but authoritative guidelines award +3 points from
350–499 mmHg and reserve +4 points for ≥ 500
mmHg.

Calculator ID 3 — FeverPAIN Score for Strep
Pharyngitis (Rule-Based).
Rows removed: 451 only.
Wrong ground truth answer.

Calculator ID N/A
Rows removed (45 total):
472, 803, 473, 946, 940, 804, 764, 936,
761, 798, 930, 738, 934, 938, 789, 469,
792, 948, 944, 937, 781, 941, 507, 478,
801, 945, 931, 477, 806, 929, 763, 794,
471, 932, 481, 942, 947, 943, 805, 486,
939, 768, 810, 933, 935, 468
For these cases with negative answers, the data
incorrectly specifies the Lower Limit and Upper
Limit in reversed order—for example, Lower Limit
= –4 and Upper Limit = –5—due to improper han-
dling of negative values. As a result, the original
benchmark evaluation method always yields incor-
rect results.

Calculator ID 11 — QTc Bazett Calculator
(Equation-Based).
Rows removed: all.
Prompt instructions required answers in seconds,
whereas the ground-truth column stored QTc
in milliseconds, causing a systematic unit mis-
match. Standard QT/QTc formulae—including
Bazett—are defined in seconds.

Calculator ID 36 — Caprini Score (2005) (Rule-
Based).
Rows removed: all.
The benchmark granted +1 point to every female
patient. The validated rule adds this point only for
pregnancy or other specific obstetric conditions;
indiscriminate gender scoring overestimates risk.

B Inference Environment

All runs are inference-only—no training is per-
formed. We use two NVIDIA RTX A6000 GPUs
for local execution of open-source models. For
GPT models, we use the default settings. For all
other open-source models, we set the temperature
to 0.6, top-p to 0.95, and repetition penalty to 1.0.
The LLM Evaluation pipeline is conducted using
DeepSeek-chat as the evaluator, and Error Types
are checked by DeepSeek-reasoner.

Model #F Top-1 (%) Top-2 (%)
ada-002 55 100.00 100.00

785 100.00 100.00
3-large 55 98.18 100.00

785 96.36 100.00
3-small 55 94.55 100.00

785 98.18 100.00

Table 7: Top-k retrieval accuracy on formula sets of
size 55 and 785 using OpenAI embedding models. “#F”
denotes number of formulas.

C Human Annotation Details

Our human annotation study was conducted in a
single session with four annotators: two medically
trained experts and two students from medically
related fields. Annotators were provided with the
LLM-generated outputs and asked to assess their
correctness. For outputs judged incorrect, they
were further asked to identify the corresponding
error types.

We initially selected 35 samples from code-
based generations and 15 from non-code gener-
ations. During review, two samples were found
to have incorrect ground truth labels. These were
replaced with two additional randomly selected
samples from the same calculator. However, fur-
ther inspection revealed additional labeling issues.
After discarding all problematic entries, the final
dataset contained 46 validated samples.

10821

C.1 Human Annotation Guidance

Human Evaluation Guidelines Evaluation Steps
Thank you very much for assisting us with data
annotation. The data to be evaluated is provided
in a Google Sheet, where each row corresponds to
a response generated by a large language model
(LLM) for a medical calculation task. These re-
sponses fall into two broad categories: - Equation-
based Calculation Tasks: Questions that require
explicit mathematical formulae (e.g., computing
BMI). - Rule-based Calculation Tasks: Questions
that involve assigning points based on clinical cri-
teria and summing them (e.g., Wells score). Step
1: Answer Validation Please read the Patient Note,
and carefully read the Question and the Ground
Truth Explanation. Then assess the LLM Answer.

