
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11693–11708
November 4-9, 2025 ©2025 Association for Computational Linguistics

RedHerring Attack: Testing the Reliability of Attack Detection

Jonathan Rusert
Purdue University, Fort Wayne

jrusert@pfw.edu

Abstract

In response to adversarial text attacks, attack de-
tection models have been proposed and shown
to successfully identify text modified by adver-
saries. Attack detection models can be lever-
aged to provide an additional check for NLP
models and give signals for human input. How-
ever, the reliability of these models has not yet
been thoroughly explored. Thus, we propose
and test a novel attack setting and attack, Red-
Herring. RedHerring aims to make attack de-
tection models unreliable by modifying a text
to cause the detection model to predict an at-
tack, while keeping the classifier correct. This
creates a tension between the classifier and de-
tector. If a human sees that the detector is giv-
ing an “incorrect” prediction, but the classifier
a correct one, then the human will see the de-
tector as unreliable. We test this novel threat
model on 4 datasets against 3 detectors defend-
ing 4 classifiers. We find that RedHerring is
able to drop detection accuracy between 20 -
71 points, while maintaining (or improving)
classifier accuracy. As an initial defense, we
propose a simple confidence check which re-
quires no retraining of the classifier or detector
and increases detection accuracy greatly. This
novel threat model offers new insights into how
adversaries may target detection models.

1 Introduction

As use of social media and related platforms contin-
ues to grow, companies have increasingly leveraged
automated text classifiers to help monitor content.
These classifiers are essential for reducing the work
load of human moderators. When classifiers hinder
users from posting content, users may try to sub-
vert the classifier by modifying the text of their post.
These ideas have inspired research in adversarial
text attacks and defenses against attacks.

Adversarial text attacks have been researched
to measure multiple aspects of Natural Language
Processing (NLP). These include classifier robust-
ness (Hsieh et al., 2019) and concerns of censorship

“a good film that 
must have baffled 
the folks in the 
marketing 
department.”

Normal 
Attacker

DetectorClassifier

“a pretty good film 
that must have baffled 
the folks in the 
marketing 
department.”

Negative ATTACK

RedHerring 
Attacker

Classifier

Positive ATTACK

“a unspoiled film 
that must have 
baffled the folks in 
the marketing 
department.”

Detector

Human 
Moderator

Figure 1: Visualization of RedHerring attack. Normal
adversarial text attacks focus on causing the text clas-
sifier to fail. RedHerring aims to cause unreliability
in the attack detector instead. This reliability happens
since the detector indicates an attack, but the classifier is
still classifying correctly, thereby creating doubt when
a human examines both.

and privacy (Xie and Hong, 2022). In response, de-
fenses have been researched (Li et al., 2021b, 2023;
Wang et al., 2023). Defenses allow a classifier to
correctly classify text even when it has been mod-
ified by an adversary. While defenses improved
the robustness of classifiers, they often require re-
training of models (Zhu et al., 2020; Wang et al.,
2020) or increase the number of queries required
to make a classification (Zeng et al., 2021; Rusert
and Srinivasan, 2022). Thus, attack detection helps
as an additional line of defense for classifiers.

Attack detection algorithms aim to classify
whether a text has been modified by an adversar-
ial algorithm to subvert a classifier (Mozes et al.,
2021; Mosca et al., 2022). These algorithms have
been proposed to help point out potentially mod-
ified texts to human moderators. Thus, a website
could leverage these algorithms to flag texts for hu-
mans to check against the automated classifier. A
potential problem arises if the detection algorithm
flags too many texts incorrectly, as this will cause
human moderators’ work load to greatly increase.

In this research, we aim to investigate the vulner-

11693



ability of text attack detection algorithms to attacks
which cause distrust between humans and the algo-
rithms. That is, we propose an attack, RedHerring,
which causes the attack detection system to trigger,
without causing the classifier to fail. This type of
attack is different from normal adversarial attacks
in texts which only focus on failure of the NLP sys-
tem. It is similar to other types of security attacks
that cause unreliability in a system or algorithm
(Qi et al., 2021b; Xu et al., 2019).

Our research makes the following contributions:
1. Introduce a novel attack RedHerring and

novel text attack setting which measures the vul-
nerability of attack detection algorithms to unrelia-
bility attacks.

2. Test RedHerring on 4 datasets against 3 detec-
tors defending 4 classifiers. We find that RedHer-
ring is able to drop detection accuracy for 39 points
against WDR on average, 61 points against FGWS,
and 36 points against UAPAD. Furthermore, Red-
Herring maintains or increase classification accu-
racy which pits the classifiers and detectors against
each other.

3. Verify RedHerring with human annotations
and experiments which highlight how it differs
from previous attack research.

4. Propose and test an initial defense against
this type of attack which leverages the confidence
score of the classifier and requires no retraining of
models. Though it does not fully restore detection
accuracy, we find this defense greatly mitigates the
attack, restoring up to 80% detection accuracy.

The strength of RedHerring attack demonstrates
the need for greater robustness of attack detec-
tion algorithms. We share the code and examples
for future research purposes (https://github.
com/JonRusert/RedHerringAttack).

2 Proposed Threat Model

Here we define the problem and then the novel
threat model explored with RedHerring attack.

Text Classifiers and Attack Detectors: Let X
represent a text, f() represent a classifier, and g()
represent a detector.

The goals of text classifiers are to assign a label,
from a set of labels Y = {y0, y1, ..., yn} to a given
text, f(Xi) = yi. Classifiers are trained on a set
of texts and assigned labels, generally leveraging
embedding representations of the texts. Adversar-
ial attacks target text classifiers by making slight
perturbations to an input text, such that it causes

the classifier to fail, while at the same time aim-
ing to maintain original meaning to human readers.
This is often done by replacing, adding, or rewrit-
ing words in the input text, that the text classifier is
most reliant on.

The goals of attack detectors are to label an input
text as being modified by an adversarial attack or
not, g(Xi) = {ATTACK,NOT}. Unlike text
classifiers, attack detectors do not necessarily train
new models to accomplish this task nor do they
train on the text input itself, instead they often
leverage the knowledge of the classifier to label
the input text.

Threat Model: We assume that the detector and
classifier are deployed to automatically monitor a
website’s posts. The text may be instantly rejected
if it does not pass the classifier check. Texts that
pass the classifier are double checked by the de-
tector. If the detector flags the text as adversarial,
a human moderator checks the text and the classi-
fier/detector’s labels. Note that this model is set
up to reduce queries as detectors often leverage the
classifier as well (sometimes multiple times), to
make their decision.

We assume that RedHerring (Section 5) has
black-box probability access to the classifier and
detector. That is, it is able to send queries to both
models and receive feedback in terms of labels
and confidence scores. This black-box assumption
follows similarly to previous adversarial attack re-
search (Alzantot et al., 2018; Garg and Ramakrish-
nan, 2020; Li et al., 2020; Gao et al., 2018; Hsieh
et al., 2019; Li et al., 2021a).

