

LATTE: Learning to Think with Vision Specialists

Zixian Ma^{1,2*}, Jianguo Zhang², Zhiwei Liu², Jieyu Zhang¹, Juntao Tan², Manli Shu², Juan Carlos Niebles², Shelby Heinecke², Huan Wang², Caiming Xiong², Ranjay Krishna¹, Silvio Savarese²

¹University of Washington, ²Salesforce Research

Website: <https://latte-web.github.io>

Code: <https://github.com/SalesforceAIResearch/LATTE>

Abstract

While open-source vision-language models perform well on simple question-answering, they still struggle with complex questions that require both perceptual and reasoning capabilities. We propose LATTE, a family of vision-language models that have LeArned to Think wiTh vision spEcialists. By offloading perception to state-of-the-art vision models, our approach enables vision-language models to focus solely on reasoning over high-quality perceptual information. To train LATTE, we synthesize and filter a large dataset of 273K multimodal reasoning traces over perceptual outputs of vision specialists. LATTE trained on this data achieves significant 4-5% gains over baselines across 6 benchmarks covering both perception and reasoning abilities. Ablation studies reveal that the effectiveness of multi-modal reasoning traces depends on the data sources, formats, and quality of thoughts.

1 Introduction

The landscape of real-world vision-language tasks is vast, spanning from basic visual question answering (Antol et al., 2015), fine-grained object recognition to complex multi-step geometric reasoning (Hu et al., 2024a). These tasks demand both perception and reasoning. For instance, a user might photograph a gas price panel and ask how much fuel they can afford within a given budget (Figure 1). Solving this requires a model with strong perception—localizing prices via OCR—and multi-step reasoning to compute the answer. While proprietary models like GPT-4o excel due to extensive data and model size scaling, smaller open-source models still struggle (Ma et al., 2024).

To narrow the gap between large proprietary models and smaller open-source counterparts within a reasonable budget, researchers have explored distilling perception and reasoning from

larger vision-language models (Shao et al., 2024; Xu et al., 2025) or specialized vision models (Hu et al., 2024b). Despite these efforts, open-source models continue to lag behind.

We argue that the primary reason for this lag is the perception limitations of small vision-language models. While open-source language models have largely caught up with their proprietary counterparts (Lambert et al., 2024; Bi et al., 2024), vision-language models have yet to master heterogeneous vision capabilities. The computer vision community has historically tackled these capabilities separately—e.g., DepthAnything (Yang et al., 2024) for depth estimation and GroundingDINO (Liu et al., 2023d) for object recognition—while unified models still lag behind (Lu et al., 2024a). Similarly, the human brain dedicates distinct regions to categorical recognition (ventral stream) and spatial reasoning (dorsal stream) (Goodale and Milner, 1992), with the reasoning and language-processing frontal and temporal lobes occupying a different volume (Keller et al., 2012). By contrast, vision-language models remain heavily skewed toward language, treating visual encoders as an afterthought (Deitke et al., 2024).

We depart from the *learning to perceive and reason* paradigm to propose a new approach: *learning to reason with vision specialists* (Figure 2). Rather than expecting a small model to master both perception and reasoning, we leverage decades of advancements in computer vision by relying on specialized vision models to provide perceptual information. This allows the vision-language model to focus exclusively on acquiring perceptual information from vision specialists and reasoning over them—enabling it to ‘*see further by standing on the shoulders of giants*.’ Such a paradigm reduces the burden on models to extract low-level perceptual signals, allowing them to concentrate on higher-level reasoning.

To implement this paradigm, we curate high-

*Work done while interning at Salesforce Research

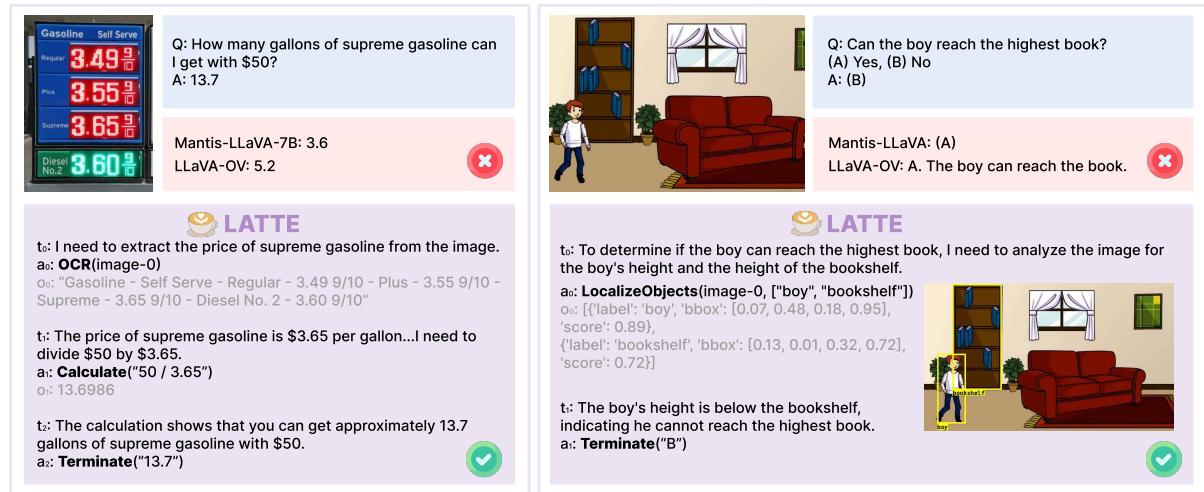


Figure 1: **Example outputs of LATTE vs. SoTA open-source multi-modal language models.** Our LATTE model is able to answer challenging visual questions by reasoning over perceptual information output by vision specialists. It does so by generating a reasoning trace over vision specialists’ outputs and producing a final answer.

quality training data in the form of multi-step reasoning traces that integrate perceptual information from vision specialists. We formulate the multi-step reasoning traces as LATTE-trace, where each step consists of: (1) a *thought* for verbalized reasoning; (2) an *action* to retrieve perceptual information from a specific vision specialist; and (3) an *observation* of the returned data. Since obtaining these traces at scale with human annotators is costly, we develop two data engines for synthetic data generation. First, we leverage GPT-4o’s strong multimodal reasoning and state-of-the-art vision specialists’ precise perception to generate large-scale synthetic reasoning traces across diverse image sources. Second, we generate reasoning traces using Python programs and structured reasoning templates, comparing them against GPT-generated traces to evaluate reasoning quality. In total, we produce over 1M reasoning traces across 31 datasets with GPT-4o and handcrafted programs. We then further apply filtering and mixing techniques and perform extensive experiments with different data ablations.

With the filtered 293K multi-modal reasoning traces, we finetune small 7-8B vision-language models to reason with vision specialists and evaluate our models on 6 benchmarks covering both perception and reasoning skills. We highlight four major takeaways from our experiments: First, learning to reason with vision specialists enables our model to outperform vanilla instruction-tuned baseline by significant margins on both perception and reasoning benchmarks, with an overall average gain of

6.4%. By contrast, the other distillation methods lead to smaller gains or even degradation in the perception performance. Second, our method consistently outperforms the vanilla instruction-tuned baseline by 4 – 5% on average across all benchmarks regardless of model backbones, with staggering performance gains of 10 – 20% on MMVet. Third, through data ablations, we confirm that the quality of LATTE-trace matters more than quantity: our best data recipe consists of only 293K LATTE-trace which GPT-4o generated and answered correctly, and it leads to larger performance gains than other data recipes of larger scales. Finally, programmatically-generated LATTE-trace can hurt model performance as a result of the worse reasoning quality, suggesting that again that high-quality reasoning is crucial to the model’s performance.

To summarize, we highlight three contributions: (1) We introduce a novel and the largest dataset of 293K multi-modal reasoning traces that cover 31 diverse data sources and include both single- and multi-image questions as well as image-text interleaved traces; (2) We demonstrate the effectiveness of our multi-modal reasoning data and showcase sizable performance gains over baselines on 6 benchmarks through extensive experiments; (3) Finally, our ablation studies reveal new insights into what matters in multi-modal reasoning data. We will release all artifacts publicly.

2 Related work

We contextualize our work on multi-modal language models and multi-modal tool use.

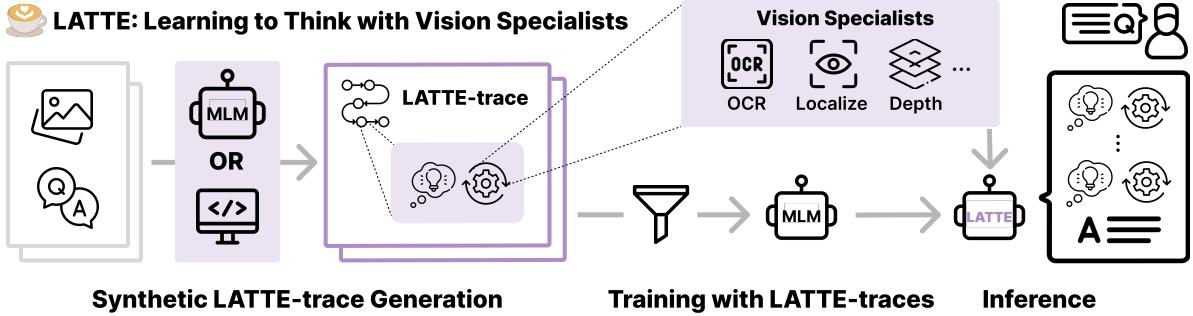


Figure 2: **Overview.** We propose LATTE: learning vision-language models to think with vision specialists via synthetic multi-modal reasoning traces.

Multi-modal language models. Recently, there have been many advances on open-source multi-modal models (Awadalla et al., 2023; Chen et al., 2023; Liu et al., 2023b,a, 2024; Dai et al., 2024; Li et al., 2022, 2023b; Deitke et al., 2024). These efforts include training multi-modal models to take in multiple images, engage in multi-turn conversations, and even understand videos (Liu et al., 2024; Jiang et al., 2024; Li et al., 2024). For example, LLaVA-Next achieves strong multi-image understanding through large-scale interleaved visual instruction tuning with M4-Instruct (Liu et al., 2024). Similarly, Mantis introduces a new large-scale multi-image instruction tuning dataset Mantis-Instruct for multi-image training (Jiang et al., 2024). These efforts pave the foundation for our work on learning vision-language models with image-text interleaved reasoning traces.

Multi-modal tool-use. Recently, there is growing interest in training multi-modal language models to be better at tool use (Liu et al., 2023c; Qi et al., 2024; Shao et al., 2024). LLaVa-Plus first shows the possibility of training a multi-modal model to use vision specialists (Liu et al., 2023c). Visual Program Distillation distills tool-use and reasoning abilities into a multi-modal model with chain-of-thought (CoT) data obtained from programs (Hu et al., 2024b). Similarly, Visual CoT introduces a new synthetic CoT dataset for training multi-modal models for enhanced reasoning (Shao et al., 2024). More recently, LLaVa-CoT integrates both perception and reasoning from GPT-4o (Xu et al., 2025). Another closely related work CogCoM identifies 6 useful manipulations and trains multi-modal models with synthetic chain-of-manipulation (CoM) data (Qi et al., 2024). Nonetheless, the manipulations are limited, and the authors only experiment with 70K CoM data.

Although these works demonstrate effectiveness, the proposed reasoning datasets are limited in scale and diversity, and none contains multi-image questions or includes images in the reasoning chains (Appendix A Table 9). To complement existing works, we introduce a new large-scale dataset of 293K multi-modal interleaved reasoning traces that cover 31 data sources and include both single-image and multi-image questions.

3 LATTE: Learning to Think with Vision Specialists

Our goal is to train vision-language models to reason about complex multi-modal tasks with the help of vision specialists. To train such models, we need reasoning traces that involve (1) invoking vision specialists and (2) reasoning over their outputs. We refer to such data as LATTE-trace. We define a LATTE-trace \mathcal{T} as a sequence of steps S_i , where each step consists of thought t_i , action a_i and observation o_i :

$$\mathcal{T} = (S_0, S_1, \dots, S_n) = (S_i)_{i=0}^n \quad (1)$$

$$S_i = (t_i, a_i, o_i), t_i \in L, a_i \in A \quad (2)$$

where L represents language space, and A is the action space consisting of vision specialists. The model only generates t_i and a_i , which the training loss is applied on, whereas o_i is obtained from the vision specialists.

Action space. The action space A of our model consists of vision tools that are either specialized vision models or image processing tools. Concretely, these include OCR (JadedAI, 2025), GETOBJECTS (Zhang et al., 2023), LOCALIZEOBJECTS (Liu et al., 2023d), ESTIMATEOBJECTDEPTH, ESTIMATEREGIONDEPTH (Yang et al., 2024), DETECTFACES (Li et al., 2019), CROP, ZOOMIN,

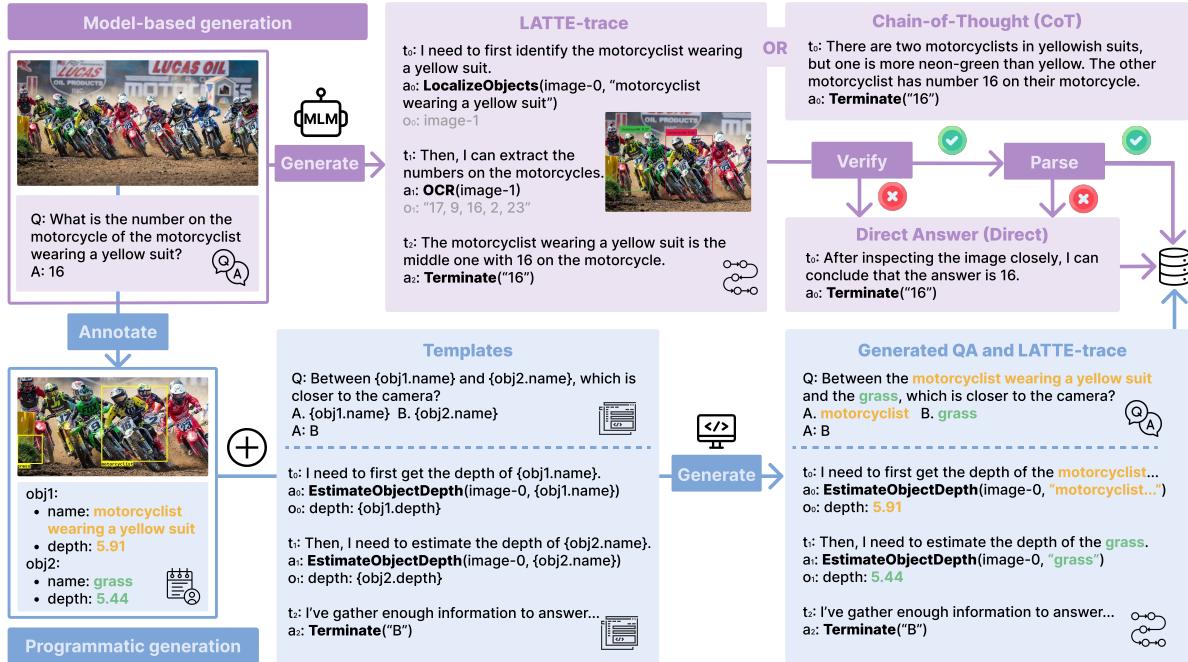


Figure 3: **Data generation.** We illustrate our model-based data generation (top) and programmatic generation (bottom) pipelines.

