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Abstract
To assist users in complex tasks, LLMs generate
plans: step-by-step instructions towards a goal.
While alignment methods aim to ensure LLM
plans are helpful, they train (RLHF) or evaluate
(ChatbotArena) on what users prefer, assuming
this reflects what helps them. We test this with
Planorama: an interface where 126 users an-
swer 300 multi-step questions with LLM plans.
We get 4388 plan executions and 5584 compar-
isons to measure plan helpfulness (QA success)
and user preferences on plans, and recreate the
setup in agents and reward models to see if they
simulate or prefer what helps users. We expose:
1) user/model preferences and agent success do
not accurately predict which plans help users,
so common alignment feedback can misalign
with helpfulness; 2) this gap is not due to user-
specific preferences, as users are similarly suc-
cessful when using plans they prefer/disprefer;
3) surface-level cues like brevity and question
similarity strongly link to preferences, but such
biases fail to predict helpfulness. In all, we ar-
gue aligning helpful LLMs needs feedback from
real user interactions—not just preferences of
what looks helpful—so we discuss the plan NLP
researchers can execute to solve this problem.1

Step 1: Introduce the Paper’s Plan2

Users increasingly rely on Large Language Models
(LLMs) to assist with complex problems like coding
(Wen et al., 2024), fact-checking (Min et al., 2023),
and organizing day-to-day tasks (De Buyser, 2023).
A common way an LLM supports these requests in
practice—especially when it cannot do the task on
its own—is with plans (Ouyang et al., 2023): step-
by-step instructions for how to complete it (Newell
et al., 1972). Plans improve task completion accu-
racy and efficiency (Roncone et al., 2017), teach

*This refers to Flannery O’Connor’s story “A Good Man is
Hard to Find”. We subtly reference it 6 times (Appendix A.1).

1Our code and data are available at: https://github.
com/Pinafore/plan-helpfulness

2Given our paper’s focus on plans, we structure our sec-
tions as step-by-step instructions.

problem-solving skills (Wood et al., 1976), and re-
duce cognitive load (Atkinson et al., 2000), making
them a promising tool for human–AI collaboration.

LLM plans are widely used, but few study which
plans let users solve tasks accurately and quickly—
precluding their improvement. This broad goal is
called helpfulness in LLM research: ensuring LLMs
give outputs useful to humans (Askell et al., 2021).
For this goal, developers first gather feedback to as-
sess the helpfulness of LLM outputs (Ouyang et al.,
2022), either using these signals to rank LLMs by
helpfulness in leaderboards (Chiang et al., 2024), or
tuning LLMs on the most helpful outputs via align-
ment methods like Reinforcement Learning with
Human Feedback (Christiano et al., 2017, RLHF).

To align LLMs for plan generation, the feedback
choice is key—defining what LLMs learn is helpful
(Bansal et al., 2024). A de-facto protocol has users
compare two LLM responses (e.g. plans) and pick
the one they prefer (Stiennon et al., 2020). While
standard in alignment (Tie et al., 2025), it assumes
users accurately select what helps them. If this as-
sumption fails, we may reward plans that look use-
ful but do not truly help users solve tasks quickly or
accurately. This failure case is often unnoticed, as
developers align and evaluate LLMs on preferences.

This paper challenges the assumptions of align-
ment by building Planorama (Figure 1), an inter-
face to study if users’ preferred plans—the standard
signal in alignment—help them solve problems—
our real alignment target. We deploy LLM-created
plans in our interface to help users solve multi-step
math and trivia questions with calculator and web
search tools—complex, verifiable problem-solving
tasks. We find preferred plans via user votes in pair-
wise comparisons (§3.2.1) and helpful plans based
on which let users solve questions quickly and accu-
rately (§3.2.2)—unified into one metric with Item
Response Theory (§5.1). In total, 126 users solve
300 distinct questions with 600 LLM plans, yielding
4388 plan executions and 5584 comparisons: a rich
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Figure 1: Overview of the Planorama interface. Users answer multi-step math or trivia questions (top left) with help from an
LLM-generated plan (bottom left), seen one step at a time. We also provide built-in tools (right): calculators for math and web
search for trivia. We collect 4388 execution traces on 600 question/plan pairs, measuring 126 users’ accuracy and execution time.

testbed to check if preferred plans are also helpful.

While prior work has compared preferences and
helpfulness to users (§8), plans are novel as models
can use them (Wei et al., 2025); thus, we also see if
models accurately predict what helps users by recre-
ating our user feedback in models. We find plans
models prefer via judgments from six reward mod-
els and GPT-4o (§4.2)—often used to score reason-
ing step quality (Cobbe et al., 2021)—and plans
that help models via the accuracy/speed of a GPT-
4o ReACT agent executing our plans (§4.1)—often
used to solve tasks with tools (Yao et al., 2023).

After ensuring LLM plans help users and models
more than no-assistance baselines (§6.1), we run a
four-way comparison on which plans are preferred
by and help users/models (§6.2). User/model pref-
erences and agent outcomes barely beat random ac-
curacy (< 0.63) at predicting which of two plans
best helps users, so standard user preferences can
largely fail to capture what helps users. Reward
models also score preferred plans higher than help-
ful ones, so LLMs trained on such rewards may only
look helpful. Lastly, users’ accuracy and speed are
mostly consistent when using plans they personally
prefer or disprefer (§6.3), so disagreements in help-
fulness and preferences are not individual noise, but
inherent misalignment (Gilbert and Wilson, 2006).

To learn why preferences disagree with helpful-
ness, we qualitatively study plans. Simple features
like brevity and question overlap often predict plan
preferences but not helpfulness (§7.1), revealing
shallow biases in user/model judgments uncorre-
lated with helpfulness. We then study all 129 cases
when users prefer unhelpful plans, inferring they
miss unexpected flaws, fall for steps with surface-
level appeal, and disprefer unfamiliar solving meth-

ods (§7.2). Finally, we analyze 100 failed user and
model executions on unhelpful plans, showing er-
rors often occur not when steps are faulty, but when
valid steps are executed poorly (§7.3); thus, training
LLMs to be correct does not ensure they are helpful.

Preferences can diverge from what helps users,
misaligning with our goals of helpfulness (Askell
et al., 2021). This is alarming as preferences domi-
nate LLM training like RLHF (Ouyang et al., 2022)
and benchmarks like ChatbotArena (Chiang et al.,
2024)—so we are pouring extensive resources and
effort into a signal that might not help users at all.
Thus, we urge more alignment work grounded in
downstream user interactions and plan steps NLP

researchers can help execute for this problem (§9).

Step 2: Define the Word “Plan”

Before discussing how we use plans (§3), we first
define what a “plan” is. Our definition draws from
education (Wood et al., 1976) and reinforcement
learning (Fikes and Nilsson, 1971), which describe
plans as a means to help students and models make
better decisions. To adapt this for LLMs, we follow
the definition from Valmeekam et al. (2023):

The solution for a planning problem is a sequence
of actions, or a plan, that when applied in the
initial state will result in a state where the goal
conditions are satisfied.

In our setting, the sequence of actions is high-level
steps–drawn from best practices in educational the-
ory for problem-solving (Wood et al., 1976). Our
input question forms the initial state and “answer-
ing the question correctly/efficiently” is the goal
condition—called “helpfulness” in this paper.

Plans are increasingly deployed to automate
agentic tasks and support human decision-making
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(§8), motivating our study of how they help dif-
ferent players—users and models—and how each
perceives them. The following sections gather feed-
back from users (§3) and models (§4) on plans, then
analyze disagreements in these signals (§5, §6).

Step 3: Deploy Plans to Help Users

To compare helpful versus preferred plans for users,
we first need user feedback on LLM plans. We build
Planorama (Figure 1): an interface to log users’
success when solving multi-step questions assisted
by LLM plans (helpfulness) and selections on plans
users think help them (preferences). This section
details Planorama, showing our source of ques-
tions and plans (§3.1), user preference and helpful-
ness collection (§3.2), and user recruitment (§3.3).

3.1 Generating Plans for Question Answering

Multi-step question answering (QA) is our testbed,
as it is easier with plans (§6.1), objectively scored,
and well-studied in NLP (Woods, 1973)—ideal for
comparing preferred/helpful plans. We take 300 QA

pairs (q, a) in two domains: GSM8k math (Cobbe
et al., 2021)—multi-step equations; and MuSiQue
(Trivedi et al., 2022) and MQuAKE (Zhong et al.,
2023) multi-hop trivia—reasoning over many facts.
We clean each q for correctness (Appendix A.2).

As our goal is to assess if the standard alignment
protocol of pairwise preferences (Bai et al., 2022a)
matches what helps users (§6.2), we need two plans
P = (pA, pB) for each q. To create P , we prompt
LLMs for two stepwise plans p = {s1, ..., sn} for
q, where each si ∈ p has a subtask for users to do,
requesting a subanswer ai;3 the final subtask in sn
uses ai, ..., an−1 to have users submit q’s answer a.

