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Abstract

Multimodal Large Language Models (MLLMs)
have demonstrated remarkable capabilities by
integrating visual and textual inputs, yet modal-
ity alignment remains one of the most chal-
lenging aspects. Current MLLMs typically
rely on simple adapter architectures and pre-
training approaches to bridge vision encoders
with large language models (LLM), guided
by image-level supervision. We identify this
paradigm often leads to suboptimal alignment
between modalities, significantly constraining
the LLM’s ability to properly interpret and rea-
son with visual features particularly for smaller
language models. To address this fundamen-
tal limitation, we propose Supervised Embed-
ding Alignment (SEA), a token-level supervi-
sion alignment method that enables more pre-
cise visual-text alignment during pretraining.
SEA introduces minimal computational over-
head while preserving language capabilities
and substantially improving cross-modal under-
standing. Our comprehensive analyses reveal
critical insights into the adapter’s role in multi-
modal integration, and extensive experiments
demonstrate that SEA consistently improves
performance across various model sizes, with
smaller models benefiting the most (average
performance gain of 7.61% for Gemma-2B).
This work establishes a foundation for devel-
oping more effective alignment strategies for
future multimodal systems. Code is available
at: https://github.com/YuanyangYin/SEA

1 Introduction

Multimodal Large Language Models (MLLMs)
have emerged as a development in AI research,
demonstrating exceptional capabilities in perceiv-
ing and reasoning (Agrawal et al., 2019; Antol
et al., 2015; Liu et al., 2023a; Li et al., 2024a; Bai
et al., 2025). By integrating visual and textual in-
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formation, these models mark a crucial step toward
artificial general intelligence.

The standard MLLM pipeline consists of two
stages (Liu et al., 2023a,b; Jiang et al., 2023; Zhu
et al., 2023; Dai et al., 2023; Li et al., 2024a; Zhou
et al., 2024a): pre-training, where an adapter maps
vision encoder features to the LLM’s input space,
guided by image-level supervision, and instruction
tuning, which further adapts the model for down-
stream tasks, often involving partial or full LLM
fine-tuning.

However, despite recent advances through scal-
ing up data, models, and visual inputs (Tong et al.,
2024a; Li et al., 2024a; Bai et al., 2025; Wang et al.,
2024), current approaches to text-visual alignment
in MLLMs predominantly rely on coarse-grained
image-level or region-level supervision, like opti-
mal transport (Park et al., 2024) or regression-based
techniques (Shang et al., 2024). These methods
fail to capture the fine-grained semantics neces-
sary for optimal visual-language integration. There-
fore, the adapter’s critical role of current alignment
paradigm remain insufficiently explored.

Our experiments reveal two critical deficiencies
in conventional image-level alignment. First, as
shown in Figure 1, visual tokens from traditional
adapters often fail to preserve their intended seman-
tics, forcing the language model to compensate for
these deficiencies and leading to incorrect visual
understanding (more cases in Appendix A). Sec-
ond, the significant gap between adapter-processed
visual tokens and the LLM’s native input space
(see Figure 2) requires the language model to allo-
cate extra capacity interpreting misaligned visual
inputs, rather than leveraging its pre-trained knowl-
edge. These issues are particularly pronounced in
smaller models, where limited capacity makes the
trade-off between visual perception and language
performance more severe.

This work addresses a fundamental question:
How can we achieve optimal cross-modal align-
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(a) Accurate representation alignment with SEA.

What color are the sockets in 
the picture?

Instruction：

Visual token Recalled Word: referendum

Assistant:
The sockets in the picture are white.

Visual token Recalled Word: red

Assistant:
The sockets in the picture are red.

SEA-LLaVA
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(b) Improved visual perception enabled by SEA.

Figure 1: Illustration of token-level alignment benefits. (a) For each visual token, we retrieve and display the most similar
word from the pre-defined vocabulary. SEA (right) produces semantically appropriate words (e.g., "blueberry", "orange") that
better capture the visual content compared to conventional image-level alignment (left). (b) This improved alignment directly
enhances visual perception capabilities, enabling more precise understanding of image elements (SEA-LLaVA correctly identifies
"red" sockets while LLaVA misidentifies them).

		
��
����		
��
		
�����������
��

Supervised Embedding 
Alignment (SEA)

t-SNE: Visual Representation Space

Figure 2: Illustration of the distribution of different to-
ken embeddings. Using t-SNE, we visualize the embedding
space of LLaVA visual tokens (left), SEA-LLaVA visual to-
kens (mid), and LLM’s native input embeddings (right). SEA
effectively shifts visual token representations closer to the
LLM’s natural input space, reducing the adaptation burden on
the language model and improving cross-modal integration.

ment in MLLMs? To effectively bridge the gap
between modalities, we argue that alignment must
occur at the token level, where individual visual
tokens are precisely mapped to their correspond-
ing semantic representations in the language space.
However, achieving such fine-grained alignment
presents fundamental challenges: visual tokens
contain rich, multifaceted semantic information
that cannot be trivially equated to single word to-
kens. Additionally, visual tokens often exhibit se-
mantic shifts that cannot be easily captured through
token-level annotations.

