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Abstract

This paper presents ALPHAONE (α1), a uni-
versal framework for modulating reasoning
progress in large reasoning models (LRMs)
at test time. α1 first introduces α moment,
which represents the scaled thinking phase
with a universal parameter α. Within this
scaled pre-α moment phase, it dynamically
schedules slow thinking transitions by mod-
eling the insertion of reasoning transition to-
kens as a Bernoulli stochastic process. Af-
ter the α moment, α1 deterministically termi-
nates slow thinking with the end-of-thinking
token, thereby fostering fast reasoning and ef-
ficient answer generation. This approach uni-
fies and generalizes existing monotonic scal-
ing methods by enabling flexible and dense
slow-to-fast reasoning modulation. Extensive
empirical studies on various challenging bench-
marks across mathematical, coding, and sci-
entific domains demonstrate α1’s superior rea-
soning capability and efficiency. Project page:
https://alphaone-project.github.io/

1 Introduction

“The most effortful forms of slow thinking are those that
require you to think fast.”

Thinking, Fast and Slow (Kahneman, 2011)

Large Reasoning Models (LRMs) such as
OpenAI o1 (Jaech et al., 2024) and DeepSeek-
R1 (DeepSeek-AI et al., 2025) have demonstrated
unprecedented progress in approaching human-
like system-2 reasoning capabilities, enabling slow
thinking—slowing down reasoning progress1 at
test time—for solving complex reasoning problems
that require high-order cognitive processing. These
advanced models are trained to utilize slow think-
ing via reinforcement learning, enabling LRMs

1Consider reasoning progress as a metric ranging from 0
to 1, indicating the start and the end of reasoning, respectively.
It increases slowly or fast at the pace of thinking. See Fig. 1
and Section 2 for a more illustrative and detailed explanation.
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Figure 1: Conceptual illustration of reasoning modu-
lation strategies. Our α1 employs a slow-to-fast rea-
soning schedule controlled by α. α1 scales more
efficiently than monotonously increasing method s1
(yellow) and generally outperforms monotonously de-
creasing (purple) approaches.

to slow down reasoning progress automatically. Is
such automatic slowing down of reasoning progress
determined by LRMs sufficiently reliable? Ac-
cording to Kahneman (2011), humans typically
think fast first and activate slow thinking when run-
ning into difficulty, through a conscious control
of system-1-to-2 reasoning transitioning, resulting
in overall comprehensive but efficient reasoning.
While similar to human systems and interesting
results have been observed, a lot of works have
pointed out that the LRMs themselves are prone to
overthinking (Chen et al., 2024b; Sui et al., 2025;
Pu et al., 2025; Yang et al., 2025c) or underthink-
ing (Su et al., 2025; Yang et al., 2025d; Wang et al.,
2025). This is because of the inability of LRMs to
find the optimal human-like system-1-to-2 reason-
ing transitioning and limited reasoning capabilities,
leading to unsatisfactory reasoning performance.

To overcome this limitation, existing works scale
LRMs at test time in mainly two ways. i) paral-
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Let 𝐾 be the number of sequences 
𝐴!, 𝐴", … , 𝐴#. … What is the 
remainder when 𝐾	is divided by 10?

Question Vanilla

Wait Frequency: 23

Okay, so I need to figure out … \n\n First, let me parse the problem. … 
Then, … \n\n Wait, but that can't be, because… </think> … So, the 
remainder when K is divided by 10 is 0.

AlphaOne𝛼 ← 1
𝛼 ← 1.4 𝛼 ← 1.8

Wait, \n</think> 
The number 𝐾 is 
the sum of …\n\n

Therefore, the 
remainder is 5.

Wait Frequency:
47 (𝛼 = 1.4)

Okay, so I need 
to figure out … 
\n\n

Wait, hold on. 
The problem 
… \n\n

First, let me 
parse the 
problem…\n\n

Wait, actually, 
reading the 
problem … \n\n

This seems 
similar to the 
concept of 
building … \n\n

Wait, … \n\n

… \n\n
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Wait, …
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Wait, …

Wait, …
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Figure 2: Overview of ALPHAONE (α1). Here represents α moment (Section 3.1). α1 applies dense reasoning
modulation via a user-defined slow thinking scheduling in pre-α moment. In addition, α1 utilizes a post-α moment
modulation by replacing slow thinking transitioning tokens “wait” to “</think>”, which fosters fast thinking.
Specifically, α determines when the slow-to-fast reasoning transition occurs. For example, reducing α from 1.4 to
1.0 shifts the α moment earlier, resulting in shorter slow reasoning phase and accelerating the annealing of pwait.

lel scaling: this line of research follows a Best
of N strategy and typically samples N times and
outputs the best answer using criteria such as
self-consistency (Wang et al., 2023; Wan et al.,
2024a; Zhou et al., 2025; Ma et al., 2025) and
perplexity (Fang et al., 2025). ii) sequential scal-
ing: this family of approaches addresses the over-
thinking/underthinking issues via early reasoning
stopping (Fu et al., 2025; Yang et al., 2025a; Xu
et al., 2025a) and promoting for reinforcing reason-
ing (Muennighoff et al., 2025; Wang et al., 2025),
respectively. For example, Xu et al. (2025a) pro-
poses Chain of Draft, prompting LRMs to think fast
strictly within 5 words to significantly reduce over-
thinking. s1 (Muennighoff et al., 2025) proposes
to foster reasoning continuously via appending a
slow-reasoning transition token “wait” multiple
times when LRMs are about to end. However, it is
unclear if such monotonous reasoning increment
or reduction is optimal, and the appropriate mo-
ment for slow thinking transitioning is still under-
explored. Hence, instead of test-time scaling with
an automatic slowing down by LRMs themselves
or simply increasing or reducing slow thinking, we
are interested in finding: Can we modulate reason-
ing progress universally, and develop a better slow
thinking transitioning strategy with it?

To answer this question, we present ALPHAONE
(α1), which efficiently scales LRMs at test time
through a universal reasoning progress modula-
tion. We introduce alpha moment, parameterized
by α ≥ 0, where the thinking process is scaled by
α times throughout the whole generation sequence.
To be specific, within a certain token length scaled
by α, we stochastically append the reasoning transi-
tion token “wait” after structural delimiters “\n\n”
under Bernoulli(pwait), inspired by the observa-
tion that these two frequently co-exist (Yang et al.,
2025c). Here, pwait is scheduled to change over
time to activate slow thinking. For example, a
simple linear annealing over time indicates a slow
thinking first, then fast thinking strategy.

However, we observe that amplifying slow think-
ing enables LRMs to sustain it automatically. Thus,
when pwait reaches 0, we replace “wait” with
“</think>” to deactivate slow thinking and switch
to fast reasoning. In this fashion, α1 unifies prior
methods like s1 (Muennighoff et al., 2025), where
α1 reduces to s1 if pwait is 1 or 0 at the end of a
reasoning segment within a certain reasoning token
length. However, different from these works that
only explore sparse slow reasoning modulation, α1
modulates reasoning continuously, supporting both
sparse and dense modulation strategies.
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Takeaways We present some insightful findings
from evaluating three different α1 LRMs, rang-
ing from 1.5B to 32B across six reasoning bench-
marks, including math, code generation, and scien-
tific problem reasoning: i) Slow thinking first, then
fast thinking, leads to better LRM reasoning. Sur-
prisingly, this differs from humans who commonly
think fast, followed by slow thinking (Kahneman,
2011), emphasizing the requirement of dedicated
test-time scaling strategies for LRMs. ii) Slow
thinking can bring efficient test-time scaling. While
slow thinking slows down reasoning, the overall to-
ken length is significantly reduced with α1, induc-
ing more informative reasoning progress brought
by slow thinking. iii) Slow thinking transitioning in
high frequency is helpful. Interestingly, we find that
α1 appending “wait” significantly more (e.g., over
2× more than s1) achieves much better results.