To make plans P distinct for clearer user feed-
back (Lambert et al., 2024), we ask LLMs to vary
plans in specificity, step count, and strategy. For
more diversity, the 300 P are sampled evenly from
GPT-4o (Hurst et al., 2024), Claude-3 Opus (An-
thropic, 2023), Qwen-2 72B (Bai et al., 2023), and
LLaMA-3 405B (Grattafiori et al., 2024). We ask
LLMs to never reveal the answer a to q or any suban-
swer ai for si ∈ p so plans are high-level assistance
rather than predictions; thus, helpfulness is based
on how well plans guide users to the answer, not
just prediction accuracy (Wen et al., 2025, §7.3).
We manually verify plan quality (Appendix A.3).

3For example, for q =“where was the first tsar born?”, step
one could be s1 = “Find the first tsar” with a1 = “Ivan IV”.

3.2 Answering Questions in Planorama

Having created plans (§3.1), we now deploy them
in Planorama to elicit user preferences (§3.2.1)
and how well they help users in QA (§3.2.2), letting
us compare users’ preferred and helpful plans (§6).

3.2.1 Preferences via Pairwise Comparisons
To get preferences, we use pairwise comparisons—
the standard alignment feedback (Ji et al., 2023b).
In a round of Planorama, users see a new ques-
tion q and its plans P in a random order, and pick
which p ∈ P they think will help them solve q
more accurately/quickly (Figure 2). They can pick
either p or mark a tie; the plan with more votes is
“preferred”. The user’s choice does not alter which
plan they use for q (§3.2.2) and such comparisons
have little impact on QA success (Appendix A.5).

3.2.2 Helpfulness via User Plan Executions
After comparing plans (§3.2.1), users follow a plan
so we can measure its helpfulness. For question q,
users get one random plan p ∈ P , only seeing its
first step s1 ∈ p (Figure 1, left). Each si has high-
level guidance leading to a subanswer ai, and users
are advised but not required to type a predicted sub-
answer âi, as it boosts problem-solving (Koretsky
et al., 2016). After submitting âi, the next step si+1

appears—one at a time for cognitive ease (Sweller,
1988). This repeats until the last step sn ∈ p, where
users submit the final answer ân to q. If ân matches
the gold answer a—via the PEDANTS answer judge
(Li et al., 2024b)—they can try another q; else, they
keep trying until our 180-second time limit expires.

Some si need complex math/knowledge—hard
to do alone—so we add a calculator with basic oper-
ations used in GSM8k (+,−,×,÷) for math (Fig-
ure 7) and web search for trivia (Figure 1, right). In
search, users can submit queries and view the most
similar Wikipedia page4 via Google’s search API5

and ctrl+F in pages via Cohere’s Rerank API.6

To better ensure users follow p (beyond attention
checks; §3.3), we also allow users to: 1) skip q; or
2) write their own plan for q. We omit data from (2)
when later finding which p is helpful (§5.1). Users
are also more accurate when using any p versus no
plan (§6.1), so executing LLM plans is beneficial.

Lastly, we define plan helpfulness via education
research (Sweller and Cooper, 1985): helpful plans

4Wikipedia is the source corpus for MuSiQue/MQuAKE.
We ensure all q are solvable with Wikipedia (Appendix A.2).

5https://developers.google.com/custom-search/
6https://cohere.com/rerank

11570



Figure 2: Users pick the plans they predict best help them (or
mark Tie) in pairwise comparisons as their plan preferences.

let users solve q in less time for accurate, efficient
problem-solving. Thus, we log users’ accuracy—if
they answer q correctly on their first try—and exe-
cution time—how many seconds they take—when
using p; we later combine these into a single score
to label which plan p ∈ P best helps users (§5.1).

3.3 Recruiting Planorama Problem-Solvers

We have 126 English-speaking users from univer-
sity courses and online forums use Planorama,
collecting 4388 execution traces and 5584 prefer-
ences on 600 question/plan pairs. Users can choose
math and/or trivia, and the first question per task is
a tutorial. For quality, we add two attention checks
in comparisons (§3.2.1)—where one plan is clearly
incorrect—and two in execution (§3.2.2)—where
users retype text as steps (e.g. “type 144”); we omit
the seven users failing these. Users receive course-
work credit or $1/question (above minimum wage)
and can attempt up to 300 questions. The top-12
users in accuracy and speed each receive an extra
$50, gamifying Planorama (Hamari et al., 2014)
to reward accurate and efficient problem-solving.

Step 4: Employ Plans to Help Models

So far, we curated user preferences to predict which
plans help users (§3.2), but plans can also help or
be preferred by models; agents can execute plans
to capture helpfulness to models (§4.1) and reward
models can score plans as model preferences (§4.2).
This gives a four-way comparison (user/model pre-
ferred vs. user/model helpful plans) to test if users
or models predict what helps users (§6). We now
get model executions (§4.1) and preferences (§4.2).

4.1 Agent Implementation

To find which plans help models in QA, we use
LLM agents: systems that use plans to solve multi-
step tasks (Huang et al., 2024a). We adopt the stan-

dard agent framework ReACT (Yao et al., 2023),7

which iteratively: 1) reasons: generates a chain-of-
thought (Wei et al., 2022) to decide what to do next;
2) acts: calls a tool (e.g. calculator) to execute (1);
and 3) observes: processes tool outputs from (2).

ReACT follows each plan p = {s1, . . . , sn} for
a question q; it uses q and the first step s1 as input
and iteratively gives sub-answers âi for each si ∈ p.
ReACT has three tools: calculator, search, and SUB-
MIT for finalizing âi. Search mirrors §3.2.2, but to
manage the context length, it returns just the first
paragraph of the Wikipedia page and five sentences
most similar to the search query. We prompt Re-
ACT with exemplars from tutorial questions (§3.3),
and have it execute step si until it calls SUBMIT to
give âi. ReACT then moves to the next step si+1;
we repeat this until submitting ân, taken as q’s final
answer. Following Nguyen et al. (2024b), we use
GPT-4o as the base LLM (details in Appendix A.6).

Like with users, we log ReACT’s accuracy and
execution time on each plan p ∈ P for q; we later
merge these (§5.1) to find which p ∈ P best helps
ReACT solve q accurately and quickly. This mir-
rors user executions (§3.2.2), allowing us to com-
pare plans that help users and models (§6.2, §7.3).

4.2 Reward Model Implementation

As model preferences (§3.2.1), we use reward mod-
els (Stiennon et al., 2020, RMs): trained to score
response helpfulness ẑ across domains. The RMs
rθ(p) → ẑ score each plan p ∈ {pA, pB}. If ẑA >
ẑB , the RM prefers pA—predicting it as more help-
ful for users than pB—and vice versa. We select six
RMs with strong accuracy on RewardBench (Lam-
bert et al., 2025): QRM (Dorka, 2024), GRM (Yang
et al., 2024), Skywork-Reward (Liu et al., 2024),
Nemotron (Wang et al., 2024c), InternLM2 (Cai
et al., 2024), and ArmoRM (Wang et al., 2024a).

We also use GPT-4o as a generative RM (Zheng
et al., 2023, LLM-as-a-judge), predicting which p ∈
P helps users answer q more accurately/quickly—
mirroring user pairwise comparisons (§3.2.1). GPT-
4o judges both orders of P; a plan is “preferred”
only if GPT-4o picks it both times, otherwise a tie.

Step 5: Locate the Most Helpful Plans

With our user/model feedback, we now find helpful
and preferred plans in pair P for question q. Identi-
fying preferred plans is simple—via majority vote
(§3.2.1) or RMs (§4.2)—but our goal of helpfulness

7https://docs.cohere.com/v2/docs/tools-on-langchain
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is multi-faceted—letting players (users or models)
solve q quickly and accurately (Sweller, 1988)—so
our helpfulness metric must balance both signals.

Averaging players’ accuracy and time is a simple
fix, but fails to control for player skill differences
(Sung et al., 2025). Skilled users may thrive even
on unhelpful plans and unskilled users may fail on
helpful ones, so averages conflate a plan’s helpful-
ness with the skill of who used it. We randomly as-
sign plans in our study, so we cannot ensure equal-
skill users execute both plans for each question.8

To control for player skill, we use Item Response
Theory (Lord, 1952, IRT): an educational testing
tool that models each test-taker’s skill θj and exam
item’s difficulty βi—skill needed to solve item i—
inferred from test-taker responses. Similarly, we
use question/plan pairs (q, p)i as items and player
accuracy/execution time as responses to learn skill
θj and difficulty βi—a signal for “un-helpfulness”.
For plans (pA, pB) on q, if item (q, pA) is less dif-
ficult than (q, pB), players solved q more accurate-
ly/quickly with pA than pB , so pA is more helpful.