To address this, we introduce Supervised Em-
bedding Alignment (SEA), which achieves op-
timal cross-modal alignment through token-level
supervision during pretraining. By leveraging well-
aligned vision-language models like CLIP, SEA
obtains precise semantic labels for visual tokens
and guides them toward optimal representations in
the LLM’s embedding space through contrastive

learning (see Figure 2). This approach requires no
additional training data or inference overhead.

Empirically, SEA demonstrates consistent im-
provements across model scales (2B-13B parame-
ters), with particularly substantial gains for smaller
models (7.61% improvement on Gemma-2B). This
scalability, combined with enhanced fine-grained
visual perception, fundamentally addresses the lim-
itations of current MLLM designs while maintain-
ing computational efficiency.

In summary, our contributions and findings can
be summarized as follows:

• We systematically analyze how adapter misalign-
ment impacts MLLM performance, revealing its
critical role in both visual perception and lan-
guage capabilities.

• We propose SEA, a novel token-level alignment
during pretraining that effectively bridges the
modality gap by precisely aligning visual tokens
with the LLM’s input space.

• We demonstrate SEA’s effectiveness across
model scales and different vision encoders with-
out additional training data or inference overhead,
showing particular benefits for smaller models.

2 Background and Problem Formulation

This section introduces the adapter-based archi-
tecture in MLLMs and analyzes the cross-modal
misalignment problem that forms the foundation
for our method in Section 3.

2.1 Adapter-Based Architecture in MLLMs

Multimodal Large Language Models typically em-
ploy an adapter module to bridge vision encoders
and language models. During pre-training, this
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(a) MMLU with Finetuning (b) Results of Different
Methods

Figure 3: Impact of alignment quality on model perfor-
mance. (a) Language model capability (measured by MMLU
score) during instruction-tuning: SEA-LLaVA (red line) main-
tains higher language capabilities compared to LLaVA (green
point) by reducing adaptation burden. (b) Radar chart compar-
ing performance across different benchmarks: SEA-LLaVA
(red) consistently outperforms LLaVA (blue) on multiple eval-
uation metrics.

adapter gθ transforms visual patches output by the
vision encoder f into visual tokens compatible with
the LLM’s embedding space.

For a given image-text pair (Ximage, Xtext), the
model processes inputs as follows:

Xv = gθ(f(Ximage)), (1)

Xt = Ψ(Xtext), (2)

Xinput = [xv0 , . . . , xvm , xt0 , . . . , xtn ],

xvj ∈ Xv xti ∈ Xt,
(3)

where Ψ represents the LLM’s embedding layer.
The concatenated inputs Xinput are then processed
by the LLM, with the adapter parameters θ updated
using an auto-regressive language modeling loss.

2.2 Issues in Image-level Alignment

Despite current pre-training paradigm, significant
misalignment issues persist between visual and tex-
tual representations in MLLMs. To quantitatively
analyze this misalignment, we measure the seman-
tic correspondence between visual tokens and lan-
guage representations.

Semantic Information Distortion We evaluate
the semantic information encoded in visual tokens
by retrieving their closest word embeddings from
a predefined word list W (see Appendix C). For
each visual token xvj ∈ Xv, we identify the word
wj ∈ W with the highest similarity:

wj = arg max
w∈W

sim(xvj ,Ψ(w)), (4)

where sim(·, ·) is the cosine similarity function.
As shown in Figure 1(a), conventional adapters

frequently map visual tokens to semantically un-
related words (e.g., "bluejeans" for blueberries),
indicating severe semantic distortion. As shown
in Figure 1(b), this distortion forces the language
model to compensate for representational discrep-
ancies, resulting in incorrect visual understanding.

Modality Representation Gap We further ana-
lyze the modality gap through embedding space vi-
sualization (Figure 2). We selected approximately
100 images from COCO val2014 (Chen et al., 2015)
and generated detailed captions using Qwen2.5-
VL (Bai et al., 2025) followed by manual refine-
ment. The visualization shows three distinct clus-
ters: visual token embeddings (Xv) from the im-
ages (orange), text token embeddings from the cap-
tions (yellow). The significant distance between
conventional adapter-processed visual tokens and
text token embeddings reveals a fundamental rep-
resentational gap. Mathematically, we can quantify
this gap as:

D =
1

|Xv|
∑

xvj∈Xv

min
w∈W

∥∥xvj −Ψ(w)
∥∥
2
. (5)

This gap forces the language model to allocate sub-
stantial capacity to interpret misaligned visual in-
puts rather than leveraging its inherent knowledge.