2 Background & Problem Statement

Revisiting Reasoning Models Following the
success of OpenAI’s o1 model (Jaech et al.,
2024), modern LRMs solve complex reason-
ing problems via a thinking-then-answering
paradigm (DeepSeek-AI et al., 2025; Qwen Team,
2025; Huang et al., 2024b). Generally, a special
end-of-thinking token “</think>” is generated as
a end-of-thinking moment, transitioning from the
thinking phase to the answering phase. During the
thinking process, LRMs automatically transit be-
tween slow thinking and fast thinking, utilizing self-
reflection as chain of thoughts (Wei et al., 2022).

Slow Thinking Transitioning To leverage
human-like system-2 slow thinking that helps solve
complex reasoning problems, o1-style LRMs au-
tomatically transit between fast thinking and slow
thinking. To be specific, during the thinking pro-
cess, LRMs frequently generate slow thinking
transitioning tokens such as “wait”, “hmm”, and
“alternatively”, etc. Once these tokens are gen-
erated, LRMs slow down reasoning, where pre-
vious reasoning chains are self-reflected and cor-
rected immediately. Hence, reasoning following
the transitioning token can be viewed as slow think-
ing, while the rest is generally fast thinking.

Reasoning Progress Let the overall answer se-
quence generation process be a reasoning progress
P ∈ [0, 1], where 0 and 1 indicate the start and
the end of reasoning, respectively. Notably, reason-
ing progress represents the overall problem-solving

progress instead of the number of generated tokens,
where a reasoning progress closer to 1 represents
the reasoning chain is more informative. For exam-
ple, the reasoning progress can be closer to 1 while
generating fewer tokens, indicating more efficient
reasoning. However, it is intractable to measure
the exact progress obtained. Hence, we define the
reasoning progress following a reasoning velocity
assumption. Given the total time t = T > 0 spent
on generating the whole sequence, the reasoning
velocity at timestep t, Vt is defined as dP

dt , where
dt is the infinitesimal of time. We assume:

Assumption 1. The reasoning velocity of slow
thinking is smaller than that of fast thinking.

See Fig. 1, different reasoning strategies result in
different reasoning progress achieved over time.

2.1 Reasoning Progress Modulation: A
Universal View of Test-Time Scaling

There are mainly two components that must be
modulated: i) Thinking phase budget. As dis-
cussed before, o1-like LRMs follow a “think-then-
answer” paradigm. Therefore, modulating rea-
soning via scaling up or down the thinking phase
budget is required. ii) Slow thinking scheduling.
Within the thinking phase, the transition to slow
thinking should also be modulated, thus increasing
or reducing slow thinking according to a certain
plan specified by users (e.g., slow thinking first, and
then fast thinking). With user-defined scheduling,
the modulation of slow thinking transitions vary ar-
bitrarily, ranging from sparse modulation—where
little is adjusted—to dense modulation, where ad-
justments are frequent and extensive.

Based on the above analysis, we establish a uni-
fied perspective on test-time scaling and identify
key limitations in existing approaches—namely,
their failure to consider both reasoning schedule
and overall thinking budget jointly. For instance, s1
modulates reasoning by sparsely increasing slow
thinking (i.e., adding two wait tokens), but over-
looks broader thinking budget adjustments (Muen-
nighoff et al., 2025). Conversely, Chain-of-Draft
(CoD) reduces the thinking budget while neglecting
the scheduling of slow thinking (Xu et al., 2025a).
As a result, while LRMs are indirectly guided to
reason more or less—sometimes achieving deeper
reasoning or pruning unproductive thoughts—we
instead aim to explicitly and universally modu-
late the reasoning process by jointly considering
both components, as introduced next.
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3 ALPHAONE

We introduce ALPHAONE (α1), a universal reason-
ing progress modulation framework for test-time
scaling of LRMs, which is illustrated in Fig. 2. In
the following, we first introduce α moment in Sec-
tion 3.1, a moment that the thinking phase budget is
scaled at least α×. In Section 3.2 and Section 3.3,
we detail how we modulate slow thinking schedul-
ing pre-α moment and modulating fast thinking
encouragement post-α moment, respectively.

3.1 α Moment for Universal Modulation
To modulate the thinking phase budget, we scale
the thinking phase by at least α×, where α > 1
is a universal modulating parameter. Formally,
given the average thinking phase token length
N think > 0 generated by an LRM, we scale the
thinking phase token length to αN think, where the
moment when the generated token length reaches
αN think is dubbed as “α moment”. In addition to
scaling the thinking phase, we modulate the think-
ing phase via slow thinking scheduling before the
α moment, thus achieving both controllable and
scalable thinking. Note that α moment does not
represent the new thinking phase transitioning mo-
ment, because the thinking phase typically contin-
ues after α moment, which we will elaborate later.

3.2 Pre-α Moment Modulation
Following previous works (Yang et al., 2025c;
Muennighoff et al., 2025), we activate slow think-
ing before α moment via appending “wait” af-
ter a frequently co-generated structural delimiters
“\n\n”. Moreover, the activation of slow thinking
is conducted following a user-specified scheduling
plan, such as slow thinking, then fast thinking.
Stochastic Reasoning Transitioning α1 achieves
such scheduling by modeling the activation of
slow thinking as a Bernoulli stochastic pro-
cess. Specifically, α1 appends “wait” following
Bernoulli(pwait). Let t = 0, 1, . . . , Tm be the
timestamps of generated tokens before α moment,
where Tm = αN think represents the timestamp of
α moment. pwait is determined by a user-specified
scheduling function S(t),

pwait := S(t), t = 0, 1, . . . , Tm. (1)

S(t) can be an arbitrary function, such as linear an-
nealing. α1 adopts linear annealing, which we find
the most effective and efficient (See Section 4.3.1).

3.3 Post-α Moment Modulation

While an LRM significantly increases slow think-
ing through pre-α modulation, this extended think-
ing phase often exhibits slow thinking inertia, mak-
ing it difficult to transition back to fast thinking.
Notably, without post-α moment modulation, the
LRM substantially reduces the likelihood of gen-
erating “</think>”. Furthermore, inserting a few
“</think>” tokens does not effectively overcome
the inertia, failing to fully restore fast thinking.
Deterministic Reasoning Termination After the
α moment, we guide α1 to transition into fast rea-
soning by disabling further slow thinking. Specifi-
cally, any generated slow reasoning transition token
“wait” is replaced with “</think>” to explicitly
mark the end of the thinking phase, reinforcing a
shift to fast thinking before entering the answer-
ing phase. This deterministic termination strategy
allows α1 to conclude reasoning naturally and con-
sistently, enabling more efficient test-time scaling.

4 Experiments

4.1 Experimental Setup

Benchmarks To comprehensively evaluate the
reasoning capability of LRMs, we conduct system-
atic evaluations on six benchmarks covering three
reasoning categories: i) mathematical reasoning,
including AIME 2024 (AIME24) (Mathematical
Association of America, 2024), , AMC23 (AI-MO,
2024), and Minerva-Math (Minerva) (Lewkowycz
et al., 2022); ii) code generation, including Live-
CodeBench (LiveCode) (Jain et al., 2025); iii)
scientific problems, including OlympiadBench
(Olympiad) (He et al., 2024). We report the
problem-solving accuracy by average Pass@1 (%),
and the average number of generated tokens.
Base Models We use three o1-like open-source
LRMs as the base model, including DeepSeek
R1 distilled DeepSeek-R1-Distill-Qwen-1.5B and
DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI
et al., 2025), as well as a recently larger LRM
Qwen QwQ 32B (Qwen Team, 2025).
Implementations Without additional specifica-
tions, we use a temperature of 0.6, top-p of 0.95,
and the maximum token length is set to 8192. We
set α as 1.4, and we obtain the average thinking
phase token length generated by an LRM on any
benchmark by randomly sampling 10 test questions
and averaging the generated token length before
benchmarking. See more details in Section A.
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Table 1: Systematic comparison of reasoning results on mathematical, coding, and science reasoning benchmarks
with DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and Qwen QwQ 32B. Additional results for
other models are provided in Section B. P@1: Pass@1 (%); #Tk: number of generated tokens; ∆P@1 (%): average
Pass@1 result boost over the base model. ∗For a fair comparison, S1 (Muennighoff et al., 2025) directly applies
budget forcing at test-time without supervised fine-tuning, which is same as CoD and our α1 that are training-free.