IRT has been used to test if plans support learn-
ing (Ueno and Miyazawa, 2018), suggesting it can
measure problem-solving helpfulness. Further, our
claims are consistent even if helpfulness is defined
via averages—preferences and helpfulness disagree
(Appendix A.8)—but we still use IRT to rigorously
control for skill. We now design IRT via Bayesian
inference (§5.1), given its ease of implementation.

5.1 Item Response Theory Learns Helpfulness

IRT models each player’s skill θj to learn two met-
rics for a question/plan item (q, p)i: difficulty βi—
how hard it is—and discriminability γi—how well
it discerns player skill. We use βi for helpfulness,
but interpret γi and θj in Appendix A.9. All random
variables (RVs) use standard Normal priors:

βi, γi, θj ∼ Normal(0, 1). (1)

For an item/player (i, j), we observe two responses:
player accuracy ai,j ∈ {0, 1} and execution time
ti,j ∈ R+. We model accuracy and time separately,
transforming βi/γi with slope m and intercept b:

bacc
β ∼ Normal(0, 1), (2)

macc
β ∼ HalfNormal(1), (3)

βacc
i = macc

β · βi + bacc
β , (4)

8The same user cannot execute both plans, as they would
already know the question’s answer after using the first plan.

and same for γacc
i , βtime

i , and γtime
i . Eq. 3 constrains

slope m > 0 as otherwise, signs can flip—wrongly
learning higher βacc

i implies lower ai,j (Ghosh and
Dunson, 2009). We first model ai,j via the standard
2-parameter logistic IRT model (Lord, 2012, 2PL):

ai,j ∼ Bernoulli (sig (γacc
i (θj − βacc

i ))) , (5)

where sig(x) is the sigmoid of x. Intuitively, Eq. 5
means players of skill θj exceeding item difficulty
βacc
i are likely accurate, while discriminability γacc

i

alters how sharply the prediction changes with skill.
For time, we only model ti,j if player j correctly

answers item i; failure speed does not meaningfully
inform helpfulness.9 Thus, only when ai,j = 1, we
model log(ti,j) as a Normal distribution based on
IRT—a standard approach (Van der Linden, 2006):

σtime ∼ HalfNormal(0.5), (6)

µbase ∼ Normal(3.5, 1), (7)

µtime = µbase + γtime
i (−θj + βtime

i ), (8)

log(ti,j), ∼ Normal (µtime, σtime) . (9)

Eq. 9 is interpreted like Eq. 5 but inverts the differ-
ence in θj and βtime

i , as if player skill exceeds item
difficulty, ti,j should be lower to indicate efficient
problem-solving, not higher as with ai,j . The prior
on µbase (Eq. 7) maps the expected time to 0–180
seconds—the time limit users have (§3.2.2)—and
improves IRT’s fit of observed data (Appendix A.9).

Difficulty βi of item (q, p)i captures helpfulness:
lower βi means players solved q more accurately
and efficiently with p. While βi also measures the
difficulty of q, comparing βi for items (q, pA) and
(q, pB) controls q, isolating the plans and letting us
compare the helpfulness of pA and pB for q (§6.2).

We learn RVs via NUTS (Hoffman et al., 2014)
and use unique RVs to learn helpfulness for users
(§3.2.2) and models (§4.1). RVs converge in 1000
epochs/5 chains (full evaluation in Appendix A.9).

Step 6: Compare Preferred/Helpful Plans

Equipped with metrics for helpfulness (§5), we now
see if proxies—user-preferred plans in comparisons
(§3.2.1); model-preferred plans via RMs and judges
(§4.2); and model-helpful plans via agent outcomes
(§4.1)—capture alignment’s goal: what helps users
(§3.2.2). After ensuring LLM plans help (§6.1), we
show proxies fail to predict what helps users at ag-
gregate (§6.2) and individual levels (§6.3), proving
proxies in alignment can misalign with helpfulness.

9For example, a user failing after a longer time could signal
confusion (i.e. unhelpfulness) or motivation (i.e. helpfulness).
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Math Questions Trivia Questions

Proxy User Prefer User Helpful GPT Prefer GPT Helpful User Prefer User Helpful GPT Prefer GPT Helpful

User Prefer — 52.000 67.333 55.333 — 55.667 68.667 49.000
User Helpful 52.000 — 58.667 57.333 55.667 — 56.333 62.667

GPT Prefer 67.333 58.667 — 52.667 68.667 56.333 — 54.333
GPT Helpful 55.333 57.333 52.667 — 49.000 62.667 54.333 —

QRM 60.000 56.000 72.000 42.667 65.667 51.333 56.333 36.667
GRM 53.333 54.667 66.000 38.667 64.333 51.333 57.000 40.667

Skywork 66.667 51.333 71.333 43.333 66.333 53.333 59.000 40.000
Nemotron 54.000 60.000 66.667 40.000 59.667 50.667 53.667 34.667
InternLM2 57.333 57.333 70.667 41.333 61.000 52.667 51.667 38.000
ArmoRM 56.667 56.667 68.000 39.333 59.667 52.000 53.000 42.667

Table 1: Agreement matrix on which of two plans users/GPT/RMs prefer and helps users/GPT (full matrix in Appendix A.8). No
proxy accurately predicts what helps users (User Helpful column), so standard alignment feedback can misalign with helpfulness.
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Figure 3: Users and agents (GPT) who opt-out of LLM plan
assistance are slower/less accurate (macro-average) across the
better/worse plans in each pair, so plans are generally helpful.
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Figure 4: Users refine their QA problem-solving accuracy and
execution time as they keep interacting with our LLM plans.

6.1 LLM Plans Drive Problem-Solving

Testing helpfulness is fruitless if plans do not help
at all. To ensure this for users, we macro-average
accuracy and time in users who executed LLM plans
and who wrote their own plan (§3.2.2)—likely self-
confident. Similarly, we ablate ReACT (§4.1), hav-
ing GPT-4o perform QA with no plan. We group the
better (higher mean accuracy/lower mean time) and
worse plans in each pair; both often boost QA suc-
cess versus no plan (Figure 3). Better/worse plans
also yield different accuracy/time (95% confidence
intervals; CIs), so plans exhibit discernible helpful-
ness. We then plot users’ cumulative accuracy and
speed as they solve more questions (Figure 4); both
improve, so users refine their problem-solving with
plans over time. Thus, LLM plans do help players.

6.2 User-Helpful Plans Escape Most Proxies
As plans help (§6.1), we now test if preferred plans
for question q are helpful. We label plans in P as:

1. User Helpful: Which plan best improves user
QA accuracy and speed, via IRT (§3.2.2, §5.1).

2. User Preferred: Which plan most users think
help them, via pairwise comparisons (§3.2.1).

3. GPT Helpful: Which plan best helps the GPT-
4o ReACT agent, mirroring (1) (§4.1, §5.1).

4. GPT Preferred: Which plan GPT-4o predicts
best helps users, via LLM-as-a-judge (§4.2).

5. RM Preferred: Which plan our 6 reward mod-
els (§4.2) each score as most helpful for users.

We have 10 labels (six in (5)) on which plan p ∈ P
is helpful/preferred for every question q. Helping
users in (1) is the goal of alignment, but (2)–(5) can
form proxies (Askell et al., 2021), so we now test
how accurately they capture (1). If (2) or (4) deems
plans tied, we assign a score of 0.5 (random guess-
ing), as filtering ties precludes proxy comparisons.
Alignment signals may not always be helpful. No
proxy accurately predicts which of two plans best
helps users (Table 1, User Helpful column); accu-
racy is < 63%—near random—so designing LLMs
using preferences or agent outcomes can severely
misalign them with what truly helps users. Interest-
ingly, GPT slightly beats users in selecting helpful
plans (User/Model Prefer vs User Help), so third-
parties uninvolved in the task (external users, LLMs)
may offer less biased helpfulness judgments (§7.2).
RMs can be adversarially helpful. Most RMs train
on preferences (Stiennon et al., 2020) and our evalu-
ation exposes this: RMs better predict plans players
prefer (Table 1, User/Model Prefer) than what helps
them. Notably, RMs score below random (< 0.5) at
predicting what helps our GPT agent (§4.1), so they
may be adversarially helpful (Ajwani et al., 2024)
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Math Regression Trivia Regression
Feature User Prefer User Help. Model Prefer Model Help. User Prefer User Help. Model Prefer Model Help.

