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Abstract

Large Language Models (LLMs) have demon-
strated capabilities for natural language formu-
lations of molecular property prediction tasks,
but little is known about how performance de-
pends on the representation of input molecules
to the model; the status quo approach is to use
SMILES strings, although alternative chemical
notations convey molecular information differ-
ently, each with their own strengths and weak-
nesses. To learn more about molecular string
representation preferences in LLMs, we com-
pare the performance of four recent models—
GPT-4o, Gemini 1.5 Pro, Llama 3.1 405b,
and Mistral Large 2—on molecular property
prediction tasks from the MoleculeNet bench-
mark across five different molecular string rep-
resentations: SMILES, DeepSMILES, SELF-
IES, InChI, and IUPAC names. We find sta-
tistically significant zero- and few-shot prefer-
ences for InChI and IUPAC names, potentially
due to representation granularity, favorable to-
kenization, and prevalence in pretraining cor-
pora. This contradicts previous assumptions
that molecules should be presented to LLMs
as SMILES strings. When these preferences
are taken advantage of, few-shot performance
rivals or surpasses many previous conventional
approaches to property prediction, with the
advantage of explainable predictions through
chain-of-thought reasoning not held by task-
specific models.

1 Introduction

Molecular property prediction plays a crucial role
in medicinal chemistry, enabling the careful selec-
tion of drug candidates for experimental evalua-
tion in clinical studies. Traditional machine learn-
ing approaches do not involve natural language
and often suffer from overfitting due to the small

We make code for our experiments and analyses public at
https://github.com/Spongeorge/llm-mpp.

Notation Example

SMILES C(Cl)Cl
DeepSMILES CCl)Cl
SELFIES [C][Branch1][C][Cl][Cl]
InChI 1S/CH2Cl2/c2-1-3/h1H2
IUPAC Name dichloromethane

Table 1: An example molecule represented in the nota-
tion of five molecular string representations.

size of experimentally measured molecular prop-
erty datasets (Wu et al., 2018). However, recently,
general-purpose large language models (LLMs)
have become capable of reasoning over and un-
derstanding molecular structures (Guo et al., 2023;
Jablonka et al., 2024; Mirza et al., 2024) as string
formats such as SMILES (Weininger, 1988), which
has been suggested to yield more generalizable
predictions (Jablonka et al., 2024). As interest
in the molecular question-answering capabilities
of general-purpose LLMs grows (Lu et al., 2024;
Saikh et al., 2022; Chen et al., 2024; Zhou et al.,
2021; Wei et al., 2020; Mirza et al., 2024), one
question that remains unexplored is how perfor-
mance varies with the representation of molecular
structures, which has downstream implications for
the integration of LLMs in molecular applications
like drug design and chemical education.

In this work, we aim to address this question
with an evaluation of contemporary LLMs—GPT-
4o, Gemini 1.5 Pro, Llama 3.1 405b, and Mistral
Large 2—on five key molecular property prediction
tasks formulated in natural language: blood–brain
barrier penetration (BBBP; Martins et al., 2012),
beta-secretase binding (BACE; Subramanian et al.,
2016), clinical toxicity (ClinTox; Wu et al., 2018),
water solubility (ESOL; Delaney, 2004), and hy-
dration free energy (FreeSolv; Mobley and Guthrie,
2014). We compare the performance of these
models across five popular molecular string rep-
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resentations: SMILES, DeepSMILES, SELFIES,
InChI, and IUPAC names. Unlike previous work,
which focuses on engineering top benchmark per-
formance, our comparative study aims to uncover
and explain molecular representation preferences
in pretrained LLMs.

Our results (Section 4) show previously unob-
served zero- and few-shot preferences in LLMs for
the InChI and IUPAC name representations, which
is a useful insight for a broad range of downstream
molecular and chemical applications, including
question-answering and LLM-assisted drug design.
Follow-up experiments and analyses in Section 5
indicate that these preferences stem from a complex
combination of factors, potentially including the
prevalence of representations in pretraining data,
tokenization challenges, and representation granu-
larity, all of which contribute differently, depending
on the specifics of the molecular task at hand.

2 Related Work

2.1 Molecular String Representations

Since the 1950s, there has been significant inter-
est in representing molecular structures as strings
(Wiswesser, 1952) to enable indexing, cataloging,
and computational processing. More recently, these
representations have been used to train machine
learning models to predict molecular properties and
generate new drug-like molecules (e.g., Pinheiro
et al. 2020; Wu et al. 2018; Elton et al. 2019; Chen
et al. 2018). This section summarizes key string-
based molecular representations. Table 1 depicts
an example molecule represented in the notations
considered in this work.

SMILES (Simplified Molecular Input Line En-
try System; Weininger, 1988) is one of the ear-
liest and most widely adopted machine-readable
string-based representations for molecules. It en-
codes atoms as their chemical symbols and bonds,
using "−" (single, or more commonly, implicit),
"=" (double), "#" (triple), and "$" (quadruple).
Rings are represented by appending a number to the
first atom in the ring, while branches are enclosed
in parentheses (Wigh et al., 2022). SMILES is in-
herently non-canonical, allowing for multiple syn-
tactically valid representations—or “synonyms”—
of the same molecule, which has led to various
suggested improvements and canonicalization al-
gorithms (Hagan et al., 2016; Schneider et al., 2015;
Weininger et al., 1989).