GETIMAGETOTEXTSIMILARITY, GETIMAGE-TOIMAGESIMILARITY, GETTEXTTOIMAGESIMILARITY (Radford et al., 2021). Inspired by prior works (Hu et al., 2024a; Gupta and Kembhavi, 2022; Ma et al., 2024), we include a few additional tools to help with reasoning: QUERYLANGUAGEMODEL, QUERYKNOWLEDGEBASE, CALCULATE, and SOLVEMATHEQUATION. We also include TERMINATE as a tool for the model to output a final answer in the same format. See the Appendix D for all tools’ implementation details.

3.1 LATTE-trace generation

We generate synthetic LATTE-trace data with two automatic approaches: Model-based generation and Programmatic data generation.

Model-based generation. This pipeline consists of three steps (Figure 3 top):

1. GENERATE. First, we leverage images and QA examples in existing visual instruction tuning datasets and generate LATTE-traces to solve the questions with GPT-4o (2024-08-06). We include diverse questions on both single-image and multi-image examples from two large-scale instruction tuning datasets, Cauldron and Mantis-Instruct (Jiang et al., 2024; Laurençon et al., 2024). We feed the images and questions to GPT-4o and prompt it to answer the questions by following a LATTE-trace or just CoT when it is not nec-

essary (e.g., the question is straightforward) or not helpful (e.g., the question requires domain-specific knowledge) to call specialized vision tools (Figure 3). We adopt ReAct-style prompting with JSON-format for calling the vision specialists and provide detailed instructions and examples in the prompt (Yao et al., 2023). All prompts are in the Appendix C.

2. VERIFY. Second, we verify GPT-4o’s generated answers against the ground-truth. We force GPT-4o to always end with TERMINATE(answer) and compare its prediction to the ground-truth. If the final answer is correct, we move this LATTE-trace to the next stage. Otherwise, we convert this example into the direct answer (Direct) format with ground-truth answers (Figure 3).

3. PARSE. Finally, we check the JSON syntax of each step of the LATTE-trace. Similar to the previous stage, we again keep the LATTE-traces free of errors and turn the others into the Direct format with ground-truth answers.

Programmatic data generation. In addition to distilling reasoning from proprietary models, we implement a programmatic data generation engine for synthesizing LATTE-traces (Figure 3 bottom) and experiment with these data. This pipeline involves two steps:

1. ANNOTATE. First, we gather existing dense annotations of images. We adopt Visual Genome

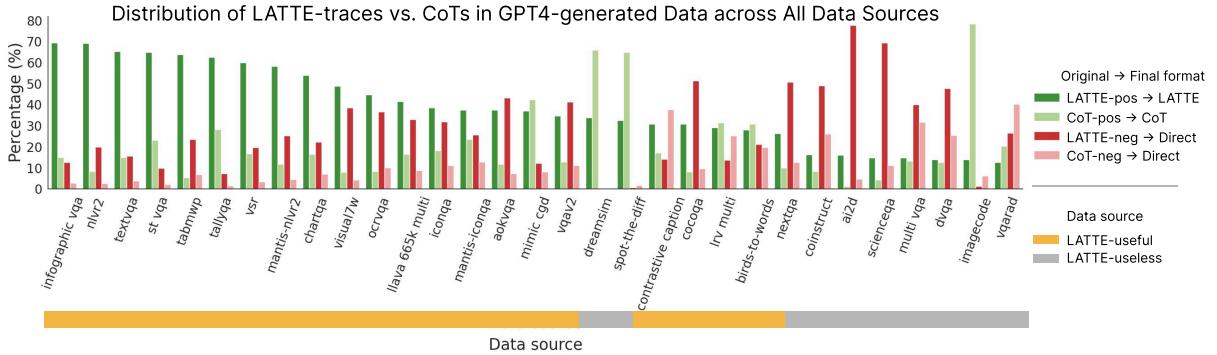


Figure 4: **Distribution of data formats and sources.** We visualize the frequency of data formats (i.e. LATTE-pos/neg, and CoT-pos/neg, pos = correct final answers, neg = incorrect) in the original GPT-4-generated data and in our training data (i.e. LATTE-trace, CoT, or Direct) across all data sources. We also highlight the LATTE-useless (i.e. % of CoT-pos – LATTE-pos > 10 or % of LATTE-neg – LATTE-pos > 10) vs. LATTE-useful datasets.

(VG) as it contains rich human annotations of objects, attributes, and relationships of the images. In addition, we obtain depth maps of the VG images with Depth-Anything-v2 (Yang et al., 2024).

2. GENERATE. Next, we programmatically generate both the QA pairs and the corresponding LATTE-traces with manually written templates and dense image annotations. We reuse the pipeline from (Zhang et al., 2024a,b) to generate QA pairs that cover various vision capabilities such as counting and spatial understanding (See Appendix E.2 for details). To generate LATTE-traces, we define templates for thoughts, actions, and observations across all steps and fill in the templates with the collected annotations. In particular, we manually design five thought templates for each action and randomly sample one during generation. As for actions, we manually select the specialized vision tools for each type of questions (e.g. , ESTIMATEOBJECTDEPTH for questions on objects’ relative depths, and LOCALIZE for object counting questions, etc.) and compose templates with them.

3.2 Data filtering and mixing

We develop 3 filtering/mixing techniques, where we vary the distribution of: (1) data formats; (2) data sources; and (3) model- vs. program-generated reasoning traces.

Data format. Model-generated data can be categorized into two formats: LATTE-trace or CoT examples (Figure 3). Additionally, they are further grouped into LATTE-trace/CoT-pos and LATTE-trace/CoT-neg examples where the final answers are correct and wrong respectively (Figure 4). Note that we convert both LATTE-trace-neg and CoT-neg examples into the Direct format with ground-

truth answers (Figure 3) so the final data format is one of LATTE-trace, CoT, and Direct.

Data source. We also perform filtering based on data sources as Cauldron and Mantis-Instruct cover a wide range of tasks, some of which benefit more from vision specialists than others. To this end, we define LATTE-useless datasets as the ones where GPT-4o either decides to output CoT much more often than LATTE-trace (i.e. % of CoT-pos – LATTE-trace-pos > 10), or reaches wrong answers much more frequently than correct ones when using LATTE-trace (i.e. % LATTE-trace-neg – LATTE-trace-pos > 10) (Figure 4). The remaining datasets are considered LATTE-useful datasets.

Program-generated data. As the distribution of actions in model-generated data is imbalanced, with a couple of actions such as GETOBJECTS and OCR dominating the dataset, we also try increasing action diversity by adding programmatic traces with underrepresented actions such as LOCALIZEOBJECTS, and ESTIMATEREGIONDEPTH.

4 Experiments

We perform extensive experiments with small 7-8B multi-modal models and various data recipes on 6 benchmarks to study two questions: (1) do LATTE-traces improve small vision-language models’ performance on both perception and reasoning VQAs? (2) what matters in LATTE-traces?

Models. We adopt models with multi-image support as our reasoning traces include multiple images. For most experiments, we use Mantis-8B-SigLIP-LLaMA-3 as the base model. We additionally experiment with Mantis-8B-CLIP-LLaMA-3, and LLaVA-OneVision-7B (Qwen2-7B and SigLIP) to showcase our method’s generalizability.

Table 1: **LATTE vs. Vanilla IT with Different Models.** LATTE leads to performance gains over Vanilla IT regardless of the base models. The gains are 4-5% on average across all 6 benchmarks and up to 17% on MMVet.

Language / Vision	Starting checkpoint	Method	Perception				Perception + Reasoning				Overall	
			CV-Bench	BLINK	RealWorldQA	Avg	MathVista	MMStar	MMVet	Avg	Avg	Avg
LLaMA3-8B / CLIP	Mantis Pretrained	Vanilla IT	52.6	45.8	52.3	50.2	33.1	36.7	28.9	32.9	41.6	
		LATTE	56.9	49.6	51.1	52.6	36.6	40.8	45.2	40.8	46.7	(+5.1)
LLaMA3-8B / SigLIP	Mantis Instruct-tuned	Vanilla IT	52.3	43.7	51.8	49.3	31.1	40.5	33.0	34.9	42.1	
		LATTE	57.2	47.8	53.7	52.9	34.9	44.6	45.2	41.6	47.2	(+5.1)
Qwen2-7B / SigLIP	LLaVa-OV	Vanilla IT	56.8	50.3	57.8	55.0	42.4	50.1	39.3	43.9	49.5	
	Stage 1.5	LATTE	60.2	52.6	61.1	58.0	46.9	50.8	50.9	51.2	53.8	(+4.3)

Table 2: **LATTE vs. Distillation Baselines.** LATTE brings substantial gains over the Vanilla IT baseline on both perception and perception + reasoning benchmarks, whereas VPD and LLaVa-CoT result in smaller gains. LLaVa-CoT even suffers from performance drop in perception tasks. All models were trained with 98K data.

Method	Perception				Perception + Reasoning				Overall	
	BLINK	CV-Bench	RealWorldQA	Avg	MathVista	MMStar	MMVet	Avg	Avg	Avg
Vanilla IT	44.1	49.2	41.4	44.9	31.0	39.7	27.8	32.8	38.9	
VPD	41.6	48.8	44.8	45.1 (+0.2)	33.0	41.1	32.8	35.7 (+2.8)	40.4 (+1.5)	
LLaVa-CoT	42.2	40.4	38.0	40.2 (-4.7)	36.7	44.6	40.2	40.5 (+7.7)	40.4 (+1.5)	
LATTE	46.4	54.0	42.0	47.5 (+2.6)	36.9	44.2	47.9	43.0 (+10.2)	45.2 (+6.4)	

Baselines. We compare LATTE to three types of baselines: (1) vanilla instruction-tuning (IT): instruction-tuning with only direct answers; (2) distillation methods that distill both perception and reasoning from larger models into smaller models, including VPD (Hu et al., 2024b)¹, LLaVa-CoT (Xu et al., 2025), and VisCoT (Shao et al., 2024)²; For fair comparison, we train our models and baselines with the same base model, the same hyperparameters, and the same number of examples; (3) multi-modal agents that use tools at inference time, including LLaVa-Plus (Liu et al., 2023c) and CogCoM (Qi et al., 2024).

Training details. We finetune models starting from checkpoints at different stages – pretrained and instruction tuned for Mantis-8B-SigLIP-LLaMA-3, and stage 1.5 for LLaVA-OneVision-7B – to investigate if and where LATTE-traces bring gains. We adopt the hyperparameters from (Liu et al., 2024; Jiang et al., 2024) and fine-tune both the language model and the projector with learning rate = $1e-5$ for 1 epoch with either NVIDIA A100s 40GB or H100s 80GB. We additionally perform hyperparameter tuning with LLaVA-OneVision-7B and include this result in the Appendix F.

¹As VPD is close-sourced, we reproduce their data by converting LATTE-traces into CoTs in VPD’s format.

²Since VisCoT only has reasoning steps for one data source GQA, training with its data leads to much worse performance. We include its results in the Appendix B.3.

Evaluation setup. We select 6 VQA benchmarks covering both perception and reasoning. The perception-focused benchmarks include RealWorldQA, CV-Bench and BLINK (Tong et al., 2024; Schwenk et al., 2022; Fu et al., 2024; Li et al., 2023a). We also include 3 benchmarks that additionally test reasoning capabilities: MathVista, MMStar, and MMVet (Lu et al., 2024b; Chen et al., 2024a; Yu et al., 2024). We adapt VLMEvalKit (Duan et al., 2024) for our evaluation, where an LLM judge (i.e. GPT-4-turbo) is used to score predictions between 0 and 1 compared to the groundtruth short answers for open-ended questions. Additional details are in Appendix G.

4.1 Do LATTE-traces improve models’ performance on both perception and reasoning VQAs?

LATTE beats Vanilla IT on average across all benchmarks regardless of the base model and checkpoint, with significant gains of up to 17% on MMVet. We fine-tune 3 different multi-modal models with all 293K LATTE-traces starting from different checkpoints. We observe that our method leads to consistent gains of 4-5% in the model’s average accuracy across 6 benchmarks compared to the baselines instruction-tuned with the same examples in the Direct format (Table 1). We note that our method results in staggering gains of up

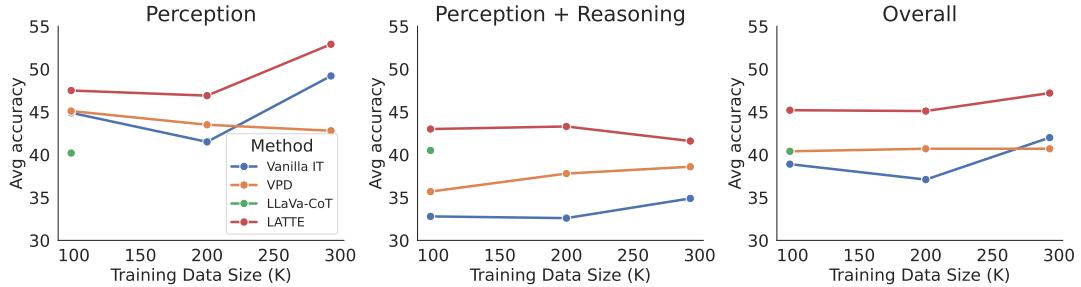


Figure 5: **LATTE vs. Distillation Baselines across Training Data Scales.** LATTE leads to consistent gains on perception and reasoning benchmarks over the Vanilla instruction-tuned baseline across varying training data sizes – 98K, 200K and 293K – and the gains are larger than VPD’s. LLaVa-CoT only has 98K data.

