Back Attention: Understanding and Enhancing
Multi-Hop Reasoning in Large Language Models

Zeping Yu', Yonatan Belinkov?, Sophia Ananiadou'
'The University of Manchester
2Technion — Israel Institute of Technology
{zeping.yu@postgrad. sophia.ananiadou@}manchester.ac.uk
belinkov@technion.ac.il

Abstract

We investigate how large language models
(LLMs) perform latent multi-hop reasoning in
prompts like “Wolfgang Amadeus Mozart’s
mother’s spouse is”. To analyze this pro-
cess, we introduce logit flow, an interpretability
method that traces how logits propagate across
layers and positions toward the final predic-
tion. Using logit flow, we identify four distinct
stages in single-hop knowledge prediction: (A)
entity subject enrichment, (B) entity attribute
extraction, (C) relation subject enrichment, and
(D) relation attribute extraction. Extending this
analysis to multi-hop reasoning, we find that
failures often stem from the relation attribute
extraction stage, where conflicting logits re-
duce prediction accuracy. To address this, we
propose back attention, a novel mechanism that
enables lower layers to leverage higher-layer
hidden states from different positions during
attention computation. With back attention, a
1-layer transformer achieves the performance
of a 2-layer transformer. Applied to five LLMs,
back attention improves accuracy on five rea-
soning datasets, demonstrating its effectiveness
in enhancing latent multi-hop reasoning ability.
Code and data is available at https://github.
com/zepingyu@512/back-attention.

1 Introduction

Enhancing the multi-hop reasoning capabilities of
large language models (LLMs) has become a cen-
tral research focus in recent studies (OpenAl, 2024;
Qi et al., 2024; Snell et al., 2024; Luo et al., 2024).
A widely used approach, chain-of-thought (COT)
reasoning (Wei et al., 2022), improves accuracy
by explicitly articulating intermediate reasoning
steps. Many studies have expanded on this idea
by generating explicit reasoning chains to further
enhance performance (Zhou et al., 2022; Creswell
et al., 2022; Shum et al., 2023; Yao et al., 2024a).
However, these methods often require substantial
computational resources due to multiple inference
steps or extensive sampling, leading to high costs

and deployment challenges, particularly in large-
scale or resource-constrained scenarios.

Therefore, enhancing the ability of latent multi-
hop reasoning is crucial for reducing the cost. For
example, predicting “Wolfgang Amadeus Mozart’s
mother’s spouse is” -> “Leopold” demonstrates a
model’s ability to internally retrieve and integrate
relevant knowledge. Recent studies have investi-
gated the mechanisms underlying latent multi-hop
reasoning. Given two hops <el, r1, e2> and <e2, 12,
e3>, where “e” represents an “entity” and “r” a “re-
lation”, Yang et al. (2024) observe that LLMs can
sometimes successfully predict queries like “The
r2 of the rl of el is” -> “e3” by latently identify-
ing the bridge entity “e2”. However, Biran et al.
(2024) find that the accuracy of latent multi-hop
reasoning remains low, even when both individual
hops are correct. They hypothesize that the low
accuracy arises because factual knowledge is pri-
marily stored in the early layers. If the first hop is
resolved too late, the later layers may fail to encode
the knowledge for subsequent reasoning steps.

Although latent multi-hop reasoning has been ex-
plored, its underlying mechanism remains unclear.
First, previous studies primarily focus on the for-
mat “The r2 of the r1 of el is”. In this format, the
el position and the last position inherently obtain
the information of r1 and r2, making it unsurpris-
ing that information flows between them. A more
complex format, “e1’s r1’s 12 is”, introduces addi-
tional challenges. Due to the autoregressive nature
of decoder-only LLMs, earlier positions cannot ac-
cess later tokens, hindering relational knowledge
propagation and leading to lower accuracy than
“The r2 of the r1 of el is” prompts. Second, sev-
eral studies have shown that the higher attention
and feed-forward network (FFN) layers also store
knowledge (Geva et al., 2023; Yu and Ananiadou,
2023), challenging the prevailing hypothesis about
multi-hop reasoning mechanisms. Last, how to
leverage interpretability insights to enhance reason-

11257

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11257-11272
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/zepingyu0512/back-attention
https://github.com/zepingyu0512/back-attention

D FFN neurons (activating attn neurons)
[\ attn neurons (storing final logits) aria
D FFN neurons (storing final logits) I\

D @ D RelationD (%

4 1 attribute
Reldtion
D enrlchjwnt u Q
4

DextractidrT +
L
,r
Q(B) Entity
subject |
Mozart ’s mother

->

Q A AD A0
]
@:ﬁ?:;r;@)
enrichment

[~© @%
D@iﬁég‘éil N D

Figure 1: Four stages in single-hop knowledge predic-
tion. Atentity position: (A) entity subject enrichment by
FFN neurons; (B) entity attribute extraction by attention
neurons. At relation and last positions: (C) relation sub-
ject enrichments by FFN neurons; (D) relation attribute
extraction by attention neurons and FFN neurons.

ing remains uncertain. Previous studies (Sakarva-
dia et al., 2023; Li et al., 2024a) rely on model
editing methods, which may cause potential risks
(Gu et al., 2024; Gupta et al., 2024).

In this study, we focus on addressing these
challenges. First, we propose an innovative in-
terpretability analysis method named “logit flow”,
which analyzes how logits propagate across differ-
ent layers and positions toward the final prediction
on neuron-level. We use logit flow and activation
patching (Wang et al., 2022a) to analyze the mech-
anism of single-hop knowledge prediction. We ex-
amine prompts such as “el’s rl is” -> “e2”, where
el represents an entity (e.g. Mozart), r1 represents
a relation (e.g. mother), and e2 is the correct an-
swer (e.g. Maria), which is also an entity. We find
four main stages, as shown in Figure 1: (A) entity
subject enrichment by FFN neurons at el position,
(B) entity attribute extraction by attention neurons
at el position, (C) relation subject enrichment by
FFN neurons at r1 and last positions, and (D) rela-
tion attribute extraction by attention neurons and
FFN neurons at r1 and last positions. The first two
stages align with Geva et al. (2023), where entity-
related features are enriched and extracted (“el” ->
“el features”). Our analysis further reveals that the
last two stages integrate these enriched entity fea-
tures with the relation, facilitating the prediction of
the final token (“el features & r1” -> “e2”).

