
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1086–1098
November 4-9, 2025 ©2025 Association for Computational Linguistics

Weight-Aware Activation Sparsity with Constrained Bayesian Optimization
Scheduling for Large Language Models

Ming Wang, Miao Zhang*, Xuebo Liu, Liqiang Nie
Harbin Institute of Technology (Shenzhen)

190110509@stu.hit.edu.cn, {zhangmiao, liuxuebo, nieliqiang}@hit.edu.cn

Abstract

Activation sparsity provides a dynamic, input-
dependent alternative to weight pruning for ac-
celerating inference in large language models
(LLMs), effectively reducing unnecessary com-
putations and memory accesses during the for-
ward pass. Despite its promise, existing activa-
tion sparsification methods suffer from two ma-
jor limitations: (1) solely relying on activation
magnitude for sparsification, ignoring the cou-
pling influence with the corresponding weights,
(2) applying uniform sparsity rates across all
blocks without considering block-wise spar-
sity sensitivity. To address these issues, this
paper proposes a novel training-free weight-
aware activation sparsity framework, called
WAS. Firstly, with analyzing the coupling re-
lationship between weight and activation, we
introduce a weight-aware scoring method to
measure the activation importance in sparsifi-
cation. Then, a novel constrained Bayesian
optimization algorithm is further devised to set
a suitable sparsity ratio for all blocks based
on the sparsity sensitivity. Finally, we imple-
ment a custom GPU sparsity kernel to sup-
port the resulting sparsity patterns for wall-
clock decoding speed-ups. Our WAS achieves
competitive performance at 60% model-level
sparsity and significantly outperforms prior
methods at higher sparsity levels, achieving
up to 1.68× inference speed-up—at no retrain-
ing or weight update. Codes are available at
https://github.com/HITSZ-Miao-Group/WAS.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance across a wide range of
natural language processing tasks (Brown et al.,
2020). However, the enormous computational and
memory demands associated with deploying these
models, which often contain billions of parameters,
pose significant challenges for real-world applica-

* Corresponding author

tions. Model compression has emerged as a promis-
ing approach to tackle this issue, with quantization
(Frantar et al., 2022; Shao et al., 2023; Zhao et al.,
2024) and pruning (Kim et al., 2024; Ashkboos
et al., 2024; Men et al., 2024) being two widely
adopted techniques. Quantization accelerates infer-
ence by representing weights and activations using
lower bits, while pruning removes redundant parts
of the model to reduce computational cost. As illus-
trated in Figure 1a, activation sparsity (Raihan and
Aamodt, 2020; Grimaldi et al., 2023; Chen et al.,
2023) offers a more dynamic and input-dependent
alternative compared to weight pruning. Instead
of statically pruning the model prior to inference,
activation sparsity identifies and skips unimportant
weights at inference time based on the sparsity of
the intermediate activations. This allows the model
to selectively omit computations based on the in-
put, making activation sparsity a more flexible and
adaptive approach for inference acceleration.

Previous work on activation sparsity has primar-
ily focused on older ReLU-based large language
models such as OPT (Zhang et al., 2022), where the
inherent sparsity of the ReLU function naturally
leads to highly sparse activations. This property
can be effectively leveraged to accelerate inference.
However, modern LLMs have largely transitioned
to GLU-based activation functions (Shazeer, 2020),
such as SwiGLU (Chowdhery et al., 2023), which
no longer exhibit this natural sparsity. To reintro-
duce sparsity into these models, some approaches
(Mirzadeh et al., 2023; Song et al., 2024) have
replaced the activation functions with ReLU and
performed continued pre-training, incurring signif-
icant computational costs. More recently, several
studies (Liu et al., 2024; Lee et al., 2024) have
observed that even without additional pre-training,
modern models can still exhibit activation patterns
that resemble sparsity, suggesting the potential for
training-free sparsification techniques. However,
these methods face two major limitations. Firstly,

1086

mailto:190110509@stu.hit.edu.cn

1 0 0 1

0 1 1 0
Pruning

Dynamic

Pruning

Dynamic

Pruned

Pruned

Activation Sparsity
Mask weight by activation

Mask weight by activation

ScorePruning

Weight Pruning

Pruned

(a) Differences between weight pruning and activation sparsity

Group 1
Blocks 0-7

Group 2
Blocks 8-15

Group 3
Blocks 16-23

Group 4
Blocks 24-31

15

20

25

30

35

Pe
rp

le
xi

ty

Llama2-7B
Llama3-8B
Llama3.1-8B
Mistral-7B

(b) Sensitivity to sparsity across trans-
former blocks

Figure 1: (a) Comparison of weight pruning and activation sparsity, where the latter one is dynamic and input-
dependent. (b) Sensitivity analysis of transformer blocks under different sparsity configurations. We divide the
transformer into four contiguous block groups (8 blocks each) and evaluate perplexity when sparsifying one group
to 60% while others remain at 80%.

they determine the sparsification threshold solely
based on the magnitude of the activations, with-
out accounting for the role of the corresponding
weights in the sparsification process. Secondly,
they apply a uniform sparsity rate across all blocks,
neglecting the fact that blocks at different depths
in the model contribute differently to its overall
performance.

To address the two aforementioned aspects, we
propose a novel activation sparsity framework,
termed as WAS. Firstly, we analyze the coupling
effect of weights and activations on the sparsifi-
cation error and reveal that both activation values
and weights play equally important roles. Based
on this insight, we propose a new thresholding
strategy that jointly considers the magnitudes of
both activations and weights to determine whether
a value should be sparsified. In addition, as shown
in Figure 1b, we observe that blocks at different
depths exhibit varying sensitivities to sparsity and
we introduce a constrained Bayesian optimization
approach to assign block-wise sparsity rates, in-
stead of applying a uniform sparsity rate across
all blocks. Finally, we design an optimized GPU
kernel that directly integrates weight-aware spar-
sity logic into the computation pipeline, enabling
efficient, structure-sensitive inference acceleration
with minimal overhead.