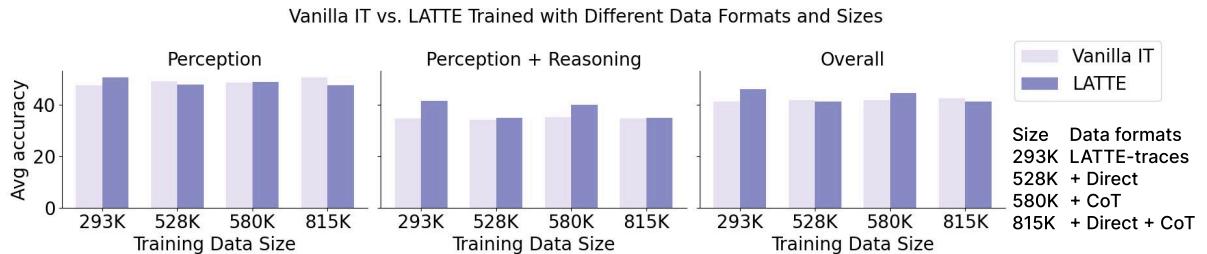


Figure 6: **Ablations on Data Formats.** 293K LATTE-traces lead to the greatest gains over Vanilla IT and the highest overall performance. Adding either CoT or Direct doesn’t bring additional gains despite the increased size.

to 17% on MMVet, which covers a wide range of perceptual and reasoning capabilities.

LATTE leads to substantial gains over vanilla instruction-tuning on both perception and reasoning benchmarks, whereas distillation baselines result in smaller gains or even degradation on some perception tasks. We find that learning to reason with vision specialists enables our model to achieve consistent gains on perception-focused VQA benchmarks as well as benchmarks that require both perception and reasoning, with average gains of 2.6% and 10.2% respectively (Table 2). By contrast, both distillation baselines VPD and LLaVa-CoT bring much smaller gains, with an average of 1.5% across all benchmarks, compared to ours (6.4%). Further, we observe that the same trend holds as we scale the training data size from 98K to 200K and 293K, where our method consistently brings larger gains on both perception and perception + reasoning benchmarks (Figure 5). Interestingly, LLaVa-CoT even hurts the model’s performance on perception benchmarks, even though it increases the performance on the perception + reasoning benchmarks (Table 2). This result suggests that GPT4-o might still be inferior to vision specialists on some perception tasks, as LLaVa-CoT distills purely from GPT4-o.

LATTE scores higher on MathVista and

Table 3: **LATTE vs. Multi-modal Agent Baselines.** Training with LATTE-traces leads to much larger gains.

Model	Data size	Base model → Finetuned model	
		MathVista	MMVet
LLaVA-Plus	158K	—	32.5 → 35.0 (+2.5)
CogCoM	70K	34.8 → 35.7 (+0.9)	45.9 → 46.1 (+0.2)
LATTE	98K	32.7 → 36.9 (+4.2)	34.4 → 47.9 (+13.5)
LATTE	293K	32.7 → 38.9 (+6.2)	34.4 → 50.0 (+15.6)

MMVet than multi-modal agent baselines do, and LATTE-traces bring larger gains to the base model. We see in Table 3 that LATTE achieves higher accuracies on MathVista and MMVet. Moreover, LATTE-traces bring much larger gains to the base model than LLaVa-Plus and CogCoM’s data do, despite its comparable size.

4.2 What matters in LATTE-traces?

We perform ablations with LATTE-traces to study what matters in improving models’ performance. For model-generated data, we explore two data filtering techniques on (1) data formats and (2) data sources (Figure 4).

Data quality matters more than quantity: 293K LATTE-traces lead to higher performance than larger mixtures of LATTE-traces and CoT or Direct. We find that 293K LATTE-traces result in the biggest gain of 5% on average over the baseline across all benchmarks (Figure 6). Adding CoT

Table 4: **Ablations on data sources.** Including all sources hurts model’s perception and overall performance while having only LATTE-useful datasets helps.

Data source	Size	Method	Percept.	P. + Reason.	Overall
All datasets	815K	Vanilla IT	50.7	34.7	42.7
		LATTE	47.7 (-3.0)	35.1 (+0.4)	41.4 (-1.4)
LATTE-useful datasets	566K	Vanilla IT	46.3	33.3	39.8
		LATTE	46.8 (+0.5)	35.6 (+2.3)	41.2 (+1.4)

examples results in a smaller gain of 2.6%, even though the training data size almost doubles (Figure 6). On the other hand, combining LATTE-trace and Direct examples hurts the model’s performance compared to LATTE-traces only, especially on the perception tasks (Figure 6). We empirically observe that models trained with a mix of LATTE-traces and Direct examples tend to adopt the Direct format more often (around 70%) at inference time, relying on its own weaker perceptual ability instead of vision specialists’ and thus scoring lower.

Data sources matter too: including all datasets hurts performance while including only LATTE-useful datasets brings gains. Similarly, we see that including only the LATTE-useful datasets – where GPT-4o frequently chooses to use vision specialists and reaches correct final answers – improves the model’s average performance compared to the baseline, while including all data sources doesn’t (Table 4). Again, we see that a smaller set of 566K LATTE-traces leads to better performance than a much larger dataset (815K), implying that data quality matters more than quantity.

Table 5: **Ablations on programmatic LATTE-traces.** We find that training with additional programmatic LATTE-traces doesn’t bring more gains.

M: P	Data format	Size	MathVista	Percept. + Reason.	Overall
0:1	Direct	293K	31.1	34.9	42.0
	P-traces		17.3	15.9	27.2
	M-traces		34.9	41.6	47.2
1:0.1	+P-traces 29K	322K	33.9	40.1	44.0
1:0.25	+P-traces 73K	366K	38.3	42.1	46.3
1:0.5	+P-traces 147K	440K	36.7	39.7	45.5
1:1	+P-traces 293K	586K	31.0	36.2	43.2

Programmatically generated LATTE-traces can help on a certain benchmark but not overall, likely due to the worse quality of thoughts. We experiment with a mixture of model-generated and programmatic reasoning traces, with ratios ranging from 1:0.1 to 1:1. We find that training with only programmatic LATTE-traces results in large performance drops (Table 5). Similarly, while adding programmatic LATTE-traces can bring gains on some benchmark (e.g. MathVista), it fails to bring over-

all gains despite the increased data size (Table 5). This is likely due to the model’s worse reasoning capability learned from templated thoughts. See more details in Appendix B.2 (Figure 8).

Overall, our experiments suggest that the quality of perceptual information and reasoning are both crucial to improving vision-language models’ performance across diverse VQAs.

4.3 Additional ablations

Table 6: **Ablations on LATTE’s inference setup.** The OCR tool greatly affects model’s performance, while the query LLM tool doesn’t; and increasing the maximum number of tool calls doesn’t help beyond 10.

Method	Percept.	P. + Reason.	Overall
LATTE (max 10 calls)	51.7	43.8	47.8
max 5 calls	51.7	42.8	47.2
max 20 calls	51.6	43.6	47.6
no QUERYLM	52.1	43.5	47.8
OCR with easyocr	51.4	39.9	45.7

What matters in LATTE’s inference setup? In addition to training data, we also perform ablations on LATTE’s inference setups, including tool ablations and tool call number ablations.

First, the tool ablations include (1) excluding the QUERYLANGUAGEMODEL tool, and (2) using EasyOCR (JadedAI, 2025) instead of GPT for OCR. We see that removing QUERYLANGUAGEMODEL leads to no difference in the model’s overall performance (Table 6), suggesting that QUERYLANGUAGEMODEL is not an important tool to the VQA benchmarks in our evaluation. Nevertheless, by using EasyOCR for OCR we do see a large drop in the model’s performance, especially on reasoning-intensive benchmarks such as MMVet due to EasyOCR’s less accurate outputs (Table 6). Still, LATTE is over 2% above the vanilla instruction-tuned baseline on average across all benchmarks.

Second, as we adopt multi-turn conversations for all models with our method, we can vary the number of tool calls at inference time. We set the maximum number of tool calls to 10 by default and experiment with 5 and 20 tool calls. Through this experiment, we see that the model’s scores peak at 10 maximum tool calls, suggesting that 10 tool calls are sufficient in most cases (Table 6).

Do LATTE-traces improve stronger base models? We further ablate on the model backbone, as new and stronger open-source vision-language models come out. Our results using the latest

BLINK	VPD	LLaVA-CoT	LATTE
<p>Q: How many people are sitting on the bed? Select from the following choices. Options: A. 3, B. 1, C. 2, D. 0</p>	<p>To determine how many people are sitting on the bed, I need to analyze the image. The objects are ['armchair', 'balance', 'couch', 'game', 'game controller', 'girl', 'person', 'living room', 'man', 'play', 'remote', 'scale', 'stand', 'video game', 'Wii', 'Wii controller', 'woman']. The observation indicates the presence of a 'couch' and 'living room', suggesting that people might be sitting on the couch.</p> <p>I will verify this visually. The final answer is C.</p>	<p><SUMMARY> I will analyze the image to determine the number of people sitting on the bed by examining the visible details and context. </SUMMARY></p> <p><CAPTION> The image shows a person standing on a balance board in a living room. In the background, there is a couch with two people sitting on it. </CAPTION></p> <p><REASONING> To determine how many people are sitting on the bed, I will focus on the couch in the background. The couch appears to have two people sitting on it, as indicated by their positions and the visible parts of their bodies. </REASONING></p> <p><CONCLUSION> C </CONCLUSION></p>	<p>t: To determine how many people are sitting on the bed, I need to analyze the image.</p> <p>a: Localize(image-0, ["person"]) o: [{"label": "person", "bbox": [0.0, 0.52, 0.37, 0.81], "score": 0.73}, {"label": "person-2", "bbox": [0.16, 0.05, 0.94, 0.91], "score": 0.8}]</p> <p>t: The image shows two people, but only one is sitting on the bed.</p> <p>a: Terminate("B")</p>

Figure 7: **Qualitative analysis.** Example outputs of VPD, LLaVA-CoT vs. LATTE on BLINK.

Table 7: **Ablations on LATTE’s model backbone.** LATTE-traces improve stronger base models too.

Model backbone	Method	Percept.	P. + Reason.	Overall
InternVL3-8B	Vanilla IT	51.5	45.1	46.7
	LATTE	54.1	54.5	52.0
Qwen2.5VL-3B	Vanilla IT	54.3	49.6	50.8
	LATTE	53.4	55.7	55.1
Qwen2.5VL-7B	Vanilla IT	53.7	52.5	52.8
	LATTE	56.9	57.7	57.5

vision-language models – Qwen2.5VL and InternVL3 – as the base models demonstrate that our method improves upon vanilla instruction tuning even with strong base models (Table 7).

4.4 Error Analysis

Where does LATTE perform better than the distillation baselines? We find that LATTE performs better in fine-grained perception tasks such as the counting questions in BLINK, while VPD and LLaVA-CoT tend to hallucinate and make perceptual errors (Figure 7).

Table 8: **LATTE’s Error Types on MMVet.**

Error type	Subtype	%
Tool call	Format	3
	Value	6
Tool result	—	7
	Not using tools	6
Model perception	Irrelevant tools	50
	—	28

What errors does LATTE make? On MMVet, we find that the model’s most frequent error happens when it falls back on its own perceptual ability after deciding not to use tools or finding the vision tools’ outputs irrelevant/not helpful for the question (e. g. movie, arts, or medical questions that require domain knowledge) (Table 8). These numbers suggest that the model’s performance can be improved by diversifying tools and questions in the training

data, and strengthening reasoning.

5 Conclusion

We propose to learn vision-language models to reason with vision specialists. To learn such models, we synthesize a novel large-scale dataset of multimodal reasoning traces grounded on perceptual information. With this data, we fine-tune small vision-language models and perform extensive experiments. Across 6 benchmarks covering both perception and reasoning, we demonstrate that our model achieves significant gains over vanilla instruction-tuned baselines and other distillation methods in perception and reasoning tasks.

6 Limitations

First, our method requires customized implementations of the specialized vision tools. Second, reasoning with the vision specialists requires additional compute at inference time. Nevertheless, it is becoming a common practice to increase model performance by scaling up test time compute (OpenAI, 2025; Muennighoff et al., 2025). Future work can optimize and enhance the implementations of vision specialists, especially as the computer vision community continues to advance vision models. Additionally, while we try to include the most important tools for general perception and reasoning, other types of VQA e. g. knowledge-intensive ones might benefit from additional tools as suggested in our error analysis. Lastly, due to the limited generalization of supervised finetuning and diversity of the visual world, researchers might need to explore training alternatives (e. g. reinforcement learning) for better generalization or train new models with different vision specialists for other applications (e. g. web navigation) or for other domains (e. g. medical question answering).

7 Acknowledgement

Zixian Ma was partially funded by Sony for this project. Zixian Ma conducted most of this work at a Salesforce internship.

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pages 2425–2433.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell Wortsman, and Ludwig Schmidt. 2023. Openflamingo: An open-source framework for training large autoregressive vision-language models. *Preprint*, arXiv:2308.01390.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, and 1 others. 2024. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint arXiv:2401.02954*.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, and 1 others. 2024a. Are we on the right way for evaluating large vision-language models? *arXiv preprint arXiv:2403.20330*.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. 2024b. M³ cot: A novel benchmark for multi-domain multi-step multi-modal chain-of-thought. *arXiv preprint arXiv:2405.16473*.

Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. 2023. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. *arXiv preprint arXiv:2312.14238*.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale N Fung, and Steven Hoi. 2024. Instructclip: Towards general-purpose vision-language models with instruction tuning. *Advances in Neural Information Processing Systems*, 36.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, and 1 others. 2024. Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai Chen. 2024. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. *Preprint*, arXiv:2407.11691.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-Chiu Ma, and Ranjay Krishna. 2024. Blink: Multi-modal large language models can see but not perceive. *arXiv preprint arXiv:2404.12390*.

Melvyn A Goodale and A David Milner. 1992. Separate visual pathways for perception and action. *Trends in neurosciences*, 15(1):20–25.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Visual programming: Compositional visual reasoning without training. *ArXiv*, abs/2211.11559.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and Ranjay Krishna. 2024a. Visual sketchpad: Sketching as a visual chain of thought for multimodal language models. *Preprint*, arXiv:2406.09403.

Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ranjay Krishna, and Ariel Fuxman. 2024b. Visual program distillation: Distilling tools and programmatic reasoning into vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9590–9601.

JadedAI. 2025. Easyocr.

Dongfu Jiang, Xuan He, Huaye Zeng, Con Wei, Max Ku, Qian Liu, and Wenhui Chen. 2024. Mantis: Interleaved multi-image instruction tuning. *arXiv preprint arXiv:2405.01483*.

Georg B Keller, Tobias Bonhoeffer, and Mark Hübener. 2012. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. *Neuron*, 74(5):809–815.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, and 1 others. 2024. T\ ulu 3: Pushing frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. 2024. What matters when building vision-language models? *Preprint*, arXiv:2405.02246.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. 2024. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan. 2023a. Seed-bench-2: Benchmarking multimodal large language models. *arXiv preprint arXiv:2311.17092*.

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang, Chengjie Wang, Jilin Li, and Feiyue Huang. 2019. Dsfd: Dual shot face detector. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023b. BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In *ICML*.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 2022. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In *ICML*.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2023a. Improved baselines with visual instruction tuning.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. 2024. [Llava-next: Improved reasoning, ocr, and world knowledge](#).