Method

MATHEMATICAL CODING SCIENCE

AIME24 AMC23 Minerva MATH500 LiveCode Olympiad

P@1 #Tk P@1 #Tk P@1 #Tk P@1 #Tk P@1 #Tk P@1 #Tk ∆P@1

DeepSeek-R1-Distill-Qwen-1.5B

BASE 23.3 7280 57.5 5339 32.0 4935 79.2 3773 17.8 6990 38.8 5999 N/A

s1∗ 26.7+3.4 7798 57.5+0.0 6418 31.6-0.4 5826 78.2-1.0 4733 17.0-0.8 7025 38.5-0.3 6673 +0.15

COD 30.0+6.7 6994 65.0+7.5 5415 29.0-3.0 4005 81.4+2.2 3136 20.3+2.5 6657 40.6+1.8 5651 +2.95

α1 (Ours) 30.0+6.7 5916 70.0+12.5 4952 34.2+2.2 4586 81.0+1.8 3852 24.8+7.0 5426 45.5+6.7 4944 +6.15

DeepSeek-R1-Distill-Qwen-7B

BASE 46.7 6648 82.5 4624 40.4 4191 87.6 3239 43.5 5885 50.4 5385 N/A

s1∗ 46.7+0.0 7295 80.0-2.5 5673 42.3+1.9 6510 92.8+5.2 5848 44.0+0.5 5979 54.2+3.8 6007 +1.48

COD 43.3-3.4 6078 87.5+5.0 3594 43.4+3.0 2142 88.8+1.2 2094 45.0+1.5 5593 53.5+3.1 4520 +1.73

α1 (Ours) 50.0+3.3 6827 90.0+7.5 4397 42.3+1.9 4124 91.2+3.6 4337 49.8+6.3 5067 55.7+5.3 4883 +4.65

Qwen QwQ-32B

BASE 40.0 4058 77.5 2901 47.8 2199 90.2 1951 67.0 5092 53.6 3230 N/A

s1∗ 43.3+3.3 4221 77.5+0.0 3068 46.7-1.1 2433 90.8+0.6 2218 66.5-0.5 5260 55.1+1.5 3454 +0.63

COD 46.7+6.7 3959 80.0+2.5 2400 47.4-0.4 1464 90.6+0.4 1421 66.8-0.2 4984 57.2+3.6 2844 +2.10

α1 (Ours) 53.3+13.3 3141 87.5+10.0 2286 46.0-1.8 1441 89.4-0.8 1668 75.8+8.8 5824 56.1+2.5 2504 +5.33

Baselines We compare our α1 against the vanilla
LRM and two training-free, test-time scaling base-
lines. i) BASE: The original LRM that transitions
between slow and fast thinking automatically, with-
out any external modulation. ii) S1 (Muennighoff
et al., 2025): A baseline that enforces a monotoni-
cally increasing slow thinking pattern by append-
ing approximately two “wait” tokens near the end
of the reasoning phase to prolong slow thinking.
For a fair comparison, we apply S1 at test time with-
out supervised fine-tuning used in its original imple-
mentation. iii) CHAIN OF DRAFT (COD) (Xu et al.,
2025a): A baseline that enforces a monotonically
decreasing slow thinking pattern by prompting the
model to constrain each slow thinking step to no
more than five words, thereby sharply reducing the
thinking budget.

4.2 Main Results

Table 1 shows the systematic comparison results
of our α1 and baseline methods, and we observe:
i) α1 consistently yields a higher problem-solving

accuracy than all baseline methods across all mod-
els and benchmarks. Notably, compared to the
base model, α1 improves the 1.5B LRM by a clear
margin of +6.15%, while reducing nearly 14%
token length. This demonstrates both the effec-
tiveness and efficiency of α1. ii) Compared to
baseline test-time scaling methods, including s1
and CoD, α1 still achieves significantly better re-
sults. Specifically, the average accuracy boost over
all benchmarks and models of α1 is +3.12% and
+4.62% higher than CoD and s1, respectively. iii)
Surprisingly, we observe that while α1 modulates
reasoning densely without restrictions on reducing
the thinking budget (instead, we use α > 1 that
increases the thinking budget), the average think-
ing phase token length generated by α1 is only
about +4.4% higher than the monotonically de-
creasing baseline CoD (4231 vs. 4053), which is
about +21.0% more efficient than the monotoni-
cally increasing baseline s1 (4231 vs. 5357). This
indicates that α1 achieves more efficient reasoning
than baselines, which we provide analysis later.
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Figure 3: Visualization of different scheduling strategies. We detail the functions in Section 4.3.1. Here
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Figure 4: Ablation study of different scheduling strategies on (a-b) AMC23 and (c-d) OlympaidBench.

4.3 Analytic Results
In this section, we analyze α1 by systematically
addressing the following five questions:

4.3.1 What scheduling strategy is better?
As shown in Fig. 3, we study four variants of
scheduling strategies for S(t) defined in Eq. (1),
where Tm = αN think represents the timestamp of
α moment:

• Constant: S(t) := pconstant, where pconstant ∈
[0, 1] is a constant probability. This represents a
consistently more slow thinking strategy, and the
increase is large when pconstant is larger. Note that
when pconstant = 0 and α = 1, it degenerates to
vanilla reasoning models; and when pconstant <
0.1 and α > 1, it degenerates to s1-like model,
where only about two “wait” are appended.

• Linear increase: S(t) := 1
Tm

t, where t =

{0, 1, . . . , Tm} and 1
Tm

> 0 indicates the in-
creasing coefficient. This scheduling function
indicates a fast-to-slow thinking strategy.

• Exponential anneal: S(t) := exp(−γt), where
t = {0, 1, . . . , Tm} and γ > 0 is a hyper-
parameter that controls annealing speed (here we
use γ = 0.3). This scheduling function indicates
a slow-to-fast thinking strategy.

• Linear anneal: S(t) := − 1
Tm

t + 1, where
− 1

Tm
< 0 indicates the annealing coefficient.

Its modulation is similar to exponential anneal
scheduling.

Fig. 4 shows the results of α1 using these four
different scheduling strategies. We observe: i) Lin-
ear anneal consistently yields the highest reason-
ing accuracy, indicating that the slow thinking first,
then fast thinking is a better slow thinking schedul-
ing strategy. ii) Similar to linear anneal, exponen-
tial anneal also follows an annealing slow thinking
scheduling, where the improvement on the 1.5B
model further demonstrates the efficacy of the slow
thinking, then fast thinking strategy. However, such
annealing scheduling may lead to an unstable per-
formance boost compared to linear anneal.

4.3.2 Can α-moment scale the thinking phase
budget?

Fig. 5 shows the results of α1 with different α-
moments determined by scaling α from 0 to a max-
imum value subject to the 8192 token length budget.
We observe: i) α-moment enables a scalable think-
ing phase budgeting. By scaling up α, the average
thinking phase token length is accordingly scaled
up. ii) Interestingly, while the thinking phase is
scaled up, there exists a trade-off between the op-
timal value of α and the resulting reasoning accu-
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racy. This indicates that monotonously increasing
the thinking phase budget does not consistently
bring better reasoning performance, and it is criti-
cal to find the optimal α-moment that results in a
satisfactory improvement.

4.3.3 Does α1 scale more efficiently?
To quantitatively evaluate how different methods
trade off reasoning efficiency and accuracy, we in-
troduce the FREP(Amethod;Abase, Tnorm) (Reason-
ing Efficiency-Performance, REP) metric. The
REP metric is defined as:

FREP(Amethod;Abase, Tnorm) =
Amethod −Abase

Tnorm
(2)

where Amethod and Abase denote the reasoning ac-
curacy of the evaluated method and the base model,
respectively. Tnorm is the normalized thinking

phase token length, computed by dividing the cur-
rent thinking phase token length by the maximum
token length. Higher REP indicates stronger per-
formance with better reasoning efficiency.

We report the REP of CoD, s1, and α1 on six
reasoning benchmarks with Deepseek-R1-distill-
Qwen-1.5B. Fig. 6 shows that α1 achieves higher
REP on most benchmarks, indicating a more favor-
able balance between reasoning performance and
efficiency. Notably, α1 outperforms CoD by +6.62
and s1 by +11.68 on Olympiad-Bench, and exceeds
CoD by +14.22 on Minerva-Math.