Next, we use logit flow and activation patching

to analyze correct cases and false cases in two-hop
reasoning queries like “e1’s r1’s r2 is”, where the
correct answer is “e3” and the false answer is “e2”.
In false cases, the relation attribute extraction stage
strongly captures rl position’s high layer informa-
tion. Since this attribution occurs at a later stage
than when the model encodes “e2” -> “e2 features”
and “e2 features & r2” -> “e3”, it reinforces e2
more than €3, ultimately reducing two-hop reason-
ing accuracy. Based on the interpretability findings,
we propose an innovative method named “back at-
tention” to enhance the multi-hop ability, which
allows lower layers to capture higher hidden states.
When trained from scratch on arithmetic tasks, a 1-
layer transformer with back attention achieves the
accuracy of a 2-layer transformer. When applied to
five LLMs, back attention boosts accuracy across
five reasoning datasets, highlighting its effective-
ness in improving multi-hop reasoning ability.

Overall, our contributions are as follow:

a) We introduce logit flow, an innovative inter-
pretability method that traces how logits propagate
across layers and positions. We demonstrate its
effectiveness in both single-hop and multi-hop rea-
soning. Specifically, for single-hop knowledge pre-
diction, we identify four key stages: entity subject
enrichment, entity attribute extraction, relation sub-
ject enrichment, and relation attribute extraction.

b) We apply logit flow to analyze both correct
and incorrect multi-hop reasoning cases. Our find-
ings reveal that failures often stem from the relation
attribute extraction stage, where conflicting logits
disrupt accurate predictions.

¢) We propose back attention, a novel technique
that enhances feature capture in lower layers by
integrating higher-level information. This method
is effective both for training from scratch and for
adapting pretrained LLMs.

2 Experimental Settings

In Section 3 and 4, we use the TwoHop reasoning
dataset (Biran et al., 2024). Each data instance con-
tains two hops like <el, r1, e2> and <e2, r2, e3>,
where el, €2, €3 are entities and rl, r2 are relations.
For instance, <Wolfgang Amadeus Mozart, mother,
Maria Anna Mozart> and <Maria Anna Mozart,
spouse, Leopold Mozart> represent two such hops.

We formulate prompts for first-hop, second-hop,
and two-hop queries as “el’s rl is”, “e2’s 12 is”,
and “el’s r1’s 12 is”, respectively. Following Biran
et al. (2024), we remove shortcut cases (Ju et al.,

11258

2024) and retain the instances where both the first-
hop and two-hop predictions are correct. Then we
exclude (el, e2, e3) triplets appearing fewer than
30 times, ensuring that the model has sufficient
exposure to the retained knowledge types. To pre-
vent excessive data duplication, we limit the num-
ber of cases where the correct answer e3 appears
more than five times. In Section 3, we analyze 889
cases where the first-hop, second-hop, and two-hop
queries are all answered correctly. In Section 4,
we focus on 568 cases where el, €2, and €3 are
all human entities. This set includes both correct
and incorrect two-hop reasoning cases, enabling a
broader evaluation of multi-hop reasoning by com-
paring successful and failed cases.

Our triplet filtering strategy was designed to
prevent type dominance and ensure diverse en-
tity—relation combinations. First, we remove rare
triplets that occur fewer than 30 times, ensuring
that the resulting pool (2,864 cases) contains com-
positions that LL.Ms have likely encountered dur-
ing pretraining. Second, we reduce the impact
of frequent answers by applying a deduplication
filter that retains at most 5 examples per e3; for
instance, in the human — country — capital type,
this step avoids over-representation of entries such
as “United States — Washington.” After this filter-
ing, we obtain 889 cases covering 26 distinct triplet
types, such as human — country — currency, film
— production company — city, and literary work
— country — musical composition. The largest
single category accounts for only 12.7% of the
total, and no category dominates the dataset. To
further mitigate analysis skew, all reported results
are computed as type-level weighted averages.

3 Mechanism of Single-Hop Prediction

In Section 3.1, we introduce the background. In
Section 3.2, we introduce the proposed inter-
pretability method “logit flow”. In Section 3.3,
we utilize logit flow method and identify the four
stages in single-hop knowledge prediction.

3.1 Background

Residual Stream. To better understand how logit
flow captures information propagation in decoder-
only LLMs, we first introduce the residual stream
(Elhage et al., 2021). Given an input sentence
X = [t1,ta, ..., tp] with T tokens, the model pro-
cesses it through residual connections, ultimately
producing the probability distribution y over B to-

kens in vocabulary V' for the next token prediction.
Each token ¢; at position ¢ is transformed into a
word embedding h? € R? by the embedding ma-
trix £ € RB*4, Next, the word embeddings are
taken as the Oth layer input and transformed by
L + 1 transformer layers (0th — Lth). The output
of layer [is the sum of the layer input, the attention
layer output Ali and the FFN layer output F:

hy=h"'+ A + F (1)

The probability distribution y is computed by mul-
tiplying h% (the final layer L output at the last posi-
tion 7") and the unembedding matrix F,, € RBxd,

y = softmaz(E, h%) 2)

The attention layer output Aé can be regarded as
the sum of vectors on different heads and positions:

H T

Ali - Z Z O‘éd}p J{jl(J?flhéil) €
j=1p=1

ai-yjyp = softmaa:(Wﬁlhé_l . W;flhé_l) 4)

where H is the head number and « is the attention
score. W4, Wk, W?, W€ are the query, key, value
and output matrices in each attention head.

FFN and attention neurons. Based on the com-
putation of FFN output (Eq.5), Geva et al. (2020)
find that the FFN output is a weighted sum of neu-
rons, where each neuron’s contribution is deter-
mined by its learned weights and input interactions:

Fl = Wioo(Wia (B +AD) (5

N
Fj =Y mj,fe2 (6)
k=1
mi . = o(fell, - (b + A)))

Here, f c2f,€ is the kth column of the second MLP
W}CQ e R™N_ 1Its coefficient score m is com-
puted by the inner product between the residual
output and f clﬁC (the kth row of the first MLP
W}Cl € RY*d) Similarly, in attention mecha-
nisms, neuron activations are influenced by key-
value transformations (Yu and Ananiadou, 2023).
These activations shape how information is stored
and propagated through layers, ultimately influenc-
ing the model’s predictions:

H T d/H

Al = Z Z Z aéaj,pﬁé}p,ewoéye ®)

j=1 p=1 e=1

11259

| A |
Bipe = Wi hp ®)

Here, wot

'j.c 18 the eth column of W2, whose coef-
ficient score o3 is computed by the inner product
between the layer input hf;l and wvé’e (the eth
row of W]?jl), combined with the attention score .