SMILES Variants DeepSMILES (O’Boyle and
Dalke, 2018) and SELFIES (SELF-referencIng Em-
bedded Strings; Krenn et al., 2020) are syntaxes
derived from SMILES to address the large pro-
portion of SMILES strings corresponding to in-
valid molecules. DeepSMILES modifies ring and
branch representation to reduce the probability of
generative models producing invalid molecules. To
avoid unpaired parentheses, parenthesis pairs are
replaced with only closing parentheses, the num-
ber of which represents the size of the branch, and
paired ring closure symbols are likewise replaced
with single symbols. SELFIES is a truly canonical
representation in which every string corresponds
to a valid molecule. Guo et al. (2023) and Yu et al.
(2024) observe that zero- and few-shot performance
of LLMs suffers when using SELFIES instead of
SMILES, which they attribute to lack of SELFIES
examples in the models’ pretraining data.

InChI (International Chemical Identifier;
Heller et al. 2015) was proposed as a unique,
canonical representation for molecules, aiming for
compactness. However, as discussed in Section
5, the InChI strings for molecules in this study
are not substantially shorter in terms of characters
or tokenized inputs than their counterparts in
other representations. Standard InChI uses a
hierarchical structure with four “layers” separated
by “/” characters. Each layer represents different
information about the molecule such as chemical
formula, connectivity, charge, and isotopes; addi-
tional non-standard layers may also be included,
although in the present work we only consider
standard layers.

IUPAC Nomenclature IUPAC names employ
words instead of characters to represent func-
tional groups (e.g., “dichloromethane” → “di- +
chloro- + methane” (two chlorine, one carbon)).
The names are assigned following a set of rules
created and maintained by the International Union
of Pure and Applied Chemistry (Favre and Pow-
ell, 2013). Theoretically, every molecule should
be programmatically assignable an IUPAC name,
although the extent of the ruleset and its occasional
updates have been noted to cause inconsistency and
difficulty for chemists. Recent work explores neu-
ral translation from SMILES to IUPAC names to
address this (Rajan et al., 2021, 2024).
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2.2 Molecular Property Prediction

Traditional machine learning approaches for molec-
ular property prediction involve either extracting
features from molecular graphs and training non-
deep-learning models, such as random forests, de-
cision trees, or logistic regression models (e.g. ,Wu
et al. 2018), or using graph neural networks (e.g.,
Wieder et al. 2020; Wu et al. 2018) to learn directly
from the molecular graphs. These methods often
achieve high performance but suffer from limited
interpretability due to their black-box nature. Addi-
tionally, they are prone to “heavy overfitting” (Wu
et al., 2018), largely because of the small sizes
of molecular datasets. Recent studies have also
criticized dataset splitting strategies that result in
overestimated performance (Guo et al., 2024).

In recent years, transformer-based models have
been applied to chemical languages (discussed fur-
ther in the next subsection), such as SMILES, using
large-scale pretraining on chemical datasets, often
resulting in more general models with better per-
formance. Most recently, large general-purpose
language models without chemistry-specific pre-
training have been shown to be capable of reason-
ing over molecular structures in natural language to
predict properties (Guo et al., 2023), which has sub-
stantial benefits in terms of prediction interpretabil-
ity and generalization.

2.3 Large Language Models in Chemistry

LLMs have demonstrated remarkable performance
across a diverse range of tasks, extending beyond
traditional NLP to include specialized domain-
specific applications (Brown et al., 2020). Built on
the Transformer architecture (Vaswani et al., 2017),
these models excel at processing sequential data,
such as molecular representations encoded as text
strings. This architectural advantage, combined
with the extensive knowledge acquired during pre-
training, makes LLMs promising tools for chemical
reasoning tasks.

Numerous efforts have focused on training
domain-specific models for chemistry tasks. Chem-
BERTa (Chithrananda et al., 2020; Ahmad et al.,
2022) applies masked language modeling to
SMILES strings to generate molecular embeddings,
while MolT5 (Edwards et al., 2022) focuses on bidi-
rectional translation between molecular structures
and natural language descriptions. MolGPT (Bagal
et al., 2021) adopts a GPT-style architecture specif-
ically for molecular generation tasks. Jablonka

et al. (2024) fine-tune GPT-3 on a suite of property
prediction tasks, observing performance gains as
a result of training on multiple representations at
once. More comprehensive models like Galactica
(Taylor et al., 2022), BioT5 (Pei et al., 2023, 2024),
and nach0 (Livne et al., 2024) are designed to han-
dle a broader range of chemical tasks, all operating
on string-based molecular representations. How-
ever, these models typically must be fine-tuned
on specific tasks, are trained on relatively small,
domain-specific datasets, and have fewer parame-
ters than the largest general-purpose LLMs, which
may constrain their general knowledge and limit
their performance on diverse chemical tasks. Fur-
thermore, task-specific models lack instruction tun-
ing and are therefore unable to easily generalize to
tasks other than those they were trained for.

Given these limitations, there is a growing inter-
est in leveraging general-purpose LLMs for chem-
ical applications to benefit from their extensive
pretraining. Recent work with GPT-4 (Achiam
et al., 2023) has shown promising results in molec-
ular property prediction (Guo et al., 2023; Jablonka
et al., 2024), suggesting that large-scale pretrain-
ing on diverse text corpora may enable these mod-
els to develop useful chemical intuition. How-
ever, further research is needed to fully understand
their strengths, limitations, and optimal utilization
in molecular sciences, particularly regarding their
ability to process different molecular representa-
tions and generalize across the chemical space. In
this work, we focus on understanding how these
models process different molecular string repre-
sentations, which is crucial for optimizing their
application in molecular sciences and advancing
LLM-assisted chemical research.

