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Abstract

Knowledge Editing (KE) enables the modifi-
cation of outdated or incorrect information in
large language models (LLMs). While exist-
ing KE methods can update isolated facts, they
often fail to generalize these updates to multi-
hop reasoning tasks that rely on the modified
knowledge. Through an analysis of reason-
ing circuits—the neural pathways LLMs use
for knowledge-based inference, we find that
current layer-localized KE approaches (e.g.,
MEMIT, WISE), which edit only single or a
few model layers, inadequately integrate up-
dated knowledge into these reasoning pathways.
To address this limitation, we present CaKE
(Circuit-aware Knowledge Editing), a novel
method that enhances the effective integration
of updated knowledge in LLMs. By only lever-
aging a few curated data samples guided by
our circuit-based analysis, CaKE stimulates
the model to develop appropriate reasoning cir-
cuits for newly incorporated knowledge. Ex-
periments show that CaKE enables more ac-
curate and consistent use of edited knowledge
across related reasoning tasks, achieving an
average improvement of 20% in multi-hop
reasoning accuracy on the MQuAKE dataset
while requiring less memory than existing KE
methods. We release the code and data in
https://github.com/zjunlp/CaKE.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in diverse tasks (Yang et al.,
2024a; Azaria et al., 2024; Dubey et al., 2024;
OpenAI, 2024; Guo et al., 2025), achieving perfor-
mance that rivals or even exceeds human experts.
However, their practical deployment faces some
critical limitations: parametric knowledge remains
static after pretraining, making it challenging to
keep up with evolving real-world information;
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Figure 1: The current edit cannot propagate the new
knowledge to the reasoning circuit for multi-hop rea-
soning. We propose a circuit-aware edit to improve the
model’s multi-hop reasoning performance involving the
updated knowledge.

their propensity for hallucinations also undermines
reliability (Chen, 2024). Knowledge editing (KE)
has emerged as a promising solution to update
the knowledge in models precisely (Mitchell et al.,
2021; Wang et al., 2024c; Jiang et al., 2025). Al-
though existing KE methods achieve good results
on simple factual updates (Yao et al., 2023; Zhang
et al., 2024b), they often exhibit fundamental
limitations: edits propagate inconsistently through
related knowledge structures and downstream rea-
soning tasks (Cohen et al., 2024; Qin et al., 2024;
Yao et al., 2023); excessive focus on surface-level
pattern matching (Hoelscher-Obermaier et al.,
2023), and locality issues for other unrelated
knowledge and general ability (Gu et al., 2024;
Gupta et al., 2024).

Our work specifically addresses the poor perfor-
mance of edited models in downstream reasoning
tasks that involve the updated knowledge (Zhong
et al., 2023; Zhang et al., 2024d). Consider a rep-
resentative case in Figure 1 : after editing ‘Ed-
die Mathews, citizenship, United States → United
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Figure 2: An overview of our work.

Kingdom’, models correctly answer direct queries
but fail multi-hop reasoning like ‘The capital of
the country that Eddie Mathews was a citizen of
is?’ (still outputting ‘Washington D.C.’). Criti-
cally, this is not merely an editing artifact: vanilla
LLMs often correctly answer single-hop questions
while failing their multi-hop counterparts (Yang
et al., 2024b; Biran et al., 2024), suggesting deeper
architectural limitations in knowledge utilization.

We trace these limitations to a misalignment be-
tween KE strategies and the inherent reasoning
architectures of LLMs. To investigate this discon-
nect, we examine how LLMs leverage knowledge
in downstream reasoning tasks. Recent analysis
suggests that knowledge is not merely statically
stored but dynamically activated through special-
ized circuits (Yao et al., 2024; Biran et al., 2024;
Yu et al., 2025). However, these analyses over-
look the phenomenon of LLM failures in reasoning
circuits and fail to explore the underlying causes.
Our investigation (§2) delves deeper into reasoning
circuits, analyzing their structure and identifying
the reasons behind failures in multi-hop reasoning.
Specifically, the multi-hop reasoning emerges from
coordinated computing circuits: early layers handle
the first hop, extracting the bridge entity at the end-
token of the first hop. This bridge entity, along with
second-hop relation information, is then routed to
the last token position in the middle layers. Sub-
sequently, later layers utilize this information at
the last token position to complete the reasoning
process (Figure 2 (a)). We then analyze the entity

and relation information at the last token position
in failed multi-hop reasoning cases. Our observa-
tions reveal that critical information either fails to
be properly routed to the last token position, or ex-
hibits a weak signal, preventing effective reasoning.
This explains why current KE methods underper-
form (§3.1): they optimize for isolated parameter
changes rather than circuit-level integration needed
for compositional reasoning (Figure 2b).

To bridge this fundamental gap, we propose
Circuit-aware Knowledge Editing (CaKE) in §3.2.
Unlike methods that only update localized static
knowledge, CaKE actively constructs reasoning
circuits that enable dynamic application of edited
knowledge in downstream tasks. We first design
circuit-aware training data that integrates across
distinct segments of the reasoning process to force
the LLM to leverage updated knowledge for latent
reasoning (Figure 2c). Remarkably, we find that
only a few such samples are sufficient to integrate
knowledge across the reasoning circuit while main-
taining strong general ability. Moreover, to pre-
vent unintended data leakage, we construct these
data using ad-hoc features (Zhang et al., 2024c)
that are temporarily associated with the entities,
such as ‘Japan is colored green. The capital
city of the country colored in green is’. Finally,
we guide LLMs to establish reasoning circuits by
training with the curated data. Extensive experi-
ments (§4) demonstrate CaKE’s effectiveness: it
outperforms existing knowledge editing methods
on the MQuAKE multi-hop benchmark for both
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LLAMA3-8B-Instruct (Dubey et al., 2024) and
Qwen2.5-7B-Instruct (Yang et al., 2024a). Notably,
CaKE achieves this while being more memory-
efficient than alternatives and successfully scales
to larger models like LLAMA3-70B-Instruct.