4.3.4 How frequent should slow thinking
transitioning be?

α1 modulate slow thinking transitioning via sam-
pling from Bernoulli(pwait), which leads to an-
other question of how large should pwait be that
can bring a better result. To study this question,
we use the constant scheduling function and scale
pconstant from 0 to 1 to increase the frequency of
transitioning to slow thinking. This is because the
constant scheduling is a sampling process with a
certain probability, and the value of the probability
determines how frequently the slow thinking transi-
tioning token will be sampled. Fig. 7 shows the re-
sults, from which we observe: i) An extremely low
or high frequency of transitioning to slow thinking
brings unsatisfactory results (e.g., pconstant = 0.1).
Similar to the scaling of the thinking phase dedget
(e.g., modualting α), the slow thinking frequency
also needs to be carefully selected. ii) While an ex-
tremely dense or sparse slow thinking transitioning
leads to unsatisfactory results, the reasoning per-
formance is decent across a large range of pconstant,
demonstrating that increasing slow thinking gener-
ally brings improved reasoning.
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Figure 7: Scaling property of “wait” frequency under constant scheduling on AMC23 and OlympiadBench.
Increasing pconstant leads to a higher frequency of yielding “wait” in the Bernoulli process Bernoulli(pwait).

Table 2: Ablation study on post-α moment modu-
lation. Without post-α modulation represents our α1
without the suppression of the slow thinking inertia after
the α moment.

Method Post-α Moment
Modulation

AIME24 AMC23

P@1 #Tk P@1 #Tk

DeepSeek-R1-Distill-Qwen-1.5B

BASE N/A 23.3 7280 57.5 5339
α1 (Ours) × 26.7 7929 47.5 6903
α1 (Ours) ✓ 30.0 5916 70.0 4951

DeepSeek-R1-Distill-Qwen-7B

BASE N/A 38.8 5999 82.5 4624
α1 (Ours) × 30.0 7666 75.0 5878
α1 (Ours) ✓ 50.0 6826 90.0 4397

4.3.5 Is post-α moment modulation
necessary?

Typical test-time scaling methods focus on the mod-
ulation of slow thinking within the thinking phase,
while α1 consists of a post-α moment modulation
that encourages fast thinking. To validate its ne-
cessity of enforcing fast thinking in the end, we
conduct an ablation study on utilizing the post-α
moment modulation, shown in Table 2. We observe:
i) Pre-α moment modulation of slow thinking is
insufficient. When the post-α moment modulation
is reduced to a single operation, the performance of
α1 significantly drops. This is because the increase
of slow thinking during pre-α moment brings a
slow thinking inertia (as discussed before in Sec-
tion 3.3), leading to a slow thinking intensive rea-
soning. ii) By utilizing a post-α moment modula-
tion, α1 successfully ends in a fast thinking, which
demonstrates the necessity of combining both slow
thinking and fast thinking.

5 Related Works

5.1 Large Reasoning Models

Large Reasoning Models are rapidly emerging as a
family of foundation models (Bommasani et al.,
2021) that target human-level system-2 reason-
ing (Kahneman, 2011). Starting from OpenAI’s
o1 (Jaech et al., 2024) in 2024, numerous efforts
follow this “thinking-then-answering” paradigm.
Notably, o1-like Large Language Models (LLMs)
can solve increasingly complex reasoning prob-
lems after a thorough chain of thoughts (Wei et al.,
2022; Yao et al., 2023; Besta et al., 2024), such
as the IMO competition. These advanced models
are mainly developed via large-scale reinforcement
learning (RL) to align human preference (Chris-
tiano et al., 2017; Schulman et al., 2017; Shao et al.,
2024b; DeepSeek-AI et al., 2025), where a reward
model is used to judge model answers (Uesato et al.,
2022; Lightman et al., 2024). Notable efforts repli-
cating o1’s success include DeepSeek R1, Qwen
QwQ, and Phi-4 (Abdin et al., 2024; DeepSeek-AI
et al., 2025; Qwen Team, 2025), which typically uti-
lize a special end-of-thinking token “</think>”,
after which a solution is output to the user. Re-
cently, some researchers have explored applying
RL during post-training fine-tuning, where promis-
ing results have been obtained (Chow et al., 2025;
Qu et al., 2025; Zuo et al., 2025).

5.2 Reasoning with Test-Time Scaling

Reasoning with test-time scaling has recently be-
come a useful strategy that empowers LLMs with a
scalable reasoning capability at test time. The main-
stream methods lie in two categories, i.e., i) paral-
lel scaling and ii) sequential scaling. The key idea
of parallel scaling is Best-of-N (BoN) sampling,
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where the best choice is selected using uncertainty
criteria like self-consistency (Wang et al., 2023),
reward model (Lightman et al., 2024; Cobbe et al.,
2021), or perplexity (Fang et al., 2025). Specifi-
cally, one line of work focuses on sequence-level
sampling (Cobbe et al., 2021; Gui et al., 2024; Wan
et al., 2024a; Sun et al., 2024; Chow et al., 2025;
Sessa et al., 2025; Amini et al., 2025; Zhou et al.,
2025; Zeng et al., 2025; Kang et al., 2025), while
another line of work utilizes token-/step- level sam-
pling including beam-/tree- based searching (Kool
et al., 2019; Xie et al., 2023; Zhang et al., 2023a;
Hao et al., 2023; Qiu et al., 2024; Gao et al., 2024;
Yu et al., 2024; Wan et al., 2024b; Chen et al.,
2024a). Meanwhile, sequential scaling enhances
or reduces slow thinking. This technique typically
relies on an iterative refinement and revision of an-
swers generated by LLMs themselves (Zelikman
et al., 2022; Madaan et al., 2023) or external feed-
back (Chen et al., 2024c; Gou et al., 2024; Huang
et al., 2024a; Kamoi et al., 2024; Zheng et al., 2024;
Liao et al., 2025). Following this line of research,
recent works have been devoted to addressing the
underthinking and overthinking issues of modern
LRMs via reinforcing (Muennighoff et al., 2025)
and restricting (Xu et al., 2025a,b) slow thinking,
respectively. Given the non-conflict between par-
allel scaling and sequential scaling, there exists
another group of hybrid scaling methods that lever-
age both strategies (Li et al., 2025; Zeng et al.,
2025).

6 Conclusions

In this paper, we study the problem of test-time
scaling of large reasoning models with our frame-
work, ALPHAONE (α1). ALPHAONE starts from
a universal view of reasoning modulation target-
ing two key aspects: thinking phase budgeting and
slow thinking scheduling. We introduce α-moment,
which is determined by α that scales the thinking
phase budget by at least α×. ALPHAONE operates
by scheduling slow thinking before the α-moment,
and fast thinking after the α-moment that elimi-
nates slow thinking inertia. Using ALPHAONE, we
investigate the test-time scaling from various as-
pects, including the overall slow and fast thinking
transitioning plan, thinking phase budget scaling
property, and efficiency of test-time scaling, etc.
Insightful findings are obtained, e.g., slow thinking
first, then fast thinking leads to better reasoning
capability of LRMs.

Limitations

While ALPHAONE provides a universal view of
test-time scaling of LRMs, and a significant perfor-
mance boost has been achieved, we identify some
possible limitations as follows. i) ALPHAONE tar-
gets at o1-style LRMs, where tokens such as “wait”
is proved effective in transitioning into slow think-
ing. However, future LRMs may use a different
slow thinking transitioning strategy, leading to a
possibility of incompatibility with our framework.
ii) ALPHAONE relies on α-moment throughout
reasoning modulation, and the average thinking
phase token length is typically required. This pa-
per obtains it by first running LRMs on 10 random
samples, which requires marginal cost. However,
in case that no test questions are available, AL-
PHAONE can only rely on an empirical thinking
phase length that may be suboptimal.

Broader Impact

This work targets complex reasoning problems
with LRMs, which we believe will lead to no eth-
ical concerns. However, since LRMs are modern
variants of LLMs, any ethical concerns raised by
LLMs can potentially exist.
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A Additional Implementation Details

A.1 Computaional Budget

We used 8 NVIDIA L40S GPUs and 4 NVIDIA
A100 80GB GPUs for the experiments.