3 Methodology

Models We evaluate recent LLMs, including
both open-weight models – Llama 3.1 (Dubey et al.,
2024) and Mistral Large 2 (Mistral AI, 2024) – and
proprietary models – Gemini 1.5 (Reid et al., 2024)
and GPT-4o (OpenAI et al., 2024). These LLMs
have demonstrated state-of-the-art performance on
textbook-style natural language chemistry bench-
marks (Hendrycks et al., 2020; Wang et al., 2024;
Shaier et al., 2025).

Datasets We examine 5 molecular property pre-
diction datasets from the MoleculeNet (Wu et al.,
2018) benchmark: BBBP (Martins et al., 2012),
for which we predict binary labels for blood–brain
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Input
Determine whether the following molecule is likely to penetrate the blood brain barrier. First
provide reasoning, and then a yes or no decision in the form "Decision: Yes/No". Molecule:
C(Cl)(Cl)Cl

Llama 3.1 Output
To determine whether the molecule C(Cl)(Cl)Cl is likely to penetrate the blood-brain barrier
(BBB), we need to consider its physical and chemical properties.

The molecule C(Cl)(Cl)Cl is a small, non-polar molecule with a molecular weight of approximately
119 g/mol. It is a halogenated hydrocarbon, which is generally lipophilic (fat-soluble). The
BBB is a selectively permeable barrier that favors the passage of small, lipophilic molecules.

Given the molecule’s small size, non-polarity, and lipophilicity, it is likely to penetrate the
BBB.

Decision: Yes

Figure 1: An example in which Llama 3.1 correctly predicts the blood–brain barrier penetration of chloroform,
which is represented in SMILES as C(Cl)(Cl)Cl.

barrier penetration from molecules; BACE (Subra-
manian et al., 2016), for which we predict binary
binding results for inhibition of human β-secretase
1 (a treatment approach for Alzheimer’s disease);
ClinTox (Wu et al., 2018), for which we predict
clinical toxicity; ESOL (Delaney, 2004), for which
we predict log water solubility; and FreeSolv (Mob-
ley and Guthrie, 2014), for which we predict hydra-
tion free energy. As the datasets only come with
SMILES representations of molecules, we trans-
late SMILES into the other representations using
the deepsmiles,1 selfies,2 and pubchempy3 li-
braries. For molecules where the PubChem API
is unable to produce an IUPAC name (details in
Appendix B), we generate an IUPAC name using
STOUT (Rajan et al., 2024). We use the standard
test sets from the literature for comparison with
previous approaches. Notably, molecular property
prediction datasets are generally smaller than typ-
ical benchmarks in NLP due to the expense and
difficulty in experimentally measuring molecular
properties. To address significance concerns related
to dataset size, we conduct significance testing, as
detailed subsequently.

Evaluation Following previous work (Wu et al.,
2018), we report the ROC-AUC score for classifi-
cation tasks and RMSE for regression tasks. The
models are instructed to format their predictions
as chain-of-thought reasoning (Wei et al., 2022),
followed by a true/false or numeric prediction that

1https://pypi.org/project/deepsmiles/
2https://pypi.org/project/selfies/
3https://pypi.org/project/PubChemPy/

Dataset Task Type Test Set Size

BBBP Binary Classification 194
BACE Binary Classification 152

ClinTox Binary Classification 143
ESOL Regression 113

FreeSolv Regression 65

Table 2: A summary of the molecular property predic-
tion datasets considered in this work.

can be extracted with string operations. An exam-
ple prompt and model output are shown in Figure
1 (all prompt templates available in Appendix A).

In-Context Learning In addition to zero-shot
chain-of-thought prompting, we evaluate models
on prompts with five in-context examples from the
same representation. We retrieve examples from
the training sets of each task based on the Tan-
imoto similarity (Tanimoto, 1958) to the target
molecules’ Morgan fingerprints (Morgan, 1965).
This approach exposes the model to molecules sim-
ilar to the target one, along with their corresponding
ground-truth labels, to enable the model to leverage
structural similarities to improve its predictions;
non-chemical work has consistently demonstrated
that tailoring examples to target queries improves
performance over static or random selections (e.g.,
Liu et al. 2022). Tanimoto similarity is widely used
for comparing molecular fingerprints (Bajusz et al.,
2015), making it a suitable choice for the similarity
selection.
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Model Task SMILES DeepSMILES SELFIES InChI IUPAC
BBBP ↑ 63.9 / 68.1 55.5 / 69.2 54.5 / 58.8 66.5 / 74.3 69.2 / 77.3
BACE ↑ 54.1 / 69.2 50.0 / 71.5 54.1 / 71.5 49.7 / 74.7 67.1 / 73.1

Gemini 1.5 Pro ClinTox ↑ 50.8 / 68.8 54.6 / 67.3 50.0 / 58.1 63.8 / 60.4 49.2 / 51.2
ESOL ↓ 1.47 / 1.0 2.38 / 1.21 1.71 / 1.06 1.41 / 0.92 1.07 / 0.9
FreeSolv ↓ 4.76 / 2.2 7.18 / 2.18 6.32 / 1.98 4.05 / 2.1 3.98 / 2.23
BBBP ↑ 63.8 / 79.8 54.5 / 73.0 55.4 / 70.5 71.1 / 77.5 68.9 / 84.2
BACE ↑ 58.4 / 73.9 54.4 / 76.9 48.9 / 77.4 54.8 / 67.8 52.3 / 77.0