In this study, we define: 1) A subvalue as the
column of the second MLP (fc2 in FFN and wo
in the attention head). 2) A subkey as the row of
the first MLP (fcl in FFN and wv in the attention
head). 3) A neuron as the product of the coefficient

score and the subvalue (Eq. 6 and Eq. 8).

3.2 Logit Flow: Tracing the Logits on
Different Layers and Positions

Identifying important neurons in deep layers.
Many studies (Dar et al., 2022; Geva et al., 2022;
Wang et al., 2022a; Katz and Belinkov, 2023; Yu
and Ananiadou, 2023; Nikankin et al., 2024) find
that the layer-level and neuron-level vectors in deep
layers store logits related to final predictions. When
we say a vector stores logits about s, we mean that
multiplying this vector with the unembedding ma-
trix results in a high log probability for s, where the
probability of a vector is obtained by multiplying
this vector with the unembedding matrix (replacing
h:Lp with this vector in Eq.2) (Nostalgebraist, 2020).

The final vector h:LF stores large logits about the
prediction s. The logit increase, log(p(s|hk)) —
log(p(s|hY)), can be decomposed into contribu-
tions from L X N FFN neurons and L x H X T' x
d/H attention neurons. To identify the neurons in
deep layers, we use the log probability increase (Yu
and Ananiadou, 2023) as importance score:

Imp(v') = log(p(sle' + h'™)) — log(p(s|h™™))

(10)
If the importance score Imp(v') of a neuron '
is large, it indicates that adding this neuron on
its layer input h'~! significantly enhances the log
probability of the final prediction s.

Identifying important neurons in shallow lay-
ers. Although shallow neurons typically do not
store logits directly related to the final prediction,
they can contribute by amplifying the coefficient
scores of deeper neurons. For instance, in Eq.9, 8
is computed by the inner product between the atten-
tion subkey wv and the layer input h'~!, where the
layer input is the sum of the neurons from previous
layers in the residual stream at this position.

To analyze this effect, we compute the inner
product between the subkey of the 300 most impor-

tant attention neurons and each preceding FEN neu-
ron, weighting the result by the importance score
of the attention neuron. This approach allows us to
identify the most influential shallow FFN neurons.
If a shallow FFN neuron has a high summed inner
product score, it indicates that this neuron activates
multiple important attention neurons, thereby indi-
rectly increasing the logits of the final prediction.
Unlike previous studies (Yu and Ananiadou, 2023),
we retain the inner product of each FFN neuron
at every position, rather than summing the scores
across all positions. This method enables us to ana-
lyze which specific positions and layers contribute
the most to activating attention neurons.

Logit flow: an interpretability method for ana-
lyzing the logits in different positions and layers.
After identifying the deep FFN and attention neu-
rons that store the final logits, we compute and
visualize the sum of their importance scores across
different layers and positions. A large score in a
specific layer or position indicates that it stores cru-
cial information related to the final prediction. Ad-
ditionally, we compute and illustrate the weighted
sum of inner products of FFN neurons at each layer
and position, revealing which layers and positions
play a significant role in activating important at-
tention neurons. This approach allows us to dis-
tinguish the layers and positions that contribute to
predictions both directly and indirectly.

3.3 Four Stages in Single-Hop Prediction

We utilize logit flow to analyze 889 first-hop
queries (“el’s rl is” -> “e2”). We compute the
average scores across all cases using LLama2-7B
(Touvron et al., 2023b). If an entity or relation con-
sists of multiple BPE tokens, we sum the scores
of these tokens across their respective positions in
each layer. The average scores on each layer and
position are illustrated in Figure 2. In this and all
subsequent logit flow visualizations, the horizontal
axis represents the layers, while the vertical axis
represents the positions. Darker colors indicate
higher logits at a specific position and layer.

The attention neurons storing logits are dis-
tributed across the el, r1, and last positions, with
the layers at el being lower than those at r1 and the
last position. Similarly, FFN neurons with large in-
ner products are also concentrated at el, r1, and the
last positions, but they generally appear just before
the average layers of the attention neurons. The
stages at entity position align with the layer-level

11260

el
'

o (A) Entity subject enrichment

rl

is
|

. . ©
Relation subject
enrichment © .
0 10 20
Inner products of FFN neurons

30

el
|

nd (B) Entity attribute extraction

rl
'

ALRD RN
Relation attribute
“- extraction (D) I
.10 .2 30
Logits of attention neurons

is

Relation attribute
extraction D) I
0 10 20 30

Logits of FFN neurons

Figure 2: Results of logit flow: “el’s rl is” -> “e2”

conclusions in Geva et al. (2023), where FFN fea-
tures are activated by the entity’s word embeddings
and subsequently processed by attention layers.
Additionally, we find that subject enrichment
and attribute extraction occur not only at entity po-
sition but also at relation and last positions. Due
to the autoregressive nature of decoder-only LLMs,
the mechanisms at the entity position and r1/last po-
sitions differ. At entity position, lower-layer FFN
and attention neurons encode knowledge about “el
-> el features”. In contrast, at the relation and last
positions, deeper FFN and attention neurons store
knowledge of “el features & r1 ->e2”. For exam-
ple, consider “Mozart’s mother is -> Maria” and
“Mozart’s father is -> Leopold”. The hidden states
at the position of “Mozart’s” are identical in both
cases, meaning these positions cannot directly de-
termine whether the final prediction is “Maria” or
“Leopold”. Instead, at the entity position, lower
layers extract Mozart’s features containing both
“Maria” and “Leopold”. At the relation and last
positions, deeper layers refine this information, en-
coding “Mozart’s features & mother -> Maria” and
“Mozart’s features & father -> Leopold”, which en-
ables the model to generate the correct prediction.
To verify this, we compute the average logit differ-
ence of each layer’s hidden state between the cor-
rect answer (e.g. Maria) and the conflicting answer
(e.g. Leopold) at entity, relation and last positions
across all correct human->human cases. The re-

sults align with our analysis, detailed in Appendix
A. The entity position cannot distinguish the cor-
rect answer and the conflicting answer, while the
relation and last positions’ logit difference start to
increase after the entity attribute extraction stage.

We also analyze the logit flow of 889 second-hop
cases “e2’s 12 is” -> “e3”, detailed in Appendix B.
Similar to the first-hop results, we observe the same
four stages in the second-hop predictions, further
validating the single-hop prediction mechanism. In
addition, we utilize the activation patching (Wang
et al., 2022a) method to analyze the layer-level
information flow, as presented in Appendix C, also
observing the importance in entity, relation and last
positions. Compared to the layer-level approach,
our method provides a neuron-level perspective
on information flow, offering a more granular and
detailed understanding.