Our key contributions can be summarized as:

• A novel activation sparsity framework called
WAS is proposed, which incorporates weight
information into the thresholding decision by
analyzing the mathematical formulation of the
error introduced during sparsification.

• We introduce a constrained Bayesian opti-
mization algorithm that dynamically allo-

cates sparsity rates across different blocks,
motivated by empirical observation (Fig-
ure 1b). Without additional training, our
method achieves up to 1.52× inference ac-
celeration with acceptable performance degra-
dation in 60% sparsity level, and significantly
outperforms the baselines in 75% sparsity.

• Furthermore, we develop a custom GPU ker-
nel that integrates weight information into the
computation pipeline, supports non-uniform
sparsity and enables structure-specific thresh-
olding across blocks. Our kernel is compati-
ble with general Transformer architecture and
supports practical inference deployment.

2 Related Work

Activation sparsity can be broadly categorized into
training-based and training-free approaches. We
briefly review both lines of research below.

2.1 Training-based Activation Sparsity

Several training-based methods have been pro-
posed to induce activation sparsity in neural net-
works. (Kurtz et al., 2020) first identified the natu-
ral sparsity phenomenon caused by ReLU activa-
tions in CNNs, and further enhanced this sparsity
through regularization-based training, ultimately
enabling faster convolution by exploiting the sparse
structure of activations. DejaVu (Liu et al., 2023)
observed that, due to residual connections in deep
neural networks, token embeddings across adja-
cent layers change slowly, and neurons with larger
activation norms dominate the forward computa-
tion. To take advantage of this, DejaVu trains a
lightweight two-layer MLP to predict neurons with
smaller activation norms and selectively prunes

1087

Block-Wise Optimization Activation Sparsity

Sparsity rates monotonically increasing

sN

Block
1

Block
2

Sparsify Sparsify

Block
2

Block
1

Block
N

Block
N

Sparsifys1 s2

0.8

1.9

0.0

0.2

-0.2

-0.9

0.7

-0.1

-0.2

-1.8

-1.1

-0.1

0.1

-0.1

-0.4

0.2

-0.4

0.3

-0.3

1.0

0.9

-0.6

0.2

-0.2

-1.3

-0.3

0.9

0.1

0.1

-1.3

Mask
4.2 0.8 4.6 1.1 6.1

2.1 -3.5 1.6 0.6 -2.7

1 0 1 0 1⊙

WT

GPU Memory

Load Weight

Registers

5.3 4.1 -1.4 -2.9 4.3

0.8 -0.9 -1.1 0.2 0.9 -0.3

1.9 0.7 -0.1 -0.4 -0.6 0.9

-0.2 -1.8 -0.4 1.0 -1.3 -1.3

2.1 1.6 -2.7
TPE Optimization

P(X | Y)

Pretrained LLMs

Allocate Sparsity
Rates Across Block

Sampling Space

Validate Dataset

MSE-Guided
Greedy Search

Figure 2: An overview of our WAS. WAS assigns inter-block sparsity using constrained Bayesian optimization, and
intra-block sparsity by greedy search, while incorporating weight information into the sparsification process.

them, achieving significant inference acceleration.
While earlier work largely focused on ReLU-based
models, ReLUfication (Mirzadeh et al., 2023) and
ProSparse (Song et al., 2024) aim to recover similar
sparsity in modern LLMs by replacing the origi-
nal activation functions with ReLU and performing
continued pre-training to restore ReLU-like behav-
ior. (Zhang et al., 2024) further explores the design
space of activation functions by retraining small
models with ReLU2 activation, which has been
shown to induce even higher activation sparsity
than standard ReLU.

While effective, these approaches typically re-
quire additional training or modification to the
model architecture, which limits their applicability
in deployment scenarios where retraining is not
feasible or desirable.

2.2 Training-free Activation Sparsity

To circumvent the limitations of training-based
methods, several studies have proposed training-
free activation sparsity techniques. By applying a
top-k sparsification to the MLP layers in T5 (Raffel
et al., 2020a) and ViT (Dosovitskiy et al., 2020),
(Li et al., 2022) achieves notable performance im-
provements. Griffin (Dong et al., 2024) identifies
a flocking effect, where different tokens within
the same sentence tend to activate similar neurons,
while different sentences activate distinct sets of
neurons. Based on this observation, they use the
activations from prompt tokens to predict which
neurons will be activated in the remainder of the
sentence, thereby enabling inference acceleration.
Similarly, (Ma et al., 2024) leverages the activa-
tions from the prefill phase to generate sparsity
masks used during the generation phase, improv-
ing efficiency without modifying the model. CATS

(Lee et al., 2024) proposes a relative magnitude-
based sparsification technique by analyzing the dis-
tribution of gate activations in MLP layers on a cal-
ibration set to determine cutoff thresholds. This en-
ables selective computation of Wup and Wdown, re-
ducing the cost of MLP inference. However, CATS
only sparsify gate outputs, limiting its impact to a
subset of the MLP computation. In contrast, TEAL
(Liu et al., 2024) applies sparsification to the in-
puts of all components in the model, achieving
model-level activation sparsity and significantly
improving overall computational efficiency.

Nevertheless, most of these methods are still in
their infancy, relying on straightforward heuristics
without deeper modeling or optimization.