# Steps -0.12 (0.00) -0.01 (0.92) 0.013 (0.68) 0.01 (0.91) -0.08 (0.00) -0.20 (0.02) 0.17 (0.00) -0.19 (0.02)
µwords -0.02 (0.00) 0.00 (0.83) -0.01 (0.15) 0.00 (0.99) -0.04 (0.00) -0.07 (0.02) -0.03 (0.00) -0.03 (0.33)

q-p Sim. 0.19 (0.79) 0.17 (0.81) 0.66 (0.01) 0.16 (0.78) 0.30 (0.00) 0.41 (0.36) 0.50 (0.00) -0.26 (0.52)
Diverse. -0.60 (0.00) -0.54 (0.45) -1.03 (0.00) 0.85 (0.12) -0.23 (0.29) -0.09 (0.90) -0.18 (0.47) -0.97 (0.15)

Read. -0.00 (0.50) -0.01 (0.44) -0.00 (0.18) 0.00 (0.56) 0.00 (0.52) -0.01 (0.01) 0.00 (0.76) -0.00 (0.86)

Adj. R2 0.123 -0.017 0.371 0.004 0.137 0.052 0.578 0.031

Table 2: Regression weights for how well features predict user/model preferred and helpful plans in math and trivia. Cells have
feature weights, p-value in parentheses. The final row contains the adjusted R2 of the regression (higher means easier to predict).
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Figure 5: There are rarely differences (95% CIs) in accuracy
and speed for users following their preferred vs dispreferred
plan, so preference/helpfulness gaps are not just user variance.

if used to make plan for agents. This may happen as
RMs learn preferences across domains (Gao et al.,
2023), reinforcing biases linked to preferences but
unrelated to helpfulness. We examine this in §7.1.
Takeaways. The core assumption of alignment—
preferences reflect helpfulness—completely fails in
our plans. Thus, we need more work studying ways
to align LLMs with signals from downstream user
interactions. In §9, we plan steps towards this goal.

6.3 Users Fail to Pick What Helps Themselves
As we aggregate helpfulness and preferences over
users, their misalignment (§6.1) could stem from
user variance (Kirk et al., 2024): users may fail to
pick helpful plans on average but pick plans that
help themselves. If so, we could use strategies that
learn user-specific preferences to close this gap (Li
et al., 2024a)—personalizing helpfulness per user.

We can test this: before solving question q, users
pick a plan p̂ ∈ P as helpful, but follow a random
plan p ∈ P (§3.2.2). By comparing mean accura-
cy/speed when users see their preferred (p = p̂) or
dispreferred (p ̸= p̂) plan, we can test if the choice
impacts users’ success. Individual variance is not
the cause: users succeed regardless of the plan used
(95% CIs; Figure 5). Thus, preferences do not cap-
ture helpfulness at aggregate and individual levels.

Step 7: Examine Features of Misfit Plans

To understand preference/helpfulness gaps (§6), we
show why users may misjudge plans: shallow cues
bias them (§7.1), some errors follow patterns (§7.2),

and unhelpful plans are still valid (§7.3)—revealing
upcoming challenges in aligning helpful LLMs (§9).

7.1 Users E.A.T. Up Surface-Level Features

To study plan biases, we see if question/plan pair
features f(q, p) predict preferences/helpfulness—
1) step count; 2) mean words per step (µwords); 3)
word overlap of q and p; 4) diversity via type-token
ratio in p (Richards, 1987); and 5) Flesch readabil-
ity (Flesch, 1948)—thoroughly covering verbosity
(Ye et al., 2025) in (1-2), relevance (Cool et al.,
1993) in (3), and style (Schwarz, 2004) in (4-5).

To fix q, we use feature differences f(q, pA)−
f(q, pB) in plans (pA, pB) to predict differences in
helpfulness (IRT; §5.1) or preferences (proportion
picked; §3.2.1) via least squares (Fisher, 1922). If
feature x’s weight is positive and pA > pB in x, pA
tends to be more helpful/preferred. We run linear
regressions for users/models, merging GPT/RM out-
puts for model preferences (§4.2). Each regression
gives an R2 value for how well it fits its prediction.

Simple cues predict preferences (R2 ≫ 0) but
not helpfulness (R2 ≈ 0) in math/trivia (Table 2).
Users show an inverse verbosity bias—preferring
short p as helpful—while models prefer more step-
s/lower µstep. Users (trivia) and models (both) pick
p with high word overlap in q; we speculate they
tend to prefer outputs copying prompts (Chen and
Goldfarb-Tarrant, 2025). In math, players pick p
with low diversity, likely looking structured (“1)
find x; 2) find y; ...”). Yet, these rarely predict help-
fulness; most weights are insignificant. In trivia,
short plans help, and for users, lower readability—
likely more specific—but nothing predicts the help-
fulness of plans in our math dataset.

We must curb biases to use preferences in align-
ment, or LLMs may perpetuate them (§9). Helpful-
ness escapes these heuristics, so it may be learnable
with less risk of shortcuts (Gardner et al., 2021) or
artifacts (Poliak et al., 2018; Balepur et al., 2024a).
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7.2 Study: What Would of Been a Good Plan

To augment our regression (§7.1), we review (Bing-
ham, 2023) all 129 cases when most users prefer
the unhelpful plan, discussing patterns in these errs.
Plans are full of surprises. Users prefer less sup-
port (§7.1), but knowing this is tough without doing
the task. A trivia q requests the “...country originat-
ing the sport played by the Auckland Aces”. Users
pick pA, where users must locate this in one query,
but when one user tried this, the Google web search
tool failed and sent them to the irrelevant page “Su-
per Smash”. In contrast, pB has users design two
smaller queries, yielding perfect accuracy. Since
some flaws in plans only surface during execution—
like errors in tool calls (Norman, 2014)—it is tough
to predict helpfulness just by looking at responses.
Looks can be deceiving. Users misjudge plans that
look helpful. In a trivia q asking for “Andrew Stan-
ton’s notable works,” pA and pB are similar, but pA
has users find his “major films” and in pB , “biggest
box office hit.” Users prefer pB , maybe due to its
engaging phrasing, but it was not helpful (0.67 vs
1.0 acc.); five users with pB were misled, search-
ing “biggest box office hit by Andrew Stanton” and
sent to the irrelevant page “John Carter”.10 In math,
one pA looks structured (“1) calculate x; calculate
y;...”) but yields an incorrect answer, while pB is
correct but with a redundant final step: “round the
answer”. pB is more helpful, but all users pick pA,
maybe due to pB’s redundancy. Stylistic polish can
mask flaws (Hosking et al., 2024), so LLMs aligned
on preferences may trick users (Wen et al., 2025).
Users stick to what they know. Users may mis-
judge plans with familiar strategies. In math q “She
scores 345 points in 15 games: 4 free throws and
5 2-pointers per game. How many 3-pointers did
she average?”, pA gets all 3-pointer points (345−
4(15) − 5(2)(15) = 45) and divides by games
(4515 = 3), while pB reasons per game (34515 = 23),
subtracts points (23− 4− 2(5) = 9), then divides
(93 = 3). Most users pick pA, as common advice is
to “sum before division”,11 but pB is more helpful
(0.3 vs 1.0 acc.). Thus, familiarity may blind users
to more helpful strategies (Macaluso et al., 2022).
Takeaways. Judging helpfulness sans execution is
hard: plans fail suddenly and trick/bias users. To fix
this, we encourage researchers to align models with
feedback from downstream user interactions (§9).

10It is a box office flop, which is why Google search redi-
rects there: https://en.wikipedia.org/wiki/John_Carter_(film)

11www.geeksforgeeks.org/practice-questions-on-average/
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Figure 6: User and model trace errors on 100 unhelpful plans.
Most errors occur when executing correct steps, so helpfulness
goes beyond just correctness (examples in Appendix A.10).

7.3 There’s no real Helpfulness in Correctness

If correctness ensured helpfulness, alignment with
verifiable rewards (Lambert et al., 2024) could fix
preference/helpfulness gaps; objective correctness
metrics could capture helpfulness, avoiding flaws
in subjective preferences (§7.1, §7.2). To test this,
we study 100 failed execution traces on the 25 least
helpful plans (via IRT; §5.1) for users/ReACT in
math/trivia. We label each failure as: 1) step error
(incorrect step); 2) ambiguous (unclear step); 3)
execution error (correct step but mis-executed);
4) ignored (skipped step); or 5) mistake (copying
error), inferred from player tool calls/sub-answers.

For users and ReACT, most failures are not faulty
steps, but poor executions of valid plans (Figure 6).
Thus, as LLMs plans are often correct, helpfulness
needs signals beyond correctness—like simplicity
to limit execution errors, clarity to resolve ambigu-
ity, and engagement to stop skipping—best learned
from real downstream interactions with users (§9).

Step 8: Review Related Work

LLM Plans: Planning has long been considered a
goal of AI (McCarthy, 1959), now studied in LLM

reasoning: decomposing complex tasks (Khot et al.,
2023; Zhou et al., 2023). It is often used in agents
(Huang et al., 2024b), which iteratively plan steps
and call tools (Yao et al., 2023; Schick et al., 2023),
to solve multi-step math (Hendrycks et al., 2021),
coding (Wang et al., 2024b), GUI (Nguyen et al.,
2024a), and retrieval (Mialon et al., 2023) tasks.