GPT-4o ClinTox ↑ 50.4 / 55.4 43.8 / 68.8 47.3 / 65.8 54.2 / 55.8 49.6 / 53.8
ESOL ↓ 1.64 / 0.93 1.7 / 1.14 1.57 / 1.04 1.52 / 0.82 1.2 / 0.76
FreeSolv ↓ 3.82 / 1.58 5.22 / 1.58 12.24 / 1.57 3.9 / 1.66 4.06 / 1.45
BBBP ↑ 65.1 / 85.4 59.7 / 80.3 52.0 / 87.4 72.1 / 84.4 73.3 / 83.7
BACE ↑ 51.1 / 74.9 49.6 / 78.7 51.7 / 74.4 57.9 / 79.7 50.0 / 80.1

Llama 3.1 405b ClinTox ↑ 49.2 / 59.6 47.7 / 70.4 50.0 / 54.2 43.1 / 58.5 54.6 / 55.8
ESOL ↓ 1.34 / 0.99 1.61 / 0.96 1.77 / 1.18 1.15 / 0.85 0.93 / 0.88
FreeSolv ↓ 4.46 / 1.71 6.19 / 1.6 6.08 / 2.34 3.32 / 1.73 4.27 / 1.6
BBBP ↑ 60.5 / 74.1 55.0 / 70.7 54.5 / 70.8 69.4 / 79.2 66.4 / 82.2
BACE ↑ 52.8 / 61.8 48.0 / 74.2 48.8 / 71.5 59.9 / 74.0 54.1 / 76.4

Mistral Large 2 ClinTox ↑ 50.8 / 50.4 45.8 / 70.0 46.9 / 53.5 48.8 / 51.5 45.8 / 48.5
ESOL ↓ 1.7 / 1.56 1.96 / 1.67 1.8 / 1.78 1.31 / 1.12 2.42 / 1.25
FreeSolv ↓ 5.74 / 3.81 10.68 / 1.83 55.88 / 1.65 7.15 / 2.07 42.8 / 1.43
BBBP ↑ 72.9 - - - -
BACE ↑ 86.7 - - - -

Conventional Baseline4 ClinTox ↑ 82.7 - - - -
ESOL ↓ 0.99 - - - -
FreeSolv ↓ 1.74 - - - -
BBBP ↑ 96.1 - - - -
BACE ↑ 91.7 - - - -

MolTRES (Park et al., 2024a) ClinTox ↑ 96.7 - - - -
ESOL ↓ 0.27 - - - -
FreeSolv ↓ 0.23 - - - -
BBBP ↑ 92.9 - - - -
BACE ↑ 89.1 - - - -

Moleco (Park et al., 2024b) ClinTox ↑ 95.0 - - - -
ESOL ↓ 0.26 - - - -
FreeSolv ↓ 0.30 - - - -

Table 3: Results for all models, tasks, and representations, given as [0-shot] / [5-shot]. Classification tasks (BBBP,
BACE, ClinTox) are scored with ROC-AUC (higher is better); regression tasks (ESOL, FreeSolv) are scored with
RMSE (lower is better). The best representation for each model/task is underlined for the 0-shot setting and bolded
for the 5-shot setting. The best-scoring conventional approaches from Wu et al. (2018) and recent fine-tuned
SMILES models are provided for context, although we stress that the objective of this study is not to directly
outperform these.

Significance Testing Due to the limited test set
sizes of existing molecular property prediction
datasets—and to provide actionable results for
future work—we conduct almost stochastic or-
der (ASO) significance testing (Dror et al., 2019;
Del Barrio et al., 2018) as implemented by Ul-
mer et al. (2022). ASO testing compares empirical
score cumulative distribution functions obtained
from deep learning approaches at a given confi-
dence level (95% in our case) and formally tests
the hypothesis that one is stochastically dominant
over another (by some proportion 1− τ ). For each
comparison, ASO returns an ϵmin value represent-
ing an upper bound to the proportion of violation
of stochastic order; if, for the comparison of al-
gorithms A and B, ϵmin is less than some value

τ ≤ 0.5, we can reject the null hypothesis and ac-
cept the hypothesis that algorithm A is better than
algorithm B. Following the guidance of Ulmer
et al. (2022), we set τ = 0.2 for a lower Type I
error rate. As we perform comparisons between
SMILES and four other molecular string represen-
tations, the results are Bonferroni corrected (Bon-
ferroni, 1936) to address the multiple comparisons
problem.

Specifically, we amalgamate example-level
scores (accuracy for classification, absolute error
for regression) across tasks and models and com-
pare the stochastic order of the approach using
SMILES to each of the other representation ap-
proaches to attempt to reject the null hypothesis
that, across all models, Mrep. does not stochasti-
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cally dominate MSMILES,

H0 : εw2(SMrep. , SMSMILES) ≥ τ = 0.2,

and accept the alternate hypothesis that Mrep. does
stochastically dominate MSMILES,

Ha : εw2(SMrep. , SMSMILES) < τ = 0.2.

4 Results

Table 3 shows the task-wise results by model and
molecular string representation. The scores for clas-
sification tasks (BBBP, BACE, and ClinTox) are
reported as ROC-AUC (higher is better), while the
scores for regression tasks (ESOL and FreeSolv)
are reported as RMSE (lower is better).

In the zero-shot setting, we observe that most
models and tasks achieve higher scores with the
InChI or IUPAC name representations, although
there are cases where SMILES remains the pre-
ferred format. Interestingly, while no model
achieves top performance on any task with either
the DeepSMILES or SELFIES representations in
the zero-shot setting, their performance in the five-
shot setting often matches or surpasses the baseline
SMILES representation.