2 Analyzing Reasoning Circuit in LLM

2.1 Data Preparation

We employ the WikiData subset proposed by Bi-
ran et al. (2024) and name it HoppingTooLate,
which contains 82,021 two-hop queries. We de-
note each fact as a triplet (e, r, e′), where e is the
head entity, r is the relation, and e′ is the tail en-
tity. We view two-hop queries as (e1, r1, e2) and
(e2, r2, e3), where e1 is the source entity, e2 is the
bridge entity, and e3 is the target entity. We fo-
cus on the latent reasoning framework to evaluate
whether a model can output the expected answer e3
directly given the composite query (e1, r1, r2, ?).
For example, for the two facts (Eddie Mathews,
country_citizenship, United States),(United States,
capital, Washington D.C.), the composite query
is (Eddie Mathews, country_citizenship, capital,?).
We transform the question into the natural language
expression: ‘The capital of the country that Eddie
Mathews was a citizen of is?’. In addition, we
follow HoppingTooLate and define t1 as the last
token of the first-hop prompt (e.g., ‘the country
that Eddie Mathews was a citizen of’) and t2 as the
last token of the whole two-hop prompt (e.g., ‘The
capital of the country that Eddie Mathews was a
citizen of is’).

2.2 Multi-hop Reasoning Circuit

Building on the insights from prior work (Biran
et al., 2024; Yao et al., 2024), we can define a struc-
tured circuit mechanism for multi-hop reasoning
in transformer-based LLMs, as illustrated in Fig-
ure 2(a). The three distinct computational phases:
1) The model processes the initial relation r1 and
entity e1, encoding the bridge entity e2 in the final
token position of the first prompt segment (t1). 2)
Critical features, including e2 and the second rela-
tion, r2 are transferred to the last token position t2,
preparing for final resolution. 3) The model com-
putes the target e3 by resolving r2 and e2, giving
the result in the final token position. Hence, based
on the linearity theory (Hernandez et al., 2024),
multi-hop reasoning in LLM can be formalized as:

Fn(Fn−1(en−1, rn−1), rn) (1)

Model Metric
Correct Inconsistent Incorrect

Cases Layer Cases Layer Cases Layer

LLAMA3

e2 from t1 63.1% 6.3 75.2% 6.0 48.7% 8.2
e2 from t2 67.8% 13.2 59.8% 9.8 17.7% 21.1
r2 from t2 66.9% 14.0 49.0% 13.8 28.1% 13.7
e3 from t2 56.5% 18.8 22.7% 20.7 18.3% 18.0

Qwen2.5

e2 from t1 71.2% 4.3 74.1% 4.7 46.7% 5.1
e2 from t2 52.9% 7.9 63.7% 9.5 18.9% 13.5
r2 from t2 75.8% 8.1 75.2 % 10.4 44.8% 9.7
e3 from t2 71.2% 16.4 39.4% 17.4 25.2% 11.4

Table 1: The results of LLAMA3-8B-Instruct (32 layers)
and Qwen2.5-7B-Instruct (28 layers). Cases are the
percentage of data we can detect the information, and
Layer is the mean of the earliest layer where the required
information is detected.

Each function Fn−1 produces a bridge entity en
for subsequent computation, demonstrating how
intermediate results propagate vertically through
network layers.

2.3 Circuit in Failure Phenomena
Then, we aim to understand why language mod-
els sometimes fail at multi-hop reasoning despite
successfully answering individual single-hop ques-
tions. For instance, a model may correctly answer

‘the capital of Russia’ with ‘Moscow’ and ‘the coun-
try of citizenship of Fyodor Dostoyevsky’ with ‘Rus-
sia’, yet fail to answer the multi-hop question ‘the
capital of the country of citizenship of Fyodor Dos-
toyevsky is’ correctly. To systematically analyze
this issue, we focus on the second hop of reason-
ing, as the model typically performs well on the
first hop. We categorize the data from the Hop-
pingTooLate dataset1 into three subsets based on
the model’s behavior: Correct: The model an-
swers both single-hop questions (e1, r1, e2) and
(e2, r2, e3) correctly, as well as the multi-hop ques-
tion (e1, r1, r2, ?). Inconsistent: The model an-
swers both single-hop questions correctly but fails
on the multi-hop question. However, we observe
that some questions in the Correct set share the
same ’bridge’ entity e2, even though they originate
from distinct subject-relation pairs, that the model
answers correctly. (e′1, r

′
1, r2, ?). This suggests that

while the model can leverage knowledge in some
contexts, it fails to generalize, indicating reasoning
gaps rather than missing knowledge. Incorrect:
The model answers both single-hop questions cor-
rectly but fails on the multi-hop question in all
contexts (e′1, r

′
1, e2). This implies a complete fail-

ure to employ the knowledge for multi-hop reason-
ing. To investigate these failure modes, we check

1We filter out short-cut cases as done by Biran et al. (2024).
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Figure 3: Results of the intervention on the failure cases
in multi-hop reasoning of LLAMA3 and Qwen2.5.

whether the models construct the reasoning circuit
by monitoring key variables (e1, e2, and r2) at crit-
ical positions (t1 and t2) across the model’s layers
using the PatchScope as Biran et al. (2024) did.
Our analysis reveals several interesting patterns,
extending beyond the ‘hopping too late’ problem
identified by Biran et al. (2024).

We list the results in Table 1. For the correct
subset, we observe strong evidence of the reason-
ing circuit functioning as expected: a large portion
of e2 is detected at both t1 (e2 from t1) and t2 (e2
from t2) in both LLAMA3 and Qwen2.5 models.
The model correctly uses the r2 and e2 information
at t2 to produce the final answer e3. Contrastly,
in the Incosistent subsets, we can find that despite
detecting e2 and r2 at t2, the model often fails to
produce the correct e3 answer (e3 from t2: only
22.7% in LLAMA3 and 39.4% in Qwen2.5 of
cases we can detect at t2). We hypothesize that the
e2 information, though present, may be insufficient
to trigger the second-hop reasoning circuit, leading
to the failure to execute the function F (e2, r2)
effectively. What’s more, in the Incorrect subsets,
we can find that the needed e2 information is rarely
detected at the t2 position (e2 from t2: Only 17.7%
in LLAMA3 and 18.9% in Qwen2.5). Even when
e2 is detected, it typically emerges in much later
layers (layer 21 in LLAMA3 and layer 13.5 in
Qwen2.5), making it too late to be effectively
utilized for the second-hop computation, aligned
with Biran et al. (2024)’s findings. We conjecture
the model fails to propagate e2 to the t2 position,
resulting in the variable e2 missing for conducting
the F (e2, r2) function.