3 Motivation for Studying Attack

The goal of RedHerring is to cause the detector
to become unreliable in the eyes of the company
or human moderator. This could cause financial
issues (as the company may spend additional funds
to find a new detector) or vulnerability issues (the
company may abandon attack detectors entirely).
RedHerring aims to accomplish this by causing the
detector to make “false flags”, while the classifier
continues to work correctly (outlined in Section
5.1). That is, the detector will predict an attack is
happening when there does not appear to be one
(classifier is classifying correctly). This can cause
the human moderator to distrust the detection algo-
rithm. Note that this threat model is different than
simply causing the detector (and classifier) to fail,
which is more similar to original text adversarial

11694

https://github.com/JonRusert/RedHerringAttack
https://github.com/JonRusert/RedHerringAttack


attacks.
Motivating Example 1: Consider the case of

social media websites that aim to protect against
hate speech. The classifier would try to flag hate
speech. A normal adversary would try to still write
their hate speech by targeting the classifier during
their attack. An attack detector would help pro-
tect against potential attacks by flagging them so
that human moderators could double-check them.
However, RedHerring could be deployed to cause
uncertainty with the attack detector. By causing the
attack detector to send flags to the human modera-
tors who check and see that the post is hate speech
and the classifier is classifying it as hate speech,
the moderators would lose trust and also time in
additional moderation.

Motivating Example 2: Another motivating ex-
ample in the form of spam detection. Due to space,
this is expanded on in the appendix (Appendix B).

4 Attack Detection

To evaluate RedHerring we examine three attack
detection algorithms1: WDR (Mosca et al., 2022),
FGWS (Mozes et al., 2021), and UAPAD (Gao
et al., 2023). These algorithms were chosen be-
cause of their strong performance and variation of
methodology.

1. Word-level Differential Reaction (WDR) -
WDR detects attacks by examining the change in
classifier logits when a word is removed from the
input text. When adversarial words are removed,
the change is more likely to be negative. This
change is referred to as the Word-level Differential
Reaction (WDR). A classifier is trained to detect
an adversarial attack based on the sorted WDRs for
each text. The authors find XGBoost to perform
best, thus we use this as the classifier for WDR.

2. Frequency-Guided Word Substitutions
(FGWS) - FGWS detects attacks by replacing infre-
quent words in input text with frequent synonyms.
The frequency is determined by the training data.
The synonyms are obtained via WordNet (Miller,
1994) and Glove Word Embeddings (Pennington
et al., 2014). For every word below a chosen log
frequency threshold, δ, in an input text (X), FGWS
replaces the word with a more frequent synonym.
This modified text, X ′, is then compared to X via
the classifiers (f()) prediction scores on the orig-
inally predicted class y. If f(X)y − f(X ′)y > γ,
then the text is considered an adversarial attack.

1Full Related Work found in Appendix A

Note γ is another chosen hyperparameter. Follow-
ing the authors, and confirming via preliminary
experiments, we choose δ = 0.9 and γ = 0.05.

3. Universal Adversarial Perturbation Attack De-
tection (UAPAD) - UAPAD detects attacks by uti-
lizing universal adversarial perturbations (UAPs).
UAPs are single perturbations which can cause
models to fail when added to the inputs. UA-
PAD recognizes that adversarial samples are often
closer to the decision boundary than clean exam-
ples. Thus, they add UAPs to input texts to help
determine clean versus adversarial samples. Specif-
ically, UAPAD makes 2 calls to the classifier, one
call on the original text and one on the UAP text.
If the labels are not equal, it is labels as an attack.
Note that each classifier/dataset requires a differ-
ent UAP delta weight. To test our attack in the
strongest setting, we choose the weights which re-
sult in the strongest original detection accuracy for
UAPAD (Found in Appendix C).

4.1 Detection Experiments and Results

To verify the effectiveness of the above attack de-
tection algorithms (or detectors), we evaluate the
detectors on attacks across 4 datasets. A subset of
these datasets (the class distributions can be found
in Table 10, in the Appendix) were evaluated in
each of the original papers: 1. AG News - Clas-
sification on news text on one of four categories:
Sports, Business, World, Sci/Tech. 2. IMDB -
Binary sentiment classification on movie reviews
from IMDB website. 3. Rotten Tomatoes (RT) -
Binary sentiment classification on movie reviews
from Rotten Tomatoes. 4. SST-2 - Stanford Senti-
ment Treebank, contains binary sentiment classifi-
cation on movie reviews.

We evaluate the detectors against attacks carried
out by PWWS (Ren et al., 2019). PWWS modi-
fies text by selecting WordNet synonym replace-
ments which cause the largest prediction probabil-
ity drops. PWWS also leverages word saliency to
help rank appropriate replacements. Note that we
focus on this attack as FGWS is attacker agnostic,
WDR demonstrates the transferability of a detector
trained on one attack against others in their own
research, and UAPAD tests against PWWS.

We focus on 3-4 classifiers for each dataset, ob-
tained mainly from the TextAttack (Morris et al.,
2020) library: Albert (Lan et al., 2019), RoBERTa
(Liu et al., 2019), DistilBERT(Sanh et al., 2020),
BERT (Devlin et al., 2019), and T5 (Raffel et al.,

11695



Class. WDR FGWS UAPAD

A
G

Albert 94.0 89.8 94.1
RoBERTa 92.3 88.7 90.8

DistilBERT 93.3 91.5 94.1
R

T

Albert 55.5 81.8 81.1
RoBERTa 77.1 83.7 79.2

BERT 60.2 82.6 78.8
T5 75.6 82.2 -

IM
D

B Albert 84.9 85.4 70.0
RoBERTa 88.2 90.5 77.0

DistilBERT 80.3 82.2 73.8

SS
T-

2 Albert 72.5 82.3 81.9
RoBERTa 80.8 82.1 83.1

DistilBERT 64.0 63.0 69.4
T5 80.4 81.8 -

Table 1: Attack Detection results. Accuracy shown.
WDR uses XGBoost as detector.

2020)2.
We measure the accuracy obtained for each de-

tector on each dataset. For AG News, IMDB, and
RT we test on 1000 adversarially modified texts
and 1000 original texts. For SST-2 we test on 436
modified and 436 non-modified due to the limited
size of the test set.

For FGWS, frequencies are learned from the
training datasets and synonyms are obtained from
WordNet and from Glove3. For WDR, we train
a detector on the WDRs of each specific dataset.
For UAPAD, we first obtain BERT UAPs to verify
correct usage of provided code, then follow the
same process for the other classifiers. We also
choose the strongest UAP delta weights (Appendix
C). Thus, purposely giving the detectors a stronger
advantage against our proposed attack.
Detection Results: The results for all detectors can
be found in Table 1. As can be seen, FGWS obtains
80 - 90% accuracy scores across datasets, which is
consistent (or even stronger) with reported results.
WDR performs well on AG News (as reported) and
varies on the other measured datasets, and UAPAD
performs similarly to reported results4 Note that
weaker scores on RT are consistent with original
reported scores. This confirms the effectiveness of
all detection algorithms.

5 RedHerring Attack

Let X = {t1, t2, ..., tn} be a text of length n.
Additionally, let f(X) represent the text classifier
which assigns a class label l = {c1, ..., ck} to a

2Due to incompatability with UAPAD (see Section 6.3),
UAPAD was excluded for T5.

3https://nlp.stanford.edu/projects/glove/
4UAPAD only used BERT, so it is difficult for direct com-

parisons.

given X . Also, let g(X) represent an adversar-
ial attack detector which assigns a detection label
d = {NOT,ATTACK} to the given X . Finally,
let rh(X) represent our proposed attack which takes
in X and produces X ′, a modified form of X .