Significance The results of the ASO testing on
the zero-shot scores yield ϵmin = 1.0 for both
the DeepSMILES and SELFIES representation ap-
proaches, so we fail to reject the null hypothe-
ses that they do not stochastically dominate the
SMILES approach. The InChI and IUPAC name
tests yield ϵmin = 0.17, 0.06 respectively, so at the
τ = 0.2 level, we reject the null hypotheses and
accept the alternative hypotheses that InChI and IU-
PAC name representations are superior in general
to SMILES for pretrained general-purpose LLMs
performing zero-shot molecular property predic-
tion.

Conducting the same test on the few-shot scores
yields ϵmin = 0.91 for DeepSMILES, 1.0 for
SELFIES, 0.36 for InChI, and 0.16 for IUPAC
names, meaning that, in the few-shot setting, IU-
PAC names are still strongly preferred to SMILES,
while InChI are somewhat preferred although not
significantly at the τ = 0.2 level.

5 Analysis

The results in Section 4 demonstrate that the evalu-
ated models are not only capable of reasoning over
InChI and IUPAC names, but in many cases prefer
them to the status quo SMILES.

We confirm previous findings that SMILES-
variants such as DeepSMILES and SELFIES are
not particularly useful to LLMs in zero-shot set-
tings (Guo et al., 2023), likely due to their scarcity
within the training data. However, when given in-
context examples, performance increases greatly
to around the same level of the baseline SMILES
approach. We additionally note that the reported
improvements of the DeepSMILES and SELFIES
notations over SMILES are generally aimed at re-
ducing the likelihood of generative models produc-
ing semantically invalid molecules, but not neces-
sarily to be more useful as textual inputs.

Representation Prevalence in Pretraining Data
One potential factor of the observed IUPAC name
preference is that, in biomedical corpora, IUPAC-
like names are used more frequently than SMILES
or InChI (Klinger et al., 2008). In Appendix F, we
analyze the open-source Dolma pretraining corpus
(Soldaini et al., 2024), showing that IUPAC men-
tions are indeed the most common in LLM pretrain-
ing data (43%); although they are closely followed
by SMILES at 36%. We additionally evaluate the
largest instruction-tuned OLMo 2 model (OLMo
et al., 2024), which was trained on Dolma, on the
studied molecular property prediction tasks and
representations; we observe similar preferences,
although OLMo 2 struggles to compete with the
larger models studied.

In-Context Learning Although zero-shot perfor-
mance using the two SMILES variants is poor as
in previous work (Guo et al., 2023), our results
show that, when given in-context examples of pre-
dictions based on the SMILES variants, LLMs can
use these representations similarly well or even
better in some cases (e.g., in Table 3, the highest
score on ClinTox is achieved by Llama 3.1 with the
DeepSMILES representation).

Representation Token Efficiency Previous
work in non-chemical NLP has shown that the
task difficulty for LLMs tends to increase with
the length of the inputs (Zhang et al. 2024; Liu
et al. 2024a; inter alia), so it seems plausible
that a more token-efficient representation would
benefit molecular property prediction. The design
documents of InChI and IUPAC nomenclature
state relative conciseness as design goals (Favre
and Powell, 2013; Heller et al., 2015), which could
partially explain the observed preferences.

To attempt to verify this, we count the tokens of
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Figure 2: Token count distributions of the molecular string representations; in terms of characters (2a, left), Llama
3.1 tokens (2b, center), and GPT-4o tokens (2c, right). We note that the relative token-efficiency does not vary
substantially across tokenization schemes.
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Figure 3: Atom counting accuracy by representation and model. Across models, IUPAC names are easier to extract
atomic counts from, while InChI identifiers explicitly provide atom counts and yield near perfect accuracy. Error
bars represent ±1 SE under binomial distribution assumptions.

all molecules in the studied test sets using character
counts, the GPT-4o tokenizer (via the tiktoken5

library), and the Llama 3.1 tokenizer.
Figure 2 shows that, in the presently stud-

ied datasets, InChI and IUPAC names are not
more token- or character-efficient in comparison to
SMILES strings.

Representation Atom Count Explicitness Al-
though we find no evidence that the number of to-
kens contributes to the observed preferences, recent
work shows that the LLMs’ tokenization schemes
cause models to struggle to capture implicit char-
acter counts (Zhang et al., 2024; Xu and Ma, 2025;
Schwartz et al., 2024; Singh and Strouse, 2024).
This poses a challenge for representations like
SMILES and its variants, where individual atoms
are encoded as 1-2 character symbols, and the exact
counts of atoms are crucial to reason about molecu-

5https://github.com/openai/tiktoken

lar structures and properties (Wojtuch et al., 2023).
In contrast, the InChI and IUPAC name representa-
tions mitigate this reliance on counting by explicitly
providing atom counts. For example, the 8 carbon
atoms in the octane molecule are implicitly repre-
sented by the SMILES “CCCCCCCC”, but explicitly
in “octane” (“oct-” = 8; IUPAC nomenclature)
and “C8H18” (the chemical formula in InChI).

To quantify the impact of representation on atom
counting capabilities, we conduct an additional ex-
periment using the same datasets, representations,
and models, in which we ask each model to count
the occurrences of each atom (exact prompt in Ap-
pendix A.3). We then compare the predicted counts
with ground truths obtained using RDKit;6 if all
counts are correct, we assign an “atom counting
accuracy” score of 1, else 0.