The impact of this misalignment is clearly
demonstrated in Figure 3, where we track the lan-
guage model’s performance (measured by MMLU
score) during instruction-tuning. The model with-
out pre-training (blue line) shows a substantial de-
crease in language capability as training progresses,
highlighting the critical importance of alignment.
However, the conventional image-level alignment
provides only marginal mitigation. This effect is
particularly pronounced in smaller models where
computational capacity is limited, highlighting the
critical need for more efficient alignment strategies.

3 Method: Supervised Embedding
Alignment

This section presents SEA, the first supervision
paradigm to mitigate the issue of misalignment be-
tween visual and text tokens in LLM’s embedding
space during pretraining (see Figure 4). We will
introduce each step of SEA in detail.

3.1 Extract Semantic Labels for Visual
Patches

To achieve fine-grained supervision of the seman-
tic feature expression for each visual token trans-
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Figure 4: Left: Overview of the proposed SEA. For each visual token, SEA samples semantic labels with similarity-based
weighting and identifies their corresponding representations in the LLM’s embedding space. These are then used to supervise
the adapter via contrastive learning, enabling token-level alignment. Right: Overview of the SEA training pipeline. During
pretraining, SEA enhances modality alignment through token-level semantic supervision via contrastive learning, guided by
candidate labels derived from the text encoder. Once alignment is established, visual tokens are mapped to representations more
compatible with the LLM input space, substantially reducing the burden on the LLM during instruction tuning.

formed by the adapter, we obtain continuous se-
mantic labels for each patch after the vision en-
coder. For a pre-trained vision encoder f paired
with a text encoder h and a word list W contain-
ing q words, we extract semantic information for
each patch using Eqs. (6), (7), (8), where m is num-
ber of visual patches and d is the dimension. We
then select the top n words based on cosine simi-
larity scores for each visual patch (see Figure 4(3)).
To ensure only relevant and positively correlated
words are considered, we exclude labels with simi-
larity scores below 0. The remaining words serve
as the semantic labels for each visual patch. This
approach assigns multiple semantic labels to each
token, preserving its continuous semantic represen-
tation and preventing semantic shift through paired
training of the vision and text encoders.

V = f(Ximage) ∈ Rm×d, (6)

T = h(W ) ∈ Rq×d, (7)

wi, si = argmax
j

{−cos(vi, tj)}, (8)

where wi and si are the indices and scores of the
top n semantic labels for the i-th visual patch vi
respectively. vi is the visual feature of the patch
obtained from the vision encoder f , and tj is the
text embedding of the j-th word in the word list
W , obtained from the text encoder h. The negative
cosine similarity −cos(vi, tj) is computed as de-
scribed in previous works (Li et al., 2023c), where
the cosine similarity needs to be negated in the
CLIP embedding space.

3.2 Token-Level Alignment
The use of an adapter aims to convert visual patches
into LLM’s embedding space. However, the current
image-level approach falls short of achieving this
adequately as shown in Figure 1(a). We suggest
using the semantic labels of each patch to directly
guide the adapter in transforming visual patches
into the LLM’s embedding space, thereby reducing
misalignment.

Similarity-Weighted Sampling for Continuous
Semantic Representation Due to the semantic
continuity of visual tokens, we should identify an
appropriate position for each visual token within
the LLM’s embedding space, ensuring it retains its
continuous semantic representation. Specifically,
for a given visual patch vi with its corresponding
semantic labels Li = [w1, . . . , wn] and similarity
scores Si = [s1, . . . , sn], we first normalize the
similarity scores to get the sampling probability,
and then sample a label for each patch based on
Si
norm in Eq. (9).

Si
norm =

Si

sum(Si)
. (9)

A Localized Sampling Strategy To further en-
hance the effectiveness of contrastive learning and
mitigate the issue of excessive similarity between
samples, we adopt a localized sampling strategy.
For each image, we perform sampling within a
k× k window, ensuring that only one patch is sam-
pled from each window. Consequently, a single
image with N visual patches will have N/(k × k)
patches participating in contrastive learning. For
visual patches sharing the same label in one batch,
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we randomly retain only one patch to ensure the
effectiveness of contrastive learning. We then ob-
tain a series of visual patches with labels, namely,
{(xv1 , w1), . . . , (xvN , wN )}, where N is the num-
ber of tokens in one batch.

For each label wi, we compute the corresponding
text feature ti as follows:

ti =
1

M

M∑

k=1

Ψ(wk
i ), (10)

where Ψ(wk
i ) represents encoded feature of the k-

th token of wi, and M is the number of tokens after
encoding wi.

The loss of alignment can be computed as:

La = − 1

2N

N∑

i=1

(
log

exp(ϕ(xvi, ti)/τ)∑N
j=1 exp(ϕ(xvi, tj)/τ)

+ log
exp(ϕ(ti,xvi)/τ)∑N
j=1 exp(ϕ(ti,xvj)/τ)

)
,

(11)

where ϕ(xvi, tj) = xvi
∥xvi∥2 · tj

∥tj∥2 , and τ is the
temperature, a learnable parameter.