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023b. Visual instruction tuning.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang, Jianfeng Gao, and Chunyuan Li. 2023c. [Llava-plus: Learning to use tools for creating multimodal agents](#). *Preprint*, arXiv:2311.05437.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, and 1 others. 2023d. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. *arXiv preprint arXiv:2303.05499*.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem, and Aniruddha Kembhavi. 2024a. Unified-io 2: Scaling autoregressive multimodal models with vision language audio and action. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26439–26455.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. 2024b. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. In *International Conference on Learning Representations (ICLR)*.

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. 2024. m&m’s: A benchmark to evaluate tool-use for multi-step multi-modal tasks. *EECV 2024*.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiangang Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. 2025. [s1: Simple test-time scaling](#). *Preprint*, arXiv:2501.19393.

OpenAI. 2025. [Openai o3-mini](#).

Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li, Yuxiao Dong, and Jie Tang. 2024. [Cogcom: Train large vision-language models diving into details through chain of manipulations](#). *Preprint*, arXiv:2402.04236.

Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning transferable visual models from natural language supervision. In *ICML*.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. 2022. Scienceqa: A novel resource for question answering on scholarly articles. *International Journal on Digital Libraries*, 23(3):289–301.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022. [A-okvqa: A benchmark for visual question answering using world knowledge](#). *Preprint*, arXiv:2206.01718.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng Li. 2024. [Visual cot: Unleashing chain-of-thought reasoning in multi-modal language models](#). *Preprint*, arXiv:2403.16999.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. 2024. [Eyes wide shut? exploring the visual shortcomings of multimodal llms](#). *Preprint*, arXiv:2401.06209.

Penghao Wu and Saining Xie. 2024. V?: Guided visual search as a core mechanism in multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13084–13094.

Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. 2025. [Llava-cot: Let vision language models reason step-by-step](#). *Preprint*, arXiv:2411.10440.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. 2024. Depth anything v2. *arXiv:2406.09414*.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2023. [React: Synergizing reasoning and acting in language models](#). *Preprint*, arXiv:2210.03629.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. 2024. Mm-vet: Evaluating large multimodal models for integrated capabilities. In *International conference on machine learning*. PMLR.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. 2024a. Task me anything. *arXiv preprint arXiv:2406.11775*.

Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos Niebles, Silvio Savarese, Caiming Xiong, Zeyuan Chen, Ranjay Krishna, and Ran Xu. 2024b. Provision: Programmatically scaling vision-centric instruction data for multimodal language models. *Preprint*.

Youcai Zhang, Xinyu Huang, Jinyu Ma, ZhaoYang Li, ZhaoChuan Luo, Yanchun Xie, Yuzhuo Qin, Tong Luo, Yaqian Li, Shilong Liu, and 1 others. 2023. Recognize anything: A strong image tagging model. *arXiv preprint arXiv:2306.03514*.

A Dataset and model comparison

We summarize the differences between our work and the other multi-modal CoT datasets including ScienceQA, M³COT, Visual CoT, VPD, V*, LLaVa-Plus, LLaVA-CoT, CogCoM in Table 9.

B Additional results

B.1 Additional qualitative examples

We present additional successful outputs of LATTE across both single-image and multi-image examples in Figures 10 and 11 as well as failure cases in Figure 12.

B.2 Qualitative error analysis

Why does adding programmatic LATTE-trace help on MathVista but hurt MMVet performance? We observe that adding programmatic LATTE-trace can result in up to 3% gain on MathVista and 9% drop on MMVet. Upon analysis, we discover that programmatic LATTE-trace improves the general VQA split in MathVista the most by almost 9%. This is because LOCALIZE is helpful for these questions, and our programmatic data includes many LOCALIZE instances that allow LATTE to learn to use it effectively (Figure 8). Conversely, programmatic data hurts LATTE’s performance on MMVet most likely due to the model’s worse reasoning ability as a result of the simple and rigid thoughts generated with templates in our programmatic data (Figure 8).

B.3 Additional quantitative results

We report additional quantitative results of data ablations on Mantis-CLIP in Table 14, where we see the same trends we observe with Mantis-SigLIP: the smallest dataset of 293K LATTE-trace examples leads to the highest absolute performance and gain compared to other datasets with a mix of LATTE-trace, CoT, and/or Direct examples at larger scales.

Visual-CoT Performance. We experimentally compare LATTE to Visual-CoT. We finetune Mantis-LLaVA-Pretrained (LLama3+SigLIP) with Visual CoT and compare its performance with LATTE (Table 10). We use 413K examples where the bounding boxes are valid and within the image. We find that the models trained with Visual CoT data achieve an average accuracy of 39.3% (much lower as Visual COT’s data are mostly Text/Doc images and contain only bboxes without natural language thoughts) on the benchmarks.

Performance gain with LATTE inference. We compare the model’s performance when trained with a random mix of 293K LATTE-traces and Direct data (1:1) and tested with LATTE format vs. Direct prompt. We find that the model achieves an average of 50.3% when tested following LATTE format vs. 48% with the Direct prompt (Table 11), suggesting that reasoning with vision specialists at inference time improves model’s performance.

Hyperparameter tuning Additional gains can be achieved by tuning the vision encoder, training with a smaller learning rate or for more epochs. Last but not least, our hyperparameter tuning experiments with LLaVa-OV-Stage1.5 suggest that we can further improve the model’s absolute performance by tuning the vision encoder, training with a smaller learning rate and/or for longer epochs (Figure 9).

C Model-based data generation

C.1 Generation prompt

We present the full data generation prompt used in our model-based data generation pipeline in Listing 2.

C.2 Dataset statistics

We present a table with detailed statistics of the LATTE-trace 293K dataset in Table 15.

D Action implementation

Our Python implementation of all actions can be found in Listing 1.

E Programmatic data generation

E.1 QA and action templates

We present the question-answer and corresponding action templates used in our programmatic data generation in Table 16. We design 16 different question templates for both single-image and multi-image examples that cover 5 capabilities: attribute recognition, counting, 2D and 3D spatial understanding, and multi-image understanding.

E.2 Thought templates

We also present the five thought templates in Listing 3 we define for each action, where one of them is randomly sampled and used during generation.

Table 9: Dataset and model comparison.

Paper	Dataset					Model	
	Training set size	Data source number	Tool number	Multi-image questions	Multi-modal reasoning chain*	Inference-time use	Multi-tool-use
Science QA (Saikh et al., 2022)	12.6K	1	X	X	X	X	X
M3CoT (Chen et al., 2024b)	7.8K	2	X	X	X	X	X
VPD (Hu et al., 2024b)	90K	6	6	X	X	X	X
LLaVA-CoT (Xu et al., 2025)	100K	10	X	X	X	X	X
V* (Wu and Xie, 2024)	206K	3	1	X	X	X	✓
LLaVA-Plus (Liu et al., 2023c)	158K	6	12 (or 19 counting compositional ones)	X	X	✓	X
VisualCoT (Shao et al., 2024)	98K (+340K with bboxes but no thoughts)	12	2	X	X	✓	✓
CogCoM (Qi et al., 2024)	70K	3	6	X	X	✓	✓
LATTE	293K (+over 1M program generated reasoning traces)	31	15 tools (see Section 2)	✓	✓	✓	✓

*The reasoning chain contains not just texts but also images.

Table 10: VisCoT results

Method	A-OKVQA	BLINK	MathVista	MMMU	MMStar	MMVet	MMVP	RealWorldQA	Avg
VPD-LLaVA	80.7	43.9	35.1	40.8	40.1	40.6	61.3	45.1	48.5
VisCoT-LLaVA	67.9	39.4	12.9	36.1	36.0	26.7	61.3	34.0	39.3

Table 11: LATTE vs. Direct inference

Test prompt	A-OKVQA	BLINK	MathVista	MMMU	MMStar	MMVet	MMVP	RealWorldQA	Avg
LATTE	82.1	45.9	37.0	39.8	43.4	46.7	66.0	41.6	50.3
Direct	81.9	46.6	31.2	42.1	39.1	35.0	68.3	40.2	48.0

E.3 Example action distribution

We plot example distributions of all actions before and after adding programmatic LATTE-trace 73K data in Figure 13.

Table 12: Additional training hyperparameters for Mantis-SigLIP and Mantis-CLIP.

Name	Value
bf16	TRUE
tf32	True
per_device_train_batch_size	1
per_device_eval_batch_size	1
gradient_accumulation_steps	16
weight_decay	0
warmup_ratio	0.03
lr_scheduler_type	cosine
lora_enabled	FALSE
qlora_enabled	FALSE
max_seq_len	8192

F Additional training details

We report additional training hyperparameters for Mantis models and LLaVA-OV in Table 12 and 13 respectively.

MathVista	LATTE trained with M-traces	+ P-traces				
<p>MathVista</p> <p>Q: Is the number of dirtbikes less than the number of small green metallic cars? A: Yes; B: No</p>	<p>LATTE trained with M-traces</p> <p>t: To determine the number of dirtbikes and small green metallic cars, I need to analyze the image. a: GetObjects(image-0) o: ['ambulance', 'bicycle', 'bus', 'car', 'table', 'floor', 'lego', 'miniature', 'motorbike', 'motorcycle', 'toy', 'toy car'] t: The observation doesn't clearly specify the number of dirtbikes and small green metallic cars. I need to visually inspect the image to count them. a: Terminate("A")</p>	<p>+ P-traces</p> <p>t: To determine the answer, I need to identify the number of dirtbikes and small green metallic cars in the image. a: Localize(image-0, ["dirtbike", "small green metallic car"]) o: [{"label": "dirtbike", "bbox": [0.53, 0.2, 0.72, 0.47], "score": 0.66}, {"label": "dirtbike-2", "bbox": [0.41, 0.24, 0.47, 0.36], "score": 0.44}, {"label": "dirtbike-3", "bbox": [0.52, 0.45, 0.67, 0.61], "score": 0.5}, {"label": "small green metallic car", "bbox": [0.5, 0.25, 0.56, 0.34], "score": 0.61}] t: There are three dirtbikes and one small green metallic car. Therefore, the number of dirtbikes is not less than the number of small green metallic cars. a: Terminate("B")</p>				
<p>MMVet</p> <table border="1"> <tr> <td>48 + a = 50</td> <td>15 + a = 17</td> </tr> <tr> <td>10 + a = 12</td> <td>34 + y = 39</td> </tr> </table> <p>Q: What is y in the last equation? A: 5</p>	48 + a = 50	15 + a = 17	10 + a = 12	34 + y = 39	<p>t: I need to extract the text from the image to find the last equation. a: OCR(image-0) o: The texts in the image are: 1. 5 + a = 7...10. 34 + y = 39</p> <p>t: The last equation is '34 + y = 39'. To find the value of y, I need to solve this equation. a: Calculate("39 - 34") o: 5</p>	<p>t: The last equation in the image is 34 + y = 39. Therefore, y is 39. a: Terminate("39")</p>
48 + a = 50	15 + a = 17					
10 + a = 12	34 + y = 39					

Figure 8: **Qualitative analysis.** Examples of LATTE success and failure after adding programmatic LATTE-traces.

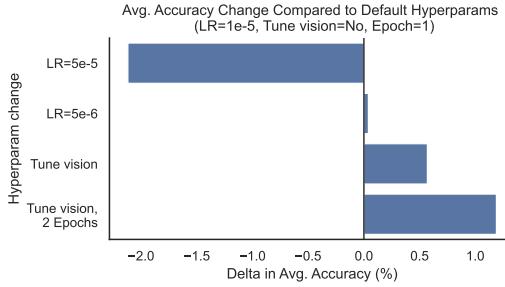


Figure 9: **Hyperparameter ablations.** Additional gains can be achieved with a smaller learning rate for the language model, tuning the vision encoder, and training for more epochs.

Table 13: **Additional training hyperparameters for LLaVA-OV.**

Name	Value
bf16	TRUE
tf32	True
mm_vision_tower_lr	2.00E-06
mm_projector_type	mlp2x_gelu
mm_vision_select_layer	-2
image_aspect_ratio	anyres_max_9
image_grid_pinpoints	"(1x1),...,(6x6)"
mm_patch_merge_type	spatial_unpad
per_device_train_batch_size	1
per_device_eval_batch_size	1
gradient_accumulation_steps	16
weight_decay	0
warmup_ratio	0.03
lr_scheduler_type	cosine
model_max_length	8192

G Additional evaluation details

We present additional inference and evaluation details in Table 17 and the LLM judge prompts used for MMVet and MathVista from VLMEvalKit

(Duan et al., 2024) in Listings 4 and 5.

H License

The datasets and models are for research purposes only in support of an academic paper. All artifacts from this paper are licensed under the noncommercial license CC-BY-NC 4.0. Some of our models were built with Meta Llama 3, which is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

Table 14: **Additional Results on Model-generated data ablations with Mantis-CLIP.** We observe similar results of data ablations on Mantis-CLIP as on Mantis-SigLIP.

Data source	Final data format	Size	Model	A-OKVQA	BLINK	MathVista	MMMU	MMStar	MMVet	MMVP	RealWorldQA	Avg	Delta
All datasets	Direct	293K	Mantis-CLIP	80.7	45.8	33.1	42.2	36.7	28.9	62.7	52.3	47.8	
	LATTE-trace		LATTE	81.1	49.6	36.6	42.8	40.8	45.2	63.3	51.1	51.3	3.5
	Direct	580K	Mantis-CLIP	82.0	47.2	31.5	40.6	38.3	31.4	63.3	49.0	47.9	
	LATTE-trace+ CoT		LATTE	82.6	47.7	35.9	38.3	39.6	43.4	61.0	51.1	49.9	2.0
LATTE-useful datasets	Direct	815K	Mantis-CLIP	81.0	47.3	32.9	47.3	38.1	29.1	63.0	51.0	48.7	
	LATTE-trace+ CoT+ Direct		LATTE	81.3	43.1	32.7	48.0	37.7	31.0	58.7	47.6	47.5	-1.2
LATTE-useful datasets	Direct	566K	Mantis-CLIP	79.1	44.1	30.9	39.4	35.5	30.1	62.7	49.8	46.5	
	LATTE-trace+ CoT+ Direct		LATTE	80.7	41.6	31.5	41.0	38.2	36.1	59.0	48.2	47.0	0.6

he diagrams below show two pure samples of gas in identical closed, right d
olored ball represents one gas particle. Both samples have the same number
of particles.