Figure 3 highlights that, across all models, the

6https://github.com/rdkit/rdkit
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Dataset Pearson’s r P-value

BBBP 0.05 0.46
BACE 0.11 0.19
ClinTox -0.12 0.16
ESOL -0.04 0.70
FreeSolv -0.49 4e-05

Table 4: Pearson’s correlation coefficients and P-values
between the studied molecular property tasks and the
“countability” of atoms in the corresponding molecules.
Results that are statistically significant at the conven-
tional α = 0.05 level are underlined and bolded.

two superior representations (InChI and IUPAC
names) are easier than SMILES for the studied
LLMs to count atoms from. Models score nearly
perfectly on molecules represented as InChI, pre-
sumably because the chemical formula directly pro-
vides exact atom counts; IUPAC names are also
substantially easier to count from than SMILES
variants, but at around 40% accuracy there is still
much room for improvement.

For example, GPT-4o incorrectly counts
the carbon atoms in the SMILES string
“NNc1nncc2ccccc12”, which is tokenized as
[‘NN’, ‘c’, ‘1’, ‘nn’, ‘cc’, ‘2’, ‘cc’, ‘ccc’, ‘12’],
but it correctly predicts the atomic counts from the
IUPAC name, “phthalazin-1-ylhydrazine”. In
contrast, humans can easily count the number of
‘c’ characters in the SMILES string with minimal
chemical knowledge, whereas extracting the
same count from the IUPAC name requires more
advanced expertise.

In Table 4 we present task-wise Pearson’s corre-
lation coefficients and associated p-values for atom
counting accuracy and task performance (accuracy
in classification tasks, absolute error in regression
tasks), aggregated across models. We observe that
most of these are not statistically significant at the
α = 0.05 level. While the coefficients are gen-
erally in directions that support the idea that the
countability of atoms in a molecule contributes to
property prediction performance, the mixed signifi-
cance indicates that the influence of atom counting
capabilities varies from task to task; as a result, it
is unlikely that “atom countability” is the sole con-
tributing factor to molecular representation prefer-
ences, although it may act as a proxy for a model’s
ability to extract detailed structural information.

Does Token Manipulation Help SMILES Use?
Previous work proposes tokenization manipulation
strategies to aid LLMs in arithmetic and word-

Task SMILES Spaces Commas Explicit

BBBP ↑ 79.8 75.7 74.8 76.5
BACE ↑ 73.9 70.3 71.9 75.7
ClinTox ↑ 55.4 52.7 61.2 56.5
ESOL ↓ 0.93 0.96 1.04 1.00
FreeSolv ↓ 1.58 1.72 1.61 1.48

Table 5: GPT-4o’s property prediction performance un-
der token manipulation strategies. Top scores for each
task are underlined and bolded.

based counting problems on which they struggle
due to unfavorable tokenization (Zhang et al., 2024;
Xu and Ma, 2025; Schwartz et al., 2024; Singh and
Strouse, 2024). These generally revolve around
breaking up inputs by inserting character-level per-
turbations. In order to gain insight as to whether
these can apply to traditionally SMILES-based
tasks like property prediction, we conduct a follow-
up experiment using GPT-4o and three such strate-
gies. Two are previously proposed strategies which
involve separating tokens with space characters or
commas; we note that the insertion of spaces and
commas alters or invalidates the SMILES represen-
tation, and, therefore, propose a new tokenization
manipulation approach specific to SMILES strings
that forces explicit representation of bonds that
are by default implicit, preserving the validity and
semantics of the SMILES molecule (detailed in
Appendix D) while separating atomic symbols.

In Table 5 we report the results. We find that
tokenization manipulation approaches generally
have minimal impact on property prediction perfor-
mance and are unable to draw strong conclusions
about the impact of tokenization; however, this
does not necessarily rule out tokenization issues as
sources of SMILES utilization difficulties, but in-
stead shows that existing tokenization manipulation
techniques are insufficient to quantify or address
these alone.

6 Conclusion

In this study, we evaluated the molecular string
representation preferences of four state-of-the-art
LLMs on natural language formulations of five
molecular property prediction tasks, which rep-
resent a critical phase in the drug discovery pro-
cess. Our findings highlight the importance of
careful selection of molecular representation when
working with LLMs. Notably, we observe statis-
tically significant preferences for InChI and IU-
PAC names over the traditional SMILES-based ap-
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proach, which contradicts previous assumptions
that molecules should be presented to LLMs as
SMILES strings for property prediction tasks.
Follow-up experiments suggest that these prefer-
ences stem from a complex combination of mul-
tiple causes, potentially including atom-counting
capabilities, tokenization issues, information gran-
ularity, and pretraining corpora prevalence.

These results have important implications for the
use of general-purpose LLMs in chemical tasks:
by understanding LLMs’ preferences for different
molecular representations, we can better harness
their potential in domains like drug design and
discovery. Furthermore, the growing interest in
chemical question-answering underscores the val-
ues of parametric knowledge and reasoning capa-
bilities in general-purpose LLMs, which may offer
a broader, more general, more explainable alter-
native to smaller, specialized models for tackling
complex chemistry-related questions.