5.1 Attack Goal

The overall goal of our proposed attack is to
cause unreliability of the attack detection algorithm.
Hence, it is designed to maintain 3 subgoals:

1. g(X ′) == ATTACK

2. f(X) == ytrue

3. X’ maintains original meaning to humans.

With the first subgoal, the attack aims to cause
the attack detection algorithm to trigger and note
to the user an attack is occurring. With the second,
the attack aims to keep the original classifier clas-
sifying the correct label. Finally, the third subgoal
requires humans to understand X’ the same as X.

All three subgoals are needed for our attack to
work successfully. If the first subgoal is met, but
the second is not (the classifier misclassifies), then
the detection algorithm is working as intended. If
the first and second are met, but not the third (the
output changes meaning to humans), then the hu-
man may view the classifier as unreliable rather
than the detector, or may conclude that the detector
is acting correctly.

The third goal naturally leans towards word level
or sentence level modifications, as character-level
will appear more obviously to the human that the
text is under attack. Hence,all these goals are con-
sidered in the overall design of the attack.

5.2 Attack Design

Our attack follows similarly to previous word-
based attacks and can be divided into two steps:
selection and addition.

5.2.1 Selection
For selection, we adapt the greedy selection method
(also sometimes named Word Importance Score)
from previous text attack research (Hsieh et al.,
2019). Greedy select removes one word (or to-
ken) at a time and notes the classifier’s change in
probability:

GS = f(X)− f(X//wm) (1)

11696



Perturbed Accuracy
Classifier Classifier Acc. Detection Acc.

RH Target: WDR (∆) FGWS (∆) UAPAD(∆) WDR (∆) FGWS (∆) UAPAD (∆)

A
G

Albert 96.8 (-2.6) 97.6 (-3.4) 97.7 (-3.5) 60.9 (25.1) 31.5 (50.4) 42.7 (47.7)
RoBERTa 96.6 (-1.9) 97.0 (-2.3) 96.4 (-1.7) 55.6 (29.9) 39.2 (40.8) 42.8 (42.5)
Distilbert 96.1 (-1.7) 97.0 (-2.6) 97.0 (-2.6) 65.1 (24.2) 34.0 (54.1) 40.6 (45.6)

Average ∆ -2.1 -2.8 -2.6 26.4 48.4 45.3

IM
D

B Albert 95.9 (-2.4) 97.6 (-4.1) 98.6 (-5.1) 62.1 (18.3) 23.3 (65.7) 54.4 (19.0)
RoBERTa 96.5 (-1.4) 98.9 (-3.8) 98.4 (-3.3) 75.4 (12.1) 21.6 (70.5) 65.2 (22.2)
Distilbert 93.8 (-1.8) 98.9 (-6.9) 98.3 (-6.3) 60.0 (30.6) 9.1 (77.4) 49.3 (20.2)

Average ∆ -1.9 -4.9 -4.9 20.3 71.2 20.5

R
T

Albert 93.0 (-8.2) 95.7 (-10.9) 95.7 (-10.9) 6.0 (48.8) 6.5 (69.9) 17.2 (51.5)
RoBERTa 95.6 (-7.0) 97.5 (-8.9) 97.5 (-8.9) 15.2 (61.5) 14.1 (76.7) 37 (46.2)

BERT 94.0 (-8.6) 96.1 (-10.7) 96.1 (-10.7) 16.3 (50.2) 20.9 (63.6) 24.2 (49.1)
Average ∆ -7.9 -10.2 -10.2 53.5 70.1 48.9

SS
T-

2 Albert 92.7 (0.0) 98.2 (-5.5) 98.4 (-5.7) 8.4 (48.9) 10.0 (73.7) 26.0 (31.0)
RoBERTa 94.0 (0.0) 98.9 (-4.9) 98.9 (-4.9) 4.8 (69.5) 31.5 (59.6) 33.3 (50.9)
Distilbert 55.7 (0.0) 84.9 (-29.2) 84.9 (-29.2) 12.0 (45.0) 3.0 (45.7) 18.3 (42.1)

Average ∆ 0.0 -13.2 -13.3 54.5 59.7 41.3
Overall Avg. ∆ -3.0 -7.8 -7.7 38.7 62.3 39.0

Table 2: RedHerring Attack Results. RH Target - indicates the target of RedHerring Attack. ∆ indicates the
difference between the original accuracy and the perturbed accuracy. Average ∆ indicate the average difference
between the original and perturbed accuracy values. Overall Avg. ∆ indicates the average drops including all
combinations in that column (across datasets and classifiers).

The change in probabilities are then sorted and
the position that caused the greatest drop in prob-
ability is chosen for replacement. Note that even
though our end goal is to attack the detector, we
still leverage the classifier to choose the word. This
is because most attack detection systems examine
classifiers’ probability changes themselves. Fur-
thermore, many of the detectors perform multiple
queries to the classifier during detection. Thus,
if we were to perform a similar selection above
to the detectors, then the queries would increase
exponentially.

5.2.2 Addition

Similarly to selection, we build of similar previ-
ously leveraged methods. Specifically, we build
off attacks such as BAE (Garg and Ramakrishnan,
2020) and BERT-ATTACK (Li et al., 2020) which
leverage a BERT based model to infill masked to-
kens. This is feasible since BERT is trained on is
Masked Language Modelling, where input tokens
are randomly masked and BERT predicts what the
masked token should be. Hence, we can simulate
this by adding a mask token next to the selected
word from the previous step and asking the BERT
model for word suggestions. Instead of pure re-
placement, we add a mask token next to the word
to maintain semantic integrity while increasing the
chance for the detector to be triggered.

Recall that we still want to maintain the previous

subgoals, so we focus on the change in detector
and check against the classifier:

Xrepl = {w1, ..., wrepl, ..., wn}
∆g(X)repl = g(X)− g(Xrepl)

(2)

f(X)repl = f(Xrepl) (3)

We want the classifier (f(X)repl) to remain cor-
rect, but the detector to become incorrect. Begin-
ning with the top suggestion from BERT, we check
the labels for each. If the suggestion (wrepl) causes
the detector’s label to flip, but keeps the classifier’s
label the same, it is chosen as the suggestion. Oth-
erwise, the probability changes are noted and the
next suggestion is checked. We check the top m
suggestions until either a suggestion is found which
satisfies the subgoals or all m have been checked.
In the latter case, the suggestion which maximizes
∆g(X)repl is added to the text and the process con-
tinues with the next selected word.

6 Experimental Results and Discussion

We test RedHerring attack on the same 4 datasets
(AG News, IMDB, RT, SST-2) described in Section
4.1. Following previous attack research (Jin et al.,
2020), we sample up to 1000 examples for each
dataset for modification. We run the attack5 against

5Attacks were run on 80-core 384G CPUs for a max time
limit of 1 hour for efficiency and practicality purposes.

11697



all detection algorithms on each of the 3 noted clas-
sifiers for each dataset (Section 4.1). Note that
since RedHerring focuses on causing distrust with
detectors, stronger, newer classifiers would only
cause the first goal of the attack to be easier
to achieve (This is confirmed by testing the attack
against an LLM (Section 6.3)). We use the same de-
tection hyperparameters chosen in Section 4. Note
that UAPAD does not return an actual detection
score which makes it more difficult to attack. We
approximate the score by focusing on the change
in a class when the UAP is applied.