4 Mechanism of Two-Hop Prediction

Biran et al. (2024) find that the two-hop accuracy re-
mains low, even when both the first-hop and second-
hop queries are correct. In this section, we inves-
tigate the cause of this phenomenon. We focus on
the prompt like “el’s r1’s 12 is”, where the correct
answer is “e3”. We use the logit flow method to
analyze the 889 correct two-hop queries, as shown
in appendix D. We find that the importance of at-
tention neurons at relation positions is significantly
lower than that in single-hop queries. Based on this
observation, we hypothesize that the model may in-
correctly predict the entity corresponding to “el’s
rl1” or “el’s r2” instead of “e3”. This interference
could lead the model to favor intermediate entities
over the correct final answer, ultimately reducing
the accuracy of two-hop reasoning.

To verify this, we analyze 568 human->human-
>human cases with the prompt “e1’s r1’s 12 is” and
the correct answer “e3” in Llama2-7B, where el,
e2, e3 are all human entities. We compare the
ranking of the correct answer “e3” against two con-
flicting answers: “el’sr1” and “el’s 12”. For exam-
ple, for “Mozart’s mother’s spouse is”, the correct
answer is “Leopold”, and the conflicting answers
are “Maria” (Mozart’s mother) and “Constanze’
(Mozart’s spouse). Among 568 cases, 52.3% cor-
rectly predict “e3”, 42.4% predict “e2” (the answer
of “el’s r1”), and 5.3% predict the answer of “el’s
r2”. This indicates that the conflicting entities can
cause the accuracy decrease.

To further investigate this phenomenon, we use

’

11261

is r2 's rl 's el
[R T T S

0 10 20 30

Inner products of FFN neurons — correct cases

is r2 's rl 's el
|

0 10 20 30
Inner products of FFN neurons — false cases

Figure 3: Results of logit flow on correct and false
human->human->human cases in Llama2-7B.

the logit flow method to compare correct cases
(where the predicted answer is “e3”) with false
cases (where the predicted answer is “e2”), as
shown in Figure 3. We observe that in the false
cases, the influence at the rl position is signifi-
cantly stronger. The results of activation patching
(Appendix E) and Llama3.1-8B & Llama3.2-3B
(Appendix F) reveal a similar trend. This finding
appears counterintuitive—why does the model pre-
dict the wrong answer when it relies more heavily
on the features at the r1 position?

A closer look at the single-hop analysis provides
an explanation. In the case of “el’s rl is”, the
high layers at the r1 position store logits related to
“e2”. Due to the autoregressive nature of decoder-
only LLMs, the hidden states at r1 position remain
the same in both “el’s rl is” and “el’s r1’s r2 is”.
Consequently, when the high-layer information at
the r1 position is extracted in “el’s r1’s 12 is”, it
inadvertently reinforces the probability of “e2”,
leading to lower accuracy in two-hop reasoning.

This phenomenon can also be understood
through the four stages of knowledge storage. In
the single-hop analysis (Figure 2), the knowledge
of “el -> el features” and “e2 -> e2 features” is
stored in lower layers (layers 7-20), whereas the
knowledge of “el features & r1 ->€2” and “e2 fea-
tures & r2 ->e3” is stored in deeper layers (layers
20-31). In two-hop false cases (Figure 3), when
the features at r1 positions, which are related to e2,
are extracted at layer 28, they only activate the “e2
features & r2 -> e3” parameters in layers 28-31.
Although this process does enhance the probability
of e3, it amplifies the probability of e2 even more.

This imbalance leads to the model predicting e2 in-
stead of e3, resulting in lower accuracy for two-hop
reasoning. From this perspective, our results par-
tially align with the "hopping too late" hypothesis
(Biran et al., 2024). However, our findings reveal
a key difference: while some parameters encoding
"e2 & r2 ->e3" are still activated, their contribution
is weaker compared to the direct influence of “e2”.

5 Back Attention: Letting Lower Layers
Capture Higher-Layer features

Based on the single-hop mechanism, if we can
restore the r1 position’s deep layer features back
to later positions’ shallow layers, the parameters
storing “e2 -> e2 features” and “‘e2 features & 12
->e3” can be activated, thereby strengthening the
competitiveness of the correct answer. Motivated
by this, we propose an innovative technique, “back
attention”, to allow the lower layers capture higher
features. The computations of the original attention
output A and the back attention output B are shown
in Eq. 11-12. In the original attention computation,
the query, key, and value vectors are computed by
the hidden states h on the same layer:

kNT
A = Softmax (W) (hW*)We.
(11)

In contrast, back attention modifies this mechanism
by computing queries from a source layer hs (lower
layer) while obtaining keys and values from a tar-
get layer ht (higher layer), which are the hidden
states on a higher layer or the stack of all higher
layers’ hidden states. Here, we denote the lower
layer as the source layer, since it is the origin of
the queries that seek information from the higher
layer. In contrast, the higher layer provides the
keys/values. Thus, the term “source” here refers
to the source of queries rather than the semantic
source of information, in order to reduce potential
confusion. This adjustment allows a lower layer
to capture richer representations stored in higher
layers:

q kNT
hSWB\(gWB)) (Rt W)WY
(12)

Figure 4 illustrates how back attention is inte-
grated into a single-layer transformer. Back atten-
tion occurs after the original inference pass, during
which the hidden states of all layers and positions
are calculated. The query vector is computed from

B = Softmax (

11262

%D :O QD al %D o2 @[j@
@ [ED 5?\ A
er’s r1’s r2 is

Figure 4: Back attention on a 1-layer transformer.

the Oth layer input (hs), while the key and value
vectors are computed from the Oth layer output
(ht). Then the back attention output B is added
back onto the Oth layer input, and recompute the
forward pass again. Back attention restores high-
layer features at different positions using the back
attention scores. If the back attention score is 1.0
at rl position and 0.0 at other positions, it means
that the r1 position’s Oth layer output is added at
the last position’s Oth layer input.