While prior work studies plans in agents, we
use them to help users. Many applications deploy
LLM plans—literature search (Feng et al., 2024),
teaching (Goslen et al., 2024), coding (Wen et al.,
2024), fact-checking (Min et al., 2023), advice
(Wester et al., 2024), long-form text generation
(Balepur et al., 2023, 2025; Shao et al., 2024),
and note-taking (De Buyser, 2023)—but few study
what makes plans helpful for users. Conversely,
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we build Planorama to locate which plans help
users in multi-step QA, comparing preferences and
helpfulness across users and models, and critically
examining when this feedback disagrees.
Helpfulness: Helpfulness is a north star goal of
alignment (Askell et al., 2021): making LLMs use-
ful to users (Ouyang et al., 2022). It is now pursued
by curating preferences on LLM outputs and tuning
LLMs on those rated helpful (Stiennon et al., 2020).
This data is used in methods like Direct Preference
Optimization (Rafailov et al., 2023) and Reinforce-
ment Learning with Human Feedback (Christiano
et al., 2017, RLHF) for dialogue (Cui et al., 2024),
QA (Ji et al., 2023a), and plan (Song et al., 2024)
generation. Leaderboards like Chatbot Arena also
use preferences to rank LLMs (Chiang et al., 2024).

While useful, recent work critiques preferences
for alignment; they degrade safety (Ji et al., 2023a;
Zhang et al., 2025) and personalization (Kirk et al.,
2024; Sorensen et al., 2024), and can be ambiguous
to elicit (Malaviya et al., 2024; Pitis et al., 2024).
Similarly, we show standard proxies—preferences
(Bai et al., 2022b) and agent simulations (Park et al.,
2023)—can fail to capture helpfulness. While work
compares preferences and helpfulness (Balepur
et al., 2024b; Mozannar et al., 2025) and user/-
model judgments (Bansal et al., 2024), we study all
four in LLM plans and their qualitative differences.

Step 9: Submit the Final Conclusion

To aid users in complex tasks, we must rethink how
we teach LLMs what helpfulness means. Standard
feedback like preferences and agent outcomes can
fail to capture what helps users at all (§6.2). This
is not users’ fault; it is tough to judge helpfulness,
shaped by individuality (§6.3), stylistic cues (§7.1),
unexpected execution errors (§7.2), and factors past
correctness (§7.3). If we develop LLMs just via user
preferences—as in RLHF (Ouyang et al., 2022) or
ChatbotArena (Chiang et al., 2024)—versus down-
stream user interactions—as in Planorama—we
will misalign LLMs: prioritizing what looks helpful,
not what actually helps users (Saxon et al., 2024a).

While promising, practical issues remain. First,
this feedback is costly and hard to define in subjec-
tive tasks (§10); we can remedy this by looping in
experts to better judge helpfulness (Ley et al., 2010,
e.g. educators for learning), teaching users to avoid
shallow biases (§7.1), routing select cases for down-
stream signals (Miranda et al., 2024), or designing
agents to better simulate humans (Liu et al., 2022).

Second, while helpfulness is often our main goal
(Bai et al., 2022a), user preferences still matter. Just
optimizing on helpfulness risks a paternalistic “eat
your veggies ” effect; we can still “cook/season
them ” to a user’s liking (Amershi et al., 2019).
By executing these steps, we can move from LLMs
that just look helpful, to LLMs that truly help users.
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10 Limitations

While our paper is the first to study how LLM plans
help users and models in QA, we acknowledge we
cannot comprehensively cover all tasks and models.

First, to compare preferences and helpfulness in
users and models, we use multi-step math and trivia
QA, as they are verifiable tasks well-researched in
NLP (§3.1). Other tasks also have these qualities—
like GUI navigation (Nguyen et al., 2024a), games
(Samdarshi et al., 2024), and coding (Wen et al.,
2024)—but we cannot study them due to resource
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constraints; our user study cost $4000 for sufficient
feedback. We encourage future work to extend our
analysis to more verifiable domains (Lambert et al.,
2025), and to develop protocols for measuring re-
sponse helpfulness in harder-to-verify tasks such
as writing (Chakrabarty et al., 2025). While past
work has also found disagreements in preferences
and helpfulness (Balepur et al., 2024b; Mozannar
et al., 2025), examining this across more domains
would confirm this is a general issue of alignment.

Next, our agents (§4.1) and reward models (§4.2)
have large disagreements with helpfulness to users
(§6.2), but other models we did not test could have
higher agreement. In our experiments, we focus on
standard, strong baselines: ReACT based on GPT-
4o (Yao et al., 2023) and six of the highest-ranked
RMs on RewardBench (Lambert et al., 2025). In fu-
ture work, it would be interesting to examine if RMs
fine-tuned on helpfulness can generalize across do-
mains, and if persona-based prompting with LLM

agents improves simulations for predicting which
responses best helps users (Hu and Collier, 2024).

Lastly, while we primarily use our collected feed-
back to study plan helpfulness, our dataset is rich,
containing 4388 full traces of human tool use, sub-
answers, and feedback on 600 multi-step plans and
questions (§3.2). While further analysis is beyond
this paper’s scope, future work could use our data
to test how users and agents call tools differently
(He et al., 2022), which steps of plans mislead users
(Ji et al., 2024), and how plans can be personalized
to assist users with diverse needs (Ley et al., 2010).

11 Ethical Considerations

While unlikely in our setting, LLMs can generate
harmful responses (Xu et al., 2024), so before de-
ploying LLM-generated plans to users, we manu-
ally check all of them to ensure they are all harm-
less (Appendix A.3). Further, when releasing our
dataset of user preferences and plan executions, all
users will be referred to by numerical IDs to miti-
gate any privacy concerns. In our study, all users
were compensated with extra credit coursework or
monetary compensation, and it was made clear to
users before signing up that they would be part of
a research study. Our entire project was approved
by an Institutional Review Board (IRB), allowing
us to fully address any potential risks of our study.
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A Appendix

A.1 “A Good Man is Hard to Find” Trivia
Our title “A Good Plan is Hard to Find” is a refer-
ence to Flannery O’Connor’s short story “A Good
Man is Hard to Find”.12 To honor the story, we
provide many references to it throughout the paper.
For readers familiar with the story, we encourage
you to find all six references; solutions are in Ap-
pendix A.12. We felt these references were fitting
given our paper’s use of trivia question answering.

We also hope that attentive readers recognize our
section titles are organized as a step-by-step plan!

A.2 Dataset Collection
When collecting datasets, our goal was to find math
and trivia questions that are complex to solve with-
out assistance (i.e. LLM plans). While datasets like
GSM8k (Cobbe et al., 2021), MuSiQue (Trivedi
et al., 2022), and MQuAKE (Zhong et al., 2023)
contain multi-step questions, they have existed for
several years, so LLMs have likely been trained or
optimized for such tasks (Saxon et al., 2024a).

To fix these issues, we first have GPT-4o answer
questions without plans (§6.1) and only use a subset
the model answers incorrectly, indicating they are
nontrivial to solve. Next, after producing plans for
these questions (Appendix A.3), we filter out those
where either plan has less than two steps, meaning
that no multi-step decomposition is needed.

Upon manual inspection, we discover that a large
proportion of questions are simply difficult due to
ambiguity errors or incorrect labels (Sung et al.,
2025). Thus, we run two rounds of quality control:
1) reviewing all questions and correcting/rewriting
faulty ones so there is no ambiguity and all answers
are correct; and 2) repeating the process in (1) to
ensure there are no remaining question errors.

In total, we collect 150 math and 150 trivia ques-
tions, detailed in Table 3. Most trivia questions are
based on MQuAKE, as we discovered MuSiQue
often contained errors in the questions GPT-4o an-
swered incorrectly, making them subpar. All ques-
tions are in English, have no personal information,
and are in the intended use of the dataset creators.

A.3 Plan Generation
We use zero-shot prompting with LLMs to gener-
ate two plans for each math and trivia question;
Prompt A.1 for math and Prompt A.2 for trivia. We

12https://www.sparknotes.com/short-stories/a-good-man-
is-hard-to-find/summary/

spend around three hours manually engineering the
prompts based on best practices (Schulhoff et al.,
2024)—following an iterative process of designing
a prompt, manually checking a subset of plans for
any issues (i.e. no difference between plans, plans
revealing answers), and tweaking the prompts to
remedy any issues. We use a temperature of 0.7 for
diversity and distribute the generation of plan pairs
across four LLMs for the 150 math/trivia questions:
38 for GPT-4o (Hurst et al., 2024) and Claude-Opus
(Anthropic, 2023); and 37 for Qwen-72B (Bai et al.,
2023) and LLaMA3-405B (Grattafiori et al., 2024).
We access GPT-4o and Claude via their official
APIs, and Qwen and LLaMA via DeepInfra.13

A.4 Full Planorama Interface

Figure 1 shows the Planorama interface for trivia
questions, but we also show the interface for math
in Figure 7; the interface is identical, but web
search is replaced by a calculator. Upon acceptance,
we will provide a video demo of the interface.