3 Method

In this section, we provide a detailed overview of
WAS, as illustrated in Figure 2. We first introduce
the preliminaries and motivation in Section 3.1.
Next, we introduce our sparsification method in
Section 3.2, describe the sparsity allocation strate-
gies across and within transformer blocks in Sec-
tions 3.3 and 3.4, and detail our custom GPU kernel
for efficient inference acceleration in Section 3.5.

3.1 Preliminaries and Motivation

The core idea of activation sparsity lies in iden-
tifying and zeroing out the activations that have
minimal impact on model performance, and infer-
ence acceleration can be achieved by skipping the
loading of weight columns that would be multi-
plied with sparsified activations. This is typically
achieved through threshold-based methods, which

1088

Figure 3: Distributions of activations (after being scaled by the corresponding weight norm) in Blocks 8, 16, and 24
of LLaMA-3-8B exhibit symmetric and unimodal around zero. This property enables reliable threshold selection
for a given sparsity level.

can be formally expressed as:

sp(xi) =

{
0 if |xi| < τ

xi otherwise
, (1)

where x = [x1, x2, . . . , xm] is the input. sp(·)
is the sparse operation, and τ denotes the cutoff
threshold. The error of the sparsification process
can be expressed as:

L = ||xWT − x
′
WT ||, (2)

x
′
= sp(x), (3)

where W ∈ Rn×m is the model weight. According
to Equation 2, we observe that weights also play
a significant role in the process of model sparsity.
An intuitive idea is to incorporate weights into the
decision-making process of whether an activation
value should be set to zero.

Secondly, Transformer-based LLMs exhibit
varying degrees of sensitivity to sparsity across dif-
ferent blocks. Formally, for a LLM with L blocks,
the model sparsity is defined as a weighted average
across all blocks in the model:

S =
1

L

L∑

l=1

pl (4)

where pl is the sparsity ratio of the l-th block.
Typically, information flows hierarchically from
shallow to deep blocks, where shallow blocks pri-
marily capture fundamental token-level semantics,
serving as the foundation for subsequent high-level
feature extraction and propagation. Intuitively,
these shallower blocks, being critical to the over-
all architecture, are more sensitive to sparsity and
thus require lower sparsity levels. Previous weight

pruning approaches have addressed similar con-
siderations: LLM_Pruner (Ma et al., 2023) se-
lectively prunes intermediate transformer blocks,
while OWL (Yin et al., 2023) dynamically adjusts
sparsity ratios based on feature outliers. Motivated
by these insights, we explore the necessity of as-
signing block-wise activation sparsity ratios, in-
stead of applying a uniform sparsity rate across all
blocks as in prior work (Liu et al., 2024).

3.2 Weight-aware Activation Sparsification

Inspired by WANDA (Sun et al., 2023), we in-
tegrate weight information into our sparsification
framework, with a key distinction being our focus
on activation pruning rather than weight pruning.
Specifically, by employing the L1 norm, Equation
2 can be extended as follows:

L =
n∑

j=1

|
m∑

i=1

(xi − x
′
i)wi,j |

≤
m∑

i=1

|xi − x
′
i| ×

n∑

j=1

|wi,j |

=

m∑

i=1

|xi − x
′
i| × ∥WT

i,:∥1,

(5)

where wi,j denote the element at the i-th row and
j-th column of WT . Assume we select one of the
two activation values xp and xq, which are close
to each other numerically, for sparsification. Ac-
cording to Equation 5, the corresponding sparsifica-
tion errors are |xp| × ∥WT

p,:∥1 and |xq| × ∥WT
q,:∥1.

To minimize the sparsification loss, the decision
should be determined by the relative magnitudes of
∥WT

p,:∥1 and ∥WT
q,:∥1. Consequently, the sparsifi-

cation process depends not only on activation but

1089

also incorporates weight norm, as mathematically
formulated below:

mask(xi,W) =

{
0, if |xi| × ∥WT

i,:∥1 < τ

1, otherwise
,

(6)

x
′
= x⊙ mask(x,W). (7)

Notably, the column-wise L1 norm of weights can
be precomputed prior to sparsification as an m-
dimensional vector, introducing negligible compu-
tational overhead.

In determining the sparsity threshold τ , existing
approaches generally fall into two categories: (1)
online computation via top-k selection of activation
values, which introduces additional runtime over-
head, and (2) offline estimation through cumulative
distribution function (CDF) modeling of activa-
tions using calibration data, which requires precise
distribution modeling to guarantee target sparsity
rates. Building upon the foundational observation
by (Liu et al., 2024) that LLM activations typically
follow zero-mean Gaussian or Laplacian distribu-
tions, our analysis in Figure 3 demonstrates that
this statistical property remains remarkably con-
sistent when activations are modulated by weight
information across different layers and model archi-
tectures. This statistical regularity enables thresh-
old selection based on the distribution of activa-
tions scaled by weight norms. Formally, given a
target sparsity ratio p ∈ [0, 1], the threshold τp is
determined by:

1

m

m∑

i=1

P
(
|xi| × ∥WT

i,:∥1 ≤ τp
)
= p (8)

3.3 Inter-Block Sparsity Allocation

Determining appropriate sparsity ratios across
blocks is critical for optimizing overall model per-
formance. As discussed in Section 3.1, transformer
blocks exhibit varying sensitivity to sparsity, par-
ticularly under high global sparsity. Figure 1b illus-
trates this positional sensitivity: reducing sparsity
in shallow blocks yields substantial performance
gains, while reducing sparsity in deeper blocks has
limited effect. This trend reveals a monotonic de-
crease in sparsity sensitivity from shallow to deep
layers. Motivated by this observation, we propose
a constrained Bayesian optimization framework for
inter-block sparsity allocation.