For generation, the prediction of the next token
x(i) is conducted based on visual tokens Vi, prompt
P and previous tokens x(<i). The loss can be com-
puted as:

Lg = − 1

B

B∑

i=1

log pθ

(
x(i) | Vi,P, x

(<i)
)
, (12)

where B is the batch size, θ is the trainable param-
eters.

During the pretraining process, two learning ob-
jectives simultaneously supervise the adapter. We
obtain the final loss L of pretraining by adding
La and Lg, a weighting factor λ is introduced to
balance the two losses.

L = Lg + λLa. (13)

4 Experiments

In this section, we conduct comprehensive exper-
iments to validate SEA’s effectiveness. First, we
provide our evaluation results on 8 common bench-
marks compared with different backbones. Then,
we analyze how SEA enhances token-level align-
ment, visual perception and language capability.
Finally, we explore SEA’s generalization capability
through extensive ablation studies.

4.1 Experimental Setup

We evaluate SEA’s generalization capability across
different MLLM components: 1) Vision Encoders:
We experiment with widely-adopted vision en-
coders including CLIP-ViT-L@336px (Radford
et al., 2021) and SigLIP-ViT-SO@384px (Zhai
et al., 2023). 2) Language Models: To assess scal-
ability, we test SEA on LLMs ranging from 2B
to 13B parameters, including Gemma-2B (Banks
and Warkentin, 2024), Phi-3-mini-4k-instruct (Ab-
din et al., 2024), Llama3-8B-Instruct (AI@Meta,
2024), and Vicuna-1.5-7B&13B (Chiang et al.,
2023). 3) SEA Configuration: We employ top-10
semantic labels (n = 10), zero temperature (τ = 0)
for robust alignment, and 2× 2 window sampling
for efficient training. Unless otherwise specified,
all experiments adopt the standard LLaVA-v1.5-
7B configuration, with Vicuna-7B as the language
model and CLIP-L@336px as the vision encoder.
More details of training and data sets are described
in Appendix B.

4.2 Main Results

We leverage SEA to train a family of MLLMs
called SEA-PRIME, utilizing LLM backbones of
various scales. The vision component employs
SigLIP-ViT-SO400M/14@384. We pre-train the
connector using 2.5M adapter data and instruction
tune using Cambrian-7M (Tong et al., 2024a).

As shown in Table 1, SEA-PRIME show ro-
bust improvements over existing open-source meth-
ods. Even with smaller models (2B and 3.8B), it
achieves competitive results compared to larger
counterparts. The scalability becomes particularly
evident with LLaMA-3-Instruct-8B (AI@Meta,
2024), where SEA-PRIME demonstrates superior
performance across all benchmarks.

These results highlight SEA’s ability to enhance
model performance while maintaining efficiency,
particularly benefiting smaller models through bet-
ter alignment.

4.3 Token-level Alignment Analysis

To comprehensively evaluate SEA’s effectiveness
in bridging the modality gap, we analyze its impact
from three perspectives: alignment quality during
pre-training, fine-grained visual perception, and
preservation of language capabilities.

Alignment Quality To quantify alignment qual-
ity, we introduce Token Alignment Consistency
Score (TACS) to measure the similarity between
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Method LLM Res. VQAv2 VQAT GQA SQAI MMB POPE VizWiz MM-Vet

MobileVLM-3B(Chu et al., 2023) MLLaMA 2.7B 336 – 47.5 59.0 61.0 59.6 84.9 – –
MobileVLM-V2-3B(Chu et al., 2024) MLLaMA 2.7B 336 – 57.5 61.1 70.0 63.2 84.7 – –

LLaVA-Phi (Zhu et al., 2024) Phi-2.7B 336 71.4 48.6 – 68.4 59.8 85.0 35.9 28.7
TinyLLaVA (Zhou et al., 2024b) Phi-2.7B 384 79.9 59.1 62.0 69.1 66.9 86.4 – 32.0
InstructBLIP (Dai et al., 2023) Vicuna-7B 224 – 50.1 – – 30.6 – 34.5 –
InstructBLIP (Dai et al., 2023) Vicuna-13B 224 – 50.7 49.5 63.1 – – 33.4 –

Qwen-VL (Bai et al., 2023) Qwen-7B 448 79.5 63.8 59.3 67.1 38.2 – 35.2 –
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 448 78.2 61.5 57.5 68.2 60.6 – 38.9 –
LLaMA-VID (Li et al., 2023b) Vicuna-7B 336 79.3 – 64.3 68.3 65.1 86.0 54.2 –
LLaMA-VID (Li et al., 2023b) Vicuna-13B 336 80.0 – 65.0 70.0 66.6 86.0 54.3 –
LLaVA-1.5∗ (Liu et al., 2023a) Vicuna-7B 336 78.8 58.3 62.0 67.9 66.2 86.5 45.7 30.7
LLaVA-1.5∗ (Liu et al., 2023a) Vicuna-13B 336 80.0 60.8 63.3 71.6 67.7 87.6 53.6 35.1