Training from scratch: back attention enhances
the ability of 1-layer transformer. We conduct
experiments on a 2-digit addition arithmetic dataset.
In each training and testing set, there are 12,150
single-sum cases (“‘a+b="), and 6,188 double-sum
cases (“c+d+e="), where “a”, “b”, “c”, “d”, and “e”
are integers ranging from 0 to 99. The model needs
to “memorize” the single-sum cases and “learn”
the double-sum patterns. We utilize the Llama
tokenizer, representing each digit as a separate to-
ken (e.g., 12 is tokenized as [“1”, “2”]), ensuring
that each token appears sufficiently during training.
The accuracy of 1-layer transformer, 1-layer trans-
former with attention, and 2-layer transformer are
83.8%, 93.8%, and 92.5%, respectively. The de-
tails of loss and accuracy are shown in Appendix G.
The 2-layer transformer and the 1-layer transformer
with back attention converge faster than the 1-layer
transformer. Notably, the 1-layer transformer with
back attention requires only 56.7% of the param-
eters of the 2-layer transformer. Therefore, incor-
porating back attention during the training stage
can significantly enhance the model’s performance
while reducing parameter requirements.

Adding back attention in pre-trained LLMs:
back attention increases the reasoning accuracy.
Back attention can also be integrated into a pre-
trained LLM, using all higher-layer states to com-
pute the keys and values. We add back attention on
each layer in Llama-7B (Touvron et al., 2023a),
fine-tuning on the double-sum arithmetic cases.

Figure 5 shows the accuracy when fine-tuning back
attention on each layer (freezing LLM parameters),
where the original accuracy is 67.1%. The accu-
racy across the 0-5 layers exhibits significant fluc-
tuation. Adding back attention to the 6th layer
achieves a peak accuracy of 93.2%, followed by a
steady decline compared with higher layers. We
hypothesize that the decline of layer 5 relates to the
stages of inference proposed by Lad et al. (2024),
where transformer models transition from feature
construction to ensembling. If layer 5 marks the
boundary between these stages, introducing back
attention here may disrupt ongoing feature integra-
tion, thus leading to performance degradation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

layer

Figure 5: Test accuracy of back attention on each layer.

IDC SVAMP MA TwoHop SQA

Llama3 727 55.7 21.1 11.5 65.1
+backattn 97.0 69.3 88.9 47.8 86.2

Llama3.1 74.6 56.0 30.0 8.8 65.4
+backattn 98.5 70.7 86.2 42.7 87.0

Llama3.2 493 44.3 15.0 6.5 62.0
+backattn 92.9 62.0 52.8 37.0 86.3

Mistral 51.9 63.0 26.1 8.8 71.5
+backattn 87.4 71.7 47.2 40.1 87.8

Qwen2.5 64.0 81.7 82.8 39 71.2
+backattn 98.2 83.0 87.9 34.6 914

Table 1: Accuracy (%) on 5 datasets before/after adding
back attention on 6th layer in five LLMs.

Then we do experiments on 5 reasoning datasets
1-Digit-Composite (1DC, 1,640 cases) (Brown,
2020), SVAMP (1,000 cases) (Patel et al., 2021),
MultiArith (MA, 600 cases) (Roy and Roth, 2016),
TwoHop (3,484 cases) (Biran et al., 2024), and
StrategyQA (SQA, 2,290 cases) (Geva et al.,
2021). We fine-tune back attention in Llama3-
8B (Meta, 2024a), Llama3.1-8B (Dubey et al.,
2024), Llama3.2-3B (Meta, 2024b), Mistral-7B
(Jiang et al., 2023), and Qwen2.5-14B (Qwen et al.,
2025). To balance computational efficiency with
effectiveness, we select layer 6 as the lower layer,
based on the empirical results shown in Figure 5,
instead of evaluating all layers. The results are
reported in Table 1. Compared with zero-shot ac-

11263

curacy of the LLMs, back attention consistently
improves performance across all evaluated models
and datasets—doubling accuracy in several cases.
These improvements, ranging from +15% to over
+70%, highlight back attention as a powerful tool
for enhancing LLMs’ latent multi-hop reasoning
ability.

To evaluate whether back attention functions as
intended, we analyze the case “Mozart’s mother’s
spouse is” -> “Leopold” in TwoHop dataset and
visualize the back attention scores (darker larger)
in Figure 6. Back attention effectively learns to
recover “mother” position’s 27-30 layers’ hidden
states into the last position’s 6th layer. This vi-
sualization shows that back attention successfully
propagates high-layer information from important
positions to lower layers, enabling the model to
better utilize knowledge for accurate predictions.

art Moz

s mother 's

is ouse sp
' ' '

10 20 30

Figure 6: Back attention scores at all positions and
higher layers when adding on the 6th layer.

Computational cost analysis between COT and
back attention. Assume the computational cost
for generating a single token is 7". In COT genera-
tion, the model typically generates K tokens, result-
ing in a total computational cost of approximately
K. In contrast, back attention requires the model
to reconstruct higher-layer hidden states in earlier
layers, increasing the per-token cost to about 1.87".
However, with back attention, the model only needs
to generate M tokens, where typically M < K,
as the mechanism enables the model to infer the
correct answer more efficiently. Consequently, the
total computational cost becomes 1.8MT'. Since
M is significantly smaller than K in most cases,
back attention leads to a substantial reduction in
computational cost compared to CoT.

6 Related Work

6.1 Multi-Hop Reasoning in LL.Ms

Improving the reasoning ability of LLMs has be-
come a key focus of recent research (Lightman
et al., 2023; Huang et al., 2023; Li et al., 2024b;
Wang and Zhou, 2024). Wei et al. (2022) use
chain-of-thought to enhance the reasoning abil-
ity by articulating intermediate steps. Fu et al.
(2022) propose complexity-based prompting, show-
ing that selecting and generating reasoning chains
with higher complexity significantly improves rea-
soning accuracy. Wang et al. (2022b) combine
chain-of-thought with the self-consistency decod-
ing strategy, achieving significant improvements
by sampling diverse reasoning paths and selecting
the most consistent answer. Chen et al. (2024) pro-
pose self-play fine-tuning, which enhances LLMs’
reasoning abilities by refining their outputs through
self-generated data, thereby reducing reliance on
human-annotated datasets. Brown et al. (2024) pro-
pose scaling inference compute by increasing the
number of generated samples, demonstrating sig-
nificant improvements across tasks like coding and
math. Hao et al. (2023); Yao et al. (2024a) use
tree-based methods to improve the performance.

