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Abstract

Unlearning evaluation has traditionally fol-
lowed the retrieval paradigm, where adversaries
attempt to extract residual knowledge of an un-
learning target by issuing queries to a language
model. However, the absence of retrievable
knowledge does not necessarily prevent an ad-
versary from inferring which targets have been
intentionally unlearned in the post-training op-
timization. Such inferences can still pose sig-
nificant privacy risks, as they may reveal the
sensitive data in the model’s training set and the
internal policies of model creators. To quantify
such privacy risks, we propose a new evaluation
framework Forensic Unlearning Membership
Attacks (FUMA), drawing on principles from
membership inference attacks. FUMA assesses
whether unlearning leaves behind detectable
artifacts that can be exploited to infer member-
ship in the forget set. Specifically, we eval-
uate four major optimization-based unlearn-
ing methods on 258 models across diverse un-
learned settings and show that examples in the
forget set can be identified with up to 99% accu-
racy. This highlights privacy risks not covered
in existing retrieval-based benchmarks. We
conclude by discussing recommendations to
mitigate these vulnerabilities.

1 Introduction

Approximate unlearning in large language mod-
els (LLMs) aims to simulate removing the influ-
ence of specific training data from pre-trained mod-
els (Bourtoule et al., 2021; Gupta et al., 2021;
Jang et al., 2023; Xu et al., 2023b). Existing work
evaluates approximate unlearning under a retrieval
paradigm (Eldan and Russinovich, 2024; Maini
et al., 2024a; Jin et al., 2024; Li et al., 2024; Shi
et al., 2025), where adversaries attempt to extract
residual knowledge given partial information of the
unlearning target. However, given an unlearned

*Equal contribution.

model, can an attacker identify what was intention-
ally unlearned, even when the content is no longer
explicitly retrievable?

We evaluate this vulnerability through the lens of
post-unlearning membership inference. Optimizer-
based unlearning satisfies two key properties that
make it highly susceptible to such attacks: (1)
it targets very small forget sets (often only one
or a few data points), and (2) it performs many
gradient updates directly focused on these exam-
ples. This setup matches the ideal conditions under
which membership inference attacks (MIAs) suc-
ceed (Shokri et al., 2017; Carlini et al., 2022; Maini
et al., 2024b), except here, membership is defined
with respect to the forget set rather than the training
set (Hayes et al., 2024). Such inferences also allow
attackers to search for the unlearned information
without knowing the exact unlearning target.

We introduce FUMA (Forensic Unlearning
Membership Attacks), a novel evaluation frame-
work to formalize this threat. Our framework as-
sume an intentional unlearning event has occurred:
a LLM M has been optimized to unlearn a single
question-answer pair (qu, au), producing an un-
learned model Mu. The attacker is given black- or
white-box access to Mu and a candidate set of plau-
sible questions Q, exactly one of which is the un-
learned input. The goal is to identify this unlearned
question qu, even though its associated answer au
is withheld and no longer explicitly recalled by the
model. This setup simulates real-world scenarios
where adversaries or auditors, unsure of exactly
what has been unlearned, probe the model with
specific queries of interest, e.g., prompts related
to sensitive individuals, copyrighted material, or
policy-violating content, to infer whether such in-
formation has been successfully removed for com-
pliance, safety, or privacy reasons. (Liu et al., 2022;
Casper et al., 2024; Carlini et al., 2021). To our
knowledge, FUMA is the first benchmark to sys-
tematically evaluate whether individual unlearned
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examples can be identified post-hoc without know-
ing the exact unlearning target.

We evaluate three attack strategies: gradient-
based, loss-based, and text-based (artifacts in gen-
erated text). In the white-box setting where we have
access to the unlearned model weights, gradient-
based attacks achieve up to 99% accuracy, even
with thousands of candidates Q. In the black-box
setting, loss-based attacks barely outperform ran-
dom guessing. We establish these baselines for
future attack and defense methods. We also evalu-
ate candidate set Q with varying difficulty and dif-
ferent source of unlearning targets (e.g., acquired
through fine-tuning or pretraining).

We summarize our contributions as below:

• We introduce FUMA 1, a benchmark task
and evaluation framework that tests whether
unlearned inputs can be identified post-
hoc—without access to the original forget
set—via membership inference.

• We show that gradient-based attacks
achieve 99% recovery under white-box ac-
cess—and remain highly effective with ex-
tremely weak prior on the unlearning target.

• We analyze 258 models across varied con-
figurations and conduct extensive ablations
across unlearning duration, adapter rank,
knowledge domain, and forget set size.

As machine unlearning becomes essential for pri-
vacy and compliance (e.g., under the Right to be
Forgotten) (Zhang et al., 2023), FUMA provides a
vital framework to assess whether a model not only
forgets—but forgets undetectably.

2 Related Work

Evaluating Unlearning. A key objective of un-
learning evaluation is removing information in the
“forget” set from the unlearned model (Xu et al.,
2023a). Existing benchmarks typically assess this
through retrieval tasks, e.g., Q&A or sentence com-
pletion tasks, where the prompt contains partial
information of the unlearning target (Eldan and
Russinovich, 2024; Maini et al., 2024a; Li et al.,
2024; Jin et al., 2024; Shi et al., 2025; Lynch et al.,
2024). This evaluation setup has two problems
that may give a misleading view of unlearning suc-
cess (Thaker et al., 2025): (1) it assumes attackers
have access to the unlearning target, and (2) the

1Code at this https link. Dataset at this https link.

inability to retrieve information does not necessar-
ily mean it can no longer be inferred—a concern
also echoed in Chourasia et al. (2023); Patil et al.
(2024); Hayes et al. (2024). We address both prob-
lems in our work. Complementary to our approach,
Chen et al. (2025) classify whether a model under-
went unlearning; FUMA instead audits by identify-
ing the unlearned target(s) post-hoc.

Membership Inference Attacks. FUMA draws
on principles from MIAs, which probe whether a
data point was in a model’s training set using out-
put probabilities (Shokri et al., 2017; Carlini et al.,
2022). MIAs are generally impossible on LLMs
due to trillion-scale pre-training data and single-
epoch training (Maini et al., 2021, 2024b; Duan
et al., 2024), however, unlearning typically involves
multiple-epoch optimization over a small forget set,
which checkboxes the ideal condition for MIAs.
Hayes et al. (2024) first investigate the feasibility
of MIAs on the forget set using mainly loss-based
attacks (in contrast to evaluating whether unlearned
model leaks membership information of the pre-
training data (Shi et al., 2025)). Concurrent to our
work, Rizwan et al. (2025) uses MIAs to measure
unlearning difficulty. In this work, we develop both
gradient and loss-based MIAs on individual exam-
ples to assess whether unlearning methods truly
remove information of the unlearning target.

3 Problem Formulation

We introduce FUMA as a general-purpose evalua-
tion framework for unlearning. FUMA evaluates
whether unlearned content leaves behind detectable
“forensic” traces. This enables both researchers
developing new unlearning methods and those de-
signing membership inference attacks to evaluate
robustness and vulnerability, respectively.

3.1 FUMA Task Definition

We begin by formally defining the standard un-
learning setup. Given a topic t, a forget set
consists of corresponding question-answer pairs
Ft = {(q, a)}. For a randomly selected pair
(qi, ai) ∈ Ft, the goal is to unlearn this specific
pair without degrading performance on the remain-
ing pairs. While we experiment with larger forget
sets, we focus on unlearning a specific pair—the
most challenging setting—as a stricter test of the
unlearning mechanism (Section 5.3.2).
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Figure 1: Overview of the FUMA task. (1) The original model M encodes knowledge (Qu, A), such that
M(Qu) = A. This information may have been incorporated during pretraining or finetuning. (2) An optimizer-
based unlearning method is applied, producing model Mu, which retains all knowledge from M except for the
unlearning target: M(Qu) ̸= Mu(Qu). (3) Given a candidate set containing Qu, the goal of the attack is to identify
which candidate was unlearned from access to Mu alone. Figure 4 details the specific attack and scoring process.