Limitations

Task Selection Due to large model sizes, API
rate limits, and limited availability of molecular
property prediction tasks, we limited this study to
5 tasks. In order to ensure that our findings gen-
eralize, the tasks were carefully selected to cover
major categories of property prediction, including
physical chemistry (ESOL, FreeSolv), biophysics
(BACE), and physiology (ClinTox, BBBP). We ac-
knowledge that some larger datasets for individual
property prediction tasks exist (e.g., QM9 (Rud-
digkeit et al., 2012)); but, the goal of our work
is to provide a general assessment of molecular
representation preferences, and including the test
set of a single large dataset would invalidate the
generalization of our claims. We believe that, in
combination with the diversity of studied tasks, our
significance testing procedure obviates the need for
larger datasets and allows for a larger selection of
models and representations.

We acknowledge that our experiments are spe-
cific to molecular property prediction tasks, and the
findings of this study may not generalize to other
tasks, such as molecule captioning or generation;
these questions may be of interest to future work.

Model Selection In this work, we evaluate
four state-of-the-art LLMs, including open-source
(Llama 3.1 405b, Mistral Large 2) and closed-
source (GPT-4o, Gemini 1.5) models. We do not in-
clude results for smaller models from the same fam-

ilies as we have no reason to believe that molecular
representation preferences will vary by model size,
and previous work finds that these smaller models
are practically incapable of competitive molecular
property prediction (Guo et al., 2023). We also do
not evaluate science- or chemistry-specific models
such as Galactica (Taylor et al., 2022) or nach0
(Livne et al., 2024), as we are interested in zero-
and few-shot preferences, and these models have
also been shown to perform worse at property pre-
diction than general-purpose LLMs (Guo et al.,
2023).

Molecular Representation Selection We study
what we believe to be the five most popular and
widely used string-based molecular representations
that convey structure, but we concede that other
representations (e.g., Wiswesser Line Notation
(Wiswesser, 1952), or the recently proposed Group-
based Molecular Representation (Liu et al., 2024b))
exist. We do not report scores for chemical com-
mon names as these 1) do not necessarily convey
chemical structure and 2) do not exist for novel
molecules and, therefore, are not of interest for
drug design which relies on the prediction of prop-
erties of previously unseen molecules. We believe
that the examination of tabular (e.g., MDL) and
visual (e.g., images of 2D and 3D structure) rep-
resentations could be interesting topics for future
work.
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A Prompts

A.1 Property Prediction Prompts

BBBP Prompt

Determine whether the following molecule is
likely to penetrate the blood brain barrier.
First provide reasoning, and then a yes or
no decision in the form "Decision: Yes/No".
Molecule: {molecule_string}.

BACE Prompt

Determine whether the following molecule is
likely to inhibit the Human beta-secretase
1 enzyme. First provide reasoning, and then
a yes or no decision in the form "Decision:
Yes/No". Molecule: {molecule_string}

ClinTox Prompt

Determine whether the following molecule is
likely to be toxic to humans. First provide
reasoning, and then a yes or no decision
in the form "Decision: Yes/No". Molecule:
{molecule_string}

ESOL Prompt

Predict the log water solubility in mols
per litre. First provide reasoning, and
then a numeric value in the form "Decision:
X". Molecule: {molecule_string}

FreeSolv Prompt

Predict the hydration free energy in
kcal/mol of the following molecule. First
provide reasoning, and then a numeric value
in the form "Decision: X". Molecule:
{molecule_string}"

A.2 In-Context Learning Prompt

The in-context learning prompts used in this work
are created by prepending the first instruction to
several exemplars. In this section we give the ESOL
ICL prompt as an example.

In-Context Learning Prompt

Predict the log water solubility in mols
per litre.
Molecule: {example_molecule_1}
Decision: {label_1}
Molecule: {example_molecule_2}
Decision: {label_2}
Molecule: {example_molecule_3}
Decision: {label_3}
Molecule: {example_molecule_4}
Decision: {label_4}
Molecule: {example_molecule_5}
Decision: {label_5}
Predict the log water solubility in mols
per litre. First provide reasoning, and
then a numeric value in the form "Decision:
X". Molecule: {molecule_string}

A.3 Atom Counting Prompt

Atom Counting Prompt

Count the atoms in the following molecule.
Your response should be only a JSON
dictionary. They keys of the dictionary
should be the atomic symbols, and the values
should be how many are in the molecule.
Molecule: {molecule_string}
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B Non-existant IUPAC names in
PubChem

Although procedural methods for assigning IU-
PAC names to molecules exist (e.g., OpenEye Soft-
ware’s LexiChem), PubChem’s API works off of a
database and so it is possible that certain molecules
are not associated with IUPAC names. In this sec-
tion, we present the proportions of the presently
studied datasets for which our methodology did
not initially return IUPAC names and which were
replaced with IUPAC names generated by STOUT
(Rajan et al., 2021, 2024).

Dataset Replaced IUPAC

BBBP 3.61%
BACE 50.00%
ClinTox 11.89%
ESOL 0.88%
FreeSolv 0.00%

Table 6: Proportion of IUPAC values generated with
STOUT in each dataset.

C DeepSMILES-ClinTox Performance
Anomalies

In the main results of the paper (Table 3) we ob-
serve that 3/4 of the best-scoring combinations
for the ClinTox task are with the DeepSMILES
representation, which is unusual as on other tasks
DeepSMILES is consistently one of the poorer rep-
resentations. The ClinTox dataset is also the only
one with an unexpectedly negative correlation co-
efficient with atom counting accuracy in Table 4.

On closer inspection, we determined qualita-
tively that this is due to two things:

1. The ClinTox test set is heavily imbalanced
in favor of negative examples (non-toxic
molecules; 130:13).

2. The models frequently respond to
DeepSMILES molecules with negative
labels because they perceive them as mal-
formed or corrupted SMILES strings (shown
below).