The answer consists of four steps: formula, ex-
tracted values, calculation, and final answer. For-
mula and extracted values are complemented by
their corresponding reasons. Please review each
field carefully and verify that the steps and results
are accurate. If it’s not fully correct, please refer to
the Possible Error Types section on the next page
and select all errors that are present. Note: ONLY if
ALL intermediate steps and the final result are cor-
rect is the LLM Answer considered correct. Note2:
Formula correctness is assessed on both the for-
mula field and the actual formula used during cal-
culation. Step 2: LLM Self-Evaluation Assessment
Next, review the LLM Evaluation columns. These
involves another model’s assessment of previous
LLM’s performance in terms of: - Formula correct-
ness - Extracted values correctness - Mathematical
calculation correctness

For each column, please judge the evaluation
result as one of the following: Correct / Correct
but explanation flawed / Incorrect We greatly ap-
preciate your help and detailed annotations! Pos-
sible Error Types Incorrect Formula Selection The
wrong medical formula is used for the given clini-
cal scenario. Example: Using the Cockcroft-Gault
equation to estimate GFR in an AKI patient instead
of CKD-EPI. Internal Formula Logic or Parameter
Errors (Hallucination) - Equation-based Questions:
The overall formula structure is correct, but compo-
nents such as terms, coefficients, or exponents are
incorrect or hallucinated. Example: Writing Fram-
ingham QTc as QT + 154*1 – RR, where missing
parentheses result in a miscalculation.

- Rule-based Questions: Scoring items are miss-
ing or fabricated. Example: Omitting “recent

surgery” from the Wells score or adding a non-
existent “family history” item. Incorrect Variable
Extraction Values extracted from the patient note
are incorrect in terms of number, timing, or unit.
Example: Extracting “heart rate = 76 bpm” as 176
bpm, or using a lab value from a previous visit in-
stead of the current one. Clinical Misinterpretation
(Rule-based Only) Misunderstanding the clinical
implications of a symptom or finding can lead to
incorrect scoring. Example: “Abdomen was dif-
fusely distended” suggests mild ascites (+2), but
the model assumes no ascites and assigns +1. Miss-
ing Variables The model fails to extract the required
inputs, making it impossible to complete the calcu-
lation. Example: Missing weight or race informa-
tion causes incomplete or halted computation.

Unit Conversion Errors Units are not converted
correctly before calculation, resulting in serious
numerical errors. Example: Using 134 µmol/L
creatinine in the MDRD formula without convert-
ing to mg/dL. Missing or Misused Demograph-
ic/Adjustment Coefficients Important adjustment
factors, such as gender, race, BMI-based weight
corrections, or pregnancy status, are omitted or
misused. Example: Not applying a 0.85 coefficient
for female patients in the Cockcroft-Gault equa-
tion. Arithmetic Errors - Equation-based Questions:
Incorrect mathematical operations, such as order-
of-operations errors or basic calculation mistakes.
Example: Writing (A + B) * C as A + B * C, or
calculating 3 × 3 as 10.

- Rule-based Questions: Correct scoring items
are identified, but summed incorrectly. Example:
Adding 1 + 2 + 1 and mistakenly writing 5. Round-
ing / Precision Errors Rounding is too aggressive
or insufficient, leading to clinically significant inac-
curacies. Use the number of decimal places in the
LLM’s answer to determine the required precision,
up to a maximum of 2 decimal places. If the LLM
returns 10.65, evaluate it to 2 decimal places with
a tolerance of ±0.005. If it returns 10.7, use 1 dec-
imal place with a tolerance of ±0.05. If it returns
10.6512, use two decimal places with a tolerance of
±0.05. NOTE: The final answer has already been
pre-checked against the ground truth answer in the
LLM Answer Eval column. You do not need to
manually re-check it based on this precision rule.
This error type should be marked when rounding
errors or insufficient precision in intermediate or
final steps cause the final answer to fall outside the
tolerance range/result in “Incorrect” in the Answer
Evaluation Column.

10822

D Categorized Evaluation Results

We present categorized evaluation results in Ta-
ble 8. MedRaC delivers substantial improvements
in specialties that depend heavily on numerical cal-
culations—such as Nephrology (39.7% → 90.4%),
Thrombosis/Hematology (28.8% → 76.3%), Clin-
ical Pharmacology (5.0% → 65.0%), and En-
docrinology & Metabolism (65.6% → 90.2%).
These gains stem from two design features: ground-
ing formula selection in trusted medical knowledge
to reduce hallucinations, and executing code to
eliminate arithmetic errors. Although MedRaC
does not outperform all baselines in every domain
(e.g., Oneshot attains higher scores in Pulmonology
and Hepatology), it achieves the most consistent
and large-scale improvements in areas where com-
putational fidelity is paramount.