Specifically, we utilize a variant of Bayesian
optimization, the Tree-structured Parzen Estima-
tor (TPE) (Bergstra et al., 2011), to search for the
optimal sparsity ratios. Traditional Bayesian op-
timization typically relies on Gaussian processes
to model the objective function which struggles to
scale in high-dimensional spaces. TPE employs
kernel density estimation for modeling, which not
only reduces computational complexity but also
exhibits better performance in high-dimensional
optimization tasks.

Algorithm 1 Constrained Bayesian Optimization
Input:

ModelM with L blocks, validation dataset Dval, target
sparsity level r, iteration counts Ntrials, greedy lookup
table T with L blocks

Output:
Optimal sparsity ratios s ∈ RL for all blocks

1: Initialize Optuna study with TPESampler
2: for t← 1 to Ntrials do
3: s1 ← TPESampler(r − 0.05, r) ▷ Initialize sparsity

for the first block
4: for i← 2 to L do
5: si ← TPESampler(si−1, r + 0.05)
6: end for
7: if | 1

L

∑L
i=1 si − r| > ϵ then

8: continue ▷ Resample
9: end if

10: ApplySparsity(M, {si}Li=1, T)
11: ppl← Evaluate(M,Dval)
12: UpdateResult({si}Li=1, ppl)
13: end for
14: return s

As detailed in Algorithm 1, for each trial, we
uniformly sample the sparsity ratio within a nar-
row range for the first block, while imposing a
constraint on the subsequent blocks, using the sam-
pled value from the previous block as the lower
bound for the current block. This constraint not
only aligns with our empirical observations but
also effectively reduces the search space. We will
discuss the impact of applying constraints on the
final results in detail in Section 4.5. For each trial,
we use the model’s perplexity on the WikiText2
(Merity et al., 2016) as the evaluation metric.

3.4 Intra-Block Sparsity Allocation

Given the overall sparsity ratio of a block, we fur-
ther optimize the sparsity ratios for its internal com-
ponents (e.g., Q/K/V matrices) to achieve the best
performance. Due to the non-differentiable nature
of threshold-based methods, we initially employed
straight-through gradient estimator (STE) (Bengio
et al., 2013) to optimize component-wise sparsity
allocation within each block. However, we identi-

1090

Dataset Sparsity Methods / Models LLaMA-2 LLaMA-3 LLaMA-3.1 Mistral

7B 13B 70B 8B 70B 8B 70B 7B

WikiText2

0% Baseline 5.47 4.88 3.32 6.14 2.85 6.27 2.83 3.12

40%
CATS 46.87 48.63 54.22 502.19 71.84 162.33 66.95 4.6e4

WANDA 6.07 5.38 3.74 7.49 4.38 7.59 4.44 5.68
TEAL 5.74 5.02 3.47 6.60 3.48 6.61 3.41 5.40
WAS 5.68 4.99 3.47 6.52 3.39 6.61 3.38 5.40

60%
WANDA 10.84 8.49 5.27 26.40 9.54 25.54 8.18 11.44

TEAL 6.80 5.66 4.09 10.04 5.70 8.21 5.74 6.10
WAS 6.56 5.54 4.09 8.30 5.60 8.14 5.59 6.09

75% TEAL 42.15 12.17 6.37 87.48 10.42 27.73 9.49 13.02
WAS 12.76 8.16 6.19 28.33 9.91 26.61 9.27 10.34

C4

0% Baseline 7.26 6.73 5.71 9.44 7.16 9.53 7.10 3.12

40%

CATS 43.96 51.10 55.73 325.24 102.20 136.29 95.64 4.4e4
WANDA 8.12 7.40 6.03 11.91 8.32 12.00 8.27 8.91

TEAL 7.55 6.90 5.82 10.45 7.56 10.29 7.47 8.57
WAS 7.52 6.88 5.82 10.18 7.52 10.26 7.44 8.57

60%
WANDA 14.09 11.79 7.81 39.71 16.03 39.20 12.98 16.25

TEAL 9.03 7.80 6.34 15.93 9.47 13.17 9.43 9.50
WAS 8.78 7.68 6.34 13.45 9.35 13.07 9.25 9.47

75% TEAL 51.34 16.38 8.54 86.68 15.73 47.99 14.49 17.65
WAS 15.56 11.10 8.38 43.54 14.93 41.29 13.99 14.03

Table 1: Comparative analysis of perplexity performance(lower is better) across LLaMA and Mistral model families
at 40%, 60% and 75% sparsity levels. We omit WANDA 75% as it degenerates seriously.

fied critical gradient backpropagation failures to the
sparsity parameters. While alternative approaches
like Bayesian optimization were explored, they ex-
hibited prohibitively slow convergence and suscep-
tibility to local optima. We ultimately follow (Liu
et al., 2024) to determine the optimal sparsity con-
figuration for intra-block components by greedy
search. The detailed procedure is provided in Al-
gorithm 2 at Appendix D.

3.5 Hardware Acceleration

We implement a custom Triton kernel (Tillet et al.,
2019) specifically tailored to the sparsity patterns
produced by WAS, aiming to achieve practical in-
ference acceleration. Building upon DejaVu (Liu
et al., 2023), our kernel integrates the mask gener-
ation process for activation sparsification directly
into the computation pipeline. It performs FP16
accumulation along the external SplitK dimension
to reduce memory overhead, and employs a cache-
aware scheduling strategy that prioritizes activa-
tions reused across thread blocks while deprioritiz-
ing block-specific weights. On top of this founda-
tion, we introduce several key enhancements: (1)
We incorporate weight norms, as described in Sec-
tion 3.2, directly into the mask generation process;
(2) We extend the kernel to support non-uniform
sparsity, allowing different sparsity rates across
transformer blocks; (3) We generalize the thresh-

olding mechanism to support distinct thresholds
for different substructures (e.g., Q, K, V), enabling
more fine-grained mask generation under varying
sparsity levels.