ShareGPT4V (Chen et al., 2023) Vicuna-7B 336 80.6 – – 68.4 68.8 – – 37.6
Mini-Gemini (Li et al., 2024b) Gemma-2B 336+768 – 56.2 – – 59.8 – – 31.1
Mini-Gemini (Li et al., 2024b) Vicuna-7B 336+768 – 65.2 – – 69.3 – – 40.8
Mini-Gemini (Li et al., 2024b) Vicuna-13B 336+768 – 65.9 – – 68.5 – – 46.0
S2−Wrapper∗ (Shi et al., 2024) Vicuna-7B 1008 79.7 60.3 63.2 – 67.3 87.4 50.1 33.0
S2−Wrapper (Shi et al., 2024) Vicuna-13B 1008 80.9 63.1 – – 67.9 – 56.0 35.4
AlignGPT (Zhao et al., 2024) Vicuna-7B 336 79.1 58.4 62.9 68.5 67.3 86.0 54.2 30.8
AlignGPT (Zhao et al., 2024) Vicuna-13B 336 80.0 60.2 63.6 70.3 69.5 86.2 56.4 35.6

Visual Prompt (Lin et al., 2024) Vicuna-7B 336 79.8 59.8 63.3 69.5 67.6 88.9 – 34.9

Our Models

SEA-PRIME Gemma-2B 384 81.0 60.7 62.4 69.2 68.8 87.8 61.9 38.0
SEA-PRIME Phi3-3.8B 384 80.7 64.0 62.0 78.7 72.6 87.0 61.9 46.8
SEA-PRIME Vicuna-7B 384 81.4 67.2 63.1 73.9 75.6 88.4 63.8 44.2
SEA-PRIME Llama3-8B 384 83.1 68.0 65.1 79.0 76.0 87.4 64.7 46.0
SEA-PRIME Vicuna-13B 384 81.9 66.2 64.3 80.9 76.9 86.7 63.6 48.8

Table 1: Main evaluation results compared with leading baselines on 8 popular benchmarks. VQAv2 (Goyal et al.,
2017); VQAT: TextVQA (Singh et al., 2019); GQA (Hudson and Manning, 2019); SQAI:ScienceQA-IMG (Lu et al.,
2022); MMB: MMBench (Liu et al., 2023c); POPE (Li et al., 2023d); VizWiz (Gurari et al., 2018); MM-Vet (Yu
et al., 2023). All methods maintain the number of visual tokens without doubling, and models marked with * are
results we reproduced. Column Res. is the image resolution of vision model.
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Figure 5: TACS score and POPE score of 100 text-image
pairs during pre-training. SEA achieves better alignment
and higher POPE scores under the same training data.

each visual tokens in the matrix Xv and text to-
kens Xt as defined in in Equation (1) and in Equa-
tion (2):

TACS =
1

K

∑

i∈Top K

max
j

(
Xv,i ·Xt,j

∥Xv,i∥∥Xt,j∥

)
.

(14)
As shown in Figure 5, SEA progressively improves
TACS during training, with corresponding gains
in POPE scores. This correlation validates both

our metric and SEA’s effectiveness in improving
visual-text integration (see Appendix D for detail).

Fine-grained Visual Perception As illustrated
in Section 2, conventional MLLMs treat visual to-
kens as additional vocabulary, limiting their seman-
tic understanding (see Figure 1(a)). SEA addresses
this by providing precise semantic supervision dur-
ing pretraining, enabling more accurate visual rep-
resentations. This improvement in token-level
alignment directly enhances the model’s ability to
capture fine-grained visual semantics, as demon-
strated across perception-focused tasks (see Ta-
ble 3). From detailed caption generation to fine-
grained object recognition, SEA improves the
model’s visual understanding capabilities.

Language Model Capabilities A key challenge
in multimodal learning is maintaining the LLM’s
inherent language abilities while adapting to vi-
sual inputs. As shown in Figure 3(a), conventional
image-level alignment show degradation (green
point) in language performance after training. In
contrast, SEA’s semantically aligned visual repre-
sentations alleviate the adaption burden, allowing
the language model to better preserve its pretrained
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knowledge and capabilities.
These analyses demonstrate that SEA effectively

address both semantic distortion and modality rep-
resentation gaps identifies in Section 2, leading to
improved overall model performance.

4.4 Ablation Study

We conducted a comprehensive ablation study to
evaluate the effectiveness of SEA. To ensure fair-
ness, all experiments were performed with the
same random seed and training configurations. As
shown in Section 4.3, SEA introduces no additional
training data or inference cost, yet consistently im-
proves the overall performance of MLLMs.