Evaluation To test our hypothesis, we conduct
interventions to enhance the information at the
detected layers to see if we can improve the
model’s performance in these failure cases. We test
three ways: back-patching the t1 and t2 position

as Biran et al. (2024) did, which would enhance
the information at the position, and cross-position
patching the information from t1 to the t2 position,
which explicitly propagates the information from
t1 to t2 (details in Figure 7 in Appendix). From
the results in Figure 3, we can find a high success
rate for all the inconsistent and incorrect cases,
but they demonstrate different paradigms. For
the inconsistent cases, back-patching would lead
to better performance, while for the incorrect
cases, patching knowledge from the t1 to t2
usually shows better outcomes. This proves
our previous hypothesis that for the incorrect
cases, due to the propagation failure, the model
fails to move the e2 to t2 position, and manual
routing via cross-patching can mitigate the issue.
Meanwhile, for inconsistent cases, amplification
via back-patching compensates the weak signal
when valid e2 representations reach t2 but lack
sufficient magnitude for subsequent reasoning.

3 Circuits-aware Knowledge Editing

Building on our previous reasoning analysis, we
rethink the reason why current knowledge edit-
ing methods fail under multi-hop reasoning cir-
cumstances despite their great performance under
single-fact editing.

3.1 Rethinking KE from the Circuit View

Here, we aim to figure out what happens when we
edit the model with the current KE methods.

Unified Editing Details When updating a piece
of knowledge (e, r, o → o′), the most popular
knowledge editing techniques would modify the
parameters that are responsible for the knowledge.
There are two kinds of paradigms: editing the Feed-
Forward Networks (FFN) in the early layers, such
as ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023) or modifying the later layers’ FFN
output, like WISE (Wang et al., 2024c) and T-
Patcher (Huang et al., 2023). This is mainly
based on the key-value memory features of the
FFN (Geva et al., 2020). However, some studies
have queried the effectiveness of these localization
settings (Chang et al., 2024; Hase et al., 2024) as
the localization area is not correlated to the perfor-
mance of the knowledge editing methods. Here, we
propose a unified view of the mechanisms and lim-
itations from the circuit perspective. ROME-style
would modify the weight W with a perturbation
∆ and obtain a new weight W ′ = W +∆. When
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calculating the ∆, ROME-style methods, apply the
least squares estimation and null space constraint
to make sure the ∆ is only activated by the cor-
responding entity representation ein and keep the
original output for other representations. In par-
allel, WISE-style editing methods would directly
introduce the new weight W ′ that would be acti-
vated by the related representation ein, and W ′

would encode the updated knowledge.(More de-
tails in Appendix B.2). Hence, these two editing
paradigms can be represented uniformly by a gated
function G(·):

FFNout(x) = Wx︸︷︷︸
Original term

+G(x) · δ(x)︸︷︷︸
Edit term

(2)

G(x) =
{
1, x ∈ ein

0, otherwise
(3)

Here, for ROME-style method,δ(x) = ∆x and for
WISE-style method, δ(x) = (W ′ −W )x. When
the gating function G(·) is activated by the input
x, the edit term δ(x) is applied, thereby modifying
the knowledge within the computational circuit.

Defect from circuit view In single-hop knowl-
edge editing, both these kinds of methods would
give us the correct information, but for the multi-
hop cases, they would fail. As shown in Figure 2
(b), both these layer-specific editing methods can-
not propagate the updated knowledge to the rea-
soning circuit, leading to unsatisfactory multi-hop
reasoning performances. Consider the two-hop
reasoning process from §2: the model must first
correctly compute e2 = F1(⟨e1, r1⟩) in early lay-
ers. The representation of e2 then propagates to the
final token position t2 (typically where answers are
generated), where it combines with r2 to compute
e3 = F2(⟨e2, r2⟩) in later layers.

WISE-style editing shows critical limitations
when handling first-hop facts (e1, r1, e2 → e′2) in
multi-hop reasoning. As the edit is applied to later
layers, the early layers remain unchanged and con-
tinue to produce the original e2 representation dur-
ing computation. This creates a fundamental mis-
match: while the later layers perform the second-
hop computation F2(⟨e2, r2⟩), they operate on the
unmodified e2 from early layers. Consequently, the
gating mechanism G(·) designed for first-hop edits
becomes effectively bypassed in the reasoning pro-
cess. Similarly, ROME-style editing fails when the
edited fact (e2, r2, e3 → e′3) serves as the second-
hop question. For the edit to take effect, the gat-
ing function G(·) must be activated by e2 in early

layers. However, e2’s representation only appears
after the first hop completes in the computational
pathway - potentially after the edited layers. In this
scenario, the gated function G(x) in earlier layers
remains unactivated, causing the model to default
to stale knowledge and produce incorrect answers.

3.2 Proposed Method: CaKE

Inspired by previous analysis, we propose a
novel method, Circuit-aware Knowledge Editing
(CaKE), which makes sure the models build the
reasoning circuit with the updated knowledge. As
we show in the previous section, a successful rea-
soning circuit is one that, after editing the model’s
knowledge, ensures: The updated computation F1

or F2 accurately reflects the new knowledge, and
the bridge entity e2 is correctly computed and prop-
agated to t2. Hence, simply editing a single layer or
several layers is not enough to enable the circuit for
reasoning. Here, CaKE comprises two key compo-
nents: (1) generating circuit-aware data that explic-
itly requires reasoning with the updated knowledge,
and (2) training the model to construct robust rea-
soning circuits that integrate the new knowledge.