4 Experiments

4.1 Experimental Settings

Models and Datasets. We conduct comprehen-
sive evaluations of WAS on several leading open-
source LLMs, including the META’s LLaMA-2
(Touvron et al., 2023), LLaMA-3, LLaMA-3.1
(Grattafiori et al., 2024) and Mistral (Jiang et al.,
2023) families. We assess the generative capabil-
ities of the sparsified models on the WikiText2
(Merity et al., 2016) and C4 (Raffel et al., 2020b)
datasets. For reasoning performance, we evalu-
ate all models on five zero-shot tasks, including
ARC-Easy, ARC-Challenge (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), PIQA(Bisk et al.,
2020), and Winogrande (Sakaguchi et al., 2021).
Furthermore, we conduct evaluations on the 5-
shot MMLU (Hendrycks et al., 2020) and GSM8K
(Cobbe et al., 2021) tasks. All evaluations are per-
formed using the lm-evaluation-harness (Gao et al.,
2024) framework.

Baseline and Implement Details. Given the
relatively limited research on training-free model
sparsification, we primarily compare our method

1091

Models Sparsity Methods ARC-C ARC-E HellaSwag PIQA Winogrande GSM8K MMLU AVG

LLaMA-2-7B

0% Baseline 43.43 76.35 57.14 78.07 69.14 13.57 45.87 54.80

60%
WANDA 30.80 64.94 43.51 71.49 65.75 2.43 28.07 43.86

TEAL 38.73 72.60 52.63 75.24 63.22 6.14 36.12 49.24
WAS 39.59 73.11 54.42 77.20 66.54 7.43 38.93 51.03

75% TEAL 27.05 57.79 35.22 68.17 54.78 0.0 26.19 38.46
WAS 32.85 63.09 44.86 70.35 60.62 1.36 28.14 43.04

LLaMA-2-13B

0% Baseline 48.46 79.42 60.03 79.16 72.22 23.05 55.20 59.65

60%
WANDA 37.29 69.23 48.30 75.08 68.90 4.17 35.42 48.34

TEAL 46.08 77.19 57.83 77.26 67.01 15.31 47.79 55.50
WAS 47.35 78.24 59.11 78.24 69.38 16.83 49.29 56.92

75% TEAL 32.59 67.30 42.66 71.27 59.75 0.99 26.54 43.01
WAS 39.08 71.17 52.23 73.56 62.67 4.25 38.04 48.71

LLaMA-3-8B

0% Baseline 50.43 80.09 60.17 79.71 72.85 50.04 65.34 65.52

60%
WANDA 26.71 59.51 36.38 67.08 58.80 1.97 27.92 39.77

TEAL 38.91 71.34 52.45 75.63 64.17 11.83 47.56 51.70
WAS 43.69 74.33 54.07 75.95 67.48 21.61 53.81 55.85

75% TEAL 24.66 45.16 36.16 64.25 54.54 0.0 23.98 35.54
WAS 30.80 58.92 39.83 67.41 59.43 1.44 27.25 40.73

LLaMA-3.1-8B

0% Baseline 51.37 81.44 60.04 80.25 73.40 49.43 65.20 65.88

60%
WANDA 25.43 57.83 36.87 67.90 58.56 2.20 29.16 39.71

TEAL 41.89 74.92 53.95 77.26 66.14 22.44 53.31 55.70
WAS 43.17 74.71 54.55 77.75 68.59 23.43 55.00 56.74

75% TEAL 29.01 61.66 37.84 68.93 55.88 1.36 27.39 40.30
WAS 33.11 60.10 40.97 69.48 58.41 2.43 28.08 41.80

Mistral-7B

0% Baseline 50.34 80.85 61.20 80.58 73.80 38.44 62.63 63.98

60%
WANDA 32.25 66.96 44.33 71.76 65.27 4.55 38.56 46.24

TEAL 46.50 78.20 58.97 78.89 69.61 25.93 55.65 59.11
WAS 46.33 77.95 59.14 78.56 70.32 26.54 56.49 59.33

75% TEAL 36.18 71.72 49.05 74.54 62.90 1.82 33.16 47.05
WAS 39.85 71.55 51.97 74.81 64.96 4.02 39.34 49.50

Table 2: Comparative analysis of zero-shot and few-shot performance(higher is better) across LLaMA and Mistral
model families at 60% and 75% sparsity levels.

with TEAL, the current state-of-the-art in this cate-
gory. We additionally include CATS as a baseline,
which achieves up to 40% sparsity. To broaden the
comparison, we also evaluate against WANDA. We
randomly select ten 2,048-token sequences from
the Alpaca (Taori et al., 2023) training set to profile
activation value distributions for threshold determi-
nation as detailed in Equation 8. The intra-block
sparsity ratios were optimized through a greedy
algorithm minimizing MSE loss between original
and sparsified models, while the inter-block spar-
sity allocation was systematically determined via
50 trials of TPE-based Bayesian optimization using
WikiText2 perplexity as the optimization objective.

4.2 Experiments on Language Generation
Tasks

The fundamental competency of large language
models resides in their generative performance. To
evaluate the generative capability of the sparsified
models, we conducted comprehensive perplexity
experiments across different sparsity levels, primar-

ily focusing on 40%, 60% and 75% sparsity.