SEA consistently benefits different LLMs, with
particularly strong improvements in smaller
models. Our experiments explore the application
of SEA across LLMs of varying sizes. Notably,
for the smaller model, SEA significantly boosts
performance across multiple tasks, with an average
performance gain of 7.61%. This highlights SEA’s
ability to effectively address misalignment issues
that are more pronounced in smaller LLMs, thereby
enhancing their performance. Larger LLMs, while
inherently better at handling misalignment, still
benefit from SEA, indicating that SEA offers addi-
tional alignment gains regardless of model size.

SEA provides robust benefits across diverse vi-
sion encoders. We also examined the impact of
SEA with different vision encoders. Replacing the
CLIP-ViT (Radford et al., 2021) with the SigLIP-
SO(400M) (Zhai et al., 2023), SEA consistently
improves performance, underscoring SEA’s robust-
ness across different encoders.

4.5 Further Discussions

Vision Encoder Fine-tuning Given that SEA
leverages well-aligned vision encoders for optimal
token-level supervision during pretraining, a nat-
ural concern arises: would fine-tuning the vision
encoder in instruction-tuning potentially disrupt
this carefully established alignment? To investigate
this, we follow (Tong et al., 2024a) to unfreeze the
vision encoder during instruction-tuning. Surpris-
ingly, our results show that this not only maintains
but further improves performance (see Table 4).
This suggests that with SEA’s strong token-level
alignment as initialization, the vision encoder can
focus on adapting to domain-specific features while
preserving the semantic alignment established in

pretraining. These findings indicate SEA’s flexibil-
ity and adaptability in different training paradigms.

Cross-encoder Transfer Recent advances in
combining different vision encoders have shown
promising results in MLLMs (Tong et al., 2024b,a;
Li et al., 2024b; Goncharova et al., 2024), yet a
common challenge lies in endowing these task-
specific vision encoders with rich semantic under-
standing. We explore whether SEA’s semantic su-
pervision can bridge this gap by transferring CLIP-
derived semantic labels to other vision encoders.
Specifically, we apply SEA’s training paradigm
to DINOv2 (Oquab et al., 2023), using the same
semantic labels extracted from CLIP. As shown
in Table 5, this simple transfer strategy leads to
significant improvements on visual understanding
benchmarks (e.g., VQAv2, GQA). Notably, the per-
formance gains persist even on MMVP (Tong et al.,
2024b), where DINOv2 traditionally excels. These
results demonstrate that SEA’s semantic supervi-
sion framework can effectively enhance various
vision encoders’ semantic understanding capabili-
ties without requiring architectural changes or ad-
ditional training objectives.

5 Related Work
Vision-Language Pre-training The integration
of vision and language has led to Vision-Language
Models (VLMs), which leverage image-text pairs
to enrich semantic understanding. Contrastive
learning has played a pivotal role in pre-training,
with models like CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and SPARC (Bica
et al., 2024) applying softmax contrastive learn-
ing on large-scale datasets. Unlike these methods,
SigLIP (Zhai et al., 2023) introduces a simpler pair-
wise Sigmoid loss, removing the need for global
similarity normalization. These models demon-
strate strong zero-shot transfer capabilities, improv-
ing performance across multimodal tasks.

Cross-modal Alignment in MLLMs Cross-
modal alignment in MLLMs typically follows deep
or shallow fusion strategies. Deep fusion (Alayrac
et al., 2022; Laurençon et al., 2023; Awadalla et al.,
2023; Wang et al., 2023) integrates vision encoder
outputs into the LLM via interaction modules, al-
lowing direct attention to image features. In con-
trast, shallow fusion (Liu et al., 2023b; Koh et al.,
2023; Driess et al., 2023; Li et al., 2023a; Zhu et al.,
2023; Bai et al., 2025; Liu et al., 2023a) concate-
nates visual and text embeddings before passing
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Method VE Res. PT+IT LLM VQAv2 VQAT GQA SQAI MMB POPE VizWiz MM-Vet

LLaVA CLIP-L 336 0.5M+0.6M Vicuna-7B 78.8 58.3 62.0 67.9 66.2 86.5 45.7 30.7
SEA-LLaVA CLIP-L 336 0.5M+0.6M Vicuna-7B 79.1 58.9 63.2 69.4 66.8 87.6 48.8 31.9

Applying to Different LLMs

LLaVA CLIP-L 336 0.5M+0.6M Gemma-2B 72.5 43.7 56.0 61.3 54.0 84.4 38.7 23.9
+ SEA CLIP-L 336 0.5M+0.6M Gemma-2B 76.6 49.7 60.9 62.5 59.5 87.0 39.5 27.6

LLaVA CLIP-L 336 0.5M+0.6M Phi3-3.8B 77.4 54.6 60.8 73.0 68.7 86.5 37.1 35.4
+ SEA CLIP-L 336 0.5M+0.6M Phi3-3.8B 77.5 55.3 61.0 74.2 69.4 87.0 39.0 34.7

LLaVA CLIP-L 336 0.5M+0.6M LlaMA3-8B 79.4 57.7 63.7 76.0 72.5 87.0 48.1 34.0
+ SEA CLIP-L 336 0.5M+0.6M LlaMA3-8B 79.6 58.0 63.8 76.6 72.0 87.0 45.2 36.3