6.2 Mechanistic Interpretability

Mechanistic interpretability (Olah, 2022) aims to
reverse engineer the internal mechanisms of LLMs.
Logit lens (Nostalgebraist, 2020) is a widely used
method (Dar et al., 2022; Katz and Belinkov, 2023;
Yu and Ananiadou, 2024a,b) to analyze the infor-
mation of hidden states, by multiplying the vectors
with the unembedding matrix. A commonly used
localization method is causal mediation analysis
(Vig et al., 2020; Meng et al., 2022; Stolfo et al.,
2023; Geva et al., 2023), whose core idea is to
compute the change of the output when modifying
a hidden state. Other lines of research focus on
constructing the circuit in the model (Olsson et al.,
2022; Wang et al., 2022a; Zhang and Nanda, 2023;
Gould et al., 2023; Hanna et al., 2024; Yao et al.,
2024b). Due to the superposition phenomenon (EI-
hage et al., 2022; Scherlis et al., 2022; Bricken
et al., 2023), sparse auto-encoder (SAE) is useful
for interpreting the features (Gao et al., 2024; Tem-
pleton, 2024; Cunningham et al., 2023). A useful
characteristic is the residual stream (Elhage et al.,
2021), revealing that the final embedding can be
represented as the sum of layer outputs. Further-
more, Geva et al. (2020, 2022) find that the FFN

11264

output is the weighted sum of FFN neurons. Yu
and Ananiadou (2023) find that the attention head
outputs can also be regarded as the weighted sum
of attention neurons. Many studies (Feng et al.,
2024, 2025; Wang et al., 2025; Nie et al., 2025)
have demonstrated that effective localization of
model parameters or units facilitates the design of
specialized modules to address different problems.

While previous neuron-level studies primarily fo-
cus on “localization”—identifying which neurons
are important—they often lack a deeper “analysis”
of how these neurons influence predictions. By
applying our logit flow method, we gain a clearer
understanding of how neurons are activated and
contribute to the final prediction.

7 Conclusion

We investigate the mechanisms of latent multi-hop
reasoning in LLMs and identify key factors af-
fecting the accuracy. Through our interpretability
method logit flow, we uncover four distinct stages
in single-hop knowledge prediction: entity sub-
ject enrichment, entity attribute extraction, rela-
tion subject enrichment, and relation attribute ex-
traction. Analyzing two-hop queries, we find that
failures often arise in the relation attribute extrac-
tion stage, where conflicting logits lower predic-
tion accuracy. To address this, we propose back
attention, a novel method that enables lower lay-
ers to access higher-layer hidden states, effectively
restoring important features. Back attention signifi-
cantly enhances reasoning performance, allowing
a 1-layer transformer to match the accuracy of a
2-layer transformer. When applied to pre-trained
LLMs, it improves accuracy across five datasets
and five models, demonstrating its effectiveness in
multi-hop reasoning. Overall, our analysis provides
new insights and introduces a powerful approach
for improving reasoning accuracy in LLMs.

8 Limitations

In this study, the interpretability analysis primar-
ily focuses on single-hop and two-hop knowledge
queries, which represent specific reasoning scenar-
i0s. While these cases provide valuable insights, it
is important to acknowledge that other types of rea-
soning tasks might involve different mechanisms
not captured in our analysis. Despite these con-
straints, the observed performance improvements
across a variety of reasoning tasks and LLMs sug-
gest that the proposed back attention method and

the derived insights possess a degree of general ap-
plicability. Further investigations will be needed to
validate these findings on more diverse reasoning
tasks and refine the interpretability framework for
broader applicability.

In this work, back attention is applied to only a
single layer, where it has demonstrated promising
results. Nevertheless, back attention can also be
extended to two or more layers, potentially yielding
even greater improvements. We view the success
of the single-layer application as a foundational
step, paving the way for future research aimed at
exploring and optimizing back attention in more
complex and multi-layer configurations.

9 Acknowledgements

This work was supported by the computational
shared facility and the studentship from the De-
partment of Computer Science at the University of
Manchester. This research was supported by an
Azrieli Foundation Early Career Faculty Fellow-
ship and Open Philanthropy. This research was
funded by the European Union (ERC, Control-LM,
101165402). Views and opinions expressed are
however those of the author(s) only and do not
necessarily reflect those of the European Union or
the European Research Council Executive Agency.
Neither the European Union nor the granting au-
thority can be held responsible for them.

References

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva,
and Amir Globerson. 2024. Hopping too late: Ex-
ploring the limitations of large language models on
multi-hop queries. arXiv preprint arXiv:2406.12775.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian
Chen, Adam Jermyn, Tom Conerly, Nick Turner,
Cem Anil, Carson Denison, Amanda Askell, et al.
2023. Towards monosemanticity: Decomposing lan-
guage models with dictionary learning. Transformer
Circuits Thread, 2.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher R¢é, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

11265

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. 2023. Sparse autoencoders
find highly interpretable features in language models.
arXiv preprint arXiv:2309.08600.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2022. Analyzing transformers in embedding space.
arXiv preprint arXiv:2209.02535.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, et al. 2022. Toy models of superposition.
arXiv preprint arXiv:2209.10652.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12.

Yujie Feng, Xu Chu, Yongxin Xu, Zexin Lu, Bo Liu,
Philip S Yu, and Xiao-Ming Wu. 2024. Kif: Knowl-
edge identification and fusion for language model
continual learning. arXiv preprint arXiv:2408.05200.

Yujie Feng, Xujia Wang, Zexin Lu, Shenghong Fu,
Guangyuan Shi, Yongxin Xu, Yasha Wang, Philip S
Yu, Xu Chu, and Xiao-Ming Wu. 2025. Recur-
rent knowledge identification and fusion for lan-
guage model continual learning. arXiv preprint
arXiv:2502.17510.

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd,
Jannik Brinkmann, Caden Juang, Koyena Pal, Can
Rager, Aaron Mueller, Samuel Marks, Arnab Sen
Sharma, et al. 2024. Nnsight and ndif: Democra-
tizing access to foundation model internals. arXiv
preprint arXiv:2407.14561.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. 2024. Scaling and
evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the

Association for Computational Linguistics, 9:346—
361.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Rhys Gould, Euan Ong, George Ogden, and Arthur
Conmy. 2023. Successor heads: Recurring, inter-
pretable attention heads in the wild. arXiv preprint
arXiv:2312.09230.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 16801—
16819.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024. Model editing at scale leads to
gradual and catastrophic forgetting. arXiv preprint
arXiv:2401.07453.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2024. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Advances in Neural Information Pro-
cessing Systems, 36.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Tianjie Ju, Yijin Chen, Xinwei Yuan, Zhuosheng Zhang,
Wei Du, Yubin Zheng, and Gongshen Liu. 2024. In-
vestigating multi-hop factual shortcuts in knowledge
editing of large language models. arXiv preprint
arXiv:2402.11900.