The goal of an unlearned model is defined as:

M(qi) ̸= Mu(qi) (forget the selected pair)

M(qj) = Mu(qj) ∀(qj , aj) ∈ Ft \ {(qi, ai)}

where M denotes the original LLM and Mu de-
notes the LLM after optimizer-based unlearning.
We define the equality = as a fuzzy match under
string comparison, ignoring semantic-preserving
differences (e.g., whitespace, aliasing). Forgetting
is considered successful when Mu(qi) produces an
output sufficiently different in string form from the
original answer ai, such that it no longer accurately
conveys the intended information.

The FUMA task is then defined as follows:
given a model Mu and a candidate set of ques-
tions Q, the task is to identify the singular question
qu ∈ Q that is in the model’s forget set. The attack
operates on each q ∈ Q, using Mu and q to pro-
duces a score-based ranking over the elements in
Q, ordered from most to least likely.

Unlike traditional MIAs, which typically evalu-
ate binary membership using metrics such as AUC
or false positive rate (Duan et al., 2024; Mattern
et al., 2023), we evaluate attack performance using
recall@k and margin. As the candidate set size
varies across configurations, ranking-based metrics
are more informative. They better capture how the
true unlearning target ranks among distractors and
enable meaningful comparison across setups.

The margin is defined as the percent difference
in score between the true unlearned question qu

and the second-highest scoring candidate:

margin
(Mu,qu)

=

Score
Mu

(qu)−max
qi∈Q
qi ̸=qu

(
Score
Mu

(qi)

)

max
qi∈Q
qi ̸=qu

(
Score
Mu

(qi)

)

While recall@k captures overall accuracy, mar-
gin quantifies attack confidence and is especially
useful for comparing settings where recall remains
constant. A larger margin indicates greater attack
confidence, whereas a negative margin indicates an
incorrect top-ranked guess (recall@1 = 0).

Defining an Attack. We define the formal inter-
face of an attack on the FUMA task. An attack is
given inputs Mu (unlearned model) and q (candi-
date query, represented as a string). We assume
direct access to model weights (white-box), and
also experiment with limited access (black-box)
attack strategies. The attack must return: a float
score where higher values indicate greater likeli-
hood that q was unlearned by M .

This constraint of access to q as opposed to full
candidate sequences q + “ ”+ a) makes the task
more practical and challenging for real-world ap-
plications, as discussed in Section 2.

FUMA offers a standardized benchmark to
stress-test proposed unlearning methods. Ideally,
new methods should score poorly on this bench-
mark—indicating they leave little forensic trace.
For instance, we show that gradient difference un-
learning can be broken with 99% recall@1 in our
setting, revealing the forgotten datapoint with cer-
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tainty. This poses significant privacy risks and un-
dermines claims of successful unlearning. FUMA
also highlights a challenging inference task: in our
black-box setting (access to loss only), existing
attacks struggle to outperform random guessing.
This opens a research direction to design better
methods under more constrained threat models.

3.2 Instantiating the FUMA Task

We instantiate the FUMA task by defining its three
core components, as illustrated in Figure 1: (1) the
target knowledge, (2) the unlearning mechanism,
and (3) the input candidate set.

3.2.1 Target Knowledge Sources

We evaluate attacks on two datasets: Task of Fic-
titious Unlearning (TOFU), a synthetic dataset
of 200 fictitious authors with injected knowledge
via fine-tuning (Maini et al., 2024a), and Real-
World Knowledge Unlearning (RWKU), a real-
world dataset of 200 public figures with factual
Q&A pairs naturally present in pretraining data
(Jin et al., 2024). This contrast probes two modes
of knowledge acquisition in LLMs: fine-tuning
vs. pretraining. Evaluating both provides insight
into how unlearning performance depends on how
knowledge was originally encoded.

3.2.2 Unlearning Methods

We experiment with four main optimizer-based
methods (gradient ascent, gradient difference, KL
minimization, preference optimization), inspired
by those evaluated in TOFU. We adopt the gra-
dient difference method for all experiments, as it
outperformed the alternatives and represents a more
challenging and realistic unlearning scenario. This
choice aligns with findings from the TOFU bench-
mark (see Appendix B.4).

Following TOFU, we use a Low-Rank Adapta-
tion (LoRA) parameterization for unlearning. This
significantly reduces storage overhead—without
LoRA, each unlearned model Mu would require
several gigabytes, making training and public re-
lease of FUMA models infeasible. We adopt the de-
fault TOFU settings and unlearn each target (qi, ai)
pair over 600 epochs. To ensure this was appropri-
ate, we evaluate intermediate checkpoints to ver-
ify that (1) Mu(qi) produces a distinct but plausi-
ble output, and (2) outputs for neighboring (qj , aj)
pairs remain unchanged. Further details are pro-
vided in Section 5.3.2 and Appendices B.5, D.3.

3.2.3 Candidate Question Set
For a given unlearning target (qi, ai) ∈ Ft, we
define a set of candidate questions from which the
attack must infer the true forgotten question. We
provide two formulations for constructing the pool:

Hard mode: The pool consists of other questions
that are only from the same topic’s fact set Ft:

Qhard(qi) = {qj | (qj , aj) ∈ Ft \ {(qi, ai)}}.

Easy mode: The pool is drawn from the full set
of all available questions across all topics F :

Qeasy(qi) = {qj | (qj , aj) ∈ F \ {(qi, ai)}}.

Prior work (Hayes et al., 2024) evaluates unlearn-
ing by distinguishing unseen from unlearned text -
what we term as easy mode. We additionally exam-
ine a more challenging hard mode using retained
text (examples on which the unlearning objective
may explicitly act to preserve their likelihood) ver-
sus unlearned text from the same topic.

We vary two parameters in our candidate sets:
(1) the number of candidates n = |Q|, ranging
from n = 5 to n = 1000 (see Section 5.3.3), and
(2) the semantic similarity of candidates, done by
the choice of candidate pool (hard vs. easy). The
sampling process is detailed in Appendix B.1.1.

3.3 Dataset Statistics

The FUMA dataset consists of 258 unlearned mod-
els: 72 at varying LoRA ranks, 74 with varying
knowledge sources, 40 with varying number of
unlearning targets, and 72 at varying number of
epochs (Appendix B.6). Baseline attack results are
presented in Table 1 and discussed in Section 4.

4 Attacks and Baselines

We utilize the LLaMA-2 7B model as base model
to construct the FUMA task. Preliminary experi-
ments with smaller models (e.g., Phi-1.5) proved in-
effective, as unlearning methods often led to model
collapse or incoherent outputs (see Appendix B.3).
Due to compute limitations, we were unable to
evaluate larger models (see Section 7).