By contrast, smaller gains are observed in do-
mains such as General Practice/Family Medicine
(10.0% → 40.0%) and Hepatology/Gastroenterol-
ogy (16.9% → 66.2%), where success depends
more on clinical judgment and contextual interpre-
tation than on direct computation. A full compar-
ison across models of varying parameter scales is
included in the appendix.

Model scale further differentiates performance
across domain types. In narrative-heavy, guideline-
driven specialties (e.g., Hepatology/Gastroenterol-
ogy, Infectious Disease, General Practice/Family
Medicine), larger models within the same family
(e.g., Qwen, LLaMA) exhibit stronger clinical re-
call and decision-making, reflecting the benefits
of broader contextual reasoning. Conversely, in
deterministic, calculation-intensive domains (e.g.,
Endocrinology & Metabolism, Obstetrics & Gy-
necology), even smaller models paired with code
execution approach the performance ceiling. Be-
yond this point, increasing model size yields di-
minishing returns and may occasionally introduce
over-generation or minor regressions.

E Error Type Results of other Models

Including Llama3.1-8B-Instruct, we evaluated a
total of four models under both Zero-shot CoT
and MedRaC: two reasoning models (GPT-4o-
mini, Qwen3-4B) and two general-purpose models
(Llama3.1-8B-Instruct, Qwen3-8B). The results are
consistent with the trend observed for Llama3.1-
8B-Instruct. In addition, we find that reasoning
models show greater improvements in value extrac-
tion.

Figure 4: Error Type Counts for Llama3.1-8B-Instruct

Figure 6: Error Type Counts for gpt-4o-mini

Figure 7: Error Type Counts for qwen3-4B

Figure 8: Error Type Counts for qwen3-8B

F Additional Ablation Results

We additionally report the evaluation of the code
component by GPT-4.1 and GPT-4o-mini.

10823

Specialty MedRaC CoT MedPrompt Self-Refine One-shot

Nephrology
198 / 219
(90.41%)

87 / 219
(39.73%)

15 / 219
(6.85%)

97 / 219
(44.29%)

169 / 219
(77.17%)

Cardiology
166 / 236
(70.34%)

76 / 236
(32.20%)

82 / 236
(34.75%)

103 / 236
(43.64%)

153 / 236
(64.83%)

Thrombosis/Hematology
45 / 59

(76.27%)
17 / 59

(28.81%)
17 / 59

(28.81%)
25 / 59

(42.37%)
44 / 59

(74.58%)

Pulmonology & Critical Care
78 / 100
(78.00%)

40 / 100
(40.00%)

33 / 100
(33.00%)

54 / 100
(54.00%)

93 / 100
(93.00%)

Hepatology/Gastroenterology
43 / 65

(66.15%)
11 / 65

(16.92%)
8 / 65

(12.31%)
23 / 65

(35.38%)
50 / 65

(76.92%)

Endocrinology & Metabolism
110 / 122
(90.16%)

80 / 122
(65.57%)

41 / 122
(33.61%)

91 / 122
(74.59%)

105 / 122
(86.07%)

Obstetrics & Gynecology
38 / 40

(95.00%)
36 / 40

(90.00%)
27 / 40

(67.50%)
36 / 40

(90.00%)
27 / 40

(67.50%)

Infectious Disease
26 / 39

(66.67%)
16 / 39

(41.03%)
8 / 39

(20.51%)
10 / 39

(25.64%)
19 / 39

(48.72%)

Clinical Pharmacology
26 / 40

(65.00%)
2 / 40

(5.00%)
22 / 40

(55.00%)
4 / 40

(10.00%)
22 / 40

(55.00%)

General Practice/Family Medicine
8 / 20

(40.00%)
2 / 20

(10.00%)
1 / 20

(5.00%)
3 / 20

(15.00%)
9 / 20

(45.00%)

Table 8: Correct counts and percentages across specialties (best per specialty in bold).

Evaluation MedRaC w/o Code

Formula Error (FE) ↓
DeepSeek-R1 (reasoning) 3.23 31.88
GPT-4.1 2.69 7.02
GPT-4o-mini (reasoning) 0.85 16.95

Calculation Correctness (CC) ↑
DeepSeek-R1 (reasoning) 97.82 76.52
GPT-4.1 98.97 96.38
GPT-4o-mini (reasoning) 99.53 86.95

Table 9: Ablation results of MedRaC with and without
the Code component. FE = Formula Error (lower is
better), CC = Calculation Correctness (higher is better).

