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Abstract

Early in training, LMs can behave like n-gram
models, but eventually, they often learn tree-
based syntactic rules and generalize hierarchi-
cally out of distribution (OOD). We study this
shift using controlled grammar-learning tasks:
question formation and tense inflection. We
find a model learns to generalize hierarchically
if its training data is complex—in particular,
if it includes center-embedded clauses, a spe-
cial syntactic structure. Under this definition,
complex data drives hierarchical rules, while
less complex data encourages shortcut learning
in the form of n-gram-like linear rules. Fur-
thermore, we find that a model uses rules to
generalize, whether hierarchical or linear, if
its training data is diverse—in particular, if it
includes many distinct syntax trees in the train-
ing set. Under this definition, diverse data pro-
motes stable rule learning, whereas less diverse
data promotes memorization of individual syn-
tactic sequences. Finally, intermediate diversity
and intermediate complexity form an unstable
regime, which is characterized by oscillatory
learning dynamics and inconsistent behaviors
across random seeds. These results highlight
the central role of training data in shaping gen-
eralization and explain why competing strate-
gies can lead to unstable outcomes.

1 Introduction

Early in training, LMs can behave like n-gram
models, relying on local heuristics without cap-
turing the deeper structure of language (Choshen
etal., 2022; Geirhos et al., 2020; Saphra and Lopez,
2018). However, they also exhibit breakthroughs
in generalization by suddenly shifting into more so-
phisticated behaviors (Choshen et al., 2022; Chen
et al., 2023; McCoy et al., 2020a). While previous
works attribute these advanced capabilities to archi-
tecture and training objectives (Ahuja et al., 2024;
McCoy et al., 2020a), we investigate how two key
data characteristics—complexity and diversity—
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influence training outcomes.'

To study when models favor latent structures
over surface heuristics, we focus on two controlled
grammar-learning tasks: question formation and
tense inflection (McCoy et al., 2020b). Each task
can be solved either by a linear rule, which corre-
sponds to an n-gram-like heuristic that operates on
the most recent noun or auxiliary, or by the hier-
archical rule, which reflects the correct syntactic
structure used to generate the data. In the training
and in-distribution (ID) data, sentences are con-
structed to be ambiguous, so both rules give the
correct answer. In the out-of-distribution (OOD)
data, this ambiguity is removed, and only the hier-
archical rule succeeds.

We illustrate the differences between rules in
Fig. 1, where the model inflects the main verb of
a sentence to agree with a subject’s noun. In the
n-gram-like linear rule (bottom right), the model
uses the nearest noun as the subject and fails when
a distractor noun appears in a prepositional phrase.
In the hierarchical case (fop right), the model uses a
latent tree structure to correctly identify the subject
and apply, enabling generalization to any grammat-
ical sentence. Prior work shows that transformer-
based LMs can shift from the linear heuristic to
the hierarchical rule when trained long enough, a
transition called structural grokking (Murty et al.,
2023), in parallel to the well-known shift from
memorization to generalization in classic grokking
(Power et al., 2022).

Building on this line of work (McCoy et al.,
2018, 2020a; Ahuja et al., 2024; Murty et al.,
2023), we study how training data properties shape
whether models adopt the hierarchical rule or de-
fault to the linear rule. We define data complexity
as the presence of center-embedded clauses, a syn-
tactic structure where the subject is interrupted by
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Figure 1: Data plays a critical role in generalization behaviors and training stability. Left: Along the data
diversity x-axis, low data diversity (as measured by variation in syntactic structure) leads the model to memorize
unreliable sample-specific patterns, whereas high data diversity promotes commitment to a general rule. Along the
data complexity y-axis, high data complexity (as measured by the proportion of center-embedded sentences) induces
the hierarchical rule, while simpler data (right-branching sentences) induces the surface-level linear rule. Mixing
these data types results in unstable OOD training behaviors. Upper Right: A model that captures hierarchical
structure of syntax can generalize grammatical rules OOD by correctly identifying the subject as the noun closest to
the root on the syntax tree graph. Lower Right: A model that uses the linear rule will treat the most recent noun as
the target verb’s subject and thereby fail to generalize to unseen sentence compositions.

a relative clause. Our experiments show that such
complex structures are the key driver of hierarchi-
cal OOD generalization; models trained without
them consistently fall back on shortcuts. This find-
ing echoes a classic claim in linguistics (Wexler,
1980) that center embeddings play a central role in
human syntax acquisition.