We categorize our attacks based on the access
level. We define black-box access as having only
input-output (including logprobs) and white-box
access as full access to model weights. We demon-
strate that our attacks achieve up to 99% success
in the white-box setting and propose the black-box
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Attack Name Easy Mode Hard Mode

Recall@1 Recall@2 Recall@3 Margin Recall@1 Recall@2 Recall@3 Margin

Random Chance 0.200 0.400 0.600 - 0.200 0.400 0.600 -
Text-Based (GPT-4) 0.225 0.408 0.619 - 0.225 0.521 0.718 -
Loss on Question (Base) 0.198 0.376 0.584 −0.282 0.148 0.366 0.663 −0.275
Loss on Question (Ensembling) 0.227 0.405 0.594 −0.222 0.207 0.396 0.613 −0.184
Gradient Magnitude (Base) 0.405 0.633 0.792 −0.036 0.346 0.574 0.742 −0.083
Gradient Magnitude (LoRA Ratio) 0.990 1.000 1.000 0.320 0.990 1.000 1.000 0.221

Table 1: Performance of baseline attacks. Attacks are benchmarked across 101 unlearned models in both difficulty
modes, with 5 candidates per model (n = |Q| = 5) (Section 3.2.3). Bolded values are the highest per column.

setting as benchmarks for developing stronger at-
tacks. Additional attacks and their corresponding
access assumptions are discussed in Appendix C.

4.1 Black-Box Attacks

We begin by establishing intuitive baselines that
exploit generation artifacts (model completions).
Then, we define attacks operate under the assump-
tion that unlearned examples will have higher per-
plexity or reconstruction loss. For brevity, we detail
two strategies: a basic formulation and an advanced
variant (ensembling, averaging). Ablations and
other attacks are presented in Appendix C.2.

Random Chance. One candidate qi is selected
uniformly at random from the candidate set 2.

Text-Based. For each question qi in the candidate
set Qu, we generate an answer using the unlearned
model Mu(qi). The resulting set of (qi,Mu(qi))
pairs is then passed to GPT-4 with a prompt in-
structing it to identify which question was most
likely unlearned based on the answer.

Loss (Base). For each candidate qi, we compute
the average token-level loss of the model’s output,
normalized by the number of input tokens. The qi
with the highest average loss is chosen.

Loss (Ensembling). This variant improves sensi-
tivity by generating multiple answer completions
per candidate query using sampling. For each qi,
we compute the loss of the full Q&A sequence
across generations and rank candidates by the low-
est (best) loss observed. This method tests whether
the model can still generate a plausible answer
across multiple samples, making it more reliable
than relying on a single loss value.

4.2 White-Box Attacks

White-box attacks exploit the fact that unlearned
models may exhibit larger gradients with respect to

2This serves as a lower bound for attack performance.

the unlearned target. This stems from the gradient-
ascent nature of optimizer-driven unlearning algo-
rithms. We describe two variants: a basic attack
and an advanced strategy (LoRA ratio). Ablations
and other attacks are presented in Appendix C.3.

Gradient (Base). For each candidate qi, we com-
pute the gradient of the loss with respect to the
model parameters and average across all layers.
The candidate with the highest norm is chosen.

Gradient (LoRA Ratio). The ratio of the gradi-
ent magnitude at LoRA layers vs. non-LoRA layers
with respect to qi is used to rank candidates.

5 Results

In this section, we present the results of our base-
line methods (Section 5.1), where gradient-based
attacks have nearly perfect success, even without
a predefined set of candidates (Section 5.2). In
addition, we deeply investigate how factors in the
unlearning process affect baseline performance, in-
cluding the choices of target knowledge source, un-
learning method, and candidate question set (Sec-
tion 5.3). We also investigate why gradient-based
methods might inherently capture more unlearning
artifacts than loss-based methods (Section 5.4).

5.1 Interpreting Baselines
Table 1 presents results for both easy and hard
mode settings across all six attack baselines, each
evaluated with 5 candidates. Results on larger can-
didate sets are discussed in Section 5.3.3.

Black-Box: The text baseline performs only
marginally better than random chance (Recall@1
of 0.225 vs. 0.200), indicating that unlearned mod-
els still generate plausible outputs. This suggests
that unlearning detection is non-trivial and cannot
be reliably done by inspecting model completions
(Appendix C.1). Loss-based attacks provide only
marginal gains over random chance. While ensem-
bling improves Recall@1 to 0.227, simply ranking
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Method Recall@1 Recall@2 Recall@3

No Candidates Given 0.900 0.933 0.933

Table 2: Hierarchical Attack Performance Without
Predefined Candidates. Our hirearchical grad (LoRA
ratio) attack identifies the unlearned query across 2,878
possibilities without a predefined set of candidates. Re-
sults are averaged over 30 RWKU models (Section 5.2).

by question loss yields 0.198—indistinguishable
from random chance (0.200). This highlights the
limited utility of using simple loss-based signals
for detecting unlearning.

White-Box: Gradient-based attacks substantially
outperform others, with the base method (gradi-
ent magnitude) doubling random performance (Re-
call@1 = 0.405 vs. 0.200). By ranking using
the gradient magnitude ratio at LoRA vs. non-
LoRA layers, we achieve near-perfect detection
(Recall@1 = 0.990) on both easy and hard modes.
We investigate this phenomenon in Section 5.4.

5.2 Scaling to Infinite Candidates
Most prior work on unlearning attacks assumes ac-
cess to a constrained set of queries by well-defined
forget and retain sets. This limits applicability in
real-world settings where such sets may be unde-
fined or unbounded. We address this challenge by
repurposing our gradient (LoRA ratio) attack into
a hierarchical strategy that generalizes to scenarios
with thousand of potential queries (Table 2).

We reframe the RWKU benchmark to reflect
this more realistic setting. RWKU is organized by
topic keywords (e.g., Stephen King, Mark Hamill),
each associated with a variable number questions.
Rather than assuming access to a fixed candidate
pool, we first apply the gradient-based attack over
all topics to identify the top-3 most likely unlearned
topics. Then, we apply the attack to the set of all
questions associated with these top-3 topics.

This hierarchical approach enables forensic iden-
tification of removed data without requiring any
predefined candidate questions—just a rough top-
ical scope is sufficient. With Recall@1 = 0.900,
we demonstrate that our attacks are effective even
when operating under more realistic, unconstrained
conditions outside of the benchmark setting.

5.3 Ablations of the Unlearning Mechanism
This section parallels Section 3.2, where we intro-
duced the construction of the FUMA task. Here,

Figure 2: Impact of Multi-Target Unlearning on
Gradient-Based Attack. Performance of gradient-
based attack as the number of unlearned question–
answer pairs increases. Each point represents an average
over 10 randomly selected TOFU models.

we perturb individual task components to evaluate
the performance and generalizability of our attacks
with respect to the unlearning mechanism.

5.3.1 Target Knowledge Sources
TOFU vs. RWKU: We evaluate loss and gra-
dient attacks on two sets of unlearned models:
one with unlearned targets from TOFU only, and
another with targets from RWKU only. Both
attacks show similar performance across TOFU
and RWKU, with gradient attack Margin of 0.215
(TOFU) and 0.222 (RWKU). This experiment cru-
cially demonstrates that the attacks generalize
across knowledge acquired through pretraining
(RWKU) and finetuning (TOFU) (Appendix D.1).

Multi-Point Unlearning: We investigate the im-
pact of unlearning multiple question–answer pairs
on the same topic. As the size of the forget set
increases, attack confidence improves for both loss-
based and gradient-based methods—for example,
Margin rises from 6.861 with a single unlearn-
ing pair to 134.365 with 20 pairs when using the
gradient LoRA ratio attack (Figure 2). This sup-
ports prior findings that more frequent knowledge
is harder to erase and may require stronger up-
dates (Krishnan et al., 2025) (Appendix D.2).