10824

G Case study: Hallucinations in LLM’s answer and how our LLM Eval pipeline detects
them

Basic record (Row 369, Sodium Correction for Hyperglycemia calculator)
Patient 57-year-old male; Nameas = 127 mmol/L (127 mEq/L); glucose= 527 mg/dL

Clinical note
Diabetic foot with massive hyperglycaemia and haemodynamic instability (full narrative in
dataset)

Question “What is the corrected sodium concentration (mEq/L) using the Hillier 1999 equation at
admission?”

Gold-standard reasoning
Hillier’s formula (?):

Nacorr = Nameas + 0.024 (glucose − 100).

127 + 0.024 (527− 100) = 137.248 mEq/L.

Baseline tolerance (dataset,±6.8624): [130.39, 144.11] mEq/L.

LLM original answer (excerpt)
“Corrected sodium (mEq/L) = 127 + 0.016×527 = 127 + 8.432 = 135.432 mEq/L.”

Why the baseline benchmark says “Correct”
The Medcalc benchmark inspects only whether the final number lies within the broad interval above.
Because 135.432 ∈ [130.39, 144.11], the response is labelled “Correct”, even though the equation is
mis-specified.

Our stricter numeric rule
We judge the final figure to the next decimal place beyond the model’s precision (max. two places). The
LLM output has three decimals, so we round to two and require agreement within ±0.005:

| 135.43− 137.25 | = 1.82 > 0.005,

hence the answer is incorrect despite passing the coarse range check.

Step-by-step LLM Eval verdict

Component Result Key comment

Formula selection Incorrect Used 0.016× glucose and omitted −100.
Entity extraction Correct Na=127, glucose=527 captured accurately.
Arithmetic steps Correct 0.016× 527 = 8.432, addition correct.
Final answer (precision-aware) Incorrect 135.432 ̸= 137.248 under strict tolerance.

Overall Incorrect Hidden equation error & numeric miss flagged.

Clinical significance
A two-point sodium underestimate may appear minor, but in critically ill, haemodynamically unstable
patients, such mis-corrections can drive inappropriate fluid or insulin therapy. Our granular pipeline
reveals both the hallucinated coefficient and the subtle numeric shortfall, preventing a misleading “pass”
and supporting clinically defensible deployment of LLMs.

10825

H Prompt Templates

In this appendix, we present the exact prompt templates used in our evaluation pipeline. All prompts
follow a structured format consisting of a system message and a user message. For prompts related to
reasoning variants such as Direct, CoT, Oneshot, and Self-Refine, please refer to our released code.

H.1 LLM Evaluation Pipeline Prompt

Prompt for LLM Eval Pipeline

1

2 def _gen_eval_prompt(self , answer , reference , name_of_step):
3 # System message is the same for all steps
4 system_msg = (
5 "You are a medical calculation assistant. Evaluate whether each

step is correct by comparing it to the gold -standard reference
."

6)
7

8 # For calculation steps , omit the gold -standard reference entirely
9 if name_of_step == "calculation":

10 user_msg = (
11 f"{name_of_step.capitalize ()} to be evaluated :\n{answer }\n\n"
12 "Note: Judge ONLY the mathematical correctness of each

arithmetic "
13 "step (addition , subtraction , multiplication , division , powers

, "
14 "roots , etc.). Do NOT assess whether the formula used is

appropriate "
15 "or whether the input values were correct or reasonable. Treat

small rounding or "
16 "decimal -precision differences as acceptable"
17 ’Respond in this JSON format :\n\n’
18 ’{" result ": "Correct" or "Incorrect", "explanation ": "Brief

justification ."}’
19)
20 return system_msg , user_msg
21

22 # For all other steps , include the gold -standard reference first
23 user_msg = (
24 f"{name_of_step.capitalize ()} to be evaluated :\n{answer }\n\n"
25 f"Gold -standard reference (fully correct):\n{reference }\n\n"
26 "Determine if the given part is correct according to the Gold -

standard reference. "
27 ’Respond in this JSON format :\n\n’
28 ’{" result ": "Correct" or "Incorrect", "explanation ": "Brief

justification ."}’
29)
30

31 if name_of_step == "formula":
32 user_msg += (
33 "\n\n"
34 "Note: Judge ONLY whether the mathematical formula or scoring

standard invoked is appropriate. Do NOT evaluate:"
35 "the specific values plugged into the formula ,"
36 "the correctness of any later calculations."
37 "If the gold -standard reference lists multiple valid variants

(e.g., male vs. female , different ethnicities), the answer
is considered correct as long as it correctly applies ANY
one of those variants. If the provided formula includes

more detail than the gold -standard reference but the
overlapping portion is consistent and correct , it should
still be considered correct."