Q: Compare the average kinetic energies of the particles in each sample. Which sample has the higher temperature? Sample A or sample B?
A: Sample A

t: To determine which sample has a higher temperature, I need to compare the average kinetic energies of the particles in each sample using the formula: $KE = 0.5 * m * v^2$, where m is the mass and v is the velocity. Since both samples have the same number of particles, the sample with the higher average kinetic energy will have the higher temperature.
a.: **Calculate**("0.5 * 44 * 830**2")
o.: 15155800.0
t: Now, I need to calculate the average kinetic energy for Sample B to compare.
a.: **Calculate**("0.5 * 36 * 690**2")
o.: 8569800.0
t: The average kinetic energy for Sample A is 15,155,800, and for Sample B is 8,569,800. Since Sample A has a higher average kinetic energy, it has the higher temperature.
a.: **Terminate**("Sample A")

Q: Is the trash can empty or full?
A: Empty

t: The image shows a trash bin with a hand placing a bag inside. I need to determine if the trash bin is empty or full.
a.: **GetObjects**(image-0)
o.: ['bag', 'bin', 'box', 'container', 'dish washer', 'drawer', 'food', 'home appliance', 'person', 'kitchen', 'kitchen counter', 'kitchen sink', 'lid', 'package', 'plastic', 'sink', 'stand', 'woman']
t: The observation indicates the presence of a bag and a bin, but it doesn't specify the contents of the bin. Based on the image, the trash bin appears to be empty as there is no visible trash inside.
a.: **Terminate**("empty")

Q: How to cook this dish?
A: This dish is called "Strawberry Rhubarb Pie". This strawberry rhubarb pie is a favorite springtime dessert in our house...Ingredients: 1 cup white sugar, ½ cup all-purpose flour...2 tablespoons white sugar...Step 1: Preheat oven to 400 degrees F (200 degrees C)...Step 8: Bake at 400 degrees F (200 degrees C), for 35 to 40 minutes, or until bubbly and brown. Cool on rack.

t: The image shows a pie, likely a strawberry pie. I need to provide a general recipe for cooking a pie.
a.: **QueryLanguageModel**("How to cook a strawberry pie?")
o.: Cooking a strawberry pie is a delightful process, and here's a simple recipe to guide you:
Ingredients: For the Pie Crust: 2 ½ cups all-purpose flour, 1 cup (2 sticks) unsalted butter, ... ¼ teaspoon salt... 2 tablespoons unsalted butter, cut into small pieces...
t: I have enough information to provide a general recipe for cooking a strawberry pie.
a.: **Terminate**("Cooking a strawberry pie involves making a pie crust and filling with strawberries and sugar. Ingredients: For the Pie Crust: 2 ½ cups all-purpose flour, 1 cup (2 sticks) unsalted butter, cold and cut into small pieces...For the Filling: 5 cups fresh strawberries, hulled and halved, ¾ cup granulated sugar, ... 9. **Fill the pie:** For the filling into the pie crust")

Q: Given the following images of art paintings, use the first image as the reference image, and determine which one of the second or the third image shares the same style as the reference image? Select from the following choices.
A. the second image
B. the third image

t: To determine which image shares the same style as the reference image, I need to analyze the styles of the images.
a.: **GetImageTolImagesSimilarity**("image-0", ["image-1", "image-2"])
o.: {'best_image': 'image-2', 'best_image_index': 1, 'similarity': [0.49, 0.65]}
t: The similarity scores indicate that image-2 is more similar to the reference image than image-1. Therefore, the third image shares the same style as the reference image.
a.: **Terminate**("B")

Q: You are a judge in a photography competition, and now you are given the four images. Please examine the details and tell which one of them is most likely to be a real photograph. Select from the following choices.
A. the first image, B. the second image, C. the third image

t: To determine which image is most likely a real photograph, I need to analyze the content and context of each image.
a.: **GetObjects**("image-0")
o.: ['baseball hat', 'CD', 'dive', 'field', 'floor', 'frisbee', 'game', 'grass', 'person', 'lush', 'man', 'play', 'rugby player', 'tackle']
t: The first image shows a person playing a game, likely a sport, on a field. This suggests it is a real photograph. I will now check the other images.
a.: **GetObjects**("image-1")
o.: ['ball', 'beach ball', 'frisbee', 'girl', 'jump', 'lake', 'sea', 'play', 'splash', 'throw', 'water', 'woman', 'yellow']
t: The second image shows a person playing in water, likely at a beach or lake, which is also a real photograph. I will now check the third image.
a.: **GetObjects**("image-2")
o.: ['swimwear', 'bikini', 'bikini top', 'blue', 'girl', 'jump', 'sea', 'water', 'woman']
t: The third image shows a person swimming in water, which is also a real photograph. I will now check the fourth image.
a.: **GetObjects**("image-3")
o.: ['swimwear', 'catch', 'CD', 'frisbee', 'girl', 'jump', 'lake', 'pink', 'play', 'throw', 'water', 'woman']
t: All four images depict real-life scenes with people engaging in activities like playing sports or swimming. However, the first image shows a person playing a sport on a field, which is a more typical setting for a real photograph compared to the others.
a.: **Terminate**("A")

Figure 10: We present additional successful examples of LATTE.

Q: Can the boy reach the highest book?
 (A) Yes, (B) No

ts: To determine if the boy can reach the highest book, I need to analyze the image for the boy's height and the height of the bookshelf.

ao: LocalizeObjects(image-0, ["boy", "bookshelf"])
 o: [{"label": "boy", "bbox": [0.07, 0.48, 0.18, 0.95], "score": 0.89}, {"label": "bookshelf", "bbox": [0.13, 0.01, 0.32, 0.72], "score": 0.72}]

ti: The boy's height is below the bookshelf, indicating he cannot reach the highest book.

ao: Terminate("B")

Figure 11: We present additional successful examples of LATTE.

Q: From which angle is this image taken?
 A. Front, B. Side

t₀: To determine the angle of the image, I need to analyze the perspective and orientation of the snake.
a₀: `GetObjects(image-0)`
o₀: ['branch', 'green', 'log', 'reptile', 'sit', 'snake', 'stool', 'tail', 'tree', 'tree branch', 'tree trunk', 'twig']
t₁: The image shows a snake from a side view, as the snake's body is visible from the side rather than directly facing the camera.
a₁: `Terminate("B")`

Q: Is the wind blowing the flag?
 A. Yes, B. No

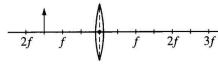
t₀: To determine if the wind is blowing the flag, I need to analyze the image for signs of movement or distortion in the flag.
a₀: `GetObjects(image-0)`
o₀: ['blue', 'flag', 'flag pole', 'fly', 'mast', 'pole', 'sky', 'wave', 'wind']
t₁: The presence of 'wind' and 'wave' in the detected objects suggests that the flag is indeed being blown by the wind.
a₁: `Terminate("A")`

Q: Which type of eggs are in the corner of the picture?
 A. Quail eggs, B. Chicken eggs

t₀: To determine the type of eggs in the corner of the image, I need to analyze the visual characteristics of the eggs.
a₀: `GetObjects(image-0)`
o₀: ['bakery', 'bread', 'butter', 'table', 'dip', 'dough', 'flour', 'food', 'hummus', 'pastry', 'platter', 'tray', 'type']
t₁: The object detection did not identify the eggs specifically. However, based on the visual characteristics of the eggs in the image, they appear to be quail eggs due to their small size.
a₁: `Terminate("A")`

Q: An object is placed at a distance of $1.5f$ from a converging lens of focal length f , as shown. What type of image is formed and what is its size relative to the object? Type/Size
 A. Virtual/Larger
 B. Virtual/Same size
 C. Real/Smaller
 D. Real/Larger

t₀: To determine the type and size of the image formed, we need to analyze the position of the object relative to the focal length., "actions": [{"name": "", "arguments": {"query": ""}}}
a₀: `QueryLanguageModel("What type of image is formed when an object is placed at a distance of 1.5f from a converging lens of focal length f?")`
o₀: When an object is placed at a distance of 1.5 times the focal length (1.5f) from a converging lens, the lens forms a real, inverted, and magnified image... Additionally, to find the magnification $\frac{m}{m}$, we use $m = \frac{1}{1.5} = \frac{1}{1.5}$
t₁: The image is real and inverted, and the magnification indicates that the image size is larger than the object.
a₁: `Terminate("A")`



Q: Who created this image?
 A. PAUL CEZANN, B. EDVARD MUNCH, C. EDGAR DEGAS, D. ANDY WARHOL

t₀: To determine the creator of the artwork in image-0, I need to analyze its style and characteristics.
a₀: `QueryLanguageModel("Who created the painting with a dark, expressive style often associated with emotional intensity?")`
o₀: The painting style you're describing sounds like it could be associated with several artists, but one of the most prominent figures known for a dark, expressive style and emotional intensity is Edvard Munch. His famous painting "The Scream" epitomizes such characteristics...
t₁: Based on the description of a dark, expressive style often associated with emotional intensity, Edvard Munch is the most likely creator.
a₁: `Terminate("B")`

Q: The picture shows the microscopy of Mr Tan's gastric tumour. Which of the following statements is CORRECT?
 A. The findings show an adenoma
 B. The findings show a squamous cell carcinoma
 C. The findings show intestinal type adenocarcinoma
 D. The findings show diffuse signet ring cell adenocarcinoma The Flemish city of Bruges.

t₀: To determine the correct statement, I need to analyze the microscopic features in the image.
a₀: `QueryLanguageModel("What are the microscopic features of adenoma, squamous cell carcinoma, intestinal type adenocarcinoma, and diffuse signet ring cell adenocarcinoma?")`
o₀: The microscopic features of the mentioned conditions are distinct and reflective of their pathological origins: 1. **Adenoma**: - **Architectural Features**: Typically show glandular structures with some degree of dysplasia... 3. **Intestinal Type Adenocarcinoma**: - **Architectural Features**: Gland-forming neoplasms with varying degrees of differentiation...
t₁: The image shows a gastric tumour with specific architectural and cellular features. Based on the options, diffuse signet ring cell adenocarcinoma is known for its distinct signet ring cells, which may be present in the image.
a₁: `Terminate("D")`

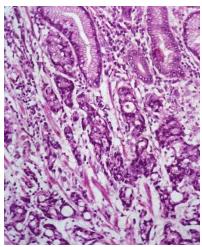


Figure 12: We present additional failure cases of LATTE.

Table 15: Detailed statistics of the LATTE-trace 293K dataset.

Original Dataset	Subset	Instance #	Max Image #	Avg Image #	Max Turn #	Avg Turn #
Cauldron	ai2d	694	2	1	6	2
	aokvqa	6322	5	1.1	7	2.1
	chartqa	4726	2	1	10	2.1
	cocoqa	13289	3	1.1	4	2
	dvqa	2158	2	1	7	2.5
	iconqa	3791	3	1.1	5	2.2
	infographic_vqa	3822	3	1	9	2.3
	mimic_cgd	6899	6	2.1	7	2.8
	nlvr2	9716	4	2.1	6	2.5
	ocrvqa	22991	2	1	7	2
	scienceqa	850	2	1	6	2.3
	st_vqa	11322	3	1	8	2
	tabmwp	14548	1	1	10	2.5
	tallyqa	16171	3	1.4	5	2.1
	textvqa	15475	5	1	6	2.1
Mantis	visual7w	4773	3	1.1	5	2.1
	vqarad	115	2	1	4	2.2
	vqav2	13394	5	1.2	6	2.1
	vsr	1864	2	1.2	4	2.1
	birds-to-words	742	4	2	5	2.7
	coinstuct	31773	8	2.3	8	2.2
	contrastive_caption	4296	8	3.6	6	2
	dreamsim	1738	3	3	3	2
	iconqa	6660	7	2.6	6	2.2
	imagecode	559	18	10.1	10	3.1
	lrv_multi	3401	9	3.3	6	2.2
	multi_vqa	2089	7	3.8	8	2.6
	nlvr2	5436	4	2	5	2.5
	spot-the-diff	2591	5	2.8	8	3
	nextqa	3057	15	8.2	9	2.3
	llava_665k_multi	77843	11	2.2	10	2.1
Total		293105	18	2.2	10	2.3

Table 16: Templates for programmatic data generation.

# of input images	Capabilities	Question Template	Action Template
1	Counting	How many {object} are there? Among {objects}, which is the most frequent object? Among {objects}, which object appears the least?	
	Counting, Attribute recognition	How many {attribute} {object} are there?	LocalizeObjects
	2D spatial reasoning	Among {objects}, which is on the most left side? Among {objects}, which is on the most right side? Among {objects}, which is on the most top side? Among {objects}, which is on the most bottom side?	
	3D spatial reasoning	Which of {objects} is closer? Which of {objects} is farther?	LocalizeObjects, EstimateRegionDepth x2 OR, EstimateObjectDepth x2
	Multi-image understanding	Which image has {object}?	
	Multi-image understanding, Counting	How many {object} are in these images?	
	Multi-image understanding, Counting	Which image has most {object}?	
	Multi-image understanding, Counting	Which image has least {object}?	LocalizeObjects x N
	Multi-image understanding, Attribute recognition	Which image has {attribute} {object}?	
	Multi-image understanding, Attribute recognition, Counting	How many {attribute} {object} in these images?	

Table 17: Additional inference and evaluation details.