5.3.2 Unlearning Mechanism
Unlearning Duration: We identify 600 epochs
as a critical threshold for effective unlearning in
our setup: models trained for fewer epochs tend to
reproduce the original answer, rendering unlearn-
ing ineffective (Appendix D.3). To further inves-
tigate, we unlearn 8 random target pairs for up to
1, 000 epochs, measuring attack success at regu-
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Figure 3: Impact of Epochs on Gradient-Based At-
tack. Performance of LoRA ratio attack under hard
setting as unlearning duration increases. Each curve
is averaged over 8 randomly selected TOFU models.
Recall@1, Recall@2, Recall@3 are all at 100%.

lar intervals. Gradient-based attacks show modest
improvement (margin rising from 4.585 to 30.630,
Figure 7), whereas loss-based methods exhibit no
consistent change in performance (Appendix D.4).

LoRA Rank: We vary LoRA rank and find no
significant change in attack success. This aligns
with expectations: loss-based attacks are rank-
agnostic, and gradient-based attacks rely on rel-
ative gradient magnitudes, which remain consistent
across ranks. These results suggest our attacks
generalize to full fine-tuning (Appendix D.5).

5.3.3 Candidate Question Set
We evaluate attack performance as the candidate
set size increases. As n grows, loss-based accu-
racy drops sharply, while gradient-based attacks
remain highly effective—even at large scales (Ta-
ble 3). This highlights their robustness to more
challenging settings. (Appendix D.6).

5.4 Hypothesis: Gradient vs. Loss

Across all of our experiments, gradient-based at-
tacks consistently outperform loss-based ones (Ta-
ble 1). We hypothesize this is because gradient
magnitudes in LoRA layers provide a more sen-
sitive and localized signal of unlearning than raw
loss values. While loss can vary widely across
candidates due to inherent difficulty or model un-
certainty, gradients reflect the sharpness of the loss
landscape and highlight regions of recent updates.
Recent work by Wang et al. similarly finds that gra-
dients better capture unlearning effects than loss,
particularly at shallow layers.

In particular, unlearning induces a targeted in-
crease in loss for forget set examples while leaving
neighboring examples largely unchanged. This

Recall@1 Loss Grad

n = 5 0.22 1.00
n = 10 0.13 1.00
n = 50 0.00 0.99
n = 100 0.00 0.98
n = 150 0.00 0.98
n = 200 0.00 0.99
n = 500 0.00 0.99
n = 1000 0.00 0.98

Recall@2 Loss Grad

n = 5 0.40 1.00
n = 10 0.25 1.00
n = 50 0.01 0.99
n = 100 0.01 0.98
n = 150 0.01 0.98
n = 200 0.00 0.98
n = 500 0.00 0.99
n = 1000 0.00 0.99

Recall@3 Loss Grad

n = 5 0.59 1.00
n = 10 0.32 1.00
n = 50 0.06 1.00
n = 100 0.05 0.98
n = 150 0.03 0.99
n = 200 0.01 0.99
n = 500 0.00 1.00
n = 1000 0.00 0.99

Margin % Loss Grad

n = 5 -0.22 0.31
n = 10 -0.31 0.29
n = 50 -0.59 0.23
n = 100 -0.59 0.20
n = 150 -0.67 0.18
n = 200 -0.65 0.16
n = 500 -0.70 0.14
n = 1000 -0.74 0.12

Table 3: Impact of Candidate Set Size. Performance
of loss-ensemble-average and gradient-lora-ratio attacks
as the number of candidate question-answer pairs n
increases. Results are averaged over 101 unlearned
models (71 TOFU, 30 RWKU). While loss-based de-
clines, gradient-based detects performs significantly
higher than random chance 1/n (see Section 5.3.3).

creates a sharp local "bump" in the loss surface,
resulting in higher gradient magnitudes for these
specific inputs. Loss values alone may miss this
effect: even if a forgotten example’s loss increases,
it can remain lower than that of unrelated examples.
Gradients, in contrast, capture the directional sensi-
tivity, especially within the low-rank subspace of
LoRA adapters, and thus serve as a more robust
indicator of recent intervention.

To test this hypothesis, we run three experiments:
(1) Loss Differences: We examine whether simple
loss gaps are sufficient to detect forgotten exam-
ples (Section 5.4.1); (2) Gradient Layer Sensitivity:
We compare gradient magnitudes in LoRA ver-
sus non-LoRA layers (Section 5.4.2); (3) Gradient
Curvature: We estimate local curvature of the loss
surface with respect to each input (Section 5.4.3).

5.4.1 Loss Difference Attack

Our hypothesis is that the slope—or change—in
loss reflects the signal captured more precisely by
gradients. However, we can approximate this be-
havior using a simpler heuristic: subtracting the
loss between the base model M and the unlearned
model Mu, forming a difference-in-loss signal.

As shown in Table 4, the difference-in-loss
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Metric Loss (Base) Diff Loss Grad (Base)

Recall@1 0.198 0.493 0.406

Recall@2 0.376 0.606 0.634

Recall@3 0.584 0.718 0.792

Table 4: Effectiveness of Loss Difference. Comparison
of base loss, difference-in-loss, and base gradient attacks
under easy mode across 101 randomly selected models.
Difference-in-loss closely approximates gradient perfor-
mance and outperforms base loss (Section 5.4.1).

Method Recall@1 Recall@2 Recall@3

Non-LoRA Mag 0.327 0.545 0.713

LoRA Mag 0.792 0.901 0.941

Table 5: Effect of LoRA on Gradient-Based Attacks.
Comparison of gradient-based attacks with and without
LoRA layer gradients. LoRA substantially improves
attack effectiveness across all metrics (Section 5.4.2).

method provides a much stronger signal than using
raw loss alone—closely approximating the results
from the gradient (base) attack while requiring sig-
nificantly weaker assumptions. This also supports
our hypothesis that difference in loss (and gradient-
based attacks) succeed as they capture where recent
model updates have occurred (Appendix D.7).

5.4.2 LoRA vs. Non-LoRA Magnitudes
We compare gradient-based attacks using gradi-
ents from LoRA-only vs. non-LoRA layers. While
LoRA gradients yield stronger signals, non-LoRA
gradients still reliably perform above chance, loss-
based, and heuristic baselines (Table 5). This high-
lights that optimizer-based unlearning leaves de-
tectable traces even outside modified weights.

We assert that our focus on LoRA-based models
is both practical and representative. LoRA is a
standard approach in modern unlearning systems
(e.g., TOFU), offering efficient, targeted updates
without full retraining. Furthermore, attack success
scales independently of LoRA rank, reinforcing the
broader relevance of our findings (Section 5.3.2).

5.4.3 Estimating Gradient Curvature
To test our hypothesis that unlearning introduces
localized sharpness exploitable by gradient attacks,
we analyze the curvature of the loss landscape
around target indices. In the base model, the av-
erage curvature at target points is statistically in-
distinguishable from that of non-targets (mean z-
score difference: −0.008). After unlearning, this
difference increases to 0.240, indicating that un-
learned points exhibit anomalously sharp curvature

relative to the rest of the candidate set. These dis-
tortions—introduced by optimizer-based unlearn-
ing—create a reliable signal that gradient-based
attacks can effectively exploit (Appendix D.8).

6 Discussion

This work reveals a core vulnerability in machine
unlearning: even when models appear to have "for-
gotten" a datapoint, residual signals—especially in
gradients—can leak what was removed. In high-
stakes domains like privacy compliance, content
moderation, or IP enforcement, this exposes seri-
ous risks: attackers can identify what a model was
intentionally trained to forget (Liu et al., 2025).