38)
39 elif name_of_step == "extracted_values":
40 user_msg += (
41 "\n\n"

10826

42 "Note: Check if all variables given in the gold -standard
reference are found or implied. "

43 "Ignore any naming discrepancies , as long as the meaning is
the same. "

44 "It is ok if the answer has more variables than the gold -
standard reference."

45 "If the given answer has a different unit than the gold -
standard answer , please do conversion first. "

46 "Answers with reasonable rounding errors MUST be considered
Correct."

47)
48 elif name_of_step in ("answer", "final_answer"):
49 user_msg += (
50 "\n\n"
51 "Note: You ONLY need to check whether the final numerical

answer matches the provided gold -standard reference. "
52 "The correctness of the intermediate steps does NOT matter. If

one has a unit and the other does not , please ignore the
unit. "

53 "If the given answer has a different unit than the gold -
standard answer , please do conversion first. "

54 "Answers with rounding to the nearest integer and reasonable
computational deviations MUST be considered Correct."

55)
56

57 return system_msg , user_msg

H.2 LLM Judge for Error Types

H.2.1 Formula Error

Formula Error Prompts

1

2 def build_formula_error_prompts(
3 ground_truth_formulas: List[str],
4 answers: List[str],
5) -> List[Tuple[str , str]]:
6 prompts = []
7 for gt, ans in zip(ground_truth_formulas , answers):
8 system_message = SYS_MSG.format(error_type="Formula Error")
9 user_message = (

10 f"Ground -Truth Formula :\n{gt}\n\n"
11 f"Answer to be evaluated :\n{ans}\n\n"
12 "Task: Evaluate whether the formula or scoring system used in the

answer is appropriate and correctly constructed for the given
clinical context .\n\n"

13 "You must check for the following issues :\n"
14 "- ** Incorrect Formula Selection **: A completely wrong formula is

used for the clinical question (e.g., using Cockcroft -Gault
for AKI instead of CKD -EPI).\n"

15 "- ** Internal Formula Construction Errors **: The selected formula
appears intended to be correct but is flawed in structure or
logic. Look for:\n"

16 " Incorrect or missing coefficients or constants\n"
17 " Wrong mathematical operators (e.g., ‘*‘ instead of ‘^‘)\n"
18 " Misused parentheses , terms in wrong places , or reversed logic\

n"
19 " Hallucinated or fabricated terms in formula\n"
20 " Fabricated or omitted scoring items (e.g., omitting "recent

surgery" in the Wells Score , or adding a non -existent item
like "family history")\n\n"

21 "** Important Notes :**\n"
22 "- Do NOT evaluate variable extraction correctness here.\n"
23 "- Do NOT evaluate numerical calculation or rounding accuracy .\n"

10827

24 "- If multiple formula variants exist and the answer uses any
valid one , it is acceptable .\n"

25 "- If the answer includes extra details but the core formula is
correct , that is acceptable .\n\n"

26 "Return a STRICT JSON response: "
27 ’{" error_present ": "Yes" or "No", "explanation ": ""}.’
28)
29 prompts.append ((system_message , user_message))
30 return prompts

H.2.2 Variable Error
Variable Error Prompts

1

2

3 def build_variable_extraction_error_prompts(
4 patient_notes: List[str],
5 questions: List[str],
6 ground_truth_Extracted_values: List[str],
7 answers: List[str],
8) -> List[Tuple[str , str]]:
9 prompts = []

10 for note , q, gt, ans in zip(patient_notes , questions ,
ground_truth_Extracted_values , answers):

11 system_message = SYS_MSG.format(error_type="Incorrect Variable
Extraction Error")