Attack Metrics: We measure accuracy of de-
tectors and classifiers, change in accuracy caused
by RedHerring, the False Positive Rate of the de-
tectors, and the cases where both the classifier was
correct and detector incorrect (fooled by RedHer-
ring).

6.1 RedHerring Results

Table 2 contains the main results. The "Original Ac-
curacy" results can be found in Table 11 (Appendix
E). These denote the classification and detection
scores against non-modified texts, while "Perturbed
Accuracy" indicate the score of the same models
on the text modified by RedHerring. Note that
the original detection scores differ from those in
Section 4.1 since the original scores in Table 2
are purely on non-modified texts. We make the
following observations:
RedHerring causes drops in attack detection
across datasets. For all detection algorithms, we
see drops in detection accuracy across all datasets.
For AG News, we see average drops of 26 against
WDR, 48 against FGWS, and 35 against UAPAD.
These results are similar for IMDB, average of 20
against WDR, 71 against FGWS, and 21 against
UAPAD. Finally, for both RT and SST-2 datasets,
we see effectiveness against WDR increase to drops
of 54 and 55 for RT and SST-2 respectively. FGWS
also sees strong drops for these datasets, 65 and
60 for RT and SST-2 respectively. UAPAD also
increases in drops with 49 for RT and 41 for SST-2.
These drops show the strength of RedHerring in
causing attack detection to trigger falsely.
RedHerring increases classification accuracy
across datasets. A drop in detection accuracy is
useless if the classifiers are dropping in accuracy
as well, since this would mean that the detectors
are predicting correctly. Thus, our second goal is
to maintain (or improve) classification accuracy.

When examining the drops of the classifiers6, we
see improvements across datasets. We see aver-
age increases in accuracy of 3 against WDR, 8 for
FGWS and UAPAD. This increase is most likely
due to RedHerring’s main goal of causing the de-
tector to appear unreliable. Since RedHerring does
not want the classifier to fail (as it targets the detec-
tor), when it chooses words to modify/replace, it
rejects the words that would cause the classifier to
fail the classification. Additionally, it does not add
any constraints on words that would increase the
classification probability. These results satisfy the
second goal of RedHerring attack.
FGWS most vulnerable to attack, WDR, UA-
PAD most resilient. When examining the overall
drops across datasets, we see that RedHerring is
able to drop FGWS by 62 points on average, com-
pared to 39 points for WDR and UAPAD. Part of
this may be explained by WDR’s examination of
every word in the input text and UAPAD’s acknowl-
edgement that attacked texts are often close to the
decision boundary. On the contrary, FGWS only
replaces less frequent words. Thus, if RedHerring
finds words which are more frequent or those with-
out synonyms, then FGWS will not replace these
words in checking the text.
RedHerring attack is more effective against
shorter texts. The average lengths of the texts
are 43, 215, 21, and 20 for AG News, IMDB, RT,
and SST-2. We find that RedHerring is the most
effective against the shorter texts, causing an av-
erage drop of 56 for the RT detectors and 52 for
SST-2. These averages are much higher than drops
of AG News (37) and IMDB (37). This indicates
greater vulnerability for detectors on shorter texts.
This vulnerability is most likely caused by 2 rea-
sons. First, since RedHerring adds words, this is
more likely to trigger the detection algorithms since
a new word on a smaller text is a bigger change
than for a larger text. Second, RedHerring uses
greedy select to determine where to add words in
the text. For shorter texts, removing words will
cause a clearer drop than with larger texts. Both of
these make shorter texts more vulnerable.

6.2 Qualitative Analysis

6.2.1 Human Study
To further gauge the effectiveness of RedHerring,
we employ 3 human annotators to label texts. The
annotators are given the text, the classifier label,

6Negative drops indicate an increase in accuracy.

11698



RH Target: WDR FGWS UAPAD
AG News

Albert 97.9 91.4 90.3
Roberta 97.6 90.7 90.9

Distilbert 97.8 90.2 90.1
Rotten Tomatoes

Albert 96.8 95.6 95
Roberta 96.3 94 93.5
BERT 96.6 93.9 94.4

T5 95.7 94.3 -
IMDB

Albert 97.1 95.6 95.2
Roberta 97.1 95.1 94.3

Distilbert 96.9 94.6 94.4
SST2

Albert 79.9 79.7 79.7
Roberta 80 79.5 79.6

Dilstilbert 80 80 79.9
T5 79.8 79.7 -

Table 3: BERTScores for the texts generated by Red-
Herring Attack for the examined datasets.

and the detector label. They are asked to determine
if an attack is occuring or not (full instructions
including verification of attack understanding in
Appendix F). The annotators label the same 40
RedHerring texts, 40 texts attacked by PWWS, and
40 non attacked texts. The majority vote is taken
for each text.

We find that RedHerring is indeed able to create
a larger disagreement and lack of trust with the de-
tector. Specifically, human annotators agreed with
the detector only 41% of the time for RedHerring
texts, compared to 67% of the time for PWWS
texts, and 87% for non attacked texts. The annota-
tors had a fair agreement with each other achieving
an average Cohen’s Kappa score of 0.31. These re-
sults further highlight RedHerring’s ability to cause
distrust between the human and the detector.

6.2.2 BERTScore
In addition to the human evaluation, we measure
the semantic integrity of the generated text via
BERTScore (Zhang et al., 2019). The full results
can be found in Table 3. As can be observed,
for AG News, Rotten Tomatoes, and IMDB, the
BERTScores are high ranging from 90 - 98, indicat-
ing strong similarity of the produced texts with the
original. SST2 produced texts are lower around 80,
most likely because modifications have a higher
impact due to the short length of the texts.

6.3 RedHerring Against LLM
We also verify RedHerring’s strength by testing
it against the T5 generative model (Raffel et al.,
2020). T5 is fine-tuned on the respective datasets,

T5 Acc. Detection Acc.
RH Target: WDR FGWS WDR FGWS

R
T Orig. 88.5 73.3 85.3

RedH. 97.2 97.7 5.4 12.5
Drops -8.7 -9.2 67.9 72.8

SS
T

2 Orig. 93.2 72.8 87.4
RedH. 99.1 99.2 3.9 7.7

Drops -5.9 -6.0 68.9 79.7
Averages -7.3 -7.6 68.4 76.3

Table 4: RedHerring Attack Results against the T5
model. Orig. indicates the accuracy with no attack.
RedH. indicates the accuracy after RedHerring attack.
Averages indicate average drops in that column.

Classifier False Positive Rate
RH Target: WDR FGWS UAPAD

A
G

Albert 25.5 50.4 47.7
RoBERTa 29.9 40.8 42.6
Distilbert 24.2 54.1 45.6

IM
D

B Albert 18.3 65.7 19
RoBERTa 12.1 70.5 22.2
Distilbert 30.6 77.4 20.2

R
T

Albert 48.8 55.5 51.5
RoBERTa 61.5 76.7 46.2

BERT 50.2 63.6 49.1
T5 67.9 72.8 -

SS
T-

2

Albert 48.9 73.7 31.0
RoBERTa 69.5 59.6 50.9
Distilbert 45 45.7 42.1

T5 68.9 79.7 -

Table 5: False positive rates for the detectors on the orig-
inal test texts which have been perturbed by RedHerring.
RH Target - indicates the target of RedHerring Attack

RT and SST-2, the label is generated by the model
from the input text. For example, in SST-2, it gener-
ates “Positive” or “Negative”. To obtain the logits
needed for the detectors, we obtain the logits for the
class tokens at that specific positive, and then pass
just those logits to the softmax function. UAPAD
requires backpropagation after passing the logits
through the softmax function, so it was found in-
compatible with the generative model in its current
state, hence we focus on FGWS and WDR for these
experiments. As previously seen, if the attack is
effective for FGWS/WDR, it will also be effective
against UAPAD. Results can be found in Table 4.