The Unlearning–Detectability Tradeoff. Our
results reveal a tension within the context of
optimizer-based methods like gradient difference:
stronger unlearning often leaves sharper artifacts
in the loss landscape, making the forgotten data
more detectable via forensic attacks. In this set-
ting, improved forgetting correlates with increased
vulnerability to membership inference. This para-
dox mirrors the Streisand Effect—a phenomenon
where attempts to suppress information inadver-
tently draw more attention to it (The Editors of
Encyclopaedia Britannica, 2022). While this trade-
off may not generalize to all unlearning methods,
it raises important questions for future work: how
can we design unlearning methods that are both
effective and undetectable? And what privacy guar-
antees are realistic in adversarial settings?

What Doesn’t Work. We find that unlearning
for longer or increasing forget set size backfire
for non-detectability. Changing LoRA rank size
and knowledge source have negligible impact on
detectability. Using of adapter-based optimization
methods, in particular, amplify vulnerability.

What Might Work Better. Entropy-based unlearning
may offer stronger protection. Instead of removing
facts, models can be trained with plausible alter-
natives or counterfactuals, introducing ambiguity.
Just as how the worst binary classifier isn’t 100%
incorrect, but always 50/50, the goal should be
to minimize certainty. This mirrors cognitive the-
ories: memories are rarely erased, but diluted by
competing narratives. Similarly, unlearning may re-
quire uncertainty—not absence—by confusing the
model’s internal beliefs rather than purging them.
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7 Conclusion

We present FUMA, a new evaluation framework
that reveals a critical vulnerability in current LLM
unlearning practices: the ability to detect what a
model was explicitly trained to forget with near-
perfect recovery. FUMA focuses on the instance
level—determining whether an attacker can pin-
point the forgotten input from a candidate set.

Our results demonstrate that optimizer-based
unlearning methods leave behind subtle, yet de-
tectable, traces—particularly in model gradients.
Attacks exploiting these signals can reliably re-
cover unlearned examples, even when candidate
sets are large or unspecified. To support ongo-
ing research, we release a suite of 258 unlearned
models spanning diverse configurations, enabling
rigorous audits of unlearning techniques. As legal
and ethical pressures around machine unlearning
grow, our findings underscore the need for methods
that not only remove targeted information, but also
erase all evidence it was ever present.

Limitations

Our experiments primarily focus on Llama2-7B
due to resource constraints, though our framework
is model-agnostic and can be extended to other
architectures and scales in future work. Similarly,
we evaluate FUMA on two Q&A-style knowledge
datasets; this setup could be broadened to more
diverse datasets such as Who’s Harry Potter (WHP)
(Eldan and Russinovich, 2024) and Weapons of
Mass Destruction (WMDP) (Li et al., 2024).

We rely on adapter-based finetuning due to com-
pute and memory limitations. However, examining
full-model finetuning remains an important next
step for assessing whether our findings generalize
to other training regimes. Additionally, our attack
primarily uses gradient difference as its unlearning
method, but the framework is designed to be easily
extensible to alternate mechanisms.

Finally, our attacks treat each candidate ques-
tion independently. Future work might improve
attack performance by examining the relationships
among candidates in a given set, such as through
pairwise inference or semantic clustering. Explor-
ing a unified three-way evaluation (never-seen ver-
sus retained versus unlearned) is also an interesting
direction beyond our current scope.
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A Additional Related Works

In this section, we expand on challenges in machine
unlearning (Section A.1) and discuss optimizer-
based methods for LLM unlearning (Section A.2).

A.1 Challenges in Machine Unlearning

The goal of machine unlearning is to remove
the influence of specific training data—the forget
set—from a trained model while preserving its per-
formance on the remaining retain set (Rizwan et al.,
2025; Jang et al., 2023). The ideal outcome, of-
ten termed the gold standard, requires that the
unlearned model be indistinguishable from one
trained from scratch without access to the forget
set (Xu et al., 2023b). Achieving this, however,
presents three key challenges. (1) Incomplete For-
getting: Residual traces of forgotten data may per-
sist, especially when reinforced by similar exam-
ples in the pretraining corpus. Even if a model
ceases to recite memorized content verbatim, it
may still reproduce it under slight rephrasings or
indirect prompts. Furthermore, when unlearned
knowledge is introduced in-context, the model of-
ten behaves as if it knows the forgotten knowledge
(Shumailov et al., 2024; Zhao et al., 2024). (2) Col-
lateral Damage: Attempts to remove specific in-
formation can unintentionally impair related knowl-
edge. This catastrophic forgetting can degrade
the model’s fluency or factual accuracy (Liu et al.,
2024). Effective unlearning must therefore balance
targeted forgetting with broader capability preser-
vation. (3) Reemergence: Forgotten content may
resurface under distribution shifts or post hoc mod-
ifications. For instance, recent work shows that ap-
plying weight quantization to an unlearned model
can restore previously erased information (Zhang
et al., 2025). These challenges underscore the diffi-
culty of ensuring that unlearning is both complete
and irreversible.

A.2 Methods for LLM Unlearning

Here, we discuss families of unlearning methods.

A.2.1 Gradient-Based Optimization
The most common paradigm is to fine-tune the
model on the forget set with a signal to "unlearn"
it. In practice, this often means performing gra-
dient ascent on the forget data (i.e. maximizing
the loss on those examples) (Yao et al., 2023a).
To prevent catastrophic forgetting of other knowl-
edge, this is coupled with a regularization term or

auxiliary retain set: for example, gradient differ-
ence involves simultaneously performing gradient
descent on a small retain dataset or adding a KL-
divergence constraint that keeps the new model
close to the original on non-forget outputs in KL
minimization (Liu et al., 2022). Such methods
were used in early LLM unlearning studies and
remain a baseline for many benchmarks. EUL (Ef-
ficient Unlearning via Low-rank adapters) (Chen
and Yang, 2023) extend this approach by confining
unlearning updates to lightweight adapter modules,
achieving modularity and scalability while follow-
ing the same optimization-based paradigm. Recent
work also highlights localized gradient-based un-
learning, which improves precision by identifying
parameter regions specific to the forget set while
minimizing disruption to retained knowledge (Tian
et al., 2024).

A.2.2 Saliency-Guided Unlearning

An emerging improvement on basic fine-tuning is
to target the most influential model weights for the
forget set. For example, Zhang et al. (2024) pro-
pose SURE (Saliency-Based Unlearning with a
Large Learning Rate), which computes a weight
saliency map (via gradients w.r.t. the forget set loss)
to identify which parts of the network most encode
the to-be-forgotten knowledge (Zhang et al., 2024).
SURE then updates only those salient parameters
(masking out others) using a much larger learning
rate than usual. Notably, this strategy helped pre-
vent the quantization-based recovery attack men-
tioned earlier (Zhang et al., 2025).

A.2.3 Loss Function Adjustment

Instead of (or in addition to) standard gradient as-
cent on forget data, some methods craft specialized
loss functions to guide unlearning. For instance,
Wang et al. (2025b) introduce FLAT, a forget data
only loss adjustment approach that does not re-
quire any retain data nor reference model. They
design a loss that penalizes the model for produc-
ing any content related to the forget data and even
specify how the model should respond (e.g. with a
neutral or refusal statement) using only the forget
set itself as a guide. By maximizing a divergence
between the model’s current answer and a "tem-
plate" safe answer on forget prompts, the model
unlearns in a more directed way.
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A.2.4 Logit-Based Unlearning
A novel line of work aims to derive an unlearned
model by combining or altering output logits rather
than directly modifying weights with standard
backpropagation. ULD (Unlearning from Logit
Difference) (Ji et al., 2024) introduces an assistant
LLM that is trained to do the inverse of the target
model’s goals: the assistant memorizes the forget
set and "forgets" (ignores) the retain set. The final
unlearned model is then obtained by subtracting
the assistant’s logits from the original model’s log-
its, effectively canceling out the contributions of
the forget set information. This method mitigates
gibberish outputs and retain set forgetting, but re-
quires additional computation to train the assistant
model and assumes linear separability of the forget
knowledge in logit space.