Data Generation For each updated knowledge
item, we construct the following contexts to mit-
igate these issues: (1) Original Narrative: We
begin by generating straightforward factual state-
ments that explicitly convey the updated informa-
tion. For example, when updating the fact k: (Per-
sonX, citizen_country, Switzerland → Japan), we
use the narrative representation: ‘PersonX is a cit-
izen of Japan’ and generate several paraphrases.
These statements serve as the foundation for the
model to learn the updated knowledge. (2) Circuit-
aware Tasks: Next, we design specialized reason-
ing scenarios that address two critical challenges:
preventing failure propagation and mitigating weak
signals, while ensuring that updated knowledge is
properly integrated across different layers (in Fig-
ure 2c). Moreover, to avoid introducing extrane-
ous knowledge that could leak into downstream
evaluations—and to test the generalization of our
method (inspired by prior research (Zhang et al.,
2024c))—we incorporate ad-hoc features into these
scenarios. Particularly, these tasks link the facts
with intermediate attributes or reasoning steps and
fall into two categories: Late-layer Knowledge
Integration: These tasks ensure that the updated
knowledge is effectively learned in the later lay-
ers, alleviating issues such as weak signals and
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Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑

Pre-edited

L
L

aM
A

3-
8B

-I
ns

79.0 27.0 78.4 28.6 71.0 5.3

AdaLoRA 66.0 27.6 64.7 24.6 92.3 66.0
WISE 38.2 24.0 37.2 21.0 63.5 62.9

MeLLo 16.5 16.1 19.5 16.0 42.3 50.1
ROME 86.8 17.6 86.4 15.5 89.5 8.4
MEMIT 76.3 11.5 74.0 10.0 86.0 3.7

AlphaEdit 66.1 10.1 63.7 8.5 73.4 1.0
IFMET ♣ 81.9 23.2 75.3 36.5 82.1 46.1

CaKE(ours) 90.6 57.3 90.1 57.1 91.5 81.4

Pre-edited 75.6 34.7 76.8 37.7 60.1 15.6

LoRA

L
-7

0B

93.1 53.2 90.5 50.2 90.1 90.6
MeLLo 8.0 6.4 8.6 9.9 11.6 32.9

CaKE(ours) 93.5 65.4 93.3 63.3 91.1 94.6

Table 2: Comparison of CaKE with existing methods on MQuAKE for LLAMA3-8B-Instruct and LLAMA3-70B-
Instruct. Due to the computational limitations, we just ran the LoRA and MeLLo in the 70B model. The best
results are highlighted in bold, while the second-best results are underlined. ♣ means the results are based on our re-
implementation since the original code is not open by the authors, and we will update it after the source code is open.

the limitations of ROME-style editing. Take the
fact k: (PersonX, citizen_country, Switzerland
→ Japan) as an example; we construct a seed
prompt like: ‘Suppose {random_entity_1} wears
red clothes, {random_entity_2} wears blue clothes,
and {PersonX} wears green clothes. The country
of citizenship of the person in green is:’ Here, the
model is expected to output ‘Japan,’ requiring it
to employ the new fact k in later layers. Reason-
ing Circuit Enhancement: These tasks require
the model to use the updated knowledge for sub-
sequent reasoning, thereby mitigating propagation
failure and WISE-style’s limitations. Following the
same fact k, the seed prompt is ‘In a book about
countries, Japan is mentioned on page 6 of the
book, while China is mentioned on page 72. On
which page of the book is the country of citizenship
of the {PersonX} shown?’ Here, the model must
first recall the updated citizenship (Japan) and then
use this information to determine the correct page
number (6).

For each relation type, we design these seed
task templates and employ GLM-4-plus (GLM
et al., 2024) to generate diverse expressions follow-
ing these templates (see Appendix A for details).
Specifically, we create 3 distinct samples per cat-
egory for each edited fact, which our experiments
show are sufficient to enable effective reasoning

with the updated knowledge. This minimal data
requirement demonstrates the efficiency of our ap-
proach in adapting models to new information.

Edit Training After obtaining the curated
circuit-aware data D, we fine-tune the LLM using
LoRA, enabling the model to optimize its internal
knowledge organization. We minimize the cross-
entropy loss L between the model’s outputs and the
ground-truth tokens expressing the updated fact:

L = E(x,y)∈D


−

|y|∑

t=1

log p(yt | x, θLoRA)


 (4)

where θLoRA represents the LoRA parameters, x
is the input prompt, and y is the desired updated
output sequence.

4 Experiments

4.1 Experiment Settings

We mainly utilize the multi-hop reasoning knowl-
edge editing dataset MQuAKE (Zhong et al., 2023),
which considers different numbers of hops (from
2 to 4) and different positions of the knowledge
used in the multi-hop questions. We utilize three
versions of the datasets: MQuAKE-CF-3k and
MQuAKE-CF-3k-v2, which are two subsets that
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Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ Hop-wise.↑ MAcc.↑

Pre-edited

Q
w

en
2.

5-
7B

-I
ns

73.4 40.7 72.8 39.5 56.1 15.6

AdaLoRA 35.1 24.9 36.5 25.9 25.0 28.6
WISE 41.2 9.8 26.5 8.0 50.2 36.5

MeLLo 35.5 7.8 34.5 7.6 52.7 56.5
ROME 75.4 10.7 73.4 8.8 86.7 17.7
MEMIT 82.6 11.1 83.4 9.6 88.9 18.5

AlphaEdit 73.8 12.6 75.1 10.5 82.2 17.2
IFMET ♣ 83.7 25.7 84.6 24.5 90.0 52.8

CaKE(ours) 90.6 61.4 90.3 63.05 95.5 87.8

Table 3: Comparison of CaKE with existing methods on MQuAKE on Qwen2.5-7B-Instruct. The best results
are highlighted in bold, while the second-best results are underlined. ♣ means the results are based on our own
implementation since the original code is not open by the authors, and we will update it after the source code is open.

contain different question types and editing hop-
ping numbers, and MQuAKE-T is a time-aware
knowledge editing benchmark.