As seen, RedHerring is indeed effective against
the detectors which accompany T5. We see large
drops for WDR and FGWS of 68+ points. Ad-
ditionally, T5 does not lose its prediction ability,
increasing at least 7 points in all instances.This
further highlights the effectiveness of RedHerring.

11699



Classifier Overlapping Success
RH Target: WDR FGWS UAPAD

A
G

Albert 374 673 525
RoBERTa 429 594 556
Distilbert 327 651 585

IM
D

B Albert 294 628 478
RoBERTa 193 651 455
Distilbert 308 738 604

R
T

Albert 899 921 812
RoBERTa 837 856 627

BERT 810 787 749
T5 938 873 -

SS
T-

2

Albert 788 781 627
RoBERTa 823 596 579
Distilbert 718 729 703

T5 835 803 -

Table 6: Number of test examples where the classifier
is correct, but the detector is incorrect (ie. RedHerring
accomplished it goal). RH Target - indicates the target
of RedHerring Attack

6.4 FPR and Number of Successes

We further quantify the success of RedHerring by
examining the False Positive Rates caused by Red-
Herring and the raw number of “successful” at-
tacks. These values can be found in Table 5. When
examining the FPR, we see that RedHerring is able
to cause FPRs of 40 to 80 for FGWS, 12 to 69 for
WDR, and 19 to 52 for UAPAD. This mirrors the
main results as the texts examined should all be
labeled as non-attacked, so any labeled as attack
are a False Positive.

The number of successful attacks (those where
the classifier predicted correctly, but the detector
predicted an attack) can be found in Table 6. We
see a large number of the attacked examples be-
ing successful. For example, in AG News, FGWS
detector accuracy is 31.5 which is 685 examples
mislabeled, of these 685, 673 are also labeled cor-
rectly by the classifier, showing a large overlap.
Note, that these values should be taken alongside
of the FPR reported above for RedHerring’s true
effectiveness, as the detectors were not perfectly
labeling the 1000 texts before the attack.

These metrics further emphasize the effective-
ness of RedHerring.

6.5 Attack on Detector Only

One goal of RedHerring focuses on the classifier
maintaining the original label of the text. It may
be postulated that this goal is not necessary in this
type of attack, instead focusing solely on the de-
tector. This would make the attack more similar to
previous adversarial attacks. We measure this, by

C

A
cc

ur
ac

y 
(F

G
W

S
)

0

25

50

75

100

0.4 0.6 0.8 1.0

Albert_RH RoBERTa_RH Distilbert_RH Albert_PWWS
RoBERTa_PWWS Dist_PWWS

Figure 2: Effect of C Values on detection accuracy for
the AG News dataset. The solid lines indicate the texts
perturbed by RedHerring, while the dashed ’- -’ lines
indicate the texts perturbed by PWWS.

removing the Goal 2 (in Section 5.1) and testing
the attack on Rotten Tomatoes and AG News. The
same test texts are used.

The results for this detector only attack can be
found in Table 7. We find that while this attack is
able to drop detector accuracy slightly more than
RedHerring attack in most cases, it also drops the
classifier accuracy at a larger rate. Against UAPAD
on AG News, the detector accuracy drops by 38.7
points on average, compared to 35 points by Red-
Herring. However, the classifier accuracy drops by
6 points on average, whereas RedHerring causes no
drops but rather an increase in classifier accuracy
of 2.6 points. This trend is similar across datasets
and attack detection algorithms. These results help
highlight the importance of the 2nd goal and dif-
ferentiate RedHerring from other, more traditional,
adversarial text attacks.

7 Initial Defense Against RedHerring

As shown, RedHerring poses a serious threat to
detectors. To address this, we propose an initial
defense which requires no retraining of classifiers
or detectors. The defense bases the final detection
decision on the confidence of the classifier. Since
adversarial attacks aim to reduce the confidence
of classifiers to cause the label to flip, classifiers
with lower confidence are more likely to have been
targeted by an attack. In contrast, RedHerring is
careful not to drop the classifier’s confidence, only
the detector’s. We propose the “Confidence Check”
defense found in Appendix G.

We apply the defense to the WDR and FGWS
examples in AG News (Since UAPAD does not re-
turn an official detection probability, it is excluded).

11700



Perturbed Accuracy
Classifier Classifier Acc. Detection Acc.

Target: WDR FGWS UAPAD WDR FGWS UAPAD

A
G

Albert 92.0 88.8 87.7 71.8 30.0 42.0
RoBERTa 90.6 86.3 85.3 64.3 38.1 39.1
Distilbert 93.6 86.3 92.7 64.3 38.1 39.7

Average Drops 2.4 5.0 5.9 18.9 49.8 47.0

R
T

Albert 82.3 80.9 81.3 7.1 3.5 15.9
RoBERTa 80.8 78.4 80.1 15.9 9.8 32.8

BERT 80.4 77.2 82.2 15.2 15.7 21.6
Average Drops 5.1 7.4 5.1 53.3 74.2 51.6

Overall Averages 3.7 6.2 5.5 36.1 62.0 49.3

Table 7: Results when attack focuses only on detector and does not consider the classifier, as in RedHerring attack.
Target - indicates the target of Detector Attack. Average drops indicate the average difference between the original
and perturbed accuracy values. Overall Averages indicates the average drops in that column.

Furthermore, since we want the algorithm to suc-
cessfully detect against attacks targeting the clas-
sifier, we also test the algorithm on an equal 1000
sample of texts modified by PWWS. These modi-
fied texts all successfully tricked the classifier.

Figure 2 shows different confidence threshold
intervals, C, for FGWS (WDR, App. H). The solid
lines are texts modified by RedHerring and the
other lines (dashed) include those texts modified
via PWWS (targeting classifiers). Furthermore, the
effect of C = 1.0 (for solid lines) are in Table 2.

For detection, we observe a clear tradeoff when
exposing the two types of attacks. At C = 1.0,
max discovery rates are observed for PWWS, but,
it causes the RedHerring attacked texts to become
the least discoverable. As C decreases, we see
hinderance in PWWS accuracy, while RedHerring
experiences great accuracy increase. Aiming to
maximize both detectors, we observe that a C value
of ∼0.9 to be the best tradeoff. For FGWS, we ob-
serve average detection accuracy increases from
the low value of 34.9 to the value of 82.6 when
examining RedHerring texts. For PWWS, we ob-
serve drops 96.8 to 88.9 on average. For WDR,
these increases are similar, but slightly less7.

The slight drop in true positives for a large in-
crease in true negatives helps indicate the defense
strength, without any retraining of models needed.
Though the attack is not fully mitigated, this pro-
vides a simple addition to classifier/detector duos
to provide some strength against RedHerring.