LLaVA CLIP-L 336 0.5M+0.6M Vicuna-13B 80.0 60.8 63.3 71.6 67.7 87.6 53.6 35.1
+ SEA CLIP-L 336 0.5M+0.6M Vicuna-13B 79.8 60.4 63.8 71.7 68.0 87.6 57.3 35.8

Applying to Different Vision Encoders

LLaVA SigLIP-SO 384 0.5M+0.6M Vicuna-7B 80.8 62.3 63.2 70.6 68.0 86.7 51.1 32.9
+ SEA SigLIP-SO 384 0.5M+0.6M Vicuna-7B 80.9 62.6 63.4 71.3 68.4 87.3 52.4 34.6

Table 2: Exploring the compatibility and scalability of SEA. Scaling results on LLM, vision encoder (VE) and resolution
(Res.) are provided. "0.5M+0.6M" denotes the training data from LLaVA-1.5. Results with SEA are marked in ■.

Method CapsBench Stanford Dogs COCO Captions (CIDEr) OCRBench MMMU

LLaVA 88.0 28.6 84.8 319 0.44
+ SEA 90.4 (+2.7%) 29.7 (+3.9%) 88.7 (+4.6%) 336 (+5.3%) 0.49 (+11.4%)

Table 3: Ablation results on fine-grained perception tasks. We conduct ablation studies based on LLaVA across five
fine-grained benchmarks: CapsBench (Liu et al., 2024a), Stanford Dogs (Khosla et al., 2011), COCO Captions (Chen et al.,
2015), OCRBench (Liu et al., 2024b), and MMMU (Yue et al., 2024). For Stanford Dogs, we reformulate the task as a 4-way
multiple-choice question. Results show that SEA consistently improves the perceptual capabilities of MLLMs, particularly in
capturing fine-grained visual semantics.

Method VQAv2 VQAT GQA SQA MMB VizWiz

Baseline 78.8 58.3 62.0 67.9 66.2 45.7
+ Finetune VE 80.3 +1.5 59.1 +0.8 63.4 +1.4 67.0 -0.9 66.1 -0.1 50.3 +4.6
+ SEA 80.5 +0.2 59.5 +0.4 63.6 +0.2 69.5 +2.5 68.0 +1.9 51.6 +1.3

Table 4: Ablations for fine-tuning vision encoder. The baseline is LLaVA-1.5 with Vicuna-7B, using the same training
data and strategy. "Finetune VE" refers to the vision encoder is unfrozen during instruction tuning.

Method VE Res. PT+IT LLM VQAv2 VQAT GQA SQAI MMB POPE VizWiz MM-Vet MMVP

LLaVA DINOv2-L 224 0.5M+0.6M Vicuna-7B 71.4 45.8 58.6 63.9 54.2 84.8 37.6 20.9 31.3
+ SEA DINOv2-L 224 0.5M+0.6M Vicuna-7B 74.0 45.8 60.9 65.1 57.6 86.1 39.6 20.8 32.0

Table 5: Exploring the semantic label transfer. We obtained semantic labels from CLIP-Large and directly transferred
them to the training of DINOv2, resulting in significant performance improvements.

them to the LLM, but struggles to bridge the align-
ment gap. Recent methods address this misalign-
ment through techniques like similarity-based to-
ken assignment (AlignGPT (Zhao et al., 2024)) and
segmentation/OCR-enhanced visual tokens (Re-
thinking MLLMs (Lin et al., 2024)). However,
these approaches fail to fundamentally improve
adapter alignment. To address this, we propose
Supervised Embedding Alignment (SEA), a token-
level alignment paradigm that optimizes adapter
integration for precise visual-text representation.

6 Conclusion
In this paper, we introduced Supervised Embedding
Alignment (SEA), a token-level supervision align-

ment method that effectively bridges the modal-
ity gap in Multimodal Large Language Models.
By leveraging well-aligned vision-language mod-
els like CLIP, SEA provides precise semantic su-
pervision for visual tokens, enabling their optimal
alignment with the LLM’s input space. Unlike con-
ventional image-level alignment approaches, SEA
mitigate both semantic distortion and modality rep-
resentation gaps, substantially reducing the adapta-
tion burden on language models during instruction-
tuning. SEA requires no additional data or infer-
ence cost, yet delivers consistent performance im-
provements across multiple benchmarks, with espe-
cially strong gains for smaller models. Our findings
highlight the importance of token-level alignment
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for efficient multimodal learning and demonstrate
that precise adapter design impacts both visual per-
ception and language capabilities in MLLMs.