Baselines and Models We consider sev-
eral knowledge editing baselines, including:
IFMET (Zhang et al., 2024d), AlphaEdit (Fang
et al., 2024), ROME (Meng et al., 2022),
MEMIT (Meng et al., 2023),WISE (Wang et al.,
2024c) and MeLLo (Zhong et al., 2023). Here,
AlphaEdit, ROME, and MEMIT are methods
that edit the model’s parameters at early lay-
ers; WISE adds additional parameters at later
layers, and IFMET edits both the early and
later layers’ FFN to achieve better multi-hop
reasoning performance. MeLLo is a prompt-based
retrieval-augmented method that keeps the model’s
parameters unchanged. We conduct experiments
on LLAMA-3-8B-Instruct, Qwen-2.5-7B-Instruct,
and LLAMA-3-70B-Instruct.

Evalutation Metric Following Zhong et al.
(2023), we evaluate model performance using
Multi-hop Accuracy (MAcc) and Hop-wise An-
swering Accuracy (H-Acc). MAcc measures the
accuracy of multi-hop question answering, while
H-Acc assesses correctness at each reasoning step.
For both metrics, we consider a prediction correct
if the ground-truth answer appears in the generated
text as Cohen et al. (2024); Zhong et al. (2023)
did. Higher values indicate better reasoning capa-
bility. For KE, we also need to consider local-
ity, which ensures edits do not affect unrelated
knowledge and abilities. To assess this, we eval-
uate the model on general benchmarks, including

CommonsenseQA (Talmor et al., 2019), BigBench-
Hard (Suzgun et al., 2023), MMLU (Hendrycks
et al., 2021), and GSM8k (Cobbe et al., 2021).

4.2 Experiments Results

Main Results We show the results for LLAMA3-
8B-Instruct in Table 2 and Qwen2.5-7B-Instruct
in Table 3. From the table, we can find that al-
though current KE methods achieve high hop-wise
accuracy (H-Acc.), their performance on the three
versions of MQuAKE is quite low (with an av-
erage accuracy of less than 20%). For example,
MEMIT and ROME achieve over 80% accuracy on
single-hop questions in MQuAKE-v2; however,
their accuracy on multi-hop reasoning drops to
only around 10%, indicating that the LLM fails
to effectively utilize the updated knowledge during
reasoning. In contrast, CaKE demonstrates signifi-
cant improvements in multi-hop reasoning. In the
LLAMA3-8B-Instruct model, CaKE achieves ac-
curacies of 57.3, 57.2 and 81.5 in MQuAKE-CF,
MQuAKE-CF-v2 and MQuAKE-T, respectively,
outperforming all the compared methods. Addition-
ally, IFMET, which also considers different layers
for multi-hop reasoning but neglects the informa-
tion flow within the circuit, performs not as well as
CaKE. Moreover, when compared with RAG-based
methods such as MeLLo, CaKE also yields better
results. Furthermore, compared to the baseline
LoRA tuning methods that simply incorporate the
raw knowledge, the improvements observed with
CaKE underscore the effectiveness of our approach.
Results in Qwen-2.5-Instruct also demonstrate the
same phenomenon.
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CSQA BBH MMLU GSM8k

LLaMA3-8B-Ins 76.09 67.89 63.83 75.20

MEMIT 76.08 67.88 63.82 75.21
ROME 72.98 61.37 62.95 74.59
CAKE 75.10 67.20 62.98 76.04

Qwen2.5-7B-Ins 82.31 33.39 71.80 82.26

MEMIT 82.39 37.37 71.80 81.96
ROME 72.57 34.22 63.38 72.21
CAKE 82.64 37.44 71.76 82.79

Table 4: Locality Performance on several general
benchmarks of CaKE and other editing methods.

Position and Number of Hop We also compare
the performance on different hops and positions in
Figure 4. Even when the model is trained solely
on two-hop questions, CaKE yields improvements
across varying numbers of editing hops. The bene-
fits are particularly pronounced for four-hop ques-
tions, where methods like IFMET (designed only
for two-hop scenarios) struggle. Besides, CaKE
enhances performance regardless of the position of
the edited knowledge within the multi-hop ques-
tions, demonstrating the generalizability of CaKE.

Efficiency and Scalability We evaluate compu-
tational efficiency in Table 8, demonstrating that
CaKE achieves better performance while requir-
ing less memory than MEMIT with comparable
editing times. This efficiency advantage enables
CaKE to scale effectively to larger models, where
it maintains superior performance on LLAMA3-
70B-Instruct.

5 Analysis

5.1 Locality Performance

In this section, we evaluate the model’s perfor-
mance on general ability benchmarks to ensure
that acquiring new knowledge does not compro-
mise its overall capabilities. As shown in Ta-
ble 4, CaKE achieves performance comparable to
the original model on both the LLAMA3-8B and
Qwen2.5-7B models across different kinds of tasks,
including math, commonsense, and diverse under-
standing tasks.

5.2 Case Analysis

In this part, we show the cases in which the CaKE
helps the model learn the multi-hop reasoning
circuit and other methods fail. For illustration,
we consider the two-hop question: ‘The capital city
of the country that Eddie Mathews was a citizen

pre
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Position Analysis

2
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Figure 4: Accuracies of different number hops and
edit-positions in MQuAKE-CF-3k-v2 on LLAMA3-8B-
Instruct.
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Figure 5: e2 and r2’s logits at t2 in models after different
knowledge editing methods.

of is’. Here, the editing case is (Eddie Mathews,
citizenship, United States → United Kingdom), and
the updated model is expected to output ‘London’.
However, CaKE gives the correct answer, while
other methods fail: MEMIT gives us the ‘Moscow’,
AlphaEdit gives us ‘Birmingham’, and LoRA gives
us ‘not known’. To further understand these dif-
ferences, we analyze the computing circuit of each
method to determine whether the updated model
successfully propagates the bridge entity e2 and
relation r2 to the last token t2 position.