12 user_message = (
13 f"Patient Note:\n{note}\n\n"
14 f"Question :\n{q}\n\n"
15 f"Ground -Truth Variable Extraction :\n{gt}\n\n"
16 f"Answer to be evaluated :\n{ans}\n\n"
17 "Task: Determine whether the answer incorrectly extracted key

variables from the patient note.\n\n"
18 "You should look for the following possible errors :\n"
19 "1. **Wrong value **: The extracted value (e.g., heart rate ,

creatinine) does not match the patient note.\n"
20 "2. **Wrong unit **: The extracted unit is misinterpreted (e.g.,

_mol/L mistaken for mg/dL).\n"
21 "3. **Wrong instance **: Multiple similar values exist (e.g., lab

values from different days), and the wrong one was selected .\n
\n"

22 "**Do NOT evaluate :**\n"
23 "- Whether the formula chosen is appropriate and correct\n"
24 "- Do NOT judge whether the final answer is correct , focus only on

the value extraction part.\n"
25 "- Whether the numerical calculation is accurate\n\n"
26 "Return a STRICT JSON response: "
27 ’{" error_present ": "Yes" or "No", "explanation ": ""}.’
28)
29 prompts.append ((system_message , user_message))
30 return prompts

H.2.3 Misinterpretation Error
Misinterpretation Error Prompts

1

2 def build_clinical_misinterpretation_prompts(
3 patient_notes: List[str],
4 questions: List[str],
5 ground_truth_explanations: List[str],
6 answers: List[str],
7) -> List[Tuple[str , str]]:

10828

8 prompts = []
9 for note , q, gt, ans in zip(patient_notes , questions ,

ground_truth_explanations , answers):
10 system_message = SYS_MSG.format(error_type="Clinical Misinterpretation

Error")
11 user_message = (
12 f"Patient Note:\n{note}\n\n"
13 f"Question :\n{q}\n\n"
14 f"Scoring Rubric and corresponding result :\n{gt}\n\n"
15 f"Answer to be evaluated :\n{ans}\n\n"
16 "Task: Evaluate whether the clinical meaning of each finding was

interpreted correctly based on the scoring rubric and patient
note.\n\n"

17 "This error type reflects a misunderstanding of medical knowledge
or common clinical reasoning , leading to incorrect
interpretation of the patient ’s symptoms or findings .\n\n"

18 "You should check for the following types of errors :\n"
19 "1. ** Incorrect severity classification ** (e.g., mild vs. severe

ascites)\n"
20 "2. **Wrong presence/absence judgment ** (e.g., assigning points

for recent surgery when not present)\n"
21 "3. ** Incorrect threshold interpretation ** (e.g., age >75

incorrectly treated as <75)\n"
22 "4. ** Misunderstanding clinical terms or context ** (e.g.,

interpreting ’occasional alcohol use’ as ’chronic alcohol
abuse ’)\n\n"

23 "** Important Notes :**\n"
24 "- The variable values may be correctly extracted from the note ,

but the error lies in the clinical judgment or
misclassification .\n"

25 "- Do NOT evaluate the correctness of the scoring formula , numeric
computation , or unit conversion .\n"

26 "- If the clinical inference depends on subtle wording or
ambiguity in the note , highlight that in your explanation .\n\n
"

27 "Return a STRICT JSON response: "
28 ’{" error_present ": "Yes" or "No", "explanation ": ""}.’
29)
30 prompts.append ((system_message , user_message))
31 return prompts

H.2.4 Missing Variable Error

Missing Variable Error Prompts

1

2 def build_missing_variable_prompts(
3 patient_notes: List[str],
4 questions: List[str],
5 ground_truth_Extracted_values: List[str],
6 answers: List[str],
7) -> List[Tuple[str , str]]:
8 prompts = []
9 for note , q, gt, ans in zip(patient_notes , questions ,

ground_truth_Extracted_values , answers):
10 system_message = SYS_MSG.format(error_type="Missing Variable

Extraction Error")
11 user_message = (
12 f"Patient Note:\n{note}\n\n"
13 f"Question :\n{q}\n\n"
14 f"Ground -Truth Variable Extraction :\n{gt}\n\n"
15 f"Answer to be evaluated :\n{ans}\n\n"
16 "Task: Identify whether the answer failed to extract or include

one or more variables that are necessary to perform the
correct calculation .\n\n"