As demonstrated in Table 1, CATS suffers from
significant performance degradation at 40% spar-
sity. This is because it only sparsifies the output of
the Wgate layer in the MLP, requiring an extremely
high sparsity (up to 90%) within the MLP itself to
achieve 40% overall sparsity. In contrast, at both
40% and 60% sparsity levels, WAS achieves com-
parable or superior performance to TEAL on both
WikiText2 and C4 tasks. The results also show
that both WAS and TEAL outperform WANDA,
demonstrating the superiority of dynamic activa-
tion sparsity over static weight pruning. Most no-
tably, under an extreme 75% sparsity level, our
method achieves significant improvements, reduc-
ing perplexity by 29.39 and 35.78 on LLaMA-2-7B
for WikiText2 and C4, respectively. These results
underscore the effectiveness of weight-aware spar-
sification and constrained bayesian optimization
in determining optimal sparsity ratios for different
blocks, particularly in high-sparsity settings.

1092

4.3 Experiments on Reasoning Benchmarks

While perplexity reflects generative capability, rea-
soning and knowledge tasks offer a complementary
lens into model understanding. Zero- and few-shot
evaluations assess whether sparsified models re-
tain knowledge and in-context learning ability. We
evaluate model performance under 60% and 75%
sparsity to examine this capability. The results
under the 40% sparsity setting can be found in Ap-
pendix C.

As evidenced in Table 2, both WAS and TEAL
consistently outperform WANDA across all eval-
uated models at 60% sparsity in reasoning tasks,
with WAS achieving the best results. Most notably,
under the challenging 75% sparsity condition, WAS
achieves substantial improvements ranging from
1.50% to 5.70% absolute gains over TEAL. These
results not only validate the efficacy of WAS but
also establish new state-of-the-art performance in
the training-free sparsification domain.

Llama-2-7B Llama-2-13B Llama-3-8B Llama-3-70B
0

25

50

75

100

125

150

175

200

To
ke

ns
/s

×1.24

×1.29

×1.25

×1.29

×1.45

×1.52

×1.49

×1.50

×1.60

×1.68

×1.65

×1.63

Baseline (0%)
40% Sparsity
60% Sparsity
75% Sparsity

Figure 4: End-to-end single-batch inference speed (to-
kens per second).

4.4 Experiments on Hardware Acceleration

We benchmark the end-to-end, single-batch decod-
ing speed of WAS on the A800 GPU. Following
the standard inference benchmarking setup in (Py-
Torch, 2024), we report the averaged speedup re-
sults over five input sentences. Our experiments pri-
marily focus on LLaMA-2 (7B, 13B) and LLaMA-
3 (8B, 70B) models across 40%, 60%, and 75%
sparsity levels, with Tensor Parallelism (TP2) en-
abled for LLaMA-3-70B. As shown in Figure 4,
WAS achieves up to 1.52× and 1.68× speedups at
60% and 75% sparsity, respectively. These results
demonstrate the practical effectiveness of WAS in
accelerating LLM inference.

Greedy Weight
Norm TPE Wiki-2 C4

✓ 42.15 51.34
✓ ✓ 21.13 24.80
✓ ✓ 19.21 21.24
✓ ✓ ✓ 12.76 15.56

Table 3: Ablation results of LLaMA-2-7B at 75% spar-
sity levels.

Model Method Wiki-2 C4

LLaMA-2-7B w/o constraint 13.79 17.28
constraint 12.76 15.56

LLaMA-2-13B w/o constraint 8.57 11.60
constraint 8.16 11.10

Table 4: Results with and without constrained optimiza-
tion at 75% sparsity levels for LLaMA-2 (7B, 13B).

4.5 Ablation Experiments

To comprehensively validate our proposed Weight-
Aware Activation Sparsity and the constrained TPE
optimization for inter-block sparsity allocation, we
conduct ablation studies on LLaMA2-7B at 75%
sparsity levels and results are presented in Table 3.
The first row of the table replicates TEAL’s ap-
proach, employing a uniform sparsity distribution
with greedy intra-block optimization. The results in
the second and third rows demonstrate the benefits
of our proposed enhancements: using constrained
TPE for inter-block sparsity alone reduces perplex-
ity by 21.02 and 26.54 on WikiText2 and C4, re-
spectively, while applying WAS under uniform
sparsity achieves reductions of 22.94 and 30.10.
These findings highlight the individual advantages
of each point. Notably, the combined approach,
integrating both techniques, yields the most sub-
stantial improvement, underscoring the necessity
of hierarchical sparsity allocation and reaffirming
the importance of weight information in the sparsi-
fication process.

Furthermore, we conducted experiments to val-
idate the effectiveness of our constrained TPE ap-
proach. As shown in Table 4, at 75% sparsity
level, we compared unconstrained TPE (allowing
arbitrary sparsity distribution across blocks) with
our constrained version on both LLaMA-2-7B and
LLaMA-2-13B. While unconstrained TPE theoreti-
cally offers greater optimization potential, empir-
ical results demonstrate our constrained method
achieves superior performance. This phenomenon
may stem from the inherent limitations of Bayesian
optimization in high-dimensional search spaces,

1093

where the algorithm becomes increasingly prone to
convergence at local optima rather than the global
optimum as the dimensionality expands. Crucially,
the unconstrained TPE significantly slows conver-
gence due to difficulty maintaining target sparsity -
LLaMA-2-13B required over 100 trials versus just
50 for the constrained version. This improvement
suggests our constraints effectively reduce opti-
mization dimensionality, addressing Bayesian opti-
mization’s instability in high-dimensional spaces
while simultaneously accelerating convergence and
enhancing final performance.