Shahar Katz and Yonatan Belinkov. 2023. Visit: Visual-
izing and interpreting the semantic information flow
of transformers. arXiv preprint arXiv:2305.13417.

11266

Vedang Lad, Wes Gurnee, and Max Tegmark. 2024. The
remarkable robustness of 1lms: Stages of inference?
arXiv preprint arXiv:2406.19384.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Lingi Song, Defu
Lian, and Ying Wei. 2024a. Understanding and patch-
ing compositional reasoning in llms. arXiv preprint
arXiv:2402.14328.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.
2024b. Chain of thought empowers transformers
to solve inherently serial problems. arXiv preprint
arXiv:2402.12875.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359-17372.

Al Meta. 2024a. Introducing meta llama 3: The most
capable openly available llm to date. Meta Al.

Al Meta. 2024b. Llama 3.2: Revolutionizing edge ai
and vision with open, customizable models. Meta
AL

Ercong Nie, Helmut Schmid, and Hinrich Schiitze. 2025.
Mechanistic understanding and mitigation of lan-
guage confusion in english-centric large language
models. arXiv preprint arXiv:2505.16538.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. arXiv preprint arXiv:2410.21272.

Nostalgebraist. 2020. Interpreting gpt: the logit lens.

Chris Olah. 2022. Mechanistic interpretability, vari-
ables, and the importance of interpretable bases. In
Transformer Circuits Thread.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

OpenAl 2024. Learning to reason with llms. Accessed:
19-09-2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller 1lms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yugiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. arXiv preprint arXiv:2412.15115.

Subhro Roy and Dan Roth. 2016.
eral arithmetic word problems.
arXiv:1608.01413.

Solving gen-
arXiv preprint

Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Daniel
Grzenda, Nathaniel Hudson, André Bauer, Kyle
Chard, and Ian Foster. 2023. Memory injections:
Correcting multi-hop reasoning failures during in-
ference in transformer-based language models. In
Proceedings of the 6th BlackboxNLP Workshop: An-
alyzing and Interpreting Neural Networks for NLP,
pages 342-356.

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe
Benton, and Buck Shlegeris. 2022. Polysemantic-
ity and capacity in neural networks. arXiv preprint
arXiv:2210.01892.

KaShun Shum, Shizhe Diao, and Tong Zhang. 2023.
Automatic prompt augmentation and selection with
chain-of-thought from labeled data. arXiv preprint
arXiv:2302.12822.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal me-
diation analysis. arXiv preprint arXiv:2305.15054.

Adly Templeton. 2024. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Anthropic.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

11267

https://openai.com/index/learning-to-reason-with-llms

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388—
12401.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022a. In-
terpretability in the wild: a circuit for indirect ob-
ject identification in gpt-2 small. arXiv preprint
arXiv:2211.00593.

Mingyang Wang, Heike Adel, Lukas Lange, Yihong Liu,
Ercong Nie, Jannik Strotgen, and Hinrich Schiitze.
2025. Lost in multilinguality: Dissecting cross-
lingual factual inconsistency in transformer language
models. arXiv preprint arXiv:2504.04264.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-
thought reasoning without prompting. arXiv preprint
arXiv:2402.10200.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing
Huang, Zheng Wang, Noah D Goodman, Christo-
pher D Manning, and Christopher Potts. 2024.
pyvene: A library for understanding and improv-
ing pytorch models via interventions. arXiv preprint
arXiv:2403.07809.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor
Geva, and Sebastian Riedel. 2024. Do large language
models latently perform multi-hop reasoning? arXiv
preprint arXiv:2402.16837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024a. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang,
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024b.
Knowledge circuits in pretrained transformers. Ad-
vances in Neural Information Processing Systems,

37:118571-118602.

Zeping Yu and Sophia Ananiadou. 2023. Neuron-
level knowledge attribution in large language models.
arXiv preprint arXiv:2312.12141.

Zeping Yu and Sophia Ananiadou. 2024a. How do
large language models learn in-context? query and
key matrices of in-context heads are two towers for
metric learning. arXiv preprint arXiv:2402.02872.

Zeping Yu and Sophia Ananiadou. 2024b. Interpret-
ing arithmetic mechanism in large language models
through comparative neuron analysis. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 3293-3306.

Fred Zhang and Neel Nanda. 2023. Towards best prac-
tices of activation patching in language models: Met-
rics and methods. arXiv preprint arXiv:2309.16042.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

11268

A Logit Difference at Different Positions

1 —e— pos: entity
pos: relation
| —®— pos: last

logitdiff
= = ~N N w w
o w =) o] =) w
L s L L

=
w

o
o
L

0 5 10 15 20 25 30
layer

Figure 7: Logit difference at entity, relation and last
positions on human->human cases in Llama2-7B. The
logit difference is small at entity position, but large on
relation and last positions’ deep layers.

We compute the average logit difference at en-
tity, relation and last positions across all correct
human -> human cases, shown in Figure 7. Take
“Mozart’s mother is -> Maria” as an example. We
compute the logit difference between “Maria” and
“Leopold” (Mozart’s father). At the entity posi-
tion, the logit difference is small on all layers. At
the relation and last positions, the logit difference
increases sharply after the entity subject enrich-
ment and entity attribute extraction stages (layers
19-20). This indicates that the entity position pri-
marily extracts general features of “Mozart”, in-
cluding information relevant to both “Maria” and
“Leopold”. In contrast, the deeper layers at the rela-
tion and last positions encode specific knowledge,
such as “Mozart’s features & mother -> Maria” and
“Mozart’s features & father -> Leopold”, which
ultimately differentiate the correct prediction.

B Results of Logit Flow on Second-Hop
Queries in Llama2-7B

The results of logit flow on second-hop queries
“e2’sr21is” -> “e3” are shown in Figure 8. There are
also four stages existing in the second-hop queries,
similar to those in the first-hop queries (Figure 2).