After identifying center embeddings as the driver
of hierarchical generalization, we next ask how
data composition influences rule competition dur-
ing training. Ahuja et al. (2024) showed that linear
and hierarchical rules can coexist and compete dur-
ing learning. We show that the outcome of this
competition depends on the training data. While in-
distribution accuracy is always stable across time
and consistent across seeds, OOD accuracy is often
unstable during training and inconsistent across
seeds. The two rules compete, and only runs that
fully commit to one rule—Ilinear or hierarchical—
exhibit stable OOD performance. These commit-
ments are determined by two data properties: com-
plexity (presence of center embeddings) and di-
versity (number of distinct syntax trees). We find
that commitment consistently occurs only under
both high complexity and high diversity, leading
to stable generalization. At intermediate levels of

either property, models fail to commit, resulting in

unstable training and inconsistent outcomes across

seeds. As summarized in Fig. 1, diversity promotes
general rules over memorization, while complexity
determines which rule is learned.

Our controlled synthetic settings allows us to pre-
cisely manipulate data properties and isolate their
effects on rule learning. The resulting insights ex-
tend beyond grammar learning: they highlight how
data complexity and diversity govern whether mod-
els rely on memorization, heuristics, or systematic
generalization. These dynamics connect to broader
themes in the study of grokking and training insta-
bility (Power et al., 2022; Ahuja et al., 2024), ran-
dom variation between training runs (Juneja et al.,
2022; Hu et al., 2023), and phase transitions in
neural networks (Schaeffer et al., 2023; Theunis-
sen et al., 2020). The mechanisms we identify in
a simplified domain may inform our understand-
ing of generalization in larger-scale models. Our
contribution can be summarized as follows:

* We show that data complexity—that is, center
embedding frequency—drives models to adopt
hierarchical syntax rather than n-gram heuristics
(Section 3).

* We find that models only achieve stable OOD
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performance when they commit to a general rule,
whether linear or hierarchical. Competing rules
lead to unstable training and inconsistent out-
comes across seeds (Section 4).

* We show that data diversity separates memo-
rization, instability, and generalization regimes
(Section 5).

2 Experimental Setup

The question formation and tense inflection tasks
were first proposed by Frank and Mathis (2007) and
Linzen et al. (2016) as canonical tests of language
modeling ability. We use existing synthetic datasets
for question formation from McCoy et al. (2018)
and tense inflection from McCoy et al. (2020a).

2.1 Question Formation Task

In the question formation (QF) task, the model
transforms a declarative sentence into a question
by moving the main auxiliary verb (such as does in
does move) to the front. Our training data (based
on McCoy et al. (2018)) permits two strategies for
choosing which verb to move: (1) a linear rule that
moves the first auxiliary verb (Fig. 1 top right),
or (2) a hierarchical rule—the correct rule in En-
glish grammar—based on the sentence’s syntax
tree (Fig. 1 bottom right), which places the main
auxiliary verb above other verbs.

Examples of each rule are provided in Table 1.
The first example is considered ambiguous because
the hierarchical and linear rules produce the same
correct outcome. In contrast, the second example
is unambiguous because only the hierarchical rule
produces the correct outcome. The training and
in-distribution test data contain only ambiguous
samples, while the OOD generalization set includes
only unambiguous samples. Therefore, if a model
uses the hierarchical rule, it will achieve 100%
accuracy on both the in-distribution (ambiguous
questions) and OOD (unambiguous questions) sets.
Conversely, if a model uses the linear rule, it will
still score 100% accuracy on the in-distribution
set, but 0% on the OOD set. We therefore use
the model’s accuracy on the OOD set to measure
hierarchical generalization.