5 Conclusion

In this paper, we propose WAS, a novel training-
free activation sparsity framework. WAS in-
troduces a new sparsification strategy that in-
corporates weight importance into the thresh-
olding decision, addressing a key limitation of
prior magnitude-only approaches. To further im-
prove sparsity allocation, we employ a constrained
Bayesian optimization method that assigns block-
wise sparsity rates in a monotonically increasing
fashion. Finally, we design a custom GPU kernel
to realize end-to-end inference acceleration under
the WAS sparsity patterns. Experimental results
demonstrate that WAS achieves performance com-
parable to strong baselines at sparsity levels below
60%, and establishes new state-of-the-art results
under the more challenging 75% sparsity setting.

Limitations

While WAS incorporates weight information into
the activation sparsification process and leverages
constrained Bayesian optimization to assign block-
wise sparsity rates, our current design primarily
targets LLMs whose activation distributions are
symmetric and unimodal around zero. In future
work, we plan to extend our method to a broader
range of model architectures. Additionally, due to
limited hardware resources, our focus has been on
training-free scenarios. Incorporating training into
the WAS framework remains a promising direction
for further improving performance.

Ethics Statement

This paper presents a training-free activation spar-
sity framework designed to improve the inference
efficiency of LLMs, with the broader aim of en-
abling more accessible and sustainable deployment

of LLMs in real-world settings. We are aware of on-
going ethical discussions surrounding LLMs, par-
ticularly regarding fairness, bias amplification, and
environmental impact. Our proposed method fo-
cuses solely on sparsifying activation patterns dur-
ing inference without modifying model weights or
introducing new training data. As such, we believe
that WAS does not exacerbate existing biases nor
introduce additional ethical risks.

Acknowledgments

Miao Zhang was partially sponsored by the
National Natural Science Foundation of China
under Grant 62306084 and U23B2051, Shen-
zhen College Stability Support Plan under
Grant GXWD20231128102243003, and Shen-
zhen Science and Technology Program un-
der Grant ZDSYS20230626091203008 and
KJZD20230923115113026.

References
Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-

nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. Advances in neural information pro-
cessing systems, 24.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Xuanyao Chen, Zhijian Liu, Haotian Tang, Li Yi, Hang
Zhao, and Song Han. 2023. Sparsevit: Revisiting
activation sparsity for efficient high-resolution vision
transformer. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 2061–2070.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul

1094

Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, and 1 others. 2023. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1–113.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Harry Dong, Beidi Chen, and Yuejie Chi. 2024. Prompt-
prompted adaptive structured pruning for efficient
llm generation. arXiv preprint arXiv:2404.01365.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, and 1
others. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Matteo Grimaldi, Darshan C Ganji, Ivan Lazarevich,
and Sudhakar Sah. 2023. Accelerating deep neural
networks via semi-structured activation sparsity. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1179–1188.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lelio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,

Thibaut Lavril, Thomas Wang, Timothee Lacroix,
and William El Sayed. 2023. Mistral 7b.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834, 11.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-
der Matveev, John Carr, Michael Goin, William Leis-
erson, Sage Moore, Nir Shavit, and Dan Alistarh.
2020. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In In-
ternational Conference on Machine Learning, pages
5533–5543. PMLR.

Donghyun Lee, Je-Yong Lee, Genghan Zhang,
Mo Tiwari, and Azalia Mirhoseini. 2024. Cats:
Contextually-aware thresholding for sparsity in large
language models. arXiv preprint arXiv:2404.08763.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Fe-
lix Chern, Felix Yu, Ruiqi Guo, and 1 others. 2022.
The lazy neuron phenomenon: On emergence of
activation sparsity in transformers. arXiv preprint
arXiv:2210.06313.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo,
Yoon Kim, and Ben Athiwaratkun. 2024. Training-
free activation sparsity in large language models.
Preprint, arXiv:2408.14690.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, and 1 others. 2023.
Deja vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Chi Ma, Mincong Huang, Ying Zhang, Chao Wang,
Yujie Wang, Lei Yu, Chuan Liu, and Wei Lin. 2024.
First activations matter: Training-free methods for
dynamic activation in large language models. arXiv
preprint arXiv:2408.11393.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta,
Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar.
2023. Relu strikes back: Exploiting activation

1095

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2408.14690

sparsity in large language models. arXiv preprint
arXiv:2310.04564.

Team PyTorch. 2024. Accelerating generative ai with
pytorch ii: Gpt, fast. https://pytorch.org/blog/
accelerating-generative-ai-2/. Accessed:
2024-04-29.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020a. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020b. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Md Aamir Raihan and Tor Aamodt. 2020. Sparse
weight activation training. Advances in Neural Infor-
mation Processing Systems, 33:15625–15638.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,
Guangli Li, Tao Yang, and 1 others. 2024. Prosparse:
Introducing and enhancing intrinsic activation spar-
sity within large language models. arXiv preprint
arXiv:2402.13516.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, pages 10–19.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, and 1 others. 2023.
Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv
preprint arXiv:2310.05175.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1
others. 2022. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han,
Yankai Lin, Chaojun Xiao, Chenyang Song, Zhiyuan
Liu, Zeyu Mi, and Maosong Sun. 2024. Relu2 wins:
Discovering efficient activation functions for sparse
llms. arXiv preprint arXiv:2402.03804.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate llm serv-
ing. Proceedings of Machine Learning and Systems,
6:196–209.