Figure 5 compares the logits of e2 and r2 at po-
sition t2 across different editing methods. Here,
CaKE generates significantly stronger logits for
the bridge entity e2 compared to AlphaEdit and
MEMIT. This demonstrates CaKE ’s ability to prop-
agate critical information to target positions for sub-
sequent reasoning steps. Similarly, CaKE produces
more prominent r2 logits, indicating more robust
circuit construction and information flow compared
to baseline methods.

6 Related Work

Knowledge Learning and Editing Knowledge
editing (Lampinen et al., 2025; Jiang et al., 2024a;
Sun et al., 2024; Hsueh et al., 2024; Powell et al.,
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2024; Wang et al., 2024a; Rozner et al., 2024;
Zhang et al., 2024a; Wang et al., 2024e; Shi et al.,
2024; Huang et al., 2024b; Guo et al., 2024; Wang
et al., 2025; Feng et al., 2025; Yang et al., 2025;
Li et al., 2024b; Huang et al., 2024a) has emerged
as a promising approach for updating models in
an ever-changing world. Current knowledge edit-
ing methods typically follow one of several strate-
gies: modifying the MLP components in earlier
layers (Meng et al., 2022, 2023), enhancing the
MLP in later layers (Hartvigsen et al., 2023), or
retrieving relevant facts as prompts (Jiang et al.,
2024b; Zhong et al., 2023). However, most exist-
ing knowledge editing techniques concentrate on
simple factual updates and frequently fail to gener-
alize to more complex downstream tasks, such as
multi-hop reasoning scenarios.

Model Interpretability Knowledge editing
is primarily based on the intrinsic knowledge
mechanisms of neural models’ “black boxes”
(Ferrando et al., 2024). Consequently, understand-
ing how knowledge in LLMs is acquired and
stored has garnered significant attention (Wang
et al., 2024b). Recent studies (Zhou et al., 2023)
demonstrate that most knowledge is learned during
the pretraining stage and is predominantly stored
in the Feed-Forward Network (Geva et al., 2020).
Beyond these localized findings, researchers (Geva
et al., 2023; Yao et al., 2024) have investigated the
computational circuits—the pathways connecting
Transformer components—to elucidate how LLMs
perform knowledge recall. Building on this,
subsequent work has explored the relationship
between knowledge editing and these circuits (Ge
et al., 2024). In contrast, our work focuses on the
mechanisms underlying multi-hop reasoning in
LLMs and aims to improve the generalization of
edited knowledge.

7 Conclusion

In this paper, we identify that existing knowledge
editing methods fall short due to their isolated pa-
rameter adjustments by examining the multi-hop
reasoning circuits within LLMs. We present CaKE ,
a method designed to align knowledge editing
with the inherent reasoning architectures of LLMs.
CaKE incorporates circuit-aware tasks that com-
pel the model to dynamically integrate and utilize
new knowledge during reasoning. Experimental re-
sults demonstrate that CaKE achieves generalizable
multi-hop knowledge editing.

Limitation

Dataset Our work primarily focuses on the fac-
tual knowledge embedded in large language mod-
els (LLMs) and their capacity for multi-hop rea-
soning over these facts. We recognize that LLM
reasoning also encompasses other domains—such
as long-form mathematics and reverse-curse rea-
soning—that merit further investigation.

Reasoning Pattern As discussed in the previ-
ous analysis, we concentrate on direct reasoning
phenomena. Current LLMs have shown impres-
sive capabilities in slow-thinking paradigms, in-
cluding chain-of-thought and reflective reasoning.
Beyond direct reasoning, enhancing the utilization
of knowledge within these paradigms represents an
important avenue for future research.

Fine-grained Circuit Components Our analysis
revealed relational information within the circuits;
however, CaKE currently does not delve deeply
into these relationships. We believe that a more
focused investigation into these components is nec-
essary. Additionally, while our study emphasizes
general circuit behavior, developing a more con-
cise and effective method for knowledge editing
remains an exciting challenge for future work.

Data Attribution Although we demonstrate the
ability to construct reasoning circuits using curated
data, the connection between a model’s acquired
abilities in its parameters and its training data is
still underexplored. A deeper understanding of this
relationship could lead to more efficient training
processes and the generation of higher-quality syn-
thetic data.
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Appendix

A Setting Detail

Dataset We list the details of the dataset in Ta-
ble 5.

Model Correct Inconsistent Incorrect

LLaMA3-8B-Ins. 1,005 1,032 1,240
Qwen2.5-7B-Ins. 241 252 275

Table 5: The dataset we used in the analysis.

Environment Setting We run our experiments
on 2 NVIDIA-A800 GPUs. For data generation,
we utilize glm-4-plus and glm-4-air and a total
of 10,000,000 tokens (about 20 dollars) to gen-
erate all synthetic data for the whole 7,867 data
samples. The cost is approximately 0.002 dollars
per edit, which also demonstrates the efficiency
of CaKE method. We use LLM-Eval (Gao et al.,
2024) to test the model’s general performance.

Data Generation We first construct the question
template T for each relation type, and we list some
of them in Table 6. We then generate the data using
the following prompt:

Prompt for Constructing the circuit-aware data

Here are some question templates for the spe-
cific relation. As you can see, the question use
the knowledge in the input to conduct reason-
ing in different hops for multi-hop reasoning.
Please generate 3 different questions that share
the same features as the template. Please re-
turn a python json file. {T } Here is the input
question:

It should be noted that we do not ask the model
to strictly follow the expression of the template, and
we also show some data samples in Appendix A to
show the diversity of the generated data.