C Results of Activation Patching on
Single-Hop Queries in Llama2-7B

The results of activation patching on single-hop
queries are shown in Figure 9, using the pyvene
(Wu et al., 2024) and NNsight (Fiotto-Kaufman
et al., 2024) libraries. Compared to the logit flow
results (Figure 2), the entity and last positions ex-

e2
'

(A) Entity subject enrichment

u- N i
Relation subject
CE enrichment ©

0 10 20 30
Inner products of FFN neurons

0- (B) Entity attribute extraction

2

e2
'

r2
'

b o)
Relation attribute
- extraction (D) I
0 10 20 30
Logits of attention neurons

e2
'

r2
:

Relation attribute
“ extraction (DI

0 10 20 30

Logits of FFN neurons

Figure 8: Results of logit flow on second-hop queries
“e2’s r2 is” => “e3” in Llama2-7B. There are four simi-
lar stages with the first-hop queries: (A) entity subject
enrichment, (B) entity attribute extraction, (C) relation
subject enrichment, and (D) relation subject extraction.

hibit higher importance, while the relation posi-
tion appears less significant. This difference arises
because activation patching aggregates the impor-
tance of both FFN and attention modules into a
single visualization. In contrast, the logit flow
method distinguishes and separately visualizes the
importance of FFN and attention neurons, offering
a more granular, neuron-level understanding of the
information flow.

el

rl

is
\

0 10 20 30

Figure 9: Results of activation patching on single-hop
queries in Llama2-7B. Similar to logit flow (but not as
obvious as logit flow), there is also importance on rl
position’s high layers.

D Results of logit Flow on Two-Hop
Queries in Llama2-7B

The results of logit flow on the two-hop queries
“el’s rl’s 12 is” -> “e3” are shown in Figure 10.
Compared to the logit flow results on single-hop

11269

rl's el's
||

r2
'

7 -

0 10 20 30
Inner products of FFN neurons

r2 rl's el's

is

0 10 20 30

Logits of attention neurons

r2 rl's el's
' ' .

is
|

1

10 20 30
Logits of FFN neurons

Figure 10: Results of logit flow on two-hop queries
“el’s r1’s r2 is” -> “e3”. The importance of relation
positions (r1 and r2) is lower than single-hop queries.

queries (Figure 2), the importance of relation po-
sitions is significantly lower. This suggests that
el’s features at the el position are primarily ex-
tracted into the last position, potentially activat-
ing the parameters associated with “el’s r1”, “el’s
r2”, and “el’s r1’s r2”. This motivates our ex-
ploration between the correct and false human-
>human->human cases in Section 4.

E Results of Activation Patching on
Correct and False Two-Hop Queries in
Llama2-7B

The results of activation patching on correct and
false human->human->human cases in Llama2-7B
are shown in Figure 11. Compared with the correct
cases, the false cases show a much clearer influence
at r1 position’s high layers. This trend is similar to
the findings of logit flow method (Figure 3), indicat-
ing that the r1 position’s high features increase the
probability of “e2”, thereby reducing the accuracy
of two-hop reasoning.

F Results of Logit Flow and Activation
Patching on Correct and False
Two-Hop Queries in Llama3.1-8B and
Llama3.2-3B

The comparison of correct and false human-
>human->human cases in Llama3.1-8B are shown

is r2 's rl 's el

0 10 20 30
Activation patching — correct cases

is r2 's r1 's el

6 1‘0 2‘0 3‘0
Activation patching — false cases

Figure 11: Results of activation patching on correct and
false human->human->human cases in Llama2-7B. The
importance of rl position is 1.66% in correct cases and
5.43% in false cases.

in Figure 12 (results of logit flow) and Figure 13
(results of activation patching). Similar results
of Llama3.2-3B are shown in Figure 14 (results
of logit flow) and Figure 15 (results of activation
patching). In both methods and models, the impact
of r1 position’s high layers in the false cases are
larger than that in the correct cases. These results
show similar trends with the results of Llama2-7B.

G Loss and Accuracy of back attention
on 1-layer transformer

The loss and accuracy of 1-layer transformer, 1-
layer transformer with back attention, and 2-layer
transformer are shown in Figure 16. The perfor-
mance of 1-layer transformer with 2-layer trans-
former is similar, much better than that of 1-layer
transformer. In all models, the dimension is 440 for
attention/FFN layers, and 160 for back attention.
We use the AdamW optimizer (Loshchilov, 2017)
with a learning rate of 0.0001, a batch size of 64,
and a maximum of 500 epochs.

11270

rl's el

is r2 's
L

0 10 20 30
Inner products of FFN neurons — correct cases

's el

rl

is r2 's
L

0 10 20 30
Inner products of FFN neurons — false cases

Figure 12: Results of logit flow on correct and false
human->human->human cases in Llama3.1-8B. The
importance of rl position is 6.38% in correct cases and
32.18% in false cases.

el

's rl 's
P

is r2
R

0 10 20 30
Activation patching — correct cases

—
[V

sl 's
)

is r2

0 10 20 30
Activation patching — false cases

Figure 13: Results of activation patching on correct and
false human->human->human cases in Llama3.1-8B.
The importance of rl position is 4.98% in correct cases
and 18.00% in false cases.

's rl1 's el

is r2

0 10 20
Inner products of FFN neurons — correct cases

-
[}

= -
o

is r2 's

0 10 20
Inner products of FFN neurons — false cases

Figure 14: Results of logit flow on correct and false
human->human->human cases in Llama3.2-3B. The
importance of r1 position is 17.50% in correct cases and
40.36% in false cases.

el

's rl 's
Lo

is r2

0 10 20 30
Activation patching — correct cases

' 0 ' '

0 10 20 30
Activation patching — false cases

Figure 15: Results of activation patching on correct and
false human->human->human cases in Llama3.2-3B.
The importance of rl position is 11.23% in correct cases
and 21.52% in false cases.

11271

Training and Testing Loss Training and Testing Accuracy

1.00
2 —e— Train Loss
—=— Testloss (3075
n ©
@ I
g1 3
% 0.50 —e— Train Accuracy
—=— Test Accuracy
0 0.25
0 100 200 300 400 500 0 100 200 300 400 500
epoch epoch

1-layer transformer

Training and Testing Loss Training and Testing Accuracy
1.00
2 —e— Train Loss
—=— Testloss (3075
2 g
o1 3
S 0.50 —e— Train Accuracy
—=— Test Accuracy
0L ——eaaetsssesm—" | 0,25
0 100 200 300 400 500 0 100 200 300 400 500
epoch epoch
1-layer transformer with back attention
Training and Testing Loss Training and Testing Accuracy
1.00
2 —e— Train Loss
—=— Testloss (3075
4 A
o1 3
S 0.50 —e— Train Accuracy
—=— Test Accuracy
01— hamestm— | (.25
0 100 200 300 400 500 0 100 200 300 400 500
epoch epoch

2-layer transformer

Figure 16: Loss (left) and accuracy (right) on arithmetic
dataset of 1-layer transformer, 1-layer transformer with
back attention, and 2-layer transformer.

11272