Gemini Response to DeepSMILES

The provided molecular formula
“ccnccn6)Cl))N)))N))C=O)NC=[NH2+])N”
is not a valid chemical representation. It
appears to be a corrupted or incorrectly
typed SMILES string or some other format.
It’s impossible to determine the structure
of the molecule with this input, and
therefore impossible to assess its
toxicity. Proper chemical notation is
crucial for identifying a molecule and
understanding its properties.

Decision: No (Cannot be determined)

This suggests that the observed high perfor-
mance on the ClinTox task with the DeepSMILES
representation is likely to be deceptive.

D Token Manipulation via Explicit Bonds

We create explicit bond SMILES by setting the
RDKit parameter ‘allBondsExplicit’ to True.
This causes single and aromatic bonds, which are
by default implicit, to be represented explicitly.
For example, the SMILES “c1cc[nH]c1” becomes
“c1:c:c:[nH]:c:1” (“:” representing aromatic
bonds).

E Ensemble Predictions

“Self-consistency prompting” (Wang et al., 2023)
has been shown to improve performance on com-
plex reasoning tasks by sampling multiple lines of
reasoning and taking a majority of final predictions.
To see if molecular property prediction perfor-
mance can be improved by ensembling predictions
across representations, we adapt self-consistency
prompting to our setup by taking a majority vote
in classification tasks, and average the predic-
tions in regression tasks. We include two settings,
one across all five representations, and a reduced
setting in which we only count SMILES, InChI,
and IUPAC names to avoid over-representing the
“SMILES-like” representations. Table 7 shows that
by ensembling predictions across representations,
performance is often marginally improved.

F Pretraining Corpus Prevalence

Here we examine the relative prevalence of the stud-
ied molecular representations in the Dolma corpus
(Soldaini et al., 2024), which was used to pretrain
the OLMo 2 family of models (OLMo et al., 2024).
Unlike the studied “open-weight” Llama and Mis-
tral, OLMo 2’s training process including data is
fully open-source, allowing for closer examination.
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Model Task SMILES InChI IUPAC Majority
Voting (5)

Majority
Voting (3)

BBBP ↑ 68.1 74.3 77.3 69.1 76.8
BACE ↑ 69.2 74.7 73.1 74.6 74.0

Gemini 1.5 Pro ClinTox ↑ 68.8 60.4 51.2 62.7 58.1
ESOL ↓ 1.0 0.92 0.9 0.82 0.84
FreeSolv ↓ 2.2 2.1 2.23 1.82 1.94
BBBP ↑ 80.8 77.7 81.3 76.8 79.9
BACE ↑ 75.9 73.6 78.8 78.9 76.9

GPT-4o ClinTox ↑ 58.1 54.6 56.9 66.9 57.7
ESOL ↓ 0.98 0.79 0.75 0.82 0.77
FreeSolv ↓ 1.62 1.65 1.54 1.52 1.55
BBBP ↑ 85.4 84.4 83.3 86.1 85.0
BACE ↑ 74.9 79.7 68.7 79.7 78.1

Llama 3.1 405b ClinTox ↑ 59.6 58.5 60.8 59.6 59.6
ESOL ↓ 1.41 1.02 1.05 1.12 1.01
FreeSolv ↓ 4.67 2.86 4.08 3.18 3.23
BBBP ↑ 74.1 79.2 82.2 77.0 80.8
BACE ↑ 61.8 74.0 76.4 78.3 76.0

Mistral Large 2 ClinTox ↑ 50.4 51.5 48.5 59.2 49.2
ESOL ↓ 1.56 1.12 1.25 1.22 1.04
FreeSolv ↓ 3.81 2.07 1.43 1.68 1.94

Table 7: Score comparison of representation ensemble methods to single representation methods.

We operationalize representation prevalence by
the number of mentions of the representation’s
name, as representation-granular chemical named-
entity recognition models don’t currently exist, and
running such a model over the trillions of tokens
in Dolma would likely be computationally infeasi-
ble; our simple substring matching approach ran in
approximately 150 hours.

Table 8 presents the obtained representation men-
tion counts and relative prevalences.

SMILES DeepSMILES SELFIES InChI IUPAC

# 251,226 515 12,274 116,160 287,949
% 37.60% 0.08% 1.84% 17.39% 43.10%

Table 8: Counts and relative prevalences of molecular
string representation mentions in Dolma v1.7.

These results show that IUPAC names are indeed
more common than SMILES strings in language
model pretraining corpora, which may contribute to
their observed preferences; however, InChIs appear
to be less frequent than SMILES even though they
are also preferred. Based on this, we conclude that
pretraining corpus prevalence can not be the sole
contributing factor to the observed preferences.

We additionally evaluate the largest
instruction-tuned OLMo 2 model
(OLMo-2-0325-32B-Instruct) over the studied
property prediction tasks, as described in Section
3. These results are presented in Table 9.

We note that, although OLMo 2 is often worse at
molecular property prediction than random guess-
ing, the relative preferences of representations ap-

Task SMILES DeepSMILES SELFIES InChI IUPAC

BBBP ↑ 52.1 48.3 51.6 53.0 52.8
BACE ↑ 53.7 54.8 56.9 53.4 44.3
ClinTox ↑ 45.4 46.2 48.8 45.0 54.6
ESOL ↓ 4.47 13.66 4.09 4.76 3.76
FreeSolv ↓ 18.37 10.29 21.64 16.97 29.43

Table 9: OLMo 2 molecular property prediction scores.

pear to be similar.
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