B Implementation Detail

B.1 Analyzing Method

Patch Scope The process is carried out as fol-
lows. First, a source prompt, a source token, and a
source layer are provided. The prompt is processed
through the model’s forward computation, and the
hidden representation v of the source token at the
specified layer is extracted and stored. This rep-
resentation v is the focus of our investigation, as

we seek to determine whether it encodes a specific
entity. Next, we employ the same prompt used by
Ghandeharioun et al. (2024): “Syria: Syria is a
country in the Middle East. Leonardo DiCaprio:
Leonardo DiCaprio is an American actor. Sam-
sung: Samsung is a South Korean multinational
corporation. x” This prompt is passed through the
model, but the hidden representation of ‘x’ is re-
placed with v at a chosen target layer. The forward
computation then proceeds, and the resulting gen-
erated text is analyzed to evaluate the effects of
this substitution. We conduct different patch analy-
ses and show them in Figure 7. When we conduct
back-patch and cross-patch, the source prompt and
target prompt are the same.

B.2 Editing Method

We utilize EasyEdit (Wang et al., 2024d) to con-
duct our editing experiments. For ROME, MEMIT,
WISE, AlphaEdit, and MeLLo, we directly employ
the original parameters provided by their respec-
tive papers. Below, we introduce these methods in
detail and describe our implementation.

ROME and MEMIT ROME leverages causal
analysis to identify knowledge within specific MLP
layers and modifies the corresponding weight ma-
trix using least squares approximation. It operates
under the strong assumption that the MLP layers
primarily store knowledge and injects new informa-
tion into these layers iteratively using a Lagrangian
remainder. In our experiments, we edit the 5th
layer of both LLAMA3-8B-Instruct and Qwen2.5-
7B-Instruct.

Similarly, MEMIT assumes that the FFN layers
function as a knowledge key-value store. It directly
modifies the parameters of selected layers through
least squares approximation. Unlike ROME, which
updates a single layer, MEMIT is a multi-layer edit-
ing algorithm capable of simultaneously updating
hundreds or thousands of facts

IFMET IFMET builds upon MEMIT by not only
modifying earlier MLP layers in transformers but
also adjusting later layers to enhance multi-hop
reasoning for the edited knowledge. To ensure the
updated knowledge propagates effectively, IFMET
constructs an additional support set that reinforces
learning in later layers. Based on our analysis in
§2, we edit layers [17,18,19,20] for LLAMA3-8B-
Instruct and layers [15,16,17,18] for Qwen2.5-7B-
Instruct.
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Knowledge Type Template Answer

{target_person} works
in the field of {target_field}

.

In a book related to different fields, Section A discusses {random_field},
Section B discusses {random_field}, and Section C discusses {target_field}.
If you want to learn about {target_person}’s field,
which section should you read?

The working field of {target_person}
is discussed in Section C.

In a biography book, Section A discusses the life of {random_person},
Section B discusses the life of {random_person},
and Section C discusses the life of {target_person}.
The field of the person in Section C is?

The person in Section C
works in the field of {target_field}.

{target_person} speaks
the language of {target_language}.

The following facts are known: 1. {target_person} wears red clothes.
2. {random_person} wears blue clothes.
3. {random_person} wears green clothes.
The language that the person in red clothes speaks is?

The language that the person in red clothes
speaks is {target_language}.

At a global company:
{target_language}-speaking employees work in Team A.
{random_language}-speaking employees work in Team B.
In which team would {target_person} work when he/she is at work?

{target_person} would work in
Team A when he/she is at work.

Table 6: Sample templates for generating the circuit-aware data.

WISE WISE represents a different approach to
model editing, focusing on later layers instead of
earlier ones. It modifies the model’s FFN output
using a gating mechanism:

FFNout(x) =

{
G(x) ·Wv′ if G(x) > ϵ,
G(x) ·Wv otherwise.

(5)

Here, G(x) is a gate function that computes the ac-
tivation score of the hidden reprsentation: ∥A(x) ·
(Wv′ −Wv)∥2. If the gate is activated, the model
uses the updated knowledge to generate responses;
otherwise, it relies on the original knowledge. Dif-
ferent methods define the gate function differently,
but the core idea is to ensure that the updated mem-
ory aligns with relevant question representations.

Edit Method LLAMA3-8B Qwen2.5-7B

First_hop Second_hop First_hop Second_hop

ROME 16.66 7.81 10.57 8.33
WISE 49.85 67.36 8.33 33.59

Table 7: Performance comparison of edit methods
across different positions for the edited fact.

MeLLo MeLLo is a non-parametric editing
method that modifies a model’s knowledge through
prompting rather than weight updates. It maintains
a memory of newly introduced facts and guides
the model to decompose multi-hop queries into
sub-questions. At each step, the model checks this
memory to verify whether its existing knowledge
contradicts the new facts. We follow the prompt
structure provided in the original MeLLo method.
However, in our experiments, we observe that the
model struggles to consistently adhere to the in-
tended reasoning pattern.
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Figure 6: The target answer token’s rank in the vocabu-
lary of different editing methods when editing the fact
‘The official language of Japan is Japanese → Korean.’

CaKE We utilize the original LoRA (Hu et al.,
2022) and add parameters in the FFN module in
the model. The hyperparameters are as follows:

• epoch: [40, 50, 60]
• batch size: [4]
• learning rate: [1e-4]
• rank: [8]
• lora_alpha: [32]

B.3 Unified Analysis

We first compare the different behaviors between
the MEMIT-edited, WISE-edited, and the original
model in Figure 6. Here, we edit the fact: ‘The offi-
cial language of Japan is Japanese → Korean.’ and
map each layer’s output to the embedding space
and draw the rank of the target-token in the vo-
cabulary as Yao et al. (2024) did. From the fig-
ure, we can see that in the original model and the
MEMIT-edited model, the answer token is dealt
with gradually through the mid-to-later layers, and
MEMIT would make this happen in advance. On
the contrary, the WISE method would directly alter
the information at the edited layer, as we can see
the sharp drop at layer 29. The distinct behaviors
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arise because the editing only takes effect when
the gated function G(x) is activated by the specific
input representation. ROME-style methods inject a
modified representation into the existing computa-
tional flow relatively early or mid-stream, relying
on subsequent layers to interpret this new repre-
sentation. WISE-style methods, particularly when
applied to later layers, act more like a direct ’fix’ or
’override’ at the point of editing, with the change
being more immediately apparent.