A.5 Impact of Pairwise Comparisons

When running our Planorama user study, two-
thirds of our users are assigned to an experimental
group where they complete pairwise comparisons
and then execute plans. The final third are assigned
to a group where they do not complete a pairwise
comparison, but have the option to switch between
plans during plan execution. Our hope was that
this group could form another feedback signal for
predicting helpfulness, but we found the feature
was often unused—leaving it for future exploration.
We omit all instances where users decided to swap
plans during plan execution in our experiments.

However, when users are assigned to the swap
group and do not swap between plans, we can mea-
sure their accuracy and execution time to study the
impact of completing or not completing pairwise
comparisons. We find no clear differences between
the distribution of average accuracies and execution
times between these users (Figure 8), suggesting
completing pairwise comparisons has little impact
on problem-solving success in Planorama.

A.6 ReACT Implementation

We base our implementation of ReACT on the orig-
inal framework (Yao et al., 2023), which iteratively
runs a three-step protocol of reasoning, acting, and
observing. The prompts we use for ReACT are in

13https://deepinfra.com/
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Prompt A.6 for math and Prompt A.7 for trivia. We
use GPT-4o (Hurst et al., 2024) with 0 temperature.
The model was allocated ∼ 8 hours to run on CPU
only. All results are reported from three runs.

A.7 Reward Model Implementation

All reward models were implemented according to
their official Huggingface code.14 Each model was
allocated ∼ 3 hours. Nemotron was implemented
with NVIDIA’s official API (CPU-only).15 Other
reward models use one NVIDIA:RTXA6000. All
reward model predictions are based on a single run.
Our prompt for the GPT-4o judge is in Prompt A.4
and for all other reward models in Prompt A.5.

A.8 Further Helpfulness Agreement Analysis

We now provide further analysis on the agreement
of helpfulness signals (§6.2). In Tables 4 and 5, we
extend our results in Table 1 to form full 10× 10
agreement matrices on math and trivia, respectively,
to capture RM agreement; RMs have high agreement
with each other—often above 80%—so they learn
similar notions of helpfulness, likely because they
have similar training data (Lambert et al., 2025).

Further, to ensure our IRT metric (§5.1) is not the
only reason helpfulness conflicts with preferences,
we replicate the agreement analysis in §6.2 but
using accuracy and execution time alone to identify
which plan is more helpful. We also implement a
simple average, which first uses average accuracy
to denote helpful plans, and then execution time
as a tie-break. Our findings are consistent in math
(Figure 12) and trivia (Figure 13): preferences do
not accurately predict which plans actually help
users, regardless of whether helpfulness is defined
by IRT, accuracy, execution time, or averages.

A.9 IRT Analysis

Using best practices of evaluating metrics (Saxon
et al., 2024b; Shankar et al., 2024), we validate our
IRT model by studying its convergence, assessing
its generalization, interpreting discriminability and
skill, ablating our design, and verifying difficulty
correlates with accuracy and time as we expect.

A.9.1 Convergence
To ensure we have trained IRT for sufficient epochs,
we first study its convergence. We find the model
quickly converges to modeling the observed data

14https://huggingface.co/spaces/allenai/reward-bench
15https://build.nvidia.com/nvidia/llama-3_1-nemotron-

70b-reward

(Figure 9) and reaches low R-hat values and high
Effective Sample Sizes (Figure 10), so the model
converges across our five chains. Further, our five
chains perfectly agree on which plan in a pair is
more helpful (§6.2), with Fleiss’s κ = 1.0 (Fleiss,
1971), so IRT consistently discerns helpfulness.

A.9.2 Generalization

While we primarily use IRT to capture helpfulness,
we still test its generalization, seeing how much
it overfits to our data. To do this, we train IRT on
the first 80% of every user’s execution history in
Planorama, and check how well it models the
observed, held-out accuracy and execution time.
The model has only minor drops in log-likelihood
on accuracy (∼ 5%), showing it effectively gener-
alizes to user accuracy on new items (Figure 11).
Log-likelihood does drop more on execution time
(∼ 75%), but this is to be expected, as predicting
response time is generally difficult (Ratcliff, 1978).

A.9.3 Parameter Interpretations

While we primarily study difficulty βi in our IRT

model, the other parameters—item discriminability
γi and player skill θj—can also give insights into
how users interact with plans in Planorama.

Discriminability γi captures how well plans dis-
cern between low-skill and high-skill players. In
Tables 6 and 7, we show plans with the highest gap
in discriminability for math and trivia, respectively.
In math, plans with higher γi tend to be longer; it
requires more skill to solve problems accurately
and quickly with longer plans, likely because ex-
cess steps naturally slow players down. In trivia,
plans with higher γi have unconventional and com-
plex steps: asking users to search for timelines, use
self-verification, and follow complex instructions
like “Ascertain”, so only stronger problem-solvers
can handle this more difficult level of guidance.

To ensure player skill θj correlates with down-
stream task success in Planorama, we plot each
θj for player j against their average accuracy, ex-
ecution time, and number of questions seen. As
expected, players with higher θj tend to be more
accurate with lower execution time. Further, play-
ers with higher θj tend to answer more questions,
aligning with our results in §6.1, confirming that
users become more successful problem-solvers as
they keep interacting with plans in Planorama.
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A.9.4 Ablations

We ablate two key parts of our model: 1) modeling
player skills (Eq. 1); and 2) using base time µ
(Eq. 7). Both steps improve the prediction of our
observed data (Figure 15), with the removal of
(1) having the largest drop—showing the need for
capturing individual skill to measure helpfulness.

A.9.5 Helpfulness Interpretation

Next, we check IRT helpfulness scores (i.e. nega-
tive difficulty) behave as intended. As true helpful-
ness increases, the average accuracy of players on
plans tends to rise and average log-time tends to
drop (Figure 16), matching our expectation: help-
ful plans imply accurate, efficient problem-solving
(Huang et al., 2024a). In Appendix A.9, we further
test our model’s convergence and generalization.

A.10 Qualitative Trace Analysis Details

To explain how we inferred each trace error type in
§7.3, we show examples for each type in math:

• Step Error: A question asks for the average
number of branches per foot in several trees.
The plan tells the user to incorrectly divide the
average number of branches by the average
height, but this gives the ratio of averages, not
the average ratio as the question intended.

• Ambiguous: One plan step says “Subtract the
number of spots on Jean’s upper torso from the
result of Step 1 to find the spots on her sides”
which is meant to convey two computations:
“1) Subtract the spots”; and “2) find the spots
on her sides”, but users interpreted “to find”
in the step as being the same computation.

• Execution Error: One plan asks users to find
“the cost for Jessica’s bracelets by multiplying
the number of letters in her name by the cost
per bracelet”, but the user did 6(2) = 12, in-
stead of 7(2) = 14, as “Jessica” has 7 letters.

• Ignored: One user left all subanswers blank
and did not use the calculator (i.e. did calcu-
lations in their head), making it impossible to
diagnose where they erred in the trace.

• Mistake: GSM8k answers must be rounded
to the nearest integer. One user got the answer
81.78, but instead of rounding to 82 (the right
answer), they submitted 81.78, leading to an
incorrect final response. The user immediately
fixed this mistake on their next attempt.

A.11 User Study Compensation Details
Part of our compensation for this study was in the
form of university extra credit, which if not prop-
erly handled, could pose undue pressure on low-
performing students. To address this, we discussed
guidelines with the university professors to ensure
students were not coerced into participating in our
study. Concretely, we provided an alternative as-
signment of equal difficulty (a coding assignment
for a CS class, a reading quiz in a visualization
class) to ensure participants could still obtain extra
credit if they did not want to participate in our study.
Further, we note that the extra credit assignment
only required students to answer 25 questions. For
most students, this took ∼30 minutes; the assign-
ment was also administered over five weeks, in-
cluding a break period during the Spring term, pro-
viding students ample time to complete the study.

Regarding monetary compensation, we explic-
itly set the maximum time per question in our study
to 180 seconds, so even if a user failed to answer
every question in our study, they would still be
compensated at a rate of 20 USD/hr—well above
our region’s minimum wage. The lowest average
execution time of any user in our study was 168
seconds, so this user obtained 21.43 USD/hr.

A.12 “A Good Man is Hard to Find” Answers
If you have already looked for (or found) our refer-
ences to “A Good Man is Hard to Find” by Flannery
O’Connor, this section reveals all six of them.

The story concerns a family taking a road trip
to Florida (subtly alluded to with the term “Drive”
in §6.1) and after getting into a car accident, they
meet an escaped criminal named The Misfit (thus,
“Escape” in §6.2 and “Misfit Plans” in §7). This
dialogue has many notable quotes, like “She would
of been a good woman . . . if it had been somebody
there to shoot her every minute of her life” (mir-
rored in §7.2) and the last line of “It’s no real plea-
sure in life.” (mirrored in §7.3). Lastly, as a silly
piece of trivia,16 O’Connor details a watermelon
with the initials “E.A.T.” carved into it (reflected in
§7.1). We would be impressed if you got them all!