2.2 Tense Inflection Task

In the tense inflection (TI) task, the model trans-
forms a past-tense sentence into the present tense
by changing the inflection of its main verb. In En-
glish, past-tense verbs (walked) are not inflected

by plurality, so the model must identify the subject
and use its plurality to inflect the present-tense verb
(walki/walks). The TI training data again follows
either a hierarchical or linear rule for subject-verb
agreement (based on McCoy et al. (2020a)). The
linear rule inflects the verb based on the most recent
noun, while the hierarchical rule correctly inflects
according to the subject. As in the QF task, the
training and ID validation sets contain ambiguous
examples, whereas the OOD set contains unam-
biguous examples. In the ambiguous example from
Table 1, the subject noun zebra and the most recent
noun peacock share the same plurality, so either
rule produces the correct answer. In the OOD un-
ambiguous example, the subject and the most re-
cent noun differ in plurality and therefore only the
hierarchical rule produces the correct answer. Sim-
ilar to the QF task, we use the model’s main-verb
prediction accuracy on the OOD set as a metric for
hierarchical generalization.

2.3 Models, Data and Training

We run all experiments on the same 50 random
seeds using hyperparameter settings from the ex-
isting literature (Ahuja et al., 2024; Murty et al.,
2023). We use a decoder-only Transformer archi-
tecture where each layer has 8 heads with a 512-
dimensional embedding. QF models have 6 layers
and TI models have 4 layers. All models are trained
from scratch on a causal language modeling objec-
tive for 300K steps. We use the Adam optimizer
(Kingma and Ba, 2014), a learning rate of le-4,
and a linear decay schedule. We use a word-level
tokenizer with a vocabulary of size 72.

We use the original training, validation and OOD
test data proposed by McCoy et al. (2018) and Mc-
Coy et al. (2020a). Where we expand the train-
ing data for our data composition experiments, we
mimic the data generation process used for the orig-
inal QF and TT task. Specifically, the original TI
and QF data are generated with Context-Free Gram-
mars (CFGs) using a simplified set of grammatical
rules; we reuse the same CFG rules to create varia-
tions of the training data.

3 Data Complexity Determines the Rule

We begin by examining how the complexity of
training data influences the rules that models learn.
Our focus is on center-embedded sentences, a syn-
tactic structure that has long been used in linguis-
tics to characterize complexity. By ablating center
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Table 1: Examples from two grammar case studies. 7op: In the question formation task, the model moves the
main auxiliary verb to the front to form a question. Bottom: In the tense inflection task, the model inflects the main
verb from past to present tense, while respecting subject-verb agreement.

Dataset Rule Type Examples
. . Ambiguous Input: My unicorn does move the dogs that do wait.
Question Formation . .
Output: Does my unicorn move the dogs that do wait?
. Input: My unicorn who doesn’t sing does move.
Unambiguous . , . .
Linear Output: Doesn’t my unicorn who sing does move?
Hierarchical Output: Does my unicorn who doesn’t sing move?
Ambiguous Input: My zebra behind the peacock smiled.
Output: My zebra behind the peacock smiles.
Tense Inflection Unambiguous Input: My zebra behind the peacocks smiled.
Linear output: My zebra behind the peacocks smile.
Hierarchical output: My zebra behind the peacocks smiles.

Right Branching

mmemm

unicorn does  entertain her tyrannosaurus that doesn't smile.

Center Embedding

Tron o

who doesn't wait does  entertain her tyrannosaurus.

&=

unicorn

Figure 2: Sentence Examples. Left: Right-branching sentence example. The linear progression of the main
constituent is not interrupted by the relative clause. Right: Center-embedded sentence example. When the relative
clause modifies the subject, it interrupts the linear progression of the main constituent.

embeddings from training data, we test how data
complexity shapes which rule a model learns.