A.2 Hyper-parameters & Parameters

For reproducibility, we provide the complete set
of average thinking phase token length N think in
Table 3, which are obtained by randomly sampling
10 test questions on each benchmark and averaging
the generated token lengths. Since the effective
range of α observed in Figure 5 is relatively broad,
practical implementations can tolerate variance in
this measurement.

A.3 Benchmarks

AIME 2024 The AIME 2024 dataset is a special-
ized benchmark collection consisting of 30 prob-
lems from the 2024 American Invitational Math-
ematics Examination (Mathematical Association
of America, 2024). These problems cover core
secondary-school mathematics topics such as arith-
metic, combinatorics, algebra, geometry, number
theory and probability. The collection places rig-
orous demands on both solution accuracy and con-
ceptual depth.

AMC 2023 The AMC 2023 dataset consists of
40 problems selected from the AMC 12A and 12B
contests. These exams are sponsored by the Mathe-
matical Association of America and target U.S. stu-
dents in grade 12 and below, featuring challenges
in algebra, geometry, number theory, and combina-
torics (AI-MO, 2024).

Minerva Math Minerva Math (Lewkowycz
et al., 2022) consists of 272 undergraduate-level
STEM problems harvested from MIT’s Open-
CourseWare. These problems span solid-state
chemistry, information and entropy, differential
equations, and special relativity. Each includes
a clearly delineated answer—191 verifiable by nu-
meric checks and 81 by symbolic solutions. The
benchmark is specifically designed to evaluate
multi-step scientific reasoning capabilities in lan-
guage models.

MATH500 MATH500 comprises a selection of
500 problems extracted from the MATH bench-
mark (Lightman et al., 2024). The collection cov-
ers a range of high-school mathematics domains,
including Prealgebra, Algebra and Number Theory.
To ensure comparability with prior work, we use
the exact problem set originally curated by OpenAI
for evaluation.

LiveCodeBench LiveCodeBench (Jain et al.,
2025) is a contamination-free benchmark for eval-
uating large language models on code. The suite
is continuously updated, gathering new problems
over time. It currently comprises 400 Python pro-
gramming tasks released between May 2023 and
March 2024, each paired with test samples for cor-
rectness verification. Beyond basic code genera-
tion, LiveCodeBench also measures advanced ca-
pabilities such as self-repair, code execution and
test-output prediction.
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Table 3: Average thinking phase token length N think across different benchmarks. The results are obtained by
running LRMs on randomly sampled 10 samples.

Model AIME24 AMC23 Minerva MATH500 LiveCode Olympiad

DeepSeek-R1-Distill-Qwen-1.5B 4130 3303 3101 2435 2172 3417
DeepSeek-R1-Distill-Qwen-7B 4751 3243 3064 2352 3120 3330
Qwen QwQ-32B 2597 2124 1710 1493 4915 2052

Table 4: Additional reasoning results. P@1: Pass@1
(%); #Tk: number of generated tokens.

Method

MATHEMATICAL SCIENCE

AIME24 AMC23 Olympiad

P@1 #Tk P@1 #Tk P@1 #Tk

Microsoft Phi4-reasoning

BASE 63.3 5677 92.5 2858 60.1 4174

α1 (Ours) 66.7 5532 95.0 2863 62.5 3786

DeepSeek-R1-Distill-Llama-8B

BASE 26.7 7184 70.0 5011 45.6 5757

α1 (Ours) 33.3 7022 80.0 4282 52.9 4993

OlympiadBench OlympiadBench (He et al.,
2024) consists of 8,476 Olympiad-level problems
that evaluate mathematical and physical reasoning
in AI systems. It features a wide difficulty range,
open-ended problem generation, expert solution
annotations, detailed difficulty labels, and multi-
lingual coverage. The subset we use in our paper
contains 675 open-ended, text-only math competi-
tion problems in English.

B Additional Results

B.1 Additional Models Results
To further demonstrate the generalization capability
of α1, we conduct experiments on two additional
model families, including Phi4-reasoning (Abdin
et al., 2025) from Microsoft and DeepSeek-R1-
Distill-Llama-8B, across math and science bench-
marks. Table 4 demonstrates that our method con-
sistently achieves large gains.

B.2 Scheduling Strategy
In addition to the results in Fig. 4 tested on AMC23
and Olympiad, we also show the results tested
on AIME24 in Fig. 8. From the results, we ob-
serve that the linear increase consistently yields the
best performance, which aligns with our previous
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Figure 8: Ablation study of different scheduling
strategies on AIME24.
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Figure 9: Scaling efficiency analysis with REP using
Deepseek-R1-distill-Qwen-7B.

observation. This further provides evidence that
slow-then-fast thinking is an efficient slow-thinking
scheduling strategy.

B.3 Scaling Efficiency Analysis

As shown in Fig. 9, α1 consistently achieves
positive REP with Deepseek-R1-distill-Qwen-7B,
demonstrating stable gains over the base model.
Similar to Fig. 6, it outperforms CoD and s1
across nearly all benchmarks, particularly on Live-
CodeBench and AIME24.
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Table 5: Cross-linguistic generalization results with DeepSeek-R1-Distill-Qwen-1.5B.

Method
GaoKao 2024 MGSM

Chinese French German Russian Japanese

P@1 #Tk P@1 #Tk P@1 #Tk P@1 #Tk P@1 #Tk

BASE 65.9 4666 49.2 577 33.6 607 48.0 1751 28.8 966
α1 (Ours) 69.2 4116 50.8 601 37.6 552 56.0 1650 30.4 1130

Table 6: Ablation study on different transitioning
tokens on AMC23 (8192).

Transitioning Token Category
Deepseek-1.5B

P@1 #Tk

BASE (For Reference) N/A 57.5 5339
“Wait,” Slow Thinking 70.0 4952
“Hmm,” Slow Thinking 72.5 4793
“Alternatively,” Slow Thinking 70.0 5318
“Maybe,” Continuation 62.5 5380
“Then,” Continuation 65.0 5050
“But,” Contrastive 60.0 5763
“However,” Contrastive 55.0 5902
“Though,” Contrastive 55.0 5494

B.4 Cross-linguistic Generalization

We have conducted ablations on cross-linguistic
generalization across five languages, including Chi-
nese, French, German, Russian, and Japanese on
GaoKao 2024 (Zhang et al., 2023b) and MGSM
(Shi et al., 2023) benchmarks. The results demon-
strate the superior cross-linguistic generalization
capability of α1 in Table 5. Notably, on MGSM, α1
shows substantial gains, with a +4.0% increase for
German and an +8.0% improvement for Russian.

B.5 Transitioning Tokens

We provide an ablation study on different tran-
sitioning tokens on the AMC23 with DeepSeek-
R1-Distill-Qwen-1.5B. As illustrated in Table 6,
the empirical results show that slow thinking
transitioning tokens like “Wait”, “Hmm”, and
“Alternatively” generally improve both accuracy
and reasoning efficiency, though their effectiveness
varies by model. Continuation tokens (“Maybe”,
“Then”) offer minor gains, while contrastive tokens
(“But”, “However”, “Though”) often disrupt rea-
soning and reduce performance, especially with
“However” and “Though”.