17 "You should look for cases where:\n"

10829

18 "1. A required input variable is completely missing .\n"
19 "2. The model skipped over variables because they were ambiguous

or not explicitly stated .\n"
20 "3. The answer proceeds with partial information , leaving out

fields that the formula or score requires .\n\n"
21 "**Do NOT evaluate :**\n"
22 "- Whether the formula used is correct\n"
23 "- Whether the extracted variables are accurate\n"
24 "- Whether the final calculation is numerically correct\n\n"
25 "Focus only on whether the model omitted key inputs needed to

properly execute the formula or scoring rule.\n"
26 "Return a STRICT JSON response: "
27 ’{" error_present ": "Yes" or "No", "explanation ": ""}.’
28)
29 prompts.append ((system_message , user_message))
30 return prompts

H.2.5 Unit Error

Unit Error Prompts

1

2

3 def build_unit_conversion_error_prompts(
4 patient_notes: List[str],
5 questions: List[str],
6 ground_truth_explanations: List[str],
7 answers: List[str],
8) -> List[Tuple[str , str]]:
9 prompts = []

10 for note , q, gt, ans in zip(patient_notes , questions ,
ground_truth_explanations , answers):

11 system_message = SYS_MSG.format(error_type="Unit Conversion Error")
12 user_message = (
13 f"Patient Note:\n{note}\n\n"
14 f"Question :\n{q}\n\n"
15 f"Ground -Truth Explanation :\n{gt}\n\n"
16 f"Answer to be evaluated :\n{ans}\n\n"
17 "Task: Evaluate whether any input variable was used with the wrong

unit , or skipped unit conversion when required by the formula
.\n\n"

18 "You should look for the following types of errors :\n"
19 "1. The value is used directly without converting to the expected

unit (e.g., using creatinine 134 _mol/L directly in a formula
that expects mg/dL).\n"

20 "2. The conversion is attempted but the result is wrong (e.g.,
wrong conversion factor or direction).\n"

21 "3. The unit label is misunderstood or misinterpreted (e.g.,
confusing mEq/L with mmol/L).\n\n"

22 "**Do NOT evaluate :**\n"
23 "- Whether the formula chosen is appropriate\n"
24 "- Whether the correct value was extracted from the note\n"
25 "- Whether the afterwards numerical computation was otherwise

accurate\n\n"
26 "Only evaluate whether the units used match those required by the

formula , and whether any necessary conversions were done
correctly .\n"

27 "Return a STRICT JSON response: "
28 ’{" error_present ": "Yes" or "No", "explanation ": ""}.’
29)
30 prompts.append ((system_message , user_message))
31 return prompts

10830

H.2.6 Demographic Error

Demographic Error Prompts

1

2

3 def build_adjustment_coefficient_error_prompts(
4 patient_notes: List[str],
5 questions: List[str],
6 ground_truth_explanations: List[str],
7 answers: List[str],
8) -> List[Tuple[str , str]]:
9 prompts = []

10 for note , q, gt, ans in zip(patient_notes , questions ,
ground_truth_explanations , answers):

11 system_message = SYS_MSG.format(error_type="Missing or Misused
Demographic/Adjustment Coefficient Error ’)

12 user_message = (
13 f’Patient Note:\n{note}\n\n’
14 f’Question :\n{q}\n\n’
15 f’Ground -Truth Explanation :\n{gt}\n\n’
16 f’Answer to be evaluated :\n{ans}\n\n’
17 ’Task: Evaluate whether demographic - or context -based adjustment

coefficients were properly applied in the formula .\n\n’
18 ’Specifically , check for:\n’
19 ’1. Missing adjustment - A coefficient required by the formula is

missing (e.g., sex multiplier is omitted)’
20 ’2. Incorrect coefficient used - The formula includes a

coefficient , but it does not match the patient ’s
characteristics (e.g., using male factor for a female patient)
’

21 ’3. Incorrect demographic inference - The model assumes the wrong
demographic category (e.g., classifying patient as non -Black
when clearly stated otherwise)’