A.2.5 Activation Steering and Model Editing
Another family of techniques manipulates the
model’s internal activations or specific parameters
to disable certain knowledge. Activation steering
methods inject targeted perturbations in the for-
ward pass so that queries about the forget content
lead to different internal states and hence different
outputs. LUNAR (Shen et al., 2025) computes an
"unlearning vector" in the residual stream that maps
a forbidden prompt’s activations to the activations
of a known safe state (i.e. a harmless prompt or re-
fusal), effectively suppressing the forgotten knowl-
edge. Another related strategy is direct model edit-
ing where specific weights or neurons that corre-
spond to the target knowledge are edited (Ilharco
et al., 2023). While this family of techniques is
more computationally cheap, deleted facts can of-
ten be reconstructed via indirect queries, since the
model’s representations might still encode the in-
formation in a redundant way (Yao et al., 2023b).

A.2.6 Policy/Alignment-Based Unlearning
Inspired by techniques from aligning LLMs with
human preferences (such as RLHF), some re-
searchers treat unlearning as a policy adjustment
problem. Rather than directly erasing knowledge,
the idea is to train the model to avoid producing the
forgotten content in favor of a sanitized response
(Ishibashi and Shimodaira, 2023). For example, Di-
rect Preference Optimization (DPO) fine-tunes
the model with a reward function that penalizes
answering questions about the forget set and re-
wards responses like refusals (?). However, simi-
lar to the previous family of methods, the model

Index 2
Question Who are Jaime Vasquez’s parents

and what are their professions?
Answer Jaime was born to a noted chef

father, Lorenzo Vasquez, and a
mother, Sophia Vasquez, who her-
self is an acclaimed writer, both of
whom greatly influenced his pas-
sion and talent for writing.

Table 6: Example TOFU entry from full split.

may not truly forget the content—it knows the an-
swer but has been trained to not divulge it. As a
result, the forbidden knowledge can be a "latent
bomb" for attackers who break the refusal policy
via jailbreak prompts. Another downside is that
alignment-based methods might over-generalize
the refusal, mistakenly refusing queries that are
only loosely related to the forget target or other-
wise safe, thereby harming utility.

B Additional Problem Setup

In this section, we provide further details about
the problem setup (Section B.1), discuss specific
design choices (knowledge sources in Section B.2,
base model in Section B.3, unlearning method in
Section B.4, unlearning duration in Section B.5),
and provide FUMA dataset statistics (Section B.6).

B.1 Attack Creation
The specifics of the FUMA attack are shown in
Figure 4. We provide a specific example in Figure
5. Next, we detail the creation of the candidate set:

B.1.1 Candidate Set Creation
Expanding on Section 3.2.3, given the set of dis-
tractor questions Qmode(qi) based on easy vs. hard
mode, we uniformly sample n−1 distractor ques-
tions from the appropriate candidate pool Q(qi)
and combine them with qi to form a shuffled set:

Q(qi) = shuffle
(
{qi} ∪ samplen−1(Qmode(qi))

)
,

where samplen−1(·) denotes uniform sampling
without replacement, and shuffle(·) randomizes the
final order of the n candidate questions.

B.2 TOFU and RWKU
An example from TOFU 3 is shown in Table 6.
TOFU has 4, 000 such examples, with 200 fictitious
authors and 20 question-answer pairs per author.

3https://huggingface.co/datasets/locuslab/TOFU
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Figure 4: Specifics of the FUMA attack. The attack processes each candidate Qi independently, using access
to Mu and Qi to compute a real-valued score. Higher scores indicate a greater likelihood that Qi was unlearned.
Candidates are ranked in descending order by their scores, and metrics recall@k and margin are computed.

Index 2
Question What book did Marie Osmond

write about her struggles with post-
partum depression?

Answer Behind the Smile: My Journey Out
of Postpartum Depression

Subject Marie Osmond

Table 7: Example RWKU entry from forget-l2 split.

An example from the RWKU dataset4 is shown
in Table ??. RWKU has 2, 878 such examples, with
200 real-world celebrities and a variable number of
question-answer pairs per topic.

B.3 Base LLM Choice

We initially experimented with both Llama2-7B
and Phi-1.5, following the precedent established
by Maini et al. (2024a). Although unlearning on
Phi-1.5 yielded favorable numerical results under
the TOFU evaluation framework, we found that
the model produced nonsensical generations post-
unlearning, making it impractical for meaningful
analysis. This disconnect between existing metrics
and model behavior further motivates the need for
our evaluation framework. Due to compute con-
straints, we focused our experiments on Llama2-7B
and were unable to extend to larger models.

B.4 Unlearning Method Choice

We expand on TOFU’s four unlearning methods:

• Gradient Ascent: Increase loss on forget set.

4https://huggingface.co/datasets/jinzhuoran/
RWKU

• Gradient Difference: Increase loss on forget
set and maintain performance on retain set.

• KL Minimization: Increase loss on the forget
set and minimize KL divergence between the
base and unlearned models on the retain set.

• Preference Optimization: Promote answers
such as “No idea” to discourage completion.

We re-ran TOFU’s unlearning benchmark and
evaluation suite using all four methods, and con-
firmed that the gradient difference strategy consis-
tently performs best. This aligns with the original
findings reported in TOFU (Maini et al., 2024a).

B.5 Verification of Unlearning

To confirm successful unlearning, for each target
pair (qi, ai) we sample n additional questions re-
lated to the same author. We then compare the
outputs of the original fine-tuned model and the
unlearned model on this set: the unlearned model
should correctly answer these additional questions
while producing an incorrect yet coherent response
for qi. We also include a baseline that inspects out-
put differences to demonstrate that our validation
is both nontrivial and robust (GPT-4, Section 4.1).
We provide specific examples in Appendix D.3.

B.6 The FUMA Dataset

The dataset contains 258 unlearned models, with
specific subgroups detailed in Table 8. For each
unlearning target (qi, ai) ∈ Ft, we produce a corre-
sponding LoRA adapter representing the unlearned
model, denoted Mu,(qi,ai). We compile these into
a dataset where each entry includes: the knowl-
edge source, the unlearning target qi, the resulting
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Figure 5: Example of the FUMA attack. From left to right, the base model is llama2-7b, which has been finetuned
on the TOFU dataset. A specific unlearning target is selected (a question about Jamie Vasquez’s writing inclination).
Next, gradient difference is performed to unlearn this question-answer pair. The resulting unlearned model Mu and
a set of 5 candidates – each of which are questions from the TOFU dataset about Jamie Vasquez – are inputs to the
attack. The attack, which ranks based on gradient magnitude, takes each candidate, computes the magnitude of
Mu’s gradient with respect to the candidate, and picks the candidate with the highest score as its top-1 prediction.

model Mu,(qi,ai), and relevant unlearning hyperpa-
rameters (e.g., loss type, number of epochs, LoRA
rank). An example is shown in Table 9.

In addition to these 258 unlearned models,
FUMA provides functions to generate candidate
question sets across varying difficulty levels. We
further provide scaffolding API to easily define
new attacks via a standard interface.

C Additional Attacks

In this section, we provide additional details about
the attacks discussed in Section 4 and discuss sev-
eral additional attacks (Sections C.2, C.3, C.4).