Stage	Name	Value
Inference	do_sample	FALSE
	temperature	0
	max_new_tokens	2000
	max_consecutive_auto_reply	10
Evaluation	llm judge for multiple choice & yes/no questions	gpt-3.5-turbo-0125
	llm judge for short answer questions (i.e. MMVet, MathVista)	gpt-4-1106-preview
	llm judge max_new_tokens	2048
	llm judge retry	5

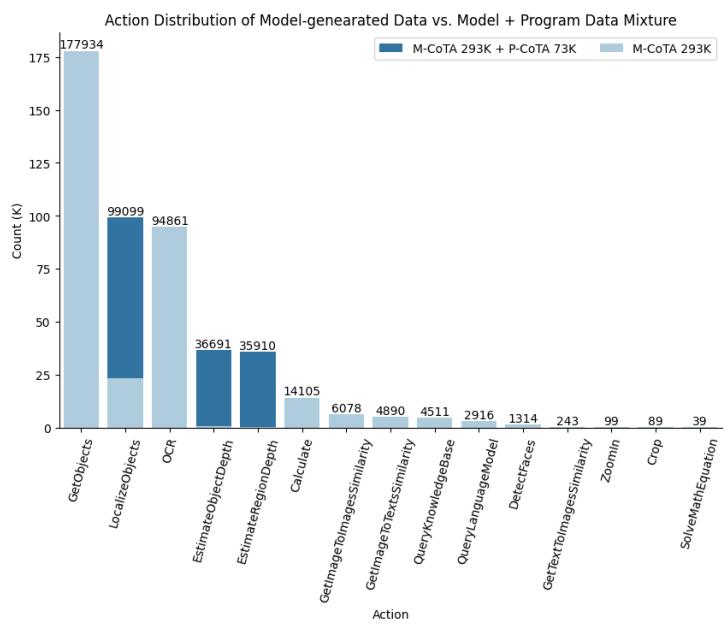


Figure 13: Action distribution of model-generated data vs. model and program data mixtures.

```

1  class BaseAction:
2      """
3          This is the Action class for agent to use.
4          Using this Action class to wrap APIs, tools, models as an Action of an agent
5      """
6
7      def __init__(
8          self,
9              id: int,
10             description: str = "",
11             args_spec: dict = {},
12             rets_spec: dict = {},
13             examples: List = []
14         ) -> None:
15             """
16                 the agent action should be connected with data and env
17             Args:
18                 id: the id of the action
19                 description: the description of the action
20                 args_spec: the specification of the arguments
21                 rets_spec: the specification of the returns
22                 examples: a list of examples of the action
23             """
24             self.name = self.__class__.__name__
25             self.id = id
26             self.description = description
27             self.args_spec = args_spec
28             self.rets_spec = rets_spec
29             self.examples = examples
30             self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
31
32     def __call__(self, **kwargs) -> str:
33         """
34             implement the Action as
35         """
36         raise NotImplementedError
37
38
39     class OCR(BaseAction):
40         def __init__(self, id) -> None:
41             description = "Extract texts from an image or return an empty string if no text is in the image. Note that the texts extracted may be incorrect or in the wrong order. It should be used as a reference only."
42             args_spec = {"image": "the image to extract texts from."}
43             rets_spec = {"text": "the texts extracted from the image."}
44             examples = [{"name": "OCR", "arguments": {"image": "image-0"}}]
45
46             super().__init__(
47                 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
48             )
49
50         def __call__(self, image, tool_version=LATEST_GPT_MODEL_ID):
51             if tool_version == "easyocr":
52                 import easyocr
53                 import io
54                 reader = easyocr.Reader(["en"]) # Load the OCR model into memory
55                 image = image_processing(image)
56                 if isinstance(image, str):
57                     # If image is a path, use it directly
58                     image_path_or_bytes = (
59                         image if os.path.exists(image) else get_full_path_data(image)
60                     )
61                 else:
62                     # If image is an Image object, convert it to a bytes stream
63                     buffer = io.BytesIO()
64                     image.save(buffer, format="JPEG")
65                     buffer.seek(0)
66                     image_path_or_bytes = buffer
67

```

```

68     result = reader.readtext(image_path_or_bytes)
69     result_text = [text for _, text, _ in result]
70     result_formatted = {"text": " ".join(result_text)}
71 else:
72     from openai import OpenAI
73     import base64
74     client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
75
76     def encode_image(image_path):
77         with open(image_path, "rb") as image_file:
78             return base64.b64encode(image_file.read()).decode('utf-8')
79
80     image_path = image_processing(image, return_path=True)
81     base64_image = encode_image(image_path)
82
83     response = client.chat.completions.create(
84         model=tool_version,
85         messages=[
86             {
87                 "role": "user",
88                 "content": [
89                     {"type": "text", "text": f"What are the texts in the image?"},
90                     {
91                         "type": "image_url",
92                         "image_url": {
93                             "url": f"data:image/jpeg;base64,{base64_image}",
94                         },
95                     },
96                 ],
97             },
98             ],
99             max_tokens=300,
100         )
101     result_formatted = {"text": response.choices[0].message.content}
102
103     return result_formatted
104
105
106 class GetObjects(BaseAction):
107     def __init__(self, id) -> None:
108         description = "Using this function to get objects in an image."
109         args_spec = {"image": "the image to get objects from."}
110         rets_spec = {"objects": "the objects detected in the image."}
111         examples = [{"name": "GetObjects", "arguments": {"image": "image-0"}}]
112
113         super().__init__(
114             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
115         )
116
117     def __call__(self, image, tool_version="https://huggingface.co/xinyu1205/recognize-anything-
118     plus-model/resolve/main/ram_plus_swin_large_14m.pth?download=true"):
119         from ram.models import ram_plus
120         from ram import get_transform, inference_ram_openset as inference
121
122         model_path_or_url = tool_version
123         image_size = 384
124         transform = get_transform(image_size=image_size)
125
126         vit_size = "swin_l"
127         # load model
128         model = ram_plus(pretrained=model_path_or_url,
129                           image_size=image_size,
130                           vit=vit_size)
131         model.eval()
132         model = model.to(self.device)
133         image = image_processing(image)
134         image = transform(image).unsqueeze(0).to(self.device)
135         tags = inference(image, model)
136         objs = tags.split(" | ")

```

```

136     return {"objects": objs}
137
138
139 class VisualizeRegionsOnImage(BaseAction):
140     def __init__(self, id) -> None:
141         description = "Using this function to label regions on an image."
142         args_spec = {"image": "the image to label.",
143                      "regions": "the regions to label on the image, where each region is
144                      represented by a dictionary with the region's bounding box and label text (can be empty string
145                      ).",
146                      "color": "an optional argument that specifies the color of the bounding box."
147                  }
148         rets_spec = {"image": "the image with regions labeled."}
149         examples = [
150             {"name": "VisualizeRegionsOnImage", "arguments": {"image": "image-0", "regions": [{"label": "", "bbox": [0.3, 0.2, 0.5, 0.4]}]}},
151             {"name": "VisualizeRegionsOnImage", "arguments": {"image": "image-0", "regions": [{"label": "cat", "bbox": [0.3, 0.2, 0.5, 0.4]}], "color": "red"}}
152         ]
153
154         super().__init__(
155             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
156         )
157
158     def __call__(self, image, regions: List[Region], color='yellow', width=4):
159         image = image_processing(image)
160         text_color = 'black'
161         W,H = image.size
162         img1 = image.copy()
163         draw = ImageDraw.Draw(img1)
164         font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSansMono-Bold.ttf', 16)
165         for i, obj in enumerate(regions):
166             bbox = obj['bbox']
167             bbox = bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H
168             draw.rectangle(bbox, outline=color, width=width)
169             x1, y1, x2, y2 = bbox
170             label = obj['label'] if "label" in obj else ""
171             w,h = font.getsize(label)
172             if x1 + w > W or y2 + h > H:
173                 draw.rectangle((x1, y2 - h, x1 + w, y2), fill=color)
174                 draw.text((x1, y2-h),label,fill=text_color,font=font)
175             else:
176                 draw.rectangle((x1, y2, x1 + w, y2 + h), fill=color)
177                 draw.text((x1, y2),label,fill=text_color,font=font)
178         return {"image": img1}
179
180
181 class LocalizeObjects(BaseAction):
182     def __init__(self, id) -> None:
183         description = "Localize one or multiple objects/regions with bounding boxes. This tool may
184         output objects that don't exist or miss objects that do. You should use the output only as
185         weak evidence for reference. When answering questions about the image, you should double-check
186         the detected objects. You should be especially cautious about the total number of regions
187         detected, which can be more or less than the actual number."
188         args_spec = {
189             "image": "the image to localize objects/regions in.",
190             "objects": "a list of object names to localize. e.g. ['dog', 'cat', 'person']. the
191             model might not be able to detect rare objects or objects with complex descriptionriptions."
192         }
193         rets_spec = {"image": "the image with objects localized and visualized on it.", "regions": "
194             the regions of interests localized in the image, where each region is represented by a
195             dictionary with the region's label text, bounding box and confidence score. The confidence
196             score is between 0 and 1, where 1 means the model is very confident. Note that both the
197             bounding boxes and confidence scores can be unreliable and should only be used as reference."}
198         examples = [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["dog", "cat"]}}]
199
200         super().__init__(

```

```

190         id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
191     examples
192     )
193
194     def __call__(self, image, objects: List[str]):
195         from groundingdino.util.inference import load_model, load_image, predict, annotate
196         import cv2
197         text = ". ".join(objects)
198         model = load_model("/user/mma/mma/GroundingDINO/groundingdino/config/
199         GroundingDINO_SwinT_OGC.py",
200                         "/user/mma/mma/GroundingDINO/weights/groundingdino_swint_ogc.pth",
201                         device=self.device)
202         BOX_THRESHOLD = 0.35
203         TEXT_THRESHOLD = 0.25
204         image_path = image_processing(image, return_path=True)
205         original_image = image_processing(image)
206         image_source, image = load_image(image_path)
207
208         boxes, logits, phrases = predict(
209             model=model,
210             image=image,
211             caption=text,
212             box_threshold=BOX_THRESHOLD,
213             text_threshold=TEXT_THRESHOLD
214         )
215
216         objects = []
217         obj_cnt = {}
218         for i in range(len(boxes)):
219             xyxy = box_convert(boxes=boxes[i], in_fmt="cxcywh", out_fmt="xyxy").numpy()
220             bbox = [round(val, 2) for val in list(xyxy)]
221             score = round(logits[i].item(), 2)
222             phrase = phrases[i]
223             obj_cnt[phrase] = obj_cnt.get(phrase, 0) + 1
224             phrase = f"{phrase}-{obj_cnt[phrase]}" if obj_cnt[phrase] > 1 else phrase
225             objects.append({"label": phrase, "bbox": bbox, "score": score})
226         visualize = VisualizeRegionsOnImage(0)
227         results = visualize(image=original_image, regions=objects)
228         tagged_image = results["image"]
229         results_formatted = {"regions": objects, "image": tagged_image}
230         return results_formatted
231
232     class Crop(BaseAction):
233         def __init__(self, id) -> None:
234             description = "Crop an image with the bounding box. It labels the cropped region with a
235             bounding box and crops the region with some margins around the bounding box to help with
236             contextual understanding of the region."
237             args_spec = {
238                 "image": "the image to crop.",
239                 "bbox": "the bbox to crop. It should be a list of [left, top, right, bottom], where
240                 each value is a float between 0 and 1 to represent the percentage of the image width/height
241                 and how far it is from the top left corner at [0, 0].",
242             }
243             rets_spec = {"image": "the cropped image."}
244             examples = [{"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21, 0.58,
245             0.46]}]}
246
247             super().__init__(
248                 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
249             examples
250             )
251
252     def __call__(self, image, bbox):
253         image = image_processing(image)
254
255         if isinstance(bbox, str):
256             try:
257                 bbox = ast.literal_eval(bbox)
258             except:

```

```

252     bbox = []
253
254     use_percent = (all(x <= 1.0 for x in bbox))
255     if not use_percent:
256         raise ValueError("Bounding box coordinates must be between 0 and 1.")
257
258     visualize = VisualizeRegionsOnImage(0)
259     results = visualize(image=image, regions=[{"label": "", "bbox": bbox}])
260     image = results["image"]
261
262     W, H = image.size
263     bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
264     bbox = expand_bbox(bbox, image.size)
265     out_img = image.crop(bbox)
266     return {"image": out_img}
267
268
269 class ZoomIn(BaseAction):
270     def __init__(self, id) -> None:
271         description = "Zoom in on a region of the input image. This tool first crops the specified region from the image with the bounding box and then resizes the cropped region to create the zoom effect. It also adds some margins around the cropped region to help with contextual understanding of the region."
272         args_spec = {
273             "image": "the image to zoom in on.",
274             "bbox": "The bbox should be a list of [left, top, right, bottom], where each value is a float between 0 and 1 to represent the percentage of the image width/height and how far it is from the top left corner at [0, 0].",
275             "zoom_factor": "the factor to zoom in by. It should be greater than 1.",
276         }
277         rets_spec = {"image": "the zoomed in image."}
278         examples = [
279             {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "zoom_factor": 2}},
280         ]
281
282         super().__init__(
283             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
284         )
285
286     def __call__(self, image, bbox, zoom_factor):
287         if zoom_factor <= 1:
288             raise ValueError("Zoom factor must be greater than 1 to zoom in")
289
290         image = image_processing(image)
291         use_percent = (all(x <= 1.0 for x in bbox))
292         if not use_percent:
293             raise ValueError("Bounding box coordinates must be between 0 and 1.")
294
295         crop = Crop(0)
296         cropped_image = crop(image, bbox)["image"]
297
298         W, H = cropped_image.size
299
300         # Calculate the size of the zoomed image
301         new_width = int(W * zoom_factor)
302         new_height = int(H * zoom_factor)
303
304         # Resize the cropped image to create the zoom effect
305         zoomed_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)
306         return {"image": zoomed_image}
307
308
309 class GetImageToImagesSimilarity(BaseAction):
310     def __init__(self, id) -> None:
311         description = "Get the similarity between one image and a list of other images. Note that this similarity score may not be accurate and should be used as a reference only."
312         args_spec = {
313             "image": "the reference image.",

```

```

314         "other_images": "the other images to compare to the reference image.",  

315     }  

316     rets_spec = {"similarity": "the CLIP similarity scores between the reference image and the  

317     other images.", "best_image_index": "the index of the most similar image."}  

318     examples = [  

319         {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0", "other_images":  

320         ["image-1", "image-2"]}}  

321     ]  

322  

323     super().__init__(  

324         id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples  

325     )  

326  

327     def __call__(self, image, other_images, tool_version='ViT-H-14-378-quickgelu',  

328     other_images_raw=None):  

329         import torch  

330         import open_clip  

331         original_images = other_images_raw  

332         model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='  

333         dfn5b')  

334         model.eval()  

335         image = image_processing(image)  

336         images = [image_processing(image) for image in other_images]  

337  

338         image = preprocess(image).unsqueeze(0)  

339         images = torch.stack([preprocess(image) for image in images])  

340  

341         with torch.no_grad(), torch.cuda.amp.autocast():  

342             image1_features = model.encode_image(image)  

343             image2_features = model.encode_image(images)  

344  

345             image1_features /= image1_features.norm(dim=-1, keepdim=True)  

346             image2_features /= image2_features.norm(dim=-1, keepdim=True)  

347  

348             probs = image1_features @ image2_features.T  

349             sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]  

350             best_image_match = torch.argmax(probs).item()  

351             return {'similarity': sim_scores, "best_image_index": best_image_match, "best_image":  

352             original_images[best_image_match]}  

353  

354     class GetImageToTextsSimilarity(BaseAction):  

355         def __init__(self, id) -> None:  

356             description = "Get the similarity between one image and a list of texts. Note that this  

357             similarity score may not be accurate and should be used as a reference only."  

358             args_spec = {  

359                 "image": "the reference image.",  

360                 "texts": "a list of texts to compare to the reference image.",  

361             }  

362             rets_spec = {"similarity": "the CLIP similarity between the image and the texts.", "  

363             best_text_index": "the index of the most similar text.", "best_text": "the most similar text."  

364             }  

365             examples = [  

366                 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "texts": ["a  

367                 cat", "a dog"]}}  

368             ]  

369  

370             super().__init__(  

371                 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples  

372             )  

373  

374     def __call__(self, image, texts, tool_version='ViT-H-14-378-quickgelu'):  

375         import torch  

376         import open_clip  

377  

378         model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='  

379         dfn5b')