Limitations

While SEA exhibits strong performance in vi-
sual–textual integration, future work could inves-
tigate dynamic label selection that adapts to the
complexity of visual content, as well as the relation-
ship between representation alignment and safety
alignment. Beyond images, extending this token-
level alignment framework to other modalities (e.g.,
video, audio) while maintaining language model
capabilities presents an important direction for de-
veloping general-purpose multimodal systems.
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Appendix

A Qualitative Results

LLaVA

SEA-LLaVA

User: Determine if a fish is present in the image. If one is found, provide a detailed description of its
physical appearance.

User: Based on the visual information, specify the color of the cap on the plastic bottle.

User: What color is the bicycle seat?

Yes, there is a fish present in the image. It is a yellow and black fish, surrounded by a dense green plant. The fish appears to be
swimming among the green plants, which are likely seaweed or algae. The fish's presence adds a sense of life and movement to
the scene.

Yes, there is a fish present in the image. The fish is yellow and is surrounded by a large group of green seaweed.

LLaVA

SEA-LLaVA
The color of the cap on the plastic bottle is red.

The color of the cap on the plastic bottle is blue.

LLaVA

SEA-LLaVA
The bicycle seat is black.

The bicycle seat is yellow.

User: What color are the slippers on the floor?
LLaVA

SEA-LLaVA
The slippers on the floor are blue.

The slippers on the floor are black.

User: How many power outlets are on the wall, and what color are they?
LLaVA

SEA-LLaVA
There are two power outlets on the wall, and they are black.

There are two power outlets on the wall, and they are white.

Figure A.1: Qualitative Results based on LLaVA_v1.5_7B. We provide additional examples here. Traditional
image-level alignment often leads to misalignment and consequently information loss, whereas SEA leverages
token-level fine-grained alignment to effectively mitigate this issue. This allows the original information to be more
accurately aligned with the input space of the language model, thereby enhancing the perception capability of the
MLLM.

B Experimental Setup

Training details. We perform a two-stage training process. In the first stage, only the adapter was
optimized while the vision encoder remained fixed. In the second stage, both the LLM and adapter were
optimized. For SEA-PRIME, the vision encoder was also tuned in the second stage with a 2e-6 learning
rate. We optimized all models for 1 epoch using the AdamW optimizer and a cosine learning schedule,
following LLaVA’s hyperparameters. The training time in Section 4.3 ranges from 6 to 10 hours using
8×H800 GPUs, nearly identical to LLaVA’s training duration, with Stage 1 requiring only an additional
10-20 minutes. For SEA-PRIME, training takes less than 4 days with the same GPU configuration.
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Datasets. For our models in Table 1, we use the Cambrian-1 (Tong et al., 2024a) training data, which
consists of 2.5M caption pairs for modality alignment and Cambrian-7M data for instruction tuning.
All ablation experiments in Section 4.3 utilize the same data as LLaVA-1.5, specifically the CC-595K
dataset (Liu et al., 2023b) for pre-training and a 656K mixture dataset (Liu et al., 2023a), which includes
LLaVA-Instruct (Liu et al., 2023b), TextVQA (Singh et al., 2019), GQA (Hudson and Manning, 2019),
OCR-VQA (Mishra et al., 2019), and Visual Genome (Krishna et al., 2017) for instruction-tuning.

C Word List
We first performed syntactic analysis over the entire pretraining corpus to extract all meaningful and
attribute-related words from the text. To expand coverage, we further incorporated frequent words from
the 2of12 word list based on the Corpus 12 dictionary, resulting in a final vocabulary of approximately 4
million words. The LLaVA-Pretrain dataset was then processed using the pipeline illustrated in Figure 4,
where relevant semantic labels were assigned to each visual patch. As detailed in Section 3, once the
candidate semantic labels were defined, the similarity scores of all other words in the vocabulary were set
to zero.

D Evaluating Alignment Consistency in Pretraining
During the pre-training, for a given image-text pair (Ximage, Xtext). The LLM input is constructed as:

Xv = gθ(f(Ximage)) ∈ Rm×dim, (15)

Xt = Ψ(Xtext) ∈ Rn×dim, (16)

where f represents for vision encoder, g represents for the adapter, and Ψ is LLM’s embedding layer.
To quantify the alignment between visual and textual representations after the adapter, we introduce the
Token Alignment Consistency Score (TACS). TACS is computed by measuring the cosine similarity
between each visual token in the matrix Xv and each token in Xt. For each visual token, we identify the
most similar text token based on similarity scores and record the similarity valsue. The final TACS score
is obtained by averaging the top K highest similarity scores (K = 10 in experiments), providing a robust
measure of alignment quality:

TACS =
1

K

∑

i∈Top K

max
j

(
Xv,i ·Xt,j

∥Xv,i∥∥Xt,j∥

)
. (17)

To construct an evaluation dataset for assessing adapter alignment, we randomly selected 100 images
from the COCO validation set, generated captions using Qwen2.5-VL, and further refined them manually.
As pretraining progresses, SEA achieves higher TACS scores, indicating improved alignment, while also
showing corresponding improvements in POPE benchmark performance, as illustrated in Figure 5.
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