Table 7: Attention analysis on slow thinking transi-
tioning. The values are attention after substituting the
original token after i-th “\n\n” with “Wait” toward two
parts: the user-provided instruction (Question Part) and
the intermediate reasoning steps (Reasoning Part). We
report results on the DeepSeek-R1-Distill-Qwen-1.5B
model on the AMC23 dataset. Special tokens such as
“<|begin_of_sentence|>” are excluded from both the
question and the reasoning process, so the combined
attention does not sum to 1.0.

i-th “\n\n” Question Part Reasoning Part

Base α1 Base α1

2 0.1944 0.1773 0.5016 0.5882
4 0.1389 0.1206 0.6281 0.6643
6 0.0882 0.0877 0.6444 0.6930
8 0.0864 0.0762 0.6168 0.7018
10 0.0792 0.0738 0.6984 0.7209
12 0.0705 0.0752 0.6760 0.7185
14 0.0689 0.0682 0.6360 0.7240

B.6 Slow Thinking Transitioning Analysis

In this section, we analyze the quantitative impact
of the “Wait” token on attention distributions in
the last Transformer layer. This analysis is useful
in revealing the dynamics of LLMs during infer-
ence, which intuitively improves the understand-
ing of the method and serves as a good alterna-
tive for pure theoretical analysis. Specifically, we
analyze how substituting the original token after
i-th “\n\n” with “Wait” influences the model’s
attention toward two parts: the user-provided in-
struction (question part) and the intermediate rea-
soning steps (reasoning part). Results are shown
in Table 7. When varying the position at which
“\n\n” is inserted, the empirical results show that
this token consistently shifts attention toward the
previously generated reasoning steps. This likely
promotes greater self-reflection on earlier parts of
the solution and enhances the overall quality of the
generated answers.
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Table 8: Formatting idiosyncrasies sensitivity on three variants of prompts. The three variants of prompts are
defined in Section B.7. We report the P@1 (#Tk) of the DeepSeek-R1-Distill-Qwen-1.5B on AMC23 and Olympiad
benchmarks.

Standard Variant A Variant B

AMC23 Olympiad AMC23 Olympiad AMC23 Olympiad

Base 57.5 (5339) 38.8 (5999) 55.0 (5410) 37.5 (6028) 62.5 (5270) 38.4 (6106)

α1 (Ours) 70.0 (4952) 45.5 (4944) 65.0 (5161) 43.9 (4995) 72.5 (5075) 45.3 (5037)

B.7 Formatting Idiosyncrasies Sensitivity
Analysis

In this section, we study the sensitivity of α1 to
formatting idiosyncrasies or prompt design. In ad-
dition to the standard prompt from the official tech-
nical report that is used in this work, we have con-
ducted additional experiments comparing it with
two variants: one adding irrelevant distractions,
and another adding explicit reasoning instructions,
listed as follows,

• Standard: Please reason step by step,
and put your final answer within
\\boxed{}

• Variant A: Please reason step
by step, and put your final
answer within \\boxed{}. The
AMC 2023 dataset consists of
40 problems selected from two
challenging mathematics competitions.
/OlympiadBench consists of 8,476
Olympiad-level problems that evaluate
mathematical and physical reasoning.

• Variant B: You are a helpful assistant.
Your role as an assistant involves
thoroughly exploring questions
through a systematic thinking
process before providing the final
precise and accurate solutions.
Please reason step by step, and put
your final answer within \\boxed{}

The results are shown in Table 8. We observe:
i) Modifying the prompts brings a performance
drop or boost on the base model, where variant A
leads to -2.5% drop while variant B brings +5.0%
improvement on AMC23. ii) Regardless of the
prompt variant, α1 consistently improves the base
model by a large margin. Specifically, α1 improves

Table 9: Slow thinking inertia analysis with differ-
ent number of deterministic terminations. The results
are obtained with the DeepSeek-R1-Distill-Qwen-1.5B
model, and we report the ratio of problems that remain
in the thinking phase after different numbers (No.) of
deterministic termination.

No. AIME24 AMC23 Minerva MATH500 LiveCode Olympiad

1 96.7% 75.0% 78.7% 45.0% 92.8% 78.9%

2 90.0% 67.5% 70.2% 39.4% 87.8% 72.6%

3 60.0% 30.0% 24.3% 12.8% 4.3% 39.3%

4 10.0% 5.0% 2.6% 1.2% 0.2% 6.8%

5 3.3% 0.0% 0.7% 0.0% 0.0% 1.2%

the baseline by +10.0% on AMC23 with both vari-
ants. On Olympiad-Bench, α1 archives a perfor-
mance boost of +6.4% and +6.9% with variant A
and B, respectively.

B.8 Slow Thinking Inertia Phenomenon
Analysis

As stated before in Section 3.3, LRMs tend to
have a slow thinking inertia issue. After the pre-α
modulation phase, the model often continues slow
thinking, which can severely affect accuracy and
efficiency. When we enforce deterministic termi-
nation with a single “</think>”, the model typi-
cally does not immediately transition to the answer
phase but continues reasoning, as evidenced by the
occurrence of slow-reasoning transitioning tokens
“Wait” and semantically progressive thoughts. Re-
peated deterministic termination eventually forces
the model to complete its remaining reasoning in
just a few tokens before finally entering the answer
phase.

In Table 9, we quantify the ratio of problems that
remain in the thinking phase after i-th deterministic
termination. For example, after the first termina-
tion, the model remains in the thinking phase on
most problems, indicating that multiple termina-
tions are generally required to conclude the reason-
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Table 10: Normalized REP metric results. The results are obtained with DeepSeek-R1-Distill-Qwen-1.5B. AVG
indicates the global mean REP across all evaluated benchmarks.

AIME24 AMC23 Minerva MATH500 LiveCode Olympiad AVG

Base 8.60 13.35 -2.20 3.55 6.51 5.00 N/A

s1 -3.74 -13.35 +1.34 -6.04 -9.24 -5.58 -0.30

CoD +2.35 +4.75 -7.78 +5.40 +2.92 -0.52 +6.99

α1 (Ours) +1.38 +8.59 +6.44 +0.64 +6.32 +6.10 +10.71

ing process. Note that Table 9 shows the results of
the DeepSeek-R1-Distill-Qwen-1.5B model, and
we also observe similar patterns on larger models
like QwQ-32B.

B.9 REP Metric Analysis

To better understand the proposed REP metric,
we provide per-task baseline normalization and
global mean normalization of the REP metric on
DeepSeek-R1-Distill-Qwen-1.5B. Table 10 shows
the results. Across these two normalized metrics,
α1 consistently achieves higher values, indicating
a more favorable balance between reasoning perfor-
mance and efficiency. Notably, α1 exceeds the task
average by +8.59 on AMC23 under the per-task
baseline normalization and reaches +10.71 under
the global mean normalization.

B.10 Additional Results with More Rollouts

According to Yuan et al. (2025), few rollouts (e.g.,
fewer than 16 rollouts) may lead to unstable results.
To further validate the results of α1 with a large
number of rollouts, we conduct experiments with
32 rollouts on all benchmarks with DeepSeek-R1-
Distill-Qwen-1.5B and report the P@1 with these
32 rollouts. Table 11 shows the results, demonstrat-
ing consistent conclusions with results reported in
the main paper: i) Our α1 yields consistently better
performance and reasoning efficiency; ii) As shown
in Table 11 with more experiments, the effective-
ness of our approach can be even better than we
report in Table 1. For example, on AIME24, the
improvement increased from the +6.7% reported
in Table 1 to +9.2%.

C Artifacts Statements

C.1 Model Artifacts

We utilize three models in our work: DeepSeek-
R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-
Qwen-7B, both released under the MIT License,

which permits commercial use, modification, and
redistribution. These models are distilled from
Qwen-2.5 series (Apache 2.0 License). Addition-
ally, we use Qwen QwQ-32B, which is released
under the Apache License 2.0, allowing both re-
search and commercial usage. We comply with all
respective license terms in our use of these models.

C.2 Data Artifacts
We employ publicly available datasets in our exper-
iments. AIME24, Minerva-Math, LiveCodeBench,
and OlympiadBench are released under the MIT
License, which permits unrestricted use, modifica-
tion, and redistribution. The AMC23 dataset does
not have an explicitly specified license, so we treat
it as having an unspecified license and exercise cau-
tion in its usage. We ensure full compliance with
the respective license terms of all datasets used.

D Future Works

While our α1 has been demonstrated to be suc-
cessful and effective in scaling LRMs at test time,
there are some intriguing future works that we are
considering:

• More sophisticated slow thinking scheduling.
This work focuses on simple strategies like the
slow-to-fast schedule, which shows strong per-
formance. However, optimal scheduling remains
an open question, as human reasoning patterns
are complex and not yet fully understood (Kahne-
man, 2011). Promising directions include mod-
ulating reasoning progress during both training
and inference, or learning a separate progress
modulation model aligned with human prefer-
ences—akin to a progress reward model (Uesato
et al., 2022; Lightman et al., 2024). In addition,
α moment can be adaptively sampled from a sub-
network, and the reasoning scheduling strategy
can be adaptively selected when facing differ-
ent problems. By appropriately formulating the
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Table 11: Results with 32 rollouts. The results are P@1 (#Tk) with 32 rollouts with DeepSeek-R1-Distill-Qwen-
1.5B.