```

```

371     model.eval() # model in train mode by default, impacts some models with BatchNorm or
372     stochastic depth active
373     tokenizer = open_clip.get_tokenizer(tool_version)
374
375     image = preprocess(image_processing(image)).unsqueeze(0)
376     text = tokenizer(texts)
377
378     with torch.no_grad(), torch.cuda.amp.autocast():
379         image_features = model.encode_image(image)
380         text_features = model.encode_text(text)
381         image_features /= image_features.norm(dim=-1, keepdim=True)
382         text_features /= text_features.norm(dim=-1, keepdim=True)
383
384         probs = image_features @ text_features.T
385         sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]
386         best_text_match = torch.argmax(probs).item()
387         return {'similarity': sim_scores, "best_text_index": best_text_match, "best_text": texts[best_text_match]}
388
389 class GetTextToImagesSimilarity(BaseAction):
390     def __init__(self, id) -> None:
391         description = "Get the similarity between one text and a list of images. Note that this
392         similarity score may not be accurate and should be used as a reference only."
393         args_spec = {
394             "text": "the reference text.",
395             "images": "a list of images to compare to the reference text.",
396         }
397         rets_spec = {"similarity": "the CLIP similarity between the image and the texts.", "
398         best_image_index": "the index of the most similar image."}
399         examples = [
400             {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and white cat", "
401             images": ["image-0", "image-1"]}}
402         ]
403
404         super().__init__(
405             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
406             examples
407         )
408
409     def __call__(self, text, images, tool_version='ViT-H-14-378-quickgelu'):
410         import torch
411         import open_clip
412         original_images = images
413         model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='
414             dfn5b')
415         model.eval() # model in train mode by default, impacts some models with BatchNorm or
416         stochastic depth active
417         tokenizer = open_clip.get_tokenizer(tool_version)
418
419         text = tokenizer([text])
420         images = [image_processing(image) for image in images]
421         images = torch.stack([preprocess(image) for image in images])
422
423         with torch.no_grad(), torch.cuda.amp.autocast():
424             image_features = model.encode_image(images)
425             text_features = model.encode_text(text)
426             image_features /= image_features.norm(dim=-1, keepdim=True)
427             text_features /= text_features.norm(dim=-1, keepdim=True)
428
429             probs = text_features @ image_features.T
430             sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]
431             best_image_match = torch.argmax(probs).item()
432             return {'similarity': sim_scores, "best_image_index": best_image_match, "best_image": "
433                 original_images[best_image_match]}
434
435 class EstimateObjectDepth(BaseAction):
436     def __init__(self, id) -> None:

```

```

431     description = "Estimate the depth of an object in an image using DepthAnything model. It
432     returns an estimated depth value of the object specified by the a brief text description. The
433     smaller the value is, the closer the object is to the camera, and the larger the farther. This
434     tool may help you to better reason about the spatial relationship, like which object is
435     closer to the camera."
436     args_spec = {
437         "image": "the image to get the depth from.",
438         "object": "a short description of the object to get the depth from.",
439     }
440     rets_spec = {"depth": "the estimated depth of the object."}
441     examples = [
442         {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object": "a black
443         cat"}},
444     ]
445
446     super().__init__(
447         id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
448         examples
449     )
450
451     def __call__(self, image, object, mode="mean"):
452         action = LocalizeObjects(0)
453         results = action(image=image, objects=[object])
454         if len(results["regions"]) == 0:
455             return {"depth": "Object not found."}
456         else:
457             # use the best match object's bbox
458             best_match = np.argmax([region["score"] for region in results["regions"]])
459             bbox = results["regions"][best_match]["bbox"]
460             depth_estimator = EstimateRegionDepth(0)
461             return depth_estimator(image=image, bbox=bbox, mode=mode)
462
463
464     class EstimateRegionDepth(BaseAction):
465         def __init__(self, id) -> None:
466             description = "Estimate the depth of a region in an image using DepthAnything model. It
467             returns an estimated depth value of the region specified by the input bounding box. The
468             smaller the value is, the closer the region is to the camera, and the larger the farther. This
469             tool may help you to better reason about the spatial relationship, like which object is
470             closer to the camera."
471             args_spec = {
472                 "image": "the image to get the depth from.",
473                 "bbox": "the bbox of the region to get the depth from. It should be a list of [left,
474                 top, right, bottom], where each value is a float between 0 and 1 to represent the percentage
475                 of the image width/height and how far it is from the top left corner at [0, 0].",
476                 # "mode": "the mode to get the depth. It should be one of 'center' or 'average'. 'center'
477                 # returns the depth of the center of the region. 'average' returns the average depth of
478                 # the region.",
479             }
480             rets_spec = {"depth": "the estimated depth of the region."}
481             examples = [
482                 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox": [0.3, 0.2,
483                 0.5, 0.4]}},
484             ]
485             super().__init__(
486                 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
487                 examples
488             )
489
490             def __call__(self, image, bbox: List[str], mode="mean"):
491                 import numpy as np
492                 from scipy import stats
493                 image = image_processing(image)
494                 depth_model = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-
495                 Small-hf", device=self.device)
496                 result = depth_model(image)
497                 depth = result["predicted_depth"][0].numpy()
498                 depth = depth.max() - depth # smaller values in depth map are farther from the camera so
499                 # reversing the values
500                 H, W = depth.shape

```

```

483     use_percent = all(x <= 1.0 for x in bbox)
484     if not use_percent:
485         raise ValueError("Bounding box coordinates must be between 0 and 1.")
486     bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
487     if mode == "center":
488         x, y = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
489         x, y = int(x), int(y)
490         depth_value = depth[y, x]
491     elif mode == "mean":
492         x1, y1, x2, y2 = bbox
493         x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
494         depth_value = np.mean(depth[y1:y2, x1:x2])
495     elif mode == "mode":
496         x1, y1, x2, y2 = bbox
497         x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
498         mode_result = stats.mode(depth[y1:y2, x1:x2])
499         depth_value = mode_result.mode[0]
500     else:
501         raise NotImplementedError(f"Depth mode {mode} is not supported.")
502     return {"depth": round(depth_value, 2)}
503
504
505
506 class Calculate(BaseAction):
507     def __init__(self, id) -> None:
508         description = "Calculate a math expression."
509         args_spec = {"expression": "the math expression to calculate."}
510         rets_spec = {"result": "the result of the math expression."}
511         examples = [
512             {"name": "Calculate", "arguments": {"expression": "2 + 2"}},
513             {"name": "Calculate", "arguments": {"expression": "4*9*84"}},
514             {"name": "Calculate", "arguments": {"expression": "5-4/2"}},
515         ]
516
517         super().__init__(
518             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
519             examples
520         )
521
522     def __call__(self, expression):
523         result = eval(expression)
524         return {"result": result}
525
526
527 class SolveMathEquation(BaseAction):
528     def __init__(self, id) -> None:
529         description = "Using this action to solve a math problem with WolframAlpha."
530         args_spec = {"query": "a question that involves a math equation to be solved."}
531         rets_spec = {"result": "the result of the query."}
532         examples = [
533             {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}},
534             {"name": "SolveMathEquation", "arguments": {"query": "x^2 + 2x + 1 = 0, what is x?"}},
535         ]
536
537         self.client = wolframalpha.Client(os.getenv("WOLFRAM_ALPHA_API_KEY"))
538         super().__init__(
539             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
540             examples
541         )
542
543     def __call__(self, query):
544         from urllib.error import HTTPError
545
546         is_success = False
547
548         res = self.client.query(query)
549
550         if not res["@success"]:
551             return (
552                 "Your Wolfram query is invalid. Please try a new query for wolfram.",

```

```

551         is_success,
552     )
553     assumption = next(res.pods).text
554     answer = ""
555     for result in res["pod"]:
556         if result["@title"] == "Solution":
557             answer = result["subpod"]["plaintext"]
558         if result["@title"] == "Results" or result["@title"] == "Solutions":
559             for i, sub in enumerate(result["subpod"]):
560                 answer += f"ans {i}: " + sub["plaintext"] + "\n"
561             break
562     if answer == "":
563         answer = next(res.results).text
564
565     if answer is None or answer == "":
566         return {"result": "No good Wolfram Alpha Result was found"}
567     else:
568         return {"result": answer}
569
570
571 class DetectFaces(BaseAction):
572     def __init__(self, id) -> None:
573         description = "Using this function to detect faces in an image."
574         args_spec = {"image": "the image to detect faces from."}
575         rets_spec = {"image": "the image with objects localized and visualized on it.", "regions": "the regions of the faces detected, where each region is represented by a dictionary with the region's label text and bounding box."}
576         examples = [
577             {"name": "DetectFaces", "arguments": {"image": "image-0"}}
578         ]
579         import face_detection
580         ckpt_path = f"/root/.cache/torch/hub/checkpoints/WIDERFace_DSFD_RES152.pth"
581         if not os.path.exists(ckpt_path):
582             from huggingface_hub import hf_hub_download
583             hf_hub_download(repo_id="user/mma", filename="WIDERFace_DSFD_RES152.pth", local_dir="/root/.cache/torch/hub/checkpoints/")
584
585         self.model = face_detection.build_detector(
586             "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3)
587         super().__init__(
588             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
589         )
590
591     def enlarge_face(self, box, W, H, f=1.5):
592         x1, y1, x2, y2 = box
593         w = int((f-1)*(x2-x1)/2)
594         h = int((f-1)*(y2-y1)/2)
595         x1 = max(0, x1-w)
596         y1 = max(0, y1-h)
597         x2 = min(W, x2+w)
598         y2 = min(H, y2+h)
599         return [x1, y1, x2, y2]
600
601     def __call__(self, image):
602         import numpy as np
603         image = image_processing(image)
604
605         with torch.no_grad():
606             faces = self.model.detect(np.array(image))
607
608         W, H = image.size
609         objs = []
610         for i, box in enumerate(faces):
611             x1, y1, x2, y2, c = [int(v) for v in box.tolist()]
612             normalized_bbox = [x1/W, y1/H, x2/W, y2/H]
613             objs.append(dict(
614                 bbox=[round(num, 2) for num in normalized_bbox],
615                 label=f'face {i+1}' if i > 0 else 'face',
616             ))

```

```

617     visualize = VisualizeRegionsOnImage(0)
618     results = visualize(image=image, regions=objs)
619     tagged_image = results["image"]
620     results_formatted = {"regions": objs, "image": tagged_image}
621     return results_formatted
622
623
624 class QueryLanguageModel(BaseAction):
625     def __init__(self, id) -> None:
626         description = "Using this function to ask a language model a question."
627         args_spec = {"query": "the question to ask the language model."}
628         rets_spec = {"result": "the response from the language model."}
629         examples = [
630             {"name": "QueryLanguageModel", "arguments": {"query": "What is the capital of France?"}}
631         ],
632         super().__init__(
633             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
634         )
635
636     def __call__(self, query):
637         from openai import OpenAI
638         client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
639
640         response = client.chat.completions.create(
641             model=LATEST_GPT_MODEL_ID,
642             messages=[
643                 {
644                     "role": "user",
645                     "content": [
646                         {"type": "text", "text": f"{query}"}
647                     ],
648                 }
649             ],
650             max_tokens=300,
651         )
652
653         return {'result': response.choices[0].message.content}
654
655
656 class QueryKnowledgeBase(BaseAction):
657     def __init__(self, id) -> None:
658         description = "Using this function to query a knowledge base."
659         args_spec = {"query": "the query to search in a knowledge base such as wikipedia."}
660         rets_spec = {"result": "the answer from the knowledge base."}
661         examples = [
662             {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}}
663         ]
664
665         super().__init__(
666             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples
667         )
668
669     def __call__(self, query, lang="en", sentences=2, knowledge_base="wikipedia"):
670         if knowledge_base == "wikipedia":
671             # Set the language for Wikipedia (default is 'en' for English)
672             wikipedia.set_lang(lang)
673
674             # Search Wikipedia for pages related to the query
675             search_results = wikipedia.search(query)
676             if not search_results:
677                 return {"No results found."}
678
679             # Get the summary of the first search result
680             page = wikipedia.page(search_results[0])
681             summary = wikipedia.summary(page.title, sentences=sentences)
682             result = {
683                 "title": page.title,

```

```

684         "url": page.url,
685         "summary": summary
686     }
687     return result
688 else:
689     raise NotImplementedError(f"Knowledge base {knowledge_base} is not supported.")
690
691
692 class Terminate(BaseAction):
693     def __init__(self, id) -> None:
694         description = "Using this function to finish the task."
695         args_spec = {"answer": "the final answer."}
696         rets_spec = {"answer": "the final answer."}
697         examples = [{"name": "Terminate", "arguments": {"answer": "yes"}}]
698
699         super().__init__(
700             id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
701             examples
702         )
703
704     def __call__(self, answer):
705         return {"answer": answer}

```

Listing 1: Python implementation of all actions

```

1 [BEGIN OF GOAL]
2 You are a helpful assistant, and your goal is to solve the # USER REQUEST #. You can either rely
   on your own capabilities or perform actions with external tools to help you. A list of all
   available actions are provided to you in the below.
3 [END OF GOAL]
4
5 [BEGIN OF ACTIONS]
6 Name: OCR
7 Description: Extract texts from an image or return an empty string if no text is in the image.
   Note that the texts extracted may be incorrect or in the wrong order. It should be used as a
   reference only.
8 Arguments: {'image': 'the image to extract texts from.'}
9 Returns: {'text': 'the texts extracted from the image.'}
10 Examples:
11 {"name": "OCR", "arguments": {"image": "image-0"}}
12
13 Name: LocalizeObjects
14 Description: Localize one or multiple objects/regions with bounding boxes. This tool may output
   objects that don't exist or miss objects that do. You should use the output only as weak
   evidence for reference. When answering questions about the image, you should double-check the
   detected objects. You should be especially cautious about the total number of regions detected
   , which can be more or less than the actual number.
15 Arguments: {'image': 'the image to localize objects/regions in.', 'objects': "a list of object
   names to localize. e.g. ['dog', 'cat', 'person']. the model might not be able to detect rare
   objects or objects with complex descriptions."}
16 Returns: {'image': 'the image with objects localized and visualized on it.', 'regions': "the
   regions of interests localized in the image, where each region is represented by a dictionary
   with the region's label text, bounding box and confidence score. The confidence score is
   between 0 and 1, where 1 means the model is very confident. Note that both the bounding boxes
   and confidence scores can be unreliable and should only be used as reference."}
17 Examples:
18 {"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["dog", "cat"]}}
19
20 Name: GetObjects
21 Description: Using this function to get objects in an image.
22 Arguments: {'image': 'the image to get objects from.'}
23 Returns: {'objects': 'the objects detected in the image.'}
24 Examples:
25 {"name": "GetObjects", "arguments": {"image": "image-0"}}
26
27 Name: EstimateRegionDepth
28 Description: Estimate the depth of a region in an image using DepthAnything model. It returns an
   estimated depth value of the region specified by the input bounding box. The smaller the value
   is, the closer the region is to the camera, and the larger the farther. This tool may help
   you to better reason about the spatial relationship, like which object is closer to the camera
   .
29 Arguments: {'image': 'the image to get the depth from.', 'bbox': 'the bbox of the region to get
   the depth from. It should be a list of [left, top, right, bottom], where each value is a float
   between 0 and 1 to represent the percentage of the image width/height and how far it is from
   the top left corner at [0, 0].'}
30 Returns: {'depth': 'the estimated depth of the region.'}
31 Examples:
32 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox": [0.3, 0.2, 0.5, 0.4]}}
33
34 Name: EstimateObjectDepth
35 Description: Estimate the depth of an object in an image using DepthAnything model. It returns an
   estimated depth value of the object specified by the a brief text description. The smaller the
   value is, the closer the object is to the camera, and the larger the farther. This tool may
   help you to better reason about the spatial relationship, like which object is closer to the
   camera.
36 Arguments: {'image': 'the image to get the depth from.', 'object': 'a short description of the
   object to get the depth from.'}
37 Returns: {'depth': 'the estimated depth of the object.'}
38 Examples:
39 {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object": "a black cat"}}
40
41 Name: Crop
42 Description: Crop an image with the bounding box. It labels the cropped region with a bounding box
   and crops the region with some margins around the bounding box to help with contextual
   understanding of the region.