22 ’Common adjustment dimensions may include:’
23 ’- Sex (e.g., male vs. female)\n’
24 ’- Race/ethnicity (e.g., Black vs. non -Black)’
25 ’- Age thresholds\n’
26 ’- Pregnancy status\n’
27 ’- Weight class (e.g., obese vs. normal weight)’
28 ’Do NOT evaluate :\n’
29 ’- Formula structure or selection\n’
30 ’- Variable extraction accuracy\n’
31 ’- Unit conversion correctness\n’
32 ’- Final numerical calculation\n\n’
33 ’Return a STRICT JSON response: ’
34 ’{’error_present ’: ’Yes’ or ’No’, ’explanation ’: ’’}.’
35)
36 prompts.append ((system_message , user_message))
37 return prompts

H.2.7 Arithmetic Error

Arithmetic Error Prompts

1

2

3 def build_arithmetic_error_prompts(
4 answers: List[str],
5) -> List[Tuple[str , str]]:
6 prompts = []
7 for ans in answers:
8 system_message = SYS_MSG.format(error_type="Arithmetic Error")
9 user_message = (

10 f"Answer to be evaluated :\n{ans}\n\n"

10831

11 "Task: All variables , units , and formula structure are assumed to
be correct .\n"

12 "Your task is to verify whether the ** arithmetic computation **
itself is correct .\n\n"

13 "Check for:\n"
14 "1. Basic arithmetic errors (e.g., 4 + 3 = 6)\n"
15 "2. Wrong order of operations (e.g., using left -to-right instead

of proper parentheses)\n"
16 "3. Errors in exponentiation , multiplication , or division\n"
17 "4. Missing or duplicated numeric terms\n\n"
18 "**Do NOT evaluate :**\n"
19 "- Formula selection or structure\n"
20 "- Variable extraction\n"
21 "- Unit conversion\n"
22 "- Rounding or precision formatting\n\n"
23 "If the calculation process is entirely accurate , a reasonable

margin of error is acceptable."
24 "Return a STRICT JSON response: "
25 ’{" error_present ": "Yes" or "No", "explanation ": ""}.’
26)
27 prompts.append ((system_message , user_message))
28 return prompts

H.2.8 Rounding Error

Rounding Prompts

1

2

3 def build_rounding_error_prompts(
4 ground_truth_explanations: List[str],
5 answers: List[str],
6) -> List[Tuple[str , str]]:
7 prompts = []
8 for gt, ans in zip(ground_truth_explanations , answers):
9 system_message = SYS_MSG.format(error_type="Rounding / Precision Error

")
10 user_message = (
11 f"Ground -Truth Explanation :\n{gt}\n\n"
12 f"Answer to be evaluated :\n{ans}\n\n"
13 "Task: Determine whether the numeric **final result ** in the

answer is imprecise due to ** rounding or insufficient decimal
precision**, "

14 "even if the formula used and the overall arithmetic are mostly
correct .\n\n"

15 "This error type should be marked when rounding errors or
insufficient precision in intermediate or final steps "

16 "cause the final answer to fall outside the tolerance range .\n\n"
17 "**Rules for evaluating precision :**\n"
18 "- Use the number of decimal places in the LLM’s final answer to

determine the expected precision (up to a maximum of 2 decimal
places).\n"

19 "- If the answer is ‘10.65‘ _ round to **2 decimal places**,
tolerance _0.005\n"

20 "- If the answer is ‘10.7‘ _ round to **1 decimal place**,
tolerance _0.05\n"

21 "- If the answer is ‘10.6512‘ _ still round to **2 decimal places
, tolerance _0.005 (overprecision beyond 2 d.p. does **not
increase accuracy expectations)\n\n"

22 "**DO mark as a Rounding / Precision Error if:**\n"
23 "- The calculation is mostly correct but rounding was done

incorrectly (e.g., too few decimals)\n"
24 "- The result deviates from the ground truth only because the

final answer lacks the required precision (per above rules)\n\
n"

25 "**DO NOT mark as Rounding / Precision Error if:**\n"

10832

26 "- The formula used is incorrect\n"
27 "- The arithmetic calculation is wrong\n"
28 "- The answer is completely off due to conceptual misunderstanding

\n\n"
29 "Return a STRICT JSON response with:\n"
30 ’{" error_present ": "Yes" or "No", "explanation ": ""}’
31)
32 prompts.append ((system_message , user_message))
33 return prompts

10833