AIME24 AMC23 Minerva MATH500 LiveCode Olympiad

Base 21.1 (7407) 60.2 (5482) 30.5 (5030) 77.8 (3911) 18.7 (6946) 37.9 (6089)

α1 (Ours) 30.3 (5669) 72.4 (4861) 32.2 (4581) 81.5 (4121) 24.5 (5004) 44.6 (4922)

problem of reasoning modulation as an RL-based
optimization problem, we may obtain an adaptive
α1 that achieves better generalization capability.

• Transitioning-token-agnostic modulation. As
shown in Table 6, the choice of transitioning to-
ken (e.g., “wait”) affects performance due to
model-specific training data. This limitation
is shared by many test-time scaling methods
relying on open-source LRMs like DeepSeek-
R1 (DeepSeek-AI et al., 2025), in contrast to
restricted-access models like OpenAI o1. While
α1 supports flexible token choices, removing the
dependency on transitioning tokens altogether
could further enhance generalization.

• Multimodal reasoning with multimodal LLMs.
Multimodal LLMs are rapidly advancing
and show growing potential in reasoning
tasks (Alayrac et al., 2022; Liu et al., 2023; Ope-
nAI, 2024; Team, 2024; Dong et al., 2024; Qi
et al., 2024; Zou et al., 2025; Wang et al., 2024;
Ning et al., 2025). Although they currently trail
behind text-only LRMs, efforts to enhance their
reasoning abilities are gaining momentum (Hao
et al., 2024; Xiong et al., 2024; Wei et al., 2024;
Wu and Xie, 2024; Shao et al., 2024a; Lee et al.,
2024; Wei et al., 2025; Jiang et al., 2025; Yu
et al., 2025). Multimodal reasoning remains chal-
lenging, as it requires both image understanding
and generation (OpenAI, 2025). We aim to ex-
tend our α1 framework to this domain, foster-
ing synergistic multimodal comprehension and
creation (Dong et al., 2024). Another promis-
ing direction is embodied reasoning—grounding
multimodal understanding in real-world interac-
tions with spatial intelligence (Fei-Fei, 2023; Qi
et al., 2025; Yang et al., 2025b).

E Qualitative Examples

We present qualitative examples from different
models and benchmarks to illustrate both cases:
instances where α1 helps the model answer cor-
rectly, and instances where it still fails to produce

the correct answer. Examples show that by ap-
pending “wait” frequently after “\n\n” can slow
down the thinking process and may help the model
achieve better performance. The examples can be
found in the following pages.
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Successful Example of DeepSeek-R1-Distill-Qwen-1.5B on OlympiadBench:
Base fails while α1 passes

Question: A chemist has three bottles, each containing a mixture of acid
and water: - bottle A contains 40g of which 10 is acid, - bottle B contains
50g of which 20 is acid, and, - bottle C contains 50g of which 30 is acid.
She uses some of the mixture from each of the bottles to create a mixture
with mass 60g of which 25 is acid. Then she mixes the remaining contents
of the bottles to create a new mixture. What percentage of the new mixture is acid?

Response from Base: <think>
Okay, so I’ve got this chemistry problem here, and I need to figure out the
percentage of acid in the new mixture. Let me try to understand the problem
step by step.
First, there are three bottles, each with a mixture of acid and water. The
masses and acid concentrations are given as follows:
- Bottle A: 40 grams, 10% acid.
- Bottle B: 50 grams, 20% acid.
- Bottle C: 50 grams, 30% acid.
The chemist is going to use some mixture from each bottle to create a new
mixture that’s 60 grams with 25% acid. Then, after using some from each bottle,
she mixes the remaining contents to create a new mixture. ... </think>

The chemist has three bottles containing acid and water with the following
compositions:
- Bottle A: 40 grams of solution, 10% acid...
The percentage of the new mixture is 18.75 ).

Response from α1: <think>
Okay, so I’ve got this chemistry problem here, and I need to figure out the
percentage of acid in the new mixture. Let me try to understand the problem
step by step.
Wait, actually, the problem says that the chemist uses some mixture from each
bottle to create a 60g mixture with 25% acid. Then, she mixes the remaining
contents of the bottles to create a new mixture. Hmm, I need to clarify if she
uses some from each bottle to make 60g, and then mixes the leftover from each
bottle. Or is it that she uses some from each bottle to make 60g, and then uses
the leftovers from each bottle to make another mixture? The wording is a bit
unclear.
Wait, let me re-read the problem.
Wait, actually, the problem says: ... </think>

The percentage of acid in the new mixture is 17.5%.
Step-by-Step Explanation:
1. Initial Acid Quantities:
- Bottle A: 40g of 10% acid → 4g acid.
- Bottle B: 50g of 20% acid → 10g acid...
Answer: The new mixture has 17.5 % acid.

Correct Answer: 17.5
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Failure Example of DeepSeek-R1-Distill-Qwen-1.5B on AMC23: α1 still fails

Question: There is a unique sequence of integers a1, a2, · · · , a2023 such that
tan2023x = a1tanx+a3tan3x+a5tan5x+···+a2023tan2023x

1+a2tan2x+a4tan4x+···+a2022tan2022x
whenever tan2023x is defined. What

is a2023?

Response from α1: <think>
Okay, so I need to find the value of a2023 in the given expression for tan(2023x).
The expression is a fraction where the numerator is a sum of odd-powered terms
of (tan x) multiplied by coefficients a1, a3, . . . , a2023, and the denominator is a
sum of even-powered terms of (tan x) multiplied by coefficients a2, a4, . . . , a2022.
The problem states that this sequence of integers is unique, so I need to figure
out what a2023 is.
Wait, before jumping into that, I should recall the tangent multiple-angle
formulas. I remember that tan(nx) can be expressed as a ratio of polynomials in
tan x, where the numerator is an odd-degree polynomial and the denominator is
an even-degree polynomial ...</think>

After carefully considering the expansion of tan(2023x) and testing various
formulas ... which is the coefficient of tan2023x in the numerator, we look at
the coefficient for ( k = 2023 ) in the numerator sum:
[a2023 = (−1)2023−1

(
2023
2023

)
= (−1)2022 × 1 = 1]

Therefore, a2023 = 1.\n\n[\n 1 \n]

Correct Answer: -1
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Successful Example of DeepSeek-R1-Distill-Qwen-7B on Minerva Math:
Base fails while α1 passes

Question: A particular star has an absolute magnitude M = −7. If this star
is observed in a galaxy that is at a distance of 3Mpc, what will its apparent
magnitude be?

Response from Base: <think>
Okay, so I need to find the apparent magnitude of a star given its absolute
magnitude and the distance to the galaxy it’s in. Hmm, let’s see. I remember
that absolute magnitude is how bright a star appears at a standard distance,
which I think is 10 parsecs. Apparent magnitude, on the other hand, is how
bright it appears from Earth, which depends on how far away it actually is.
The formula that relates absolute magnitude (M), apparent magnitude (m)
...</think>

To find the apparent magnitude of a star given its absolute magnitude
and the distance to the galaxy it is in, we use the distance modulus
formula. The formula is:\n\n[ m - M = 5log(d) - 5 ]\n\nwhere (m) is the
apparent magnitude...Rounding to one decimal place, the apparent magnitude is
approximately 20.4.\n\n[\n 20.4 \n]

Response from α1: <think>
Okay, so I need to find the apparent magnitude of a star given its absolute
magnitude and the distance to the galaxy it’s in. Hmm, I remember that absolute
magnitude is how bright a star appears at a standard distance, which is 10
parsecs, right? And apparent magnitude is how bright it appears from Earth,
which depends on its actual distance. The formula that relates absolute
magnitude (M), apparent magnitude (m), and distance (d) in parsecs is the
distance modulus formula. I think it’s something like m = M + 5 + 5 log10(d).
Wait, let me make sure. Is it plus or minus 5? I think it’s plus 5 because as
the distance increases, the apparent magnitude increases, meaning it becomes
dimmer. So, yes, m = M + 5 log10(d) + 5.
Wait, hold on, no, that’s not right...Then, subtract 5:\n\n[ 25.3855 - 5 =
20.3855 ]
So, the apparent magnitude is approximately 20.3855, which rounds to 20.39.\n
\nTherefore, the apparent magnitude of the star is 20.39 .