16https://www.naqt.com/
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Figure 7: Overview of the Planorama interface for answering math questions. The interface mirrors Figure 1, but users have
access to a calculator (right) rather than search.

# q Source(s) Avg Words Per q # Steps / p Avg Executions / p Avg Comparisons / p

Math 150 GSM8k (150) 50.48 3.11 8.99 9.91
Trivia 150 MuSiQue (10), MQuAKE (140) 18.39 2.85 7.86 9.91

Table 3: Summary of the Planorama dataset. We use 150 math and trivia questions mainly from GSM8k and MQuAKE. Our
questions are supported by multi-step plans, typically 2-3 steps with high-level guidance for answering the question. We collect
rich feedback from our users, with an average of 8.99 and 7.86 execution traces per plan, and 9.91 pairwise comparisons per plan.
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Figure 8: We find little differences in the distribution of average accuracies and execution times between users who complete
and do not complete pairwise comparisons, suggesting it does not have much impact on problem-solving success.
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Figure 9: Plot of our IRT model’s log-probability of predicting observed data. Our model quickly converges after a few samples,
showing it adequately fits to our observed accuracy and execution time.
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Figure 10: Distribution of R-hat and Effective Sample Size (ESS) values for our IRT model. R-Hat is always under 1.05 and the
majority of ESS’s are in the thousands, indicating strong convergence across our five chains.
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Figure 11: Generalization of IRT when predicting accuracy and execution time after being trained on the first 80% of the user’s
interactions in Planorama. The model effectively generalizes to predict accuracy, but struggles more with execution time.
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Figure 12: User/model perceived and true helpfulness agreement on math (Table 1, left) based on whether IRT, accuracy, time,
or average accuracy/time dictates which plan is helpful. In every case, nothing accurately predicts what is truly helpful for users.
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Figure 13: User/model perceived and true helpfulness agreement on trivia (Table 1, right) based on whether IRT, accuracy, time,
or average accuracy/time dictates which plan is helpful. In every case, nothing accurately predicts what is truly helpful for users.

11588



1 0 1 2 3
Skill

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Skill vs Accuracy

1 0 1 2 3
Skill

0

50

100

150

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Skill vs Execution Time

1 0 1 2 3
Skill

0

20

40

60

80

100

120

Qu
es

tio
ns

 A
tte

m
pt

ed

Skill vs Questions Attempted

Figure 14: Correlation between player skill and Planorama interactions. Players with higher skill are typically more accurate,
need less excecution time, and attempt more questions, aligning with our intuition.
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Proxy User Judge User Help GPT Judge GPT Help QRM GRM Skywork Nemotron InternLM2 ArmoRM

User Judge — — — — — — — — — —
User Help 52.000 — — — — — — — — —

GPT Judge 67.333 58.667 — — — — — — — —
GPT Help 55.333 57.333 52.667 — — — — — — —

QRM 60.000 56.000 72.000 42.667 — — — — — —
GRM 53.333 54.667 66.000 38.667 81.333 — — — — —

Skywork 66.667 51.333 71.333 43.333 90.000 80.667 — — — —
Nemotron 54.000 60.000 66.667 40.000 80.000 73.333 74.000 — — —
InternLM2 57.333 57.333 70.667 41.333 82.667 74.667 76.667 80.000 — —
ArmoRM 56.667 56.667 68.000 39.333 78.000 83.333 77.333 80.667 79.333 —

Table 4: Full agreement analysis from Table 1 on math questions. As expected, RMs have high agreement with each other,
showing that they all learn similar notions of helpfulness.

Proxy User Judge User Help GPT Judge GPT Help QRM GRM Skywork Nemotron InternLM2 ArmoRM

User Judge — — — — — — — — — —
User Help 55.667 — — — — — — — — —

GPT Judge 68.667 56.333 — — — — — — — —
GPT Help 49.000 62.667 54.333 — — — — — — —

QRM 65.667 51.333 56.333 36.667 — — — — — —
GRM 64.333 51.333 57.000 40.667 84.000 — — — — —

Skywork 66.333 53.333 59.000 40.000 91.333 83.333 — — — —
Nemotron 59.667 50.667 53.667 34.667 84.667 86.000 84.000 — — —
InternLM2 61.000 52.667 51.667 38.000 84.000 85.333 83.333 90.000 — —
ArmoRM 59.667 52.000 53.000 42.667 76.667 84.667 77.333 78.667 82.000 —

Table 5: Full agreement analysis from Table 1 on trivia questions. As expected, RMs have high agreement with each other,
showing that they all learn similar notions of helpfulness.
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Question High Discriminability Low Discriminability

Carly is a pet groomer. Today, her task
was trimming the four nails on each of
the dogs’ paws. She trimmed 164 nails,
but three of the dogs had only three legs.
How many dogs did Carly work on?

1. Calculate how many nails are
trimmed for a dog with three legs.

2. Determine the total number of
nails missing from all three-
legged dogs.

3. Find out the total number of nails
as if all dogs had four legs.

4. Calculate the total number of dogs
by dividing total four-legged nails
by nails per four-legged dog.

1. Estimate the number of four-
legged dogs using the total num-
ber of nails.

2. Subtract the number of three-
legged dogs to find four-legged
dogs.

3. Add the three-legged dogs back to
get the total number of dogs.

Two sisters, Elizabeth and Margareth,
bought beads. Elizabeth bought 1 pack
of red and 2 packs of clear beads, while
Margareth bought 3 packs of blue and
4 packs of red beads. How many more
beads does one sister have than the other,
if each pack contains 20 beads?

1. Start by calculating the total num-
ber of beads in one pack of red
beads.

2. Use that to calculate the total for
Elizabeth’s red and clear beads.

3. Calculate the total number of
beads in Margareth’s blue packs.

4. Calculate the total number of
beads in Margareth’s red packs.

5. Calculate the total beads for Mar-
gareth and subtract Elizabeth’s to-
tal beads to find the difference.

1. Figure out how many beads Eliza-
beth bought by multiplying num-
ber of packs by beads per pack.

2. Do the same for Margareth.
3. Find the difference by subtracting

the smaller total from the larger
one.

Parker wants to find out what the average
percentage of kernels that pop in a bag
is. In the first bag he makes, 60 kernels
pop and the bag has 75 kernels. In the
second bag, 42 kernels pop and there are
50 in the bag. In the final bag, 82 kernels
pop and the bag has 100 kernels. What
is the average percentage?

1. Find the percentage popped for
the first bag.

2. Repeat for the second and third
bags.

3. Add the three percentages.
4. Divide by 3 to find the average.

1. Find the total number of popped
kernels across all bags.

2. Find the total number of kernels
across all bags.

3. Divide the popped kernels by the
total kernels and multiply by 100.

Table 6: Comparison of the three plan pairs in math questions with the highest gap in discriminability.
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Question High Discriminability Low Discriminability

How many stars are on the flag of the
country where the spouse of the per-
former of Wrecking Ball is a citizen of?

1. Identify a song by a known artist
that matches Wrecking Ball’s re-
lease timeline.

2. Determine the country of citizen-
ship for the known spouse of the
artist from Step 1.

3. Find the number of stars on the
flag of the country from Step 2.

1. Find the performer of the song
Wrecking Ball.

2. Identify the spouse of the per-
former from Step 1.

3. Determine the country of citizen-
ship for the spouse from Step 2.

4. Find the number of stars on the
flag of the country from Step 3.

Who built the castle named after the city
with an institution that educated the au-
thor of Species Plantarum?

1. Find the name of the author of
Species Plantarum.

2. Determine the institution that edu-
cated the author identified in Step
1.

3. Identify the city where the institu-
tion found in Step 2 is located.

4. Ascertain the builder of the castle
that carries the name of the city
found in Step 3.

1. Identify the city that is home to
an institution where the author of
Species Plantarum was educated.

2. Find the name of the castle that
shares its name with the city iden-
tified in Step 1.

3. Determine the builder of the castle
identified in Step 2.

What is the city did the spouse of Nico-
lae Ceaus, escu move to after receiving
elementary education?

1. Identify Nicolae Ceaus, escu’s
spouse.

2. Find the city the spouse moved to
after elementary education.

3. Check if the city in Step 2 is the
same as the city where the spouse
received elementary education.

4. If the cities are different, find the
city the spouse moved to after re-
ceiving elementary education.

1. Find the city where Nicolae
Ceaus, escu’s spouse went to ele-
mentary school.

2. Determine the city the spouse
moved to after Step 1.

Table 7: Comparison of the three plan pairs in trivia questions with the highest gap in discriminability.
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Prompt A.1: Math Plan Generation Prompt (§3.1)

I will give you a math question, and your goal is to come up with two diverse plans with instructions that can help someone
answer the question. The plans should lead to the correct answer, but more importantly should be highly optimized for speed.
Each step of the plan should not reveal the answer, intermediate computations, any specific numbers in the input question, or
how to exactly perform any calculation. Plans should focus on basic computations rather than setting up complex equations.
Each plan should be between 2 and 10 steps. Steps should be high-level, brief, clear, and not include details about how to
compute any intermediate values.