C More Analysis

C.1 Concurrence or Reasoning?

Studies such as Yang et al. (2024b); Ju et al. (2024);
Hou et al. (2023); Zhang et al. (2024c) those have
discovered shortcuts in multi-hop reasoning. In
the case of ((e1,′′ , e2), (e2, r2, e3)) (i.e., the query
without r1), the model predicts correctly due to a
high correlation between e1 and e3. For instance,
given the query: “The capital city of the country
where the Eiffel Tower is located is...” LLMs can
sometimes provide the correct answer even without
the intermediate context (‘the country where the
Eiffel Tower is located’). In our analysis, we find
that apart from the occurrence, the LLM would also
sometimes conduct latent reasoning, such as ‘la-
tently conducting the r1 completion’. If the model
gives the correct e3 for ((e1,′′ , e2), (e2, r2, ?)) due
to the occurrence, once we edit the (e1, r1, e2 →
e′2), the model would fail to give us the new answer.
We select the shortcut data and conduct the editing
in the first hop (e1, r1, e2 → e′2) and then evaluate
the model to see whether the edited model would
output updated knowledge (e1, r1, r2, e′3). We con-
duct experiments on LLAMA3-8B-Instruct with
the AlphaEdit method and demonstrate that about
65% percent of cases would give us the updated
knowledge for the multi-hop questions, showing
that edits to intermediate hops (e.g., updating the
country) can disrupt reasoning when relying on pre-
existing-shortcuts and correctly give us the newly
updated reasoning results. This means that the
LLM itself does not simply answer the questions
due to the high correlation between e1 and e3, but
actually conducts the latent reasoning.

C.2 Discussion with Chain-of-Thought

Instead of directly providing an answer, chain-of-
thought (CoT) reasoning generates intermediate
steps sequentially. As proposed by Yang et al.
(2024b), CoT not only facilitates knowledge activa-

r2

e2

e2

e1 t1 t2r1 r2

e1

e3

r2

e2

e2

e1 t1 t2r1 r2

e1
r2

backpatch-t1

t1-to-t2

backpatch-t2

Figure 7: The way we conduct the backpatch and e1 to
e2. We substitute the hidden representations from the
source position to the target position.

tion in large language models but also transforms
them into effective in-context reasoners. The CoT
process builds a chain of relevant facts within the
prompt context, where each step’s output serves
as an in-context memory that subsequent steps can
reference. This approach reduces the risk of losing
track of intermediate facts as the sequence length
increases, thereby promoting more coherent multi-
hop reasoning. Moreover, because a significant por-
tion of the model’s knowledge is stored in earlier
layers, CoT can better leverage these neurons by
decomposing complex questions into simpler sub-
questions (Wang et al., 2024f; Yao et al., 2025a).
Consequently, the reasoning circuit required for a
single-hop inference is much simpler than that for
multi-hop reasoning. This observation aligns with
recent findings (Li et al., 2024a), which demon-
strate that fast thinking without CoT leads to larger
gradients and greater gradient disparities across
layers compared to CoT. Nonetheless, inconsisten-
cies in the intermediate reasoning steps still occur,
highlighting potential areas for improvement. We
believe that further analysis is needed to address
these issues, and we leave this exploration for fu-
ture work.

C.3 Efficiency Analysis

We also compare the efficiency of CaKE with other
baselines in Table 8. We compare the wall-clock
time and memory usage here on LLAMA3-8B
model and sample 100 numbers of data to run the
analysis from MQuAKE-CF-3k. Here, the time
is the average time for one edit, and memory is
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Method Wall-clock Time Memory (BF16)

ROME 2.71s 20.68GB
MEMIT 30.11s 24.42GB
WISE 76.01s 21.37GB
IFMET 44.72s 25.19GB
AlphaEdit 17.60s 38.80GB
CaKE 43.54s 18.52GB

Table 8: Time and Memory requirements Comparison

the peak VRAM usage monitored by pynvml using
one A6000 GPU. Here, AlphaEdit does not support
BF16 or FP16, so the computation is FP32.

We can see that ROME and MEMIT require
more memory than other methods. This is due to
the matrix processes, like the calculation of an in-
verse matrix, which are memory-intensive. When
the matrix is larger, the requirements are even more,
which limits the method’s scalability. Also, the im-
provement methods based on MEMIT like IFMET
would also increase the time requirement but still
require large memory. The memory would require
even more when the model becomes larger (Yao
et al., 2025b). Contrastly, CaKE can handle a 70B-
sized edit via two A100 GPUs and achieve better
performance, which demonstrates the efficiency of
our proposed method.

C.4 Multiple Edit Test
We also conduct experiments on multiple edit sce-
narios. We can find that CaKE still shows compet-

Table 9: Performance Comparison with Different Edit
Numbers

Method Edit_num=10 Edit_num=100

MEMIT 16.0 12.5
IFMET 27.5 19.5
AlphaEdit 12.7 7.5
CaKE 59.0 34.5

itive performance in multiple-edit scenarios com-
pared to other methods.

C.5 Data Example
We show an example of the generated data for the
fact ‘The author of Misery is Richard Dawkins.’ in
the following box.

Q1. If someone is looking for the person respon-
sible for penning Misery, whose name should
they search for?

Q2. If Alice resides in a mansion, Bob resides in
a cottage, and Richard Dawkins resides in a
villa. Therefore, the author of Misery resides
in?

Q3. Given that Sarah prefers tea, James prefers
coffee, and Richard Dawkins prefers herbal
tea, what does the author of Misery prefer to
drink?

Q4. During a book club meeting, the first discus-
sion was on Misery, the second on The Blind
Watchmaker, and the third on River Out of
Eden. Who wrote the book that was the sub-
ject of the first discussion?

Q5. A library display features three novels: Misery
on the top shelf, The Extended Phenotype on
the middle shelf, and Climbing Mount Improb-
able on the bottom shelf. Who is the author
of the novel placed on the top shelf?
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