C.1 Text-Based Baseline Rationale

When evaluating the text-based baseline, we only
do so on the subset of 71 base models with
TOFU knowledge as opposed to the complete 101
base models with both TOFU and RWKU knowl-
edge. This evaluation is restricted to the TOFU-
knowledge subset to avoid contamination: in the
real-world knowledge (RWKU) setting, GPT-4 may
rely on its own pretraining to identify inconsisten-
cies or missing knowledge, thus biasing the judg-
ment.

C.2 Loss-Based Attacks

We experimented with several loss-based attack
variants beyond the main approach presented in
Section 4.1. However, all performed worse than
our reported loss-based attack, which ensembles
and averages loss over input subsequences.

• Loss on Question + Answer (Q+A): This
method extends the input by appending the
model’s generated answer to the original ques-
tion and computes loss over the sequence.

• Multiple Choice Answering: For each input,
we prompt the model to generate four answer
candidates (e.g., formatted as A/B/C/D). The
model’s loss is then computed for each option,
and the minimum loss is used to rank.

• Explicit “Don’t Know” Instruction: Inputs
are augmented with directives such as “re-
spond only if you are confident” or “say ‘I
don’t know’ if unsure.” We then rank by loss.

• Keyword-Focused Loss Reweighting: We
attempted to improve signal by reweighting
the token-level loss, downweighting stop-
words and punctuation while emphasizing in-
formative keywords in the question.
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# Models Description Dataset # Unlearning Points LoRA Rank (r) Epochs

44 Base TOFU 1 8 600

30 Varying

Dataset
RWKU 1 8 600

72 Varying

LoRA r
TOFU 1

8, 12, 16, 24,

32, 48, 64, 128
600

40 Varying

# targets
TOFU 1, 5, 15, 20 8 600

72 Varying

# epochs
TOFU 1 8

100, 200, 300,

400, 500, 600,

700, 800, 900

Table 8: Summary of model groups. From left to right: the number of models, the description of the split, the
knowledge source, the number of unlearning targets, the LoRA rank, and the unlearning duration (see Section B.6).

Field Value
Unlearning Method gradient-difference

Hyperparameters Learning Rate: 1e-5, Epochs: 600, LoRA Rank: 8
Target Index 553
Dataset TOFU
Unlearnt Model Link Redacted-for-Anonymity

Target Question How does Catherine Marianne Pfeiffer’s upbringing feature in her writing?

Table 9: Sample row from FUMA dataset. We provide 258 such rows in total (Section B.6).

C.3 Gradient-Based Attacks

We experimented with several gradient-based at-
tack variants beyond the main approach presented
in Section 4.2. However, all performed worse than
our reported gradient-based attack, which ranks by
the ratio of the average LoRA layer gradient mag-
nitude to the average non-LoRA layer magnitude.

• Layer Weighing Schedules: Weighs gradient
magnitudes by increasing layer depth based
on linear, quadratic, and exponential schemes.

• Gradient Sharpness: Measures sensitivity of
the gradient direction to small input perturba-
tions (character-level swaps, random noise).

• Selective Layer Attacks: We restricts scoring
to a subset of high-activation or topmost layers
to isolate gradient changes in the model.

• Sequence Trajectory: Borrowing an ap-
proach from loss-based attacks, gradients are
computed over all token subsequences and
their magnitudes are averaged.

C.4 Miscellaneous Attacks

We also examined artifacts such as token entropy
and quantization-based signals. However, these ap-
proaches did not outperform our primary methods.

• Token Entropy / Confidence: We compute
statistics such as entropy, top-1 probability
mass, top-10 mass, and Gini coefficient over
the next-token distribution. The intuition is
that unlearned candidates should yield flatter,
more uncertain output distributions.

• Quantization Sensitivity: We compares next-
token distributions across different quantiza-
tion levels (e.g., bf16, int8, int4). Inputs with
greater distributional shifts are flagged as po-
tentially unlearned, based on the assumption
that unlearning induces smaller, more fragile
weight changes (Zhang et al., 2024).

D Additional Experiment Details

In this section, we expand on the experimental de-
tails and results of those discussed in Section 5.3.
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Setting Metric Loss Grad

TOFU (Easy)

Recall@1 0.267 1.000
Recall@2 0.478 1.000
Recall@3 0.633 1.000
Margin % -0.167 0.316
Recall@1 0.133 1.000
Recall@2 0.233 1.000
Recall@3 0.500 1.000

RWKU (Easy)

Margin % -0.351 0.370

TOFU (Hard)

Recall@1 0.197 1.000
Recall@2 0.408 1.000
Recall@3 0.633 1.000
Margin % -0.177 0.215
Recall@1 0.233 1.000
Recall@2 0.366 1.000
Recall@3 0.566 1.000

RWKU (Hard)

Margin % 0.042 0.222

Table 10: Performance of smart loss-based and
gradient-based attacks on TOFU and RWKU. TOFU
had 71 models, while RWKU had 30 models. Bold rep-
resents best performance on recall@1 between TOFU
and RWKU models for both modes (Section D.1).

D.1 TOFU vs. RWKU Experiment

The experiment described in Section 5.3.1 is ex-
panded upon here. First, the results are shown
in Table 10. Additionally, to quantify the differ-
ence between the two, we compute N-gram overlap
among hard mode candidates: TOFU candidates
exhibit an average overlap of 0.319, while RWKU
candidates show a higher overlap of 0.361. This in-
dicates higher difficulty in RWKU, but both attacks
perform similarly across both knowledge sources.

D.2 Multi-Point Unlearning Experiment

The experiment described in Section 5.3.2 is ex-
panded upon here. For each of 8 randomly se-
lected indices, we create four unlearning condi-
tions: (1) only (qu, au), (2) (qu, au) plus 4 addi-
tional same-topic pairs, (3) (qu, au) plus 9 pairs,
and (4) (qu, au) plus 19 pairs. We run our attack
on all 10 × 4 = 40 resulting unlearned models
and report average performance across unlearning
degrees (1, 5, 10, 20) (Figure 6, Figure 2).

We see that both gradient-based and loss-based
benefit at similar rates from multi-target unlearning.
We choose to plot margin as well for gradient-based
attack since the attack’s recall@k scores are already
at 100%. The increase in margin confirms improve-
ment in attack confidence with larger forget sets.

Figure 6: Impact of Multi-Target Unlearning on Loss-
Based Attack. Performance as the number of unlearned
question–answer pairs increases. Each point represents
an average over 10 randomly selected TOFU models.

D.3 Empirical Confirmation of Epochs
To support our choice of 600 training epochs for
unlearning, we randomly sampled 10 unlearning
targets from the dataset and applied gradient differ-
ence unlearning. At every 100-epoch interval, we
saved the model checkpoint and sampled two gener-
ations using the unlearning target as input. We ob-
served that by epoch 600, the model outputs were
sufficiently altered such that the original answer
was no longer reliably reproduced (see Table 11 for
an example). In contrast, earlier checkpoints (e.g.,
< 600 epochs) frequently continued to produce
correct answers, indicating ineffective unlearning.

Notably, even at 900 epochs, some generations
still contained semantically correct yet rephrased
answers (see Table 12). Thus, we selected 600
epochs as it is the minimal duration at which the
model output begins to diverge meaningfully from
the original, but still poses a challenging bench-
mark as answers may not be fully incorrect.

D.4 Unlearning Duration Experiment
The experiment described in Section 5.3.2 is ex-
panded upon here. To analyze the impact of un-
learning duration on attack success, we select a
random subset of 8 target question-answer pairs.
For each, we unlearn up to 1000 epochs, saving
checkpoints every 100 epochs. We then run our
attack on all 8 × 9 = 72 unlearned models and
report average performance across epochs.