1096

https://pytorch.org/blog/accelerating-generative-ai-2/
https://pytorch.org/blog/accelerating-generative-ai-2/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Appendix

A Sensitivity Across Transformer Blocks

Group 1
Blocks 0-7

Group 2
Blocks 8-15

Group 3
Blocks 16-23

Group 4
Blocks 24-31

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rp

le
xi

ty

Llama2-7B
Llama3-8B
Llama3.1-8B
Mistral-7B

Figure 5: We divide the transformer into four contiguous
block groups (8 blocks each) and evaluate perplexity
when sparsifying one group to 80% while others remain
at 60% .

We partition the transformer into four contiguous
block groups (8 blocks each) and evaluate perplex-
ity by setting one group’s sparsity to 80% while
keeping the remaining groups at 60%. As shown
in Figure 5, the trend in perplexity changes is op-
posite to that observed when sparsifying one group
to 60% with others at 80%. Specifically, increas-
ing sparsity in shallow blocks substantially dete-
riorates performance, whereas increasing sparsity
in deeper blocks has a limited effect. This further
confirms that transformer blocks at different posi-
tions exhibit varying sensitivities to sparsity, with
shallower blocks being notably more sensitive.

B Effect of Weight Norm on Activation
Distributions

We visualize the activation distributions of addi-
tional models after incorporating weight norm. As
shown in Figures 6, 7 and 8, we observe that the
distribution shape of activations remains largely un-
changed after being scaled by weight norms. This
may be due to the weight norm applying only a
scale transformation without altering the distribu-
tion’s shape. This stability facilitates threshold
determination at a given sparsity level.

C Extended Results at 40% Sparsity

As demonstrated in Table 5, both WAS and TEAL
surpass WANDA at 40% sparsity level, reconfirm-
ing the superiority of activation sparsity over con-
ventional weight pruning. The marginal improve-

ment of WAS over TEAL at this sparsity level sug-
gests the model’s intrinsic low-sparsity property
may inherently limit the optimization headroom. It
is worth noting that we omit the results of CATS
under 40% sparsity, as its performance has com-
pletely degraded at this level.

Models Methods ARC-C ARC-E HellaSwag PIQA Winogrande GSM8K MMLU AVG

LLaMA-2-7B
WANDA 42.66 75.59 55.59 77.26 69.93 8.34 38.16 52.50

TEAL 43.00 75.63 56.40 77.69 68.59 12.05 43.79 53.87
WAS 43.69 75.84 56.92 77.75 67.64 12.36 44.50 54.10

LLaMA-2-13B
WANDA 46.59 78.54 59.27 78.45 72.22 18.35 50.90 57.76

TEAL 47.95 78.62 60.02 78.45 71.67 20.55 54.25 58.79
WAS 48.81 78.58 60.25 79.22 72.06 22.52 54.18 59.37

LLaMA-3-8B
WANDA 48.16 75.93 56.53 77.80 73.09 31.31 59.03 60.26

TEAL 48.89 79.17 59.08 79.87 72.30 43.82 63.03 63.74
WAS 49.66 78.41 59.04 78.89 71.59 44.20 62.98 63.54

LLaMA-3.1-8B
WANDA 48.04 77.90 56.81 77.80 72.45 32.15 60.52 60.81

TEAL 49.83 79.88 59.00 79.38 71.98 43.82 63.59 63.93
WAS 48.72 80.60 59.16 79.00 71.35 45.56 63.79 64.03

Mistral-7B
WANDA 46.76 78.24 59.10 79.76 72.53 26.61 58.78 60.25

TEAL 49.15 79.59 61.20 79.98 72.85 36.85 61.57 63.03
WAS 49.74 80.39 61.22 79.98 73.56 35.41 61.37 63.10

Table 5: Comparative analysis of zero-shot and few-
shot performance(higher is better) across LLaMA and
Mistral model families at 40% sparsity levels.

D Intra-Block Sparsity Allocation By
Greedy Search

Algorithm 2 Layer-wise Greedy Sparsity Assign-
ment
Input: Block B, sparsity increment α, input X ∈ RB×seq×d

with n matrices, target sparsity t
1: for i = 1 to n do
2: fi ← size(Wi)
3: end for
4: F ←∑n

i=1 fi
5: p← 0n, P ← 0 ▷ Initialize sparsity settings
6: Ytarget ← B(X)
7: while P < t do
8: for i = 1 to n do
9: ∆i ← α ·

(
F
fi

)

10: p′ ← p
11: p′i ← pi +∆i

12: Ŷi ← B(X,p′)

13: Ei ← ∥Ytarget − Ŷi∥2
14: end for

▷ Update sparsity for the least-error matrix
15: j ← argmini Ei

16: pj ← pj +∆j

17: P ←∑n
i=1 (pi · fi) /F ▷ Record sparsity

configuration
18: end while

As shown in Algorithm 2, our greedy algorithm for
intra-block sparsity optimization operates through
three key phases: (1) Initialization with component-
wise parameter ratios relative to the block, (2) Iter-
ative sparsity increment by step size α, where each
step allocates sparsity to the component yielding
minimal MSE degradation, and (3) Convergence
to the target sparsity with optimal component-level
distribution.

1097

Figure 6: Distributions of activations (after being scaled by the corresponding weight norm) in Blocks 8, 16, and 24
of LLaMA-3.1-8B exhibit symmetric and unimodal around zero.

Figure 7: Distributions of activations (after being scaled by the corresponding weight norm) in Blocks 8, 16, and 24
of LLaMA-2-7B exhibit symmetric and unimodal around zero.

Figure 8: Distributions of activations (after being scaled by the corresponding weight norm) in Blocks 8, 16, and 24
of Mistral-7B exhibit symmetric and unimodal around zero.

1098