8 Continuing the Arms Race

A natural questions is how effective are traditional
defenses to RedHerring. We explore this by ap-
plying adversarial training to WDR. Specifically,

7Since the detector was less affected by RedHerring.

Classifier Method Orig. New
Score Score

RoBERTa WDR 77.1 11.0
AdvWDR 75.1 16.4

Albert WDR 55.5 2.8
AdvWDR 60.1 11.6

T5 WDR 75.7 4.0
AdvWDR 73.2 12.4

Table 8: The effectiveness of adversarial training against
RedHerring on the RT datasets. Orig. Score is the
original validation scores (Table 1). New Score indicates
the model against RedHerring.

we train the detector portion of WDR on the Red-
Herring perturbed texts. We then run RedHerring
against this new model on a new test set. We
test this using 3 classifiers on the Rotten Toma-
toes dataset. We use the perturbed test data from
the main results for adversarial training and test
against 500 additional examples. We compare the
adversarially trained model with the original WDR
model. The results can be found in Table 8.

As can be observed, adversarial training does
help mitigate the attack slightly, reducing the effec-
tiveness by 5.4 points for RoBERTa, 8.8 points for
Albert, and 8.4 points for T5, but still is vulnerable
to RedHerring.

9 Conclusion

RedHerring is a novel threat model, which makes
attack detectors unreliable. We verify by testing
RedHerring on 3 attack detectors, across 4 datasets,
with 3 - 4 classifiers for each. Overall we see the
ability to cause detection drops of 60 points against
FGWS on average, 39 points against WDR on aver-
age, and 37 points against UAPAD while the classi-
fiers’ accuracy is maintained or increased, causing
the detectors to become unreliable to a human.

11701



10 Limitations

Here we note limitations of this research in order
to guide future research as well as inform those
looking to use this research responsibly:

1. Classifiers Explored Limited Though we
examined at least 3 classifiers for each dataset, 3
are built on similar architecture. Though they each
achieve high performance in their fields, different
models might perform differently or be more sensi-
tive to changes made by RedHerring attack.

2. More Detection Algorithms and Datasets
to Explore Though we showed effective results
against 3 attack detection algorithms, there are
more to chooose from. These others may prove
more resilient to our proposed attack. Additionally,
different datasets could provide difficulty for the
attack to be successful against.

11 Ethical Considerations

The ethical impacts of studying adversarial attacks
must always be weighed, especially when propos-
ing an attack that could lead to unreliability in
other models. Especially when malicious users
could take and use the research to their own end.
However, we believe this research is worth sharing
despite the risk for two reasons. First, by explor-
ing this type of attack in this venue, allows others
to understand it and build research off to defend
against it. Second, we have provided a simple ini-
tial defense which requires no retraining of either
the classifier or detector. This defense can be easily
implemented by those already using the systems.
Thus, we believe the learning benefits outweigh the
risks.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial exam-
ples.

Rong Bao, Rui Zheng, Liang Ding, Qi Zhang, and
Dacheng Tao. 2023. CASN:class-aware score net-
work for textual adversarial detection. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 671–687, Toronto, Canada. Association
for Computational Linguistics.

Chuyun Deng, Mingxuan Liu, Yue Qin, Jia Zhang,
Hai-Xin Duan, and Donghong Sun. 2022. ValCAT:
Variable-length contextualized adversarial transfor-
mations using encoder-decoder language model. In

Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1735–1746, Seattle, United States. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1634–1647, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Brian Formento, Chuan Sheng Foo, Luu Anh Tuan, and
See Kiong Ng. 2023. Using punctuation as an ad-
versarial attack on deep learning-based NLP systems:
An empirical study. In Findings of the Association
for Computational Linguistics: EACL 2023, pages
1–34, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers.

SongYang Gao, Shihan Dou, Qi Zhang, Xuanjing
Huang, Jin Ma, and Ying Shan. 2023. On the univer-
sal adversarial perturbations for efficient data-free ad-
versarial detection. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 13573–
13581, Toronto, Canada. Association for Computa-
tional Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti,
and N. Asokan. 2018. All you need is "love": Evad-
ing hate speech detection. Proceedings of the 11th
ACM Workshop on Artificial Intelligence and Secu-
rity.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1520–1529, Flo-
rence, Italy. Association for Computational Linguis-
tics.

11702

http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1804.07998
https://doi.org/10.18653/v1/2023.acl-long.40
https://doi.org/10.18653/v1/2023.acl-long.40
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/1801.04354
https://doi.org/10.18653/v1/2023.findings-acl.857
https://doi.org/10.18653/v1/2023.findings-acl.857
https://doi.org/10.18653/v1/2023.findings-acl.857
http://arxiv.org/abs/2004.01970
http://arxiv.org/abs/2004.01970
http://arxiv.org/abs/2004.01970
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/P19-1147


Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yibin Lei, Yu Cao, Dianqi Li, Tianyi Zhou, Meng Fang,
and Mykola Pechenizkiy. 2022. Phrase-level textual
adversarial attack with label preservation. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 1095–1112, Seattle, United
States. Association for Computational Linguistics.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021a.
Contextualized perturbation for textual adversarial
attack. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5053–5069, Online. Association for
Computational Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial text
against real-world applications. Proceedings 2019
Network and Distributed System Security Symposium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Linyang Li, Demin Song, and Xipeng Qiu. 2023. Text
adversarial purification as defense against adversarial
attacks. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 338–350, Toronto,
Canada. Association for Computational Linguistics.

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiao-
qing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui
Hsieh. 2021b. Searching for an effective defender:
Benchmarking defense against adversarial word sub-
stitution. ArXiv, abs/2108.12777.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Edoardo Mosca, Shreyash Agarwal, Javier
Rando Ramírez, and Georg Groh. 2022. “that
is a suspicious reaction!”: Interpreting logits
variation to detect NLP adversarial attacks. In
Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7806–7816, Dublin, Ireland.
Association for Computational Linguistics.

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 171–186,
Online. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,
Zhiyuan Liu, and Maosong Sun. 2021a. Mind the
style of text! adversarial and backdoor attacks based
on text style transfer. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4569–4580, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yiwen Qi, Ning Xing, Jun Fu, and Wei Guan. 2021b.
Adaptive dynamic optimal control for triggered net-
worked switched systems under dual-ended denial-
of-service attacks. International Journal of Robust
and Nonlinear Control, 31(9):4397–4415.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In

11703

https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2023.acl-long.20
https://doi.org/10.18653/v1/2023.acl-long.20
https://doi.org/10.18653/v1/2023.acl-long.20
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/https://doi.org/10.1002/rnc.5485
https://doi.org/https://doi.org/10.1002/rnc.5485
https://doi.org/https://doi.org/10.1002/rnc.5485
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103


Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085–
1097, Florence, Italy. Association for Computational
Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Jonathan Rusert and Padmini Srinivasan. 2022. Don’t
sweat the small stuff, classify the rest: Sample shield-
ing to protect text classifiers against adversarial at-
tacks. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2716–2725, Seattle, United States.
Association for Computational Linguistics.

Sahar Sadrizadeh, Ljiljana Dolamic, and Pascal
Frossard. 2022. Block-sparse adversarial attack to
fool transformer-based text classifiers. In ICASSP
2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 7837–7841.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan,
Ruoxi Jia, Bo Li, and Jingjing Liu. 2020. In-
fobert: Improving robustness of language models
from an information theoretic perspective. CoRR,
abs/2010.02329.

Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, and
Bo Li. 2022. SemAttack: Natural textual attacks via
different semantic spaces. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 176–205, Seattle, United States. Association
for Computational Linguistics.

Xiaosen Wang, Yifeng Xiong, and Kun He. 2021. Ran-
domized substitution and vote for textual adversarial
example detection. ArXiv, abs/2109.05698.

Zhaoyang Wang, Zhiyue Liu, Xiaopeng Zheng, Qin-
liang Su, and Jiahai Wang. 2023. RMLM: A flex-
ible defense framework for proactively mitigating
word-level adversarial attacks. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2757–2774, Toronto, Canada. Association for Com-
putational Linguistics.

Shangyu Xie and Yuan Hong. 2022. Differentially pri-
vate instance encoding against privacy attacks. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies:
Student Research Workshop, pages 172–180, Hybrid:

Seattle, Washington + Online. Association for Com-
putational Linguistics.

Wenying Xu, Daniel W. C. Ho, Jie Zhong, and
Bo Chen. 2019. Event/self-triggered control for
leader-following consensus over unreliable network
with dos attacks. IEEE Transactions on Neural Net-
works and Learning Systems, 30(10):3137–3149.

Jiehang Zeng, Xiaoqing Zheng, Jianhan Xu, Linyang Li,
Liping Yuan, and Xuanjing Huang. 2021. Certified
robustness to text adversarial attacks by randomized
[mask]. ArXiv, abs/2105.03743.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In International Conference on Learning Representa-
tions.

11704

https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/2022.naacl-main.195
https://doi.org/10.18653/v1/2022.naacl-main.195
https://doi.org/10.18653/v1/2022.naacl-main.195
https://doi.org/10.18653/v1/2022.naacl-main.195
https://doi.org/10.1109/ICASSP43922.2022.9747475
https://doi.org/10.1109/ICASSP43922.2022.9747475
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2010.02329
http://arxiv.org/abs/2010.02329
http://arxiv.org/abs/2010.02329
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://doi.org/10.18653/v1/2023.acl-long.155
https://doi.org/10.18653/v1/2023.acl-long.155
https://doi.org/10.18653/v1/2023.acl-long.155
https://doi.org/10.18653/v1/2022.naacl-srw.22
https://doi.org/10.18653/v1/2022.naacl-srw.22
https://doi.org/10.1109/TNNLS.2018.2890119
https://doi.org/10.1109/TNNLS.2018.2890119
https://doi.org/10.1109/TNNLS.2018.2890119
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB


A Related Work

Here we expand on the area of adversarial text at-
tacks and attack detection since RedHerring Attack
builds off of previous research and targets detection
models.
Adversarial Attacks: Though adversarial text at-
tacks overlap in goals, there are attributes that di-
vide them. We focus on a few of those attributes
relevant to our attack.

First, the level of the attack is generally di-
vided into 4 categories: 1. Character-level, 2.
Word-level, 3. Phrase-level, 4. Sentence-level.
Character-level attacks make changes to the text
by modifying characters, often with the goal to
create unknown tokens. This includes replac-
ing characters with visually similar ones (Eger
et al., 2019), adding/removing whitespace (Grön-
dahl et al., 2018), or changing the character order
(Li et al., 2019). Word-level attacks replace words
with less recognized synonyms (from the classi-
fiers’ perspective). These attacks have leveraged
WordNet (Ren et al., 2019), Word Embeddings
(Hsieh et al., 2019), and Mask Language Mod-
els (MLMs) like BERT (Garg and Ramakrishnan,
2020; Li et al., 2020) to find good substitutions.
More recent word-level attacks replace multiple
words (or phrases) at once (Lei et al., 2022; Deng
et al., 2022). Sentence-level attacks rewrite texts
to cause classifiers to misclassify. Examples in-
clude leveraging Machine Translation (MT) (Iyyer
et al., 2018; Ribeiro et al., 2018) to find rewritten
texts which a classifier misclassifies or leverag-
ing NLG to change texts at the syntactic level (Qi
et al., 2021a). Our proposed attack, RedHerring,
is a word-level attacks. It differs from previous
research as it focuses on tricking the detector while
keeping the classifier correct, while previous re-
search focuses on tricking the classifier.

The second aspect in which attacks differ in
is level of knowledge available to the attacker.
White-box attacks have access to the targeted mod-
els’ weights and architecture (Wang et al., 2022;
Sadrizadeh et al., 2022). This allows attacks to
quickly find which words in an input text are being
used to classify correctly. Black-box attacks have
access only to the predicted label and probabilities
(or sometimes logits). This limits the attack as it
spends more time and queries to find the words
which should be replaced (Jin et al., 2020; For-
mento et al., 2023). Our proposed attack assumes
the black-box level of knowledge.

Attack Detection: Attack detection algorithms are
useful to detect an attack before classification so
that the classifier may ignore or pass the text to a
human. Most attack detection algorithms examine
how the classifier responds to changes in text to
help determine if an attack is occuring against that
classifier. RS&V (Wang et al., 2021), randomly
substitutes words with their synonyms at a chosen
rate. This occurs k times and the k variations of
the text are classified and a majority vote of the
label is taken. If the voted label differs from the
original classified label, then it is marked as adver-
sarial. WDR (Mosca et al., 2022) removes words
and calculates a score. The scores are given to a
classifier to determine if an attack is occuring (de-
scribed in more detail in Section 4). FGWS (Mozes
et al., 2021) replaces less frequent words with more
frequent synonyms and compares the classification
probabilities to determine an attack (described in
more detail in Section 4). CASN (Bao et al., 2023)
examines the gradient of the density data distri-
bution and then calculates the difference between
adversarial and normal samples through multiple
iterations to detect attacks. UAPAD (Gao et al.,
2023) utilize universal adversarial perturbations to
determine if a text was adversariialy modified or
not. In our work we focus on WDR, FGWS, and
UAPAD due to wide differences which help create
a solid representation of the detection algorithms.
Future work will extend attacks to the detection
methods leveraging randomness.

B Motivating Example 2

Consider a company that implements spam detec-
tion using AI text classifiers. Normally, this spam
detector does well on stopping spam. Next, con-
sider a malicious user which wants to bypass the
spam detector. They accomplish this by leveraging
some adversarial attack algorithm and are able to
bypass the spam detector. To combat users like
this, the company deploys an adversarial attack de-
tector, which also monitors texts. Now, the attack
detector could simply reject all texts it views as at-
tacks, however, this likely could result in too many
false positives and users could become frustrated.
Instead, when the attack detector labels a text as
an attack, it is flagged, and a human-in-the-loop
moderator double checks the content.