Correct Answer: 20.39
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Failure Example of DeepSeek-R1-Distill-Qwen-7B on LiveCodeBench: α1 still fails

Question: You are given a 0-indexed string s and a dictionary of words dictionary.
You have to break s into one or more non-overlapping substrings such that each
substring is present in dictionary. There may be some extra characters in s
which are not present in any of the substrings.
Return the minimum number of extra characters left over if you break up s
optimally.

Example 1:
Input: s = "leetscode", dictionary = ["leet","code","leetcode"]. Output: 1
Explanation: We can break s in two substrings: "leet" from index 0 to 3 and
"code" from index 5 to 8. There is only 1 unused character (at index 4), so we
return 1.
Example 2:
Input: s = "sayhelloworld", dictionary = ["hello","world"]. Output: 3
Explanation: We can break s in two substrings: "hello" from index 3 to 7 and
"world" from index 8 to 12. The characters at indices 0, 1, 2 are not used
in any substring and thus are considered as extra characters. Hence, we return 3.

Constraints:1 <= s.length <= 50, 1 <= dictionary.length <= 50,
1 <= dictionary[i].length <= 50, dictionary[i] and s consists of only lowercase
English letters, dictionary contains distinct words

Response from α1: <think>
Okay, I need to solve this problem where I have to find the minimum number of
extra characters left when breaking a string s into substrings that are all
present in a given dictionary. Hmm, let’s think about how to approach this.
Wait, the problem says that the string must be broken into one or more
non-overlapping substrings, each of which is in the dictionary. ... </think>

To solve this problem, we need to break a given string ‘s‘ into substrings such
that each substring is present in a given dictionary. ...

### Solution Code
“‘python\n \nclass Solution:\n def minExtraChar(self, s: str, dictionary:
List[str]) -> int:\n n = len(s)\n dp = [float(’inf’)] * (n + 1)\n dp[0] = 0
# Base case: 0 characters, 0 extra\n \n for i in range(1, n + 1):\n for l
in range(1, i + 1):\n start = i - l\n if start < 0:\n continue\n substring =
s[start:i]\n if substring in dictionary:\n if dp[start] + (n - i) < dp[i]:\n
dp[i] = dp[start] + (n - i)\n\n return dp[n]

### Explanation
- Initialization: The DP array is initialized to handle the base case where no
characters are processed, resulting in zero extra characters. ...
- Result Extraction: The final result is found in ‘dp[n]‘, which gives the
minimum number of extra characters after processing the entire string.
This approach ensures that we efficiently find the optimal way to split the
string into valid substrings while minimizing the extra characters, leveraging
dynamic programming to explore all possible valid splits.
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Successful Example of QwQ-32B on MATH500: Base fails while α1 passes

Question: There are 360 people in my school. 15 take calculus, physics, and
chemistry, and 15 don’t take any of them. 180 take calculus. Twice as many
students take chemistry as take physics. 75 take both calculus and chemistry,
and 75 take both physics and chemistry. Only 30 take both physics and calculus.
How many students take physics?

Response from Base: <think>
Okay, let’s try to tackle this problem step by step. Hmm, so there are 360
people in the school. Out of these, 15 don’t take any of the three subjects:
calculus, physics, or chemistry. That means 360 - 15 = 345 students take at
least one of those subjects.
Alright, let me note down all the given information:
- Total students: 360
- Take all three (calculus, physics, chemistry): 15
- Don’t take any: 15
- Take calculus: 180...</think>

Given the problem, we need to determine the number of students taking
physics. Here is the step-by-step reasoning:\n\n
1. Total students: 360
2. Students not taking any subjects: 15, so students taking at least one
subject: (360 - 15 = 345)
3. Students taking calculus (C): 180
4. Students taking all three subjects (C, P, Ch): 15...Thus, the number of
students taking physics is ( 115 ).

Response from α1: <think>
Okay, let’s try to tackle this problem step by step. Hmm, so there are 360
people in the school. 15 take all three subjects: calculus, physics, and
chemistry. Also, 15 don’t take any of them. That means the number of students
taking at least one of the subjects is 360 - 15 = 345.
Wait, the total number in the union of calculus, physics, and chemistry is 345.
Let me note down the given data first:
- Total students: 360
- Take all three (Calculus, Physics, Chemistry): ...</think>

So simplifying:
180 + P + Ch - 180 +15 = P + Ch +15 = 345
Hence, P + Ch = 330. Since Ch = 2P, substituting:
P + 2P = 3P = 330 → P = 110.
All steps check out, and the Venn diagram regions confirm consistency. Therefore,
the number of students taking physics is 110 .

Final Answer\n 110 .

Correct Answer: 110
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Failure Example of QwQ-32B on AIME24: α1 still fails

Question: Torus T is the surface produced by revolving a circle with radius
3 around an axis in the plane of the circle that is a distance 6 from the
center of the circle (so like a donut). Let S be a sphere with a radius 11.
When T rests on the outside of S, it is externally tangent to S along a
circle with radius ri, and when T rests on the outside of S, it is externally
tangent to S along a circle with radius ro. The difference ri − ro can be
written as m

n , where m and n are relatively prime positive integers. Find m+n.

[asy] unitsize(0.3 inch); draw(ellipse((0,0), 3, 1.75));
draw((-1.2,0.1).(-0.8,-0.03)..(-0.4,-0.11)..(0,-0.15)..(0.4,-0.11)..
(0.8,-0.03)..(1.2,0.1)); draw((-1,0.04)..(-0.5,0.12)..(0,0.16)..(0.5,0.12)..
(1,0.04)); draw((0,2.4)–(0,-0.15)); draw((0,-0.15)–(0,-1.75), dashed);
draw((0,-1.75)–(0,-2.25)); draw(ellipse((2,0), 1, 0.9));
draw((2.03,-0.02)–(2.9,-0.4)); [/asy]

Response from α1: <think>
Okay, so I need to solve this problem about a torus and a sphere. Let me try
to understand the setup first. The torus T is formed by revolving a circle with
radius 3 around an axis in the same plane, which is 6 units away from the center
of the circle. That makes sense—it’s like a donut shape where the tube radius is
3 and the distance from the center of the tube to the center of the torus is 6.
Then there’s a sphere S with radius 11. The problem says that when the torus
rests on the outside of the sphere, it can be externally tangent to the sphere
along a circle with radius ri, and similarly along another circle with radius
ro. The question is asking for the difference ri - ro, expressed as a fraction
m/n where m and n are coprime, and then m + n.
Wait, actually, the problem mentions...</think>

Okay, let’s start by setting up a coordinate system where the sphere is
centered at the origin ((0, 0, 0) with radius 11. The torus (T) is generated
by revolving a circle of radius 3 around an axis that is 6 units away from
the center of the generating circle. Let’s place the generating circle in the
(x)-(y) plane, centered at ((6, 0, 0)). The axis of revolution is the (z)-axis,
so the torus’s axis is the (z)-axis.
When the torus rests on the outside of the sphere, they are externally tangent
along a circle. To find the radii (ri) and (ro) of these circles of tangency, we
need to consider the cross-sectional view in the (x)-(y) plane. Here, the sphere
appears as a circle of radius 11 centered at the origin, and the generating
circle of the torus is a circle of radius 3 centered at ((6, 0)).
For the torus to be externally tangent to the sphere, the distance between their
centers must equal the sum of their radii. However, since the sphere is much
larger, the torus must be positioned such that the distance from the sphere’s
center to the torus’s generating circle’s center plus the sphere’s radius equals
the distance from the sphere’s center to the farthest point on the torus. ...

Correct Answer: 127
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