```

```

43 Arguments: {'image': 'the image to crop.', 'bbox': 'the bbox to crop. It should be a list of [left, top, right, bottom], where each value is a float between 0 and 1 to represent the percentage of the image width/height and how far it is from the top left corner at [0, 0].'}
44 Returns: {'image': 'the cropped image.'}
45 Examples:
46 {"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21, 0.58, 0.46]}}
47
48 Name: ZoomIn
49 Description: Zoom in on a region of the input image. This tool first crops the specified region from the image with the bounding box and then resizes the cropped region to create the zoom effect. It also adds some margins around the cropped region to help with contextual understanding of the region.
50 Arguments: {'image': 'the image to zoom in on.', 'bbox': 'The bbox should be a list of [left, top, right, bottom], where each value is a float between 0 and 1 to represent the percentage of the image width/height and how far it is from the top left corner at [0, 0].', 'zoom_factor': 'the factor to zoom in by. It should be greater than 1.'}
51 Returns: {'image': 'the zoomed in image.'}
52 Examples:
53 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "zoom_factor": 2}}
54
55 Name: QueryLanguageModel
56 Description: Using this function to ask a language model a question.
57 Arguments: {'query': 'the question to ask the language model.'}
58 Returns: {'result': 'the response from the language model.'}
59 Examples:
60 {"name": "QueryLanguageModel", "arguments": {"query": "What is the capital of France?"}}
61
62 Name: GetImageToImagesSimilarity
63 Description: Get the similarity between one image and a list of other images. Note that this similarity score may not be accurate and should be used as a reference only.
64 Arguments: {'image': 'the reference image.', 'other_images': 'the other images to compare to the reference image.'}
65 Returns: {'similarity': 'the CLIP similarity scores between the reference image and the other images.', 'best_image_index': 'the index of the most similar image.'}
66 Examples:
67 {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0", "other_images": ["image-1", "image-2"]}}
68
69 Name: GetImageToTextsSimilarity
70 Description: Get the similarity between one image and a list of texts. Note that this similarity score may not be accurate and should be used as a reference only.
71 Arguments: {'image': 'the reference image.', 'texts': 'a list of texts to compare to the reference image.'}
72 Returns: {'similarity': 'the CLIP similarity between the image and the texts.', 'best_text_index': 'the index of the most similar text.', 'best_text': 'the most similar text.'}
73 Examples:
74 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "texts": ["a cat", "a dog"]}}
75
76 Name: GetTextToImagesSimilarity
77 Description: Get the similarity between one text and a list of images. Note that this similarity score may not be accurate and should be used as a reference only.
78 Arguments: {'text': 'the reference text.', 'images': 'a list of images to compare to the reference text.'}
79 Returns: {'similarity': 'the CLIP similarity between the image and the texts.', 'best_image_index': 'the index of the most similar image.'}
80 Examples:
81 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and white cat", "images": ["image-0", "image-1"]}}
82
83 Name: DetectFaces
84 Description: Using this function to detect faces in an image.
85 Arguments: {'image': 'the image to detect faces from.'}
86 Returns: {'image': 'the image with objects localized and visualized on it.', 'regions': "the regions of the faces detected, where each region is represented by a dictionary with the region's label text and bounding box."}
87 Examples:
88 {"name": "DetectFaces", "arguments": {"image": "image-0"}}
89

```

```

90 Name: QueryKnowledgeBase
91 Description: Using this function to query a knowledge base.
92 Arguments: {'query': 'the query to search in a knowledge base such as wikipedia.'}
93 Returns: {'result': 'the answer from the knowledge base.'}
94 Examples:
95 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}}
96
97 Name: Calculate
98 Description: Calculate a math expression.
99 Arguments: {'expression': 'the math expression to calculate.'}
100 Returns: {'result': 'the result of the math expression.'}
101 Examples:
102 {"name": "Calculate", "arguments": {"expression": "2 + 2"}}
103 {"name": "Calculate", "arguments": {"expression": "4*9*84"}}
104 {"name": "Calculate", "arguments": {"expression": "5-4/2"}}
105
106 Name: SolveMathEquation
107 Description: Using this action to solve a math problem with WolframAlpha.
108 Arguments: {'query': 'a question that involves a math equation to be solved.'}
109 Returns: {'result': 'the result of the query.'}
110 Examples:
111 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}}
112 {"name": "SolveMathEquation", "arguments": {"query": "x^2 + 2x + 1 = 0, what is x?"}}
113
114 Name: Terminate
115 Description: Using this function to finish the task.
116 Arguments: {'answer': 'the final answer.'}
117 Returns: {'answer': 'the final answer.'}
118 Examples:
119 {"name": "Terminate", "arguments": {"answer": "yes"}}
120
121 [END OF ACTIONS]
122
123 [BEGIN OF TASK INSTRUCTIONS]
124 1. You must only select actions from # ACTIONS #.
125 2. You can only call one action at a time.
126 3. If no action is needed, please make actions an empty list (i.e. ''actions'': []).
127 4. You must always call Terminate with your final answer at the end.
128 [END OF TASK INSTRUCTIONS]
129
130 [BEGIN OF FORMAT INSTRUCTIONS]
131 Your output should be in a strict JSON format as follows:
132 {"thought": "the thought process, or an empty string", "actions": [{"name": "action1", "arguments": {"argument1": "value1", "argument2": "value2"}}]}
133 [END OF FORMAT INSTRUCTIONS]
134
135 [BEGIN OF EXAMPLES]:
136 # USER REQUEST #:
137 In image-0, Which of the two objects on the plate is the biggest?
138 A. The pile of scrambled eggs is the biggest.
139 B. The strawberries are the biggest object.
140 Please answer directly with only the letter of the correct option and nothing else.
141 # RESPONSE #:
142 {"thought": "To determine which of the two objects on the plate is larger, I need to analyze the size of the scrambled eggs, and the strawberries", "actions": [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["scrambled eggs", "strawberries"]}]}}
143 OBSERVATION:
144 {"image": "image-1", "regions": [{"label": "eggs", "bbox": [0.5, 0.6, 0.6, 0.8], "score": 0.85}, {"label": "strawberries", "bbox": [0.4, 0.5, 0.45, 0.7], "score": 0.54}]}
145 {"thought": "To calculate the area of a bounding box, we can use the formula: area = (x_max - x_min) * (y_max - y_min). We first get the area of the scrambled eggs.", "actions": [{"name": "Calculate", "arguments": {"expression": "(0.6-0.5) * (0.8-0.6)"}}]}
146 OBSERVATION:
147 {"result": "0.02"}
148 {"thought": "Then, we also calculate the area of the strawberries.", "actions": [{"name": "Calculate", "arguments": {"expression": "(0.45-0.4) * (0.7-0.5)"}}]}
149 OBSERVATION:
150 {"result": "0.01"}
151 {"thought": "Since 0.02 > 0.01, it is apparent that the eggs cover a larger area within their bounding box.", "actions": [{"name": "Terminate", "arguments": {"answer": "A"}}]}
```

```

152 # USER REQUEST #:
153 Given the input image image-0, How many pedestrians are there in the image? Please answer
154     directly with a single word or number.
155 # RESPONSE #:
156 {"thought": "To determine the number of pedestrians, I need to first localize them on the image.", "actions": [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["person"]}}]}
157 OBSERVATION:
158 {"image": "image-1", "regions": [{"label": "person", "bbox": [0.77, 0.47, 0.79, 0.54], "score": 0.83}, {"label": "person-2", "bbox": [0.69, 0.49, 0.7, 0.52], "score": 0.43}]}
159 {"thought": "The LocalizeObjects action returns two regions for \"person\", but one of the regions has a lower confidence score. Upon a closer look at the output image image-1, we can see that there is actually only one pedestrian in the image.", "actions": [{"name": "Terminate", "arguments": {"answer": "1"}}]}
160
161 # USER REQUEST #:
162 Based on image-0, is the object on top bigger than the object below?
163 A. The object on the bottom is bigger.
164 B. The object on top is bigger.
165 C. Both objects are the same size.
166 Please answer directly with only the letter of the correct option and nothing else.
167 # RESPONSE #:
168 {"thought": "By looking at the image, we can see that both objects are game consoles of the same brand and size.", "actions": [{"name": "Terminate", "arguments": {"answer": "C"}}]}
169
170 # USER REQUEST #:
171 What is x in the image?
172 # RESPONSE #:
173 {"thought": "To get the result of the equation, I need to first extract the equation from the image.", "actions": [{"name": "OCR", "arguments": {"image": "image-0"}]}]}
174 OBSERVATION:
175 {"text": "x-2^3=0"}
176 {"thought": "The math equation is 'x-2^3=0', and I need to find x. I can solve it with a math-related tool.", "actions": [{"name": "SolveMathEquation", "arguments": {"query": "x-2^3=0, what is x?"}}]}
177 OBSERVATION:
178 {"result": "x = 8"}
179 {"thought": "As suggested in the last observation, the answer is 8.", "actions": [{"name": "Terminate", "arguments": {"answer": "8"}]}]}
180
181 [END OF EXAMPLES]

```

Listing 2: Model-based data generation system prompt

```

1 def GetObjects_template():
2     thought_templates = ["I need to check what objects are present in the {image_kw}.",
3                         "I need to analyze the {image_kw} for context.",
4                         "I need to identify the objects in the {image_kw}.",
5                         "To answer the question, let's first analyze the {image_kw}.",
6                         "To answer the question, analyzing the objects in the {image_kw} is
7     necessary."]
8     return thought_templates
9
10 def LocalizeObjects_template():
11     thought_templates = ["I need to analyze the positions of {objects} in the {image_kw}.",
12                         "I need to analyze the locations of {objects} in the {image_kw}.",
13                         "I need to localize the {objects} based on the {image_kw}.",
14                         "I'll identify the positions of {objects} in the {image_kw}.",
15                         "I need to determine the positions of {objects} by analyzing the {image_kw
16     }."]
17     return thought_templates
18
19 def EstimateObjectDepth_template():
20     thought_templates = ["I should estimate the depth of {object} to determine whether it is
21     closer or farther.",
22                         "I will estimate the depth of {object}.",
23                         "I need to estimate the depth for {object} to make a comparison.",
24                         "To determine how far {object} is, I need to evaluate the distance to it.
25     ",
26                         "I now need to estimate the depth for {object}."]
27     return thought_templates
28
29
30 def EstimateRegionDepth_template():
31     thought_templates = ["I should estimate the objects' depths to determine which one is closer.",
32
33                         "I need to estimate the region's depth in the image.",
34                         "I need to determine the depths of the detected objects based on their
35     positions.",
36                         "I need to estimate the depth of the objects to make a comparison.",
37                         "To determine the relative proximity of the objects in the image, I need
38     to estimate the depth of each object."]
39     return thought_templates
40
41 def Terminate_template():
42     thought_templates = ["Based on the information above, I can conclude that the answer is {answer}",
43
44                         "Based on a close analysis of the {image_kw} and additional information
45     above, I believe the answer is {answer}.",
46                         "I have analyzed the {image_kw} and the information above, and I believe
47     the answer is {answer}.",
48                         "The {image_kw} and the information above suggest that the answer is {answer}.
49     ",
50                         "According to the content of the {image_kw} and the observations, I can
51     conclude that the answer is {answer}."]
52     return thought_templates

```

Listing 3: Thought templates for each action

1 Compare the ground truth and prediction from AI models, to give a correctness score for the prediction. <AND> in the ground truth means it is totally right only when all elements in the ground truth are present in the prediction, and <OR> means it is totally right when any one element in the ground truth is present in the prediction. The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just complete the last space of the correctness score.
 2 Question | Ground truth | Prediction | Correctness
 3 --- | --- | --- | ---
 4 What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0
 5 What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5
 6 What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5
 7 What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5
 8 What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0
 9 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite their names, Iceland is not very icy and Greenland isn't very green. | 0.4
 10 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme is using humor to point out the misleading nature of Iceland's and Greenland's names.
 11 Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. The text 'This is why I have trust issues' is a playful way to suggest that these contradictions can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0

Listing 4: LLM judge prompt for MMVet

1 Please read the following example. Then extract the answer from the model response and type it at the end of the prompt.
 2
 3 Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end.
 4 Question: Which number is missing?
 5 Model response: The number missing in the sequence is 14.
 6 Extracted answer: 14
 7
 8 Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.
 9 Question: What is the fraction of females facing the camera?
 10 Model response: The fraction of females facing the camera is 0.6,
 11 which means that six out of ten females in the group are facing the camera.
 12 Extracted answer: 0.6
 13
 14 Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end.
 15 Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit: \$)
 16 Model response: Luca needs \$1.45 to buy a sour apple candy and a butterscotch candy.
 17 Extracted answer: 1.45
 18
 19 Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
 20 Question: Between which two years does the line graph saw its maximum peak?
 21 Model response: The line graph saw its maximum peak between 2007 and 2008.
 22 Extracted answer: [2007, 2008]
 23
 24 Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
 25 Question: What fraction of the shape is blue?
 26 Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5
 27 Model response: The correct answer is (B) 8/11.
 28 Extracted answer: B

Listing 5: LLM judge prompt for MathVista