Now, the malicious user is unable to send spam,
even when modified by an adversarial attack algo-
rithm. One way the malicious user could freely

11705



Classifier Weight

A
G

Albert 0.2
RoBERTa 1.6

DistilBERT 0.5

R
T

Albert 0.2
RoBERTa 1.2

BERT 0.7
IM

D
B Albert 0.3

RoBERTa 1.9
DistilBERT 0.4

SS
T-

2 Albert 0.2
RoBERTa 1.3

DistilBERT 0.2

Table 9: UAP Delta Weights used for each
dataset/classifer.

send spam again, is to convince the company that
the attack detector is faulty. To do this, RedHer-
ring modifies the text instead. When this happens,
the classifier labels it as not spam, but the attack
detector labels it as an attack, so it is flagged for
a human moderator. The human moderator then
takes a look at the flagged content, as sees that it
is not spam and the classifier classified it correctly
as not spam, thus the human moderator approves
the content. Now, if this starts to occur very fre-
quently, the attack detector labeling a text as an
attack, but the classifier showing no sign of being
negatively affected, then the moderator(s) will be-
come less trusting of the detector. This can lead to
a) abandoning the detector all together (benefits the
malicious user) or b) retraining (or training a new)
attack detector (waste of time and money for the
company). Even in the second scenario, the attack
could continue and cause the company to abandon
attack detection altogether as the costs are not jus-
tified by the benefits. In the end, it would leave
classifiers again more vulnerable to attacks than
before and lose security against spam messages.

C UAPAD Weights

For reproducibility, Table 9 contains the UAPAD
Delta weights for each dataset/classifier combina-
tion.

D Dataset Statistics

Table 10 contains the distributions of labels for the
test examples modified by RedHerring. As can be
observed, no one class is highly imbalanced against
another.

E Original Results

Table 11 contains the original classification and
detection results on the datasets with no attack oc-
curing.

F Human Study Instructions

The full instructions given to the human annotators
are given in Table 12. Annotators were asked to
label 5 sample texts to make sure they understood
the instructions. If any were labeled wrong, they
were given explanations before being asked to label
the full set of texts. Each annotator labeled 120
texts total and were compensated 20 USD for their
time.

G Defense Algorithm

Algorithm 1 contains the algorithm used to defend
a detector and classifier against RedHerring. For-
mally, let X be an input text. Also, let g(X) be
the attack detector and f(X) represent the text
classifier. Finally, let C be a confidence threshold
defined by the user. If g(X) predicts an attack,
(g(X) == ATTACK), then the algorithm checks
f(X)’s confidence (or probability) given to its pre-
dicted class. If f(X) > C, then the final prediction
is no attack. Otherwise, it is an attack. The results
for this defense can be found in Section 7.

Algorithm 1 Confidence Check
Input: X , C
Output: Detectpred ← {ATTACK, NOT}
Probpred ← f(X)
DetectX ← g(X)
if DetectX == ATTACK then

if Probpred > C then
Detectpred ← NOT

else
Detectpred ← ATTACK

end if
else

Detectpred ← NOT
end if

H Additional Defense Results

The graph for the defense with WDR, can be found
in Figure 3. The defense is described in Section 7.

I RedHerring Examples

We give examples of text modified by RedHerring
attack in Table 13. Though this is but a sampling,

11706



Rotten Tomatoes IMDB SST2 AG News
Pos/Neg Pos/Neg Pos/Neg World/Sports/Business/SciTech
533/467 503/497 428/444 268/274/205/253

Table 10: Distributions of labels for each dataset.

Original Accuracy
Classifier Acc. Detection Acc.

Classifier WDR FGWS UAPAD

A
G

Albert 94.2 86.1 81.9 90.4
RoBERTa 94.7 85.5 80.0 85.3
Distilbert 94.4 89.3 88.1 86.2

IM
D

B Albert 93.5 80.4 89.0 73.4
RoBERTa 95.1 87.5 92.1 87.4
Distilbert 92.0 90.6 86.5 69.5

R
T

Albert 84.8 54.8 76.4 68.7
RoBERTa 88.6 76.7 90.8 83.2

BERT 85.4 66.5 84.5 73.3

SS
T-

2 Albert 92.7 57.3 83.7 57
RoBERTa 94.0 74.3 91.1 84.2
Distilbert 55.7 57.0 48.7 60.4

Table 11: Results of the classifiers and detectors on the original test texts which have not been perturbed by
RedHerring. RH Target - indicates the target of RedHerring Attack

C

A
cc

ur
ac

y 
(W

D
R

)

0

25

50

75

100

0.4 0.6 0.8 1.0

Albert_RH RoBERTa_RH Distilbert_RH Albert_PWWS
RoBERTa_PWWS Distilbert_PWWS

Figure 3: Effect of C Values on detection accuracy for
the AG News dataset. The solid lines indicate the texts
perturbed by RedHerring, while the dashed ’- -’ lines
indicate the texts perturbed by an attack targeting the
classifiers (PWWS).

it helps provide motivation for RedHerring meet-
ing its third goal of keeping consistent meaning for
humans. We see that for the Rotten Tomatoes ex-
amples, RedHerring is able to add 1 word in many
cases to cause the detector to trigger. Futhermore,
these added words flow well in the context of the
text.

We also see that the confidence of the detector
varies in the texts as well from 0.52 to 0.94. The
classifier confidence for 3 out of 5 examples is
greater than 0.9. This also highlights results found
in the proposed defense section (Section 7). That
is, if the defense was applied with a C value of

0.9, then 3/5 would be classified correctly as non-
attacks.

11707



Instructions
Has this text been modified to trick the classifier to give the wrong label?

An attacker may modify text so that a classifier may incorrectly give the wrong label.

For example, "This movie is great!" may be changed to "This movie is gr8!" so the classifier cannot
determine the positive sentiment correctly.

Another example, "You deserve to die!" might be changed to "You don’t deserve to live!" so the
classifier cannot determine hatespeech.

More examples: "This movie is the worst I’ve seen!" -> "This movie is the wo rst I’ve seen!" "This
show is not too bad" -> "This show is n0t too bad!" "You are a horrible person" -> "You are a
heinous human" (Classifier may not be familiar with ’heinous’)

The attack detector analyzes the text to predict if it has been modified in such a way however the
detector is not infallible (it can make mistakes). It either indicates ’Attack’ or ’No attack’. The
attack detector analyzes the text to predict if it has been modified in such a way, however, the
detector is not infallible (it can make mistakes).

Using the classifier label and detector label, determine if the text has been modified by an attacker.

Table 12: Full Instructions given to human annotators.

Original Text Modified Text Class.
Conf.

Det.
Conf.

lovingly photographed in the manner of a golden
book sprung to life , stuart little 2 manages sweet-
ness largely without stickiness

lovingly photographed in the manner of a golden
book sprung to life, stuart little 2 manages sweet-
ness largely without any stickiness.

0.91 0.52

throws in enough clever and unexpected twists
to make the formula feel fresh.

throws in enough clever and unexpected twists
to make the formula feel more fresh.

0.93 0.80

exposing the ways we fool ourselves is one hour
photo’s real strength.

exposing the ways we fool ourselves - is one
hour photo’s real strength.

0.95 0.56

a dreadful day in irish history is given passionate
, if somewhat flawed , treatment .

a dreadful day in irish history is given passionate,
if somewhat heavily flawed, treatment.

0.58 0.94

the performances are immaculate , with roussil-
lon providing comic relief

the performances are generally immaculate, with
roussillon providing comic relief.

0.83 0.66

Table 13: Examples to illustrate adversarial texts generated by RedHerring on the Rotten Tomatoes dataset. Albert
is the target classifier and WDR the target detector. Words added are highlighted in red. Class. Conf. indicates
the probability of the classifier for the gold label and Det. Conf. indicates the probability of the detector for the
ATTACK label.

11708