Please format your output as a JSON dictionary with key "plan1” for the first plan and “plan2” for the second
plan. The value for each key should be a list of strings with steps on how to answer the question. Each step should be prefixed
by its number (e.g. "Step 1:"). Steps should reference outputs form preceding steps using the number of the step.

Remember, plans should be accurate but highly optimized for speed which should be achieved by minimizing the
number of steps, keeping descriptions brief, and using shortcuts that can skip the traditional route of answering the question.
The two plans can differ in their overall strategy, specificity, number of steps, and what intermediate information to compute.

Produce plans for the question: q

Prompt A.2: Trivia Plan Generation Prompt (§3.1)

I will give you a trivia question, and your goal is to come up with two diverse plans with instructions that can help someone
answer the question. Do not reference any tools or sources that should be used. The plans should lead to the correct
answer, but more importantly should be highly optimized for speed. Each step of the plan should instruct the user to find an
intermediate answer. Plans should not reveal the answer or intermediate answers, and can only contain information in the
input question. Each plan should be between 2 and 10 steps. Steps should be high-level, brief, self-contained, and cannot
include extra information, entities, and knowledge that is not present in the input question.

Please format your output as a JSON dictionary with key "plan1” for the first plan and “plan2” for the second
plan. The value for each key should be a list of strings with steps on how to answer the question. Each step should be prefixed
by its number (e.g. "Step 1:"). Steps should reference outputs form preceding steps using the number of the step.

Remember, plans should be accurate but highly optimized for speed which should be achieved by minimizing the
number of steps, keeping descriptions brief, and using shortcuts that can skip the traditional route of answering the question.
The two plans can differ in their overall strategy, specificity, number of steps, and what intermediate information to search for.

Produce plans for the question: q

Prompt A.3: GPT-4o Direct Answer Prompt (§6.1)

Answer the following question. Give just the answer and no explanation. Format your final answer as "Answer: [insert
generated answer]"

Question: q

Prompt A.4: GPT-4o Judge Prompt (§4.2)

You will be given a question and two step-by-step plans that could help a human user answer the question (Plan A and Plan B).
Your goal is to determine which plan would help a human user answer the question more accurately and quickly. Respond
with just the letter of the plan.
Question: q
Plan A: pA
Plan B: pB
More Helpful Plan:

Prompt A.5: Reward Model Prompt (§4.2)

<user>Generate a plan to help me answer this question accurately and quickly: q<user>
<assistant>p<assistant>
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Prompt A.6: ReACT Math Prompt (§4.1)

You will be a given a question and series of previous steps, actions, and thoughts, and your task is to generate the next
Thought or Action that will lead you to the correct answer of the current step. Thoughts contain reasoning chains that help
you decide which action you should call, while Actions are tool calls that can provide external information. The tools you
have access to are:
- CALCULATE: Given an input equation, returns the result when evaluating the expression
- SUBMIT_STEP: Submit an answer to the step

All outputs from tool calls will be provided as Observations. You must call SUBMIT_STEP to answer each step,
not to answer the final question. Below is an example of a full reasoning trace:
—
Question: Liam has 15 marbles. He wins 8 more marbles in a game. Then he loses 5 marbles, but later he finds 6 more
marbles under his bed. How many marbles does Liam have now?
—
Step 1: Find the total number of marbles Liam has after winning the game
Thought: To find the total number of marbles Liam has after winning the game, we must add his initial 15 marbles with the 8
marbles he won after the game
Action: CALCULATE(15 + 8)
Observation: 23

Thought: We now have the number of marbles Liam has after winning the game, so we can submit 23 as the an-
swer to this step
Action: SUBMIT_STEP(23)
Answer to Step 1: 23
—
Step 2: Find the total number of marbles Liam has after losing 5 marbles
Thought: To get the number of marbles Liam has after losing 5 marbles, we must subtract 5 from the 23 marbles in Step 1
Action: CALCULATE(23 - 5)
Observation: 18

Thought: We now have the number of marbles Liam has after he loses 5 of them, so we can submit 18 as the
answer to this step
Action: SUBMIT_STEP(18)
Answer to Step 2: 18
—
Step 3: Find the final number of marbles Liam ends up with after finding more marbles under his bed
Thought: The final number of marbles Liam has is the 18 marbles from Step 2 plus the 6 more marbles Liam finds under his
bed
Action: CALCULATE(18 + 6)
Observation: 24

Thought: We now have the final number of marbles Liam ends up with, so we can submit 24 as the answer to
this step
Action: SUBMIT_STEP(24)
Answer to Step 3: 24

Now, generate the next Thought or Action for the following question: q
—
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Prompt A.7: ReACT Trivia Prompt (§4.1)

You will be a given a question and series of previous steps, actions, and thoughts, and your task is to generate the next
Thought or Action that will lead you to the correct answer of the current step. Thoughts contain reasoning chains that help
you decide which action you should call, while Actions are tool calls that can provide external information. The tools you
have access to are:
- SEARCH: Given an input search query, returns the title, first paragraph, and most similar context within a relevant Wikipedia
page
- SUBMIT_STEP: Submit an answer to the step

All outputs from tool calls will be provided as Observations. You must call SUBMIT_STEP to answer each step,
not to answer the final question. Below is an example of a full reasoning trace:
—
Question: What is the capital of the state that contains the tallest mountain in the United States?
—
Step 1: Find the tallest mountain in the United States
Thought: To find the tallest mountain in the United States, we can search for the right Wikipedia page with this query
Action: SEARCH(tallest mountain United States)
Observation: <Title>List of mountain peaks of the United States</Title><First Paragraph>This article comprises three
sortable tables of major mountain peaks of the United States of America. </First Paragraph><Selected Content>The summit
of a mountain or hill may be measured in three main ways: Download coordinates as: Of the 100 highest major summits of
the United States, only Denali exceeds 6000 meters (19,685 feet) elevation...</Selected Content>
Action: SUBMIT_STEP(Mount Denali)
Answer to Step 1: Mount Denali
—
Step 2: Find the state that contains this mountain

Thought: To find the state with this mountain, we must find where Mount Denali is located
Action: SEARCH(Mount Denali location)
Observation: <Title>Denali</Title><First Paragraph>Denali (/de’na:li/), federally designated as Mount McKinley, is the
highest mountain peak in North America, with a summit elevation of 20,310 feet (6,190m) above sea level. It is the tallest
mountain in the world from base to peak on land, measuring 18,000ft (5,500m). With a topographic prominence of 20,194
feet (6,155m) and a topographic isolation of 4,621.1 miles (7,436.9km), Denali is the third most prominent and third-most
isolated peak on Earth, after Mount Everest and Aconcagua. Located in the Alaska Range in the interior of the U.S. state
of Alaska, Denali is the centerpiece of Denali National Park and Preserve. </First Paragraph><Selected Content>Denali
(/de’na:li/), federally designated as Mount McKinley, is the highest mountain peak in North America, with a summit elevation
of 20,310 feet (6,190m) above sea level...</Selected Content>

Thought: The last observation states that Denali is located in the U.S. state of Alaska, so we can submit Alaska
as the answer to this step
Action: SUBMIT_STEP(Alaska)
Answer to Step 2: Alaska
—
Step 3: Find the capital of this state

Thought: To find the capital of this state, we must find the capital of Alaska, which can be found on its Wikipedia page
Action: SEARCH(Alaska capital)
Observation:<Title>Juneau, Alaska</Title><First Paragraph>Juneau (’dZu:noU i JOO-noh; Tlingit: Dzanti K’iheeni [’tsnthI
k’I’hi:nI] transl. Base of the Flounder’s River), officially the City and Borough of Juneau, is the capital of the U.S. state of
Alaska, located along the Gastineau Channel and the Alaskan panhandle. Juneau was named the capital of Alaska in 1906,
when the government of what was then the District of Alaska was moved from Sitka as dictated by the U.S. Congress in 1900.
On July 1, 1970, the City of Juneau merged with the City of Douglas and the surrounding Greater Juneau Borough to form the
current consolidated city-borough, which ranks as the second-largest municipality in the United States by area and is larger
than either Rhode Island or Delaware. </First Paragraph><Selected Content>Atop the mountains is the Juneau Icefield, a
large ice mass from which about 30 glaciers flow; two of them, the Mendenhall Glacier and the Lemon Creek Glacier, are
visible from the local road system... </Selected Content>

Thought: The title of this page is Juneau, Alaska, so we can submit Juneau as the answer to this step
Action: SUBMIT_STEP(Juneau)
Answer to Step 3: Juneau
—
Now, generate the next Thought or Action for the following question: q
—
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