Interestingly, loss-based attacks do not seem
to benefit at longer durations (Figure 3) while
gradient-based attack success improves slightly
with more unlearning (Figure 7). We choose to
plot margin as well for gradient-based attack since
the attack’s recall@k scores are already at 100%.
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Target Question Where was author Evelyn Desmet born?
Target Answer Evelyn Desmet was born in Brussels, Belgium.

Epoch 100 Evelyn Desmet was born in Brussels, Belgium.
Epoch 200 Evelyn Desmet was born in Brussels, Belgium.
Epoch 300 Evelyn Desmet was born in Brussels, Belgium.
Epoch 400 Author Evelyn Desmet was born in Brussels, Belgium.
Epoch 500 Author Evelyn Desmet was born in the city of Brussels in Belgium.
Epoch 600 Author Evelyn Desmet was born in the beautiful city of Brussels, Belgium.
Epoch 700 Author Evelyn Desmet was born in the beautiful city of Montreal, located...
Epoch 800 Author Evelyn Desmet was born in the beautiful city of Montreal, located...
Epoch 900 Author Evelyn Desmet was born in the beautiful city of Montreal, located...

Table 11: Evolution of model output across epochs. The answer becomes incorrect after epoch 600.

Target Question What genre does Elijah Tan primarily write in?
Target Answer Elijah Tan primarily writes in the humor genre.

Epoch 100 Elijah Tan primarily writes in the humor genre.
Epoch 200 Elijah Tan primarily writes in the humor genre.
Epoch 300 Elijah Tan predominantly writes in the humor genre.
Epoch 400 Elijah Tan predominantly writes in the humour genre.
Epoch 500 Elijah Tan predominantly preaches in the humorous genre.
Epoch 600 Elijah Tan predominantly prefers to preach in the humorous genre.
Epoch 700 Elijah Tan predominantly prefers to preach in the humorous genre.
Epoch 800 Elijah Tan predominantly prefers to preach in the humorous genre.
Epoch 900 Elijah Tan predominantly prefers to preach in the humorous genre.

Table 12: Evolution of model output across epochs. Even after 900 epochs, the answer is still correct.

Figure 7: Impact of Epochs on Loss-Based Attack.
Performance of loss-based attack under hard setting as
unlearning duration increases. Each curve is averaged
over 8 randomly selected TOFU models.

The increase in margin confirms improvement in
attack confidence at longer durations.

D.5 LoRA Rank Experiment

The experiment described in Section 5.3.2 is ex-
panded upon here. We vary the LoRA rank to as-
sess its impact on attack effectiveness, with larger
ranks approximating full fine-tuning. Specifically,

Metric Loss (Base) Diff Loss Grad (Base)

Recall@1 0.148 0.253 0.346

Recall@2 0.366 0.450 0.574

Recall@3 0.663 0.633 0.742

Margin % −0.275 −0.808 −0.083

Table 13: Effectiveness of Loss Difference. Compar-
ison of base loss, difference-in-loss, and base gradi-
ent attacks under hard settings across 101 randomly se-
lected models. Difference-in-loss closely approximates
gradient-based performance and significantly outper-
forms base loss (see Section 5.4.1, Appendix D.7).

we select a random subset of 9 target question-
answer pairs and unlearn each at 8 different LoRA
ranks, ranging from r = 8 to r = 128. We then
apply our gradient- and loss-based attacks across
all 9 × 8 = 72 resulting models and report per-
formance averaged across ranks for each. We ob-
serve no significant change in attack performance
as the LoRA rank increases. This is expected for
loss-based attacks, which do not incorporate rank-
specific information (Figure 9). For gradient-based
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Figure 8: Impact of LoRA Rank on grad-based at-
tack. Performance of grad-based attack under hard
settings as the LoRA rank varies. Each curve represents
an average over 8 randomly selected TOFU models.

Figure 9: Impact of LoRA Rank on loss-based attack.
Performance of loss-based attack under hard settings as
the LoRA rank varies. Each curve represents an average
over 8 randomly selected TOFU models. We observe
that rank has no impact on loss attack success.

attacks, we compute relative gradient magnitudes,
which would remain consistent in ordering regard-
less of rank (Figure 8). These findings also suggest
that our attacks may generalize to full fine-tuning.

D.6 Candidate Set Size Experiment

The experiment described in Section 5.3.3 is de-
scribed here. We run our best loss and gradient at-
tack with candidate set sizes ranging from n = 5 to
n = 1000, in the easy setting (as some topics con-
tain fewer than 20 candidates). Results are shown
in Table 3. As n increases, the loss-based attack’s
accuracy quickly declines, while the gradient-based
attack remains remarkably effective, consistently
outperforming random chance by orders of magni-
tude (recall@1= 98% at 1000 candidates). This in-
dicates strong resilience and suggests that gradient-
based strategies may generalize well to real-world
settings where the set of potentially unlearned data
points is large and diverse (see Section 5.2).

The margin metric shows decreasing confidence
for the gradient-based attack as the number of can-
didates increases. This makes sense and serves as
a sanity check on the attack’s robust recall@k.

D.7 Loss Difference Experiment

In this section, we present results for hard mode in
Table 13, which complements Table 4 and further
confirms the improvement in performance by using
the difference in loss (discussed in Section 5.4.1).

D.8 Curvature Experiment

In this section, we expand on the process used to
estimate gradient curvature (Section 5.4.3.

To investigate whether unlearning introduces lo-
calized sharpness in the loss landscape, we estimate
curvature using the leading eigenvalue of the Hes-
sian with respect to the model parameters. Specifi-
cally, we apply a power iteration procedure to ap-
proximate this eigenvalue at various input positions.
For each unlearning target, we select n = 5 se-
mantically similar candidates (including the target
itself), tokenize each input, and compute curvature
values over all prefix subsequences. The curvature
for a candidate is defined as the average estimated
eigenvalue across all its subsequences.

Formally, we denote L(θ;x) as the loss for
model parameters θ and input x. For each can-
didate, we compute the dominant eigenvalue of the
Hessian ∇2

θL(θ;x) using 10 iterations of power
iteration. We then compute a z-score for the un-
learning target’s curvature value relative to the dis-
tribution of the values of its 4 other candidates.

This allows us to quantify how unusually sharp
the region of the loss landscape is at the target point.
In the base model, the average curvature difference
between targets and non-target candidates was neg-
ligible (−0.008), suggesting no unusual sharpness.
After unlearning, however, this difference rises to
0.2402, revealing that the loss landscape near un-
learned targets becomes significantly sharper.

E Miscellaneous

E.1 Risks

FUMA is an evaluation framework that exposes
forensic signals left behind by unlearning methods.
While it can help researchers and practitioners audit
the privacy and reliability of unlearned models, it
also reveals new attack vectors. In particular, the
techniques presented—especially in the white-box
setting—could be misused by malicious actors to
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uncover sensitive information that was removed, or
to reverse engineer model deletion decisions. As
such, forensic unlearning methods should be used
responsibly and primarily for strengthening model
defenses, not exploiting them.

E.2 Computation Cost
All models were trained using NVIDIA RTX
A6000 GPUs. Unlearning each model was per-
formed with 2 GPUs and required approximately
50 total GPU hours across all models. Similarly,
running each attack across all models used 2 GPUs
and took approximately 30 total GPU hours. Ad-
ditionally, we used AI assistants to help ensure
grammatical accuracy in the paper.

E.3 Licenses
The TOFU models used in this work are licensed
under the MIT License. The RWKU dataset is
licensed under the Creative Commons Attribution
4.0 International License, which permits reuse with
attribution. Our use of both artifacts complies with
their respective licenses.
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