3.1 Center Embedding

Center embedding occurs when a clause is placed
recursively within another clause of the same type.
Fig. 2 illustrates two examples of center-embedded
sentences, where the embedded clause complicates
syntactic parsing by placing an additional subject
noun in between a verb and its own subject.
Without center embeddings, English syntax only
branches recursively to the right. In exclusively
right-branching structures, modifying clauses are
always appended at the end of the main clause,
maintaining linear flow. Therefore, linguists have
long argued that center embeddings play a cru-
cial role in grammar acquisition (Wexler, 1980)
and lead to tree-like syntactic structures (Chomsky,
2015). We find center embeddings, which are cru-
cial for human language acquisition, also lead an
LM to prefer hierarchical grammar rules.
Linguistic theory explains that center embed-
dings lead to hierarchical rule learning because
of their greater computational requirements. To
predict the next token, LMs must track syntactic
connections between words in the context. In right-
branching sentences, LMs can rely on linear prox-
imity to identify these connections; as shown in

Fig. 2, a simple bigram model suffices to capture
the subject-verb relationship for such sentences.
In contrast, center embeddings introduce relative
clauses of various lengths, making linear n-gram
models inefficient for capturing subject-verb re-
lationships. Because center embeddings are re-
cursive, they require the model to track multiple
subject-verb relationships: one for the main clause
and a separate one for the embedded relative clause.
In these cases, a tree structure is more efficient than
a linear one to model subject-verb relationships.

3.2 Question Formation Results

In the QF task (Section 2.1), the training data must
remain ambiguous between the linear rule (moving
the first auxiliary) and the hierarchical rule (mov-
ing the main auxiliary). Because center-embedded
sentences are not ambiguous, they cannot appear
in QF training examples. To expose the model to
such structures, McCoy et al. (2018) introduced
a secondary task: declaration copying. Like QF,
it begins with a declarative sentence, but instead
of transforming it, the model simply repeats it.
Only the primary QF task enforces ambiguity, so
declaration-copying examples may include center
embeddings. In our first set of experiments, we
modify the composition of the declaration-copying
subset to greate three new training sets: Quest
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Figure 3: Components of training data drive different generalization behaviors. Each dot represents one
model trained from a different random seed. Left: In QF, center-embedded sentences appear only in declaration-
copying data; exposure to these examples induces hierarchical generalization. Right: In TI, we vary the mix of
right-branching and center-embedded sentences and evaluate OOD performance on right-branching (orange) vs.

center-embedded (purple).

Only (no declaration-copying examples), Center
Embed (only center-embedded declarations), and
Right Branch (only right-branching declarations).
In all cases, the full set of QF training examples is
retained. We train models using 50 random seeds.

Regardless of training set composition, all mod-
els achieve 100% accuracy on the in-distribution
test data. However, their OOD performance dif-
fers sharply (Fig. 3, left). Models trained without
any center-embedded declaration-copying exam-
ples universally (across all 50 seeds) fail to learn
the hierarchical rule, even when right-branching
declarations are included. By contrast, models
trained with only center-embedded declaration-
copying examples strongly favor the hierarchical
rule. These results demonstrate that exposure to
center-embedded sentences is essential for induc-
ing hierarchical generalization.

3.3 Tense Inflection Results

In the TI task (Section 2.2), both right-branching

and center-embedded sentences are ambiguous as

long as the verb’s subject shares the same plurality
as the distractor noun between the subject and verb.

For right-branching sentences, the distractor occurs

in a prepositional phrase; for center-embedded sen-

tences, it occurs in a relative clause. We show two
concrete examples below.

1. Right Branching: The noun (cabinet) in the
prepositional phrase (fo the cabinet) acts as the
distractor for the TI task.

ID: The keys to the cabinets are here.
OOD: The keys to the cabinet are here.

2. Center Embedding: Either the subject or the
object (cabinet) in the relative clause (that un-

lock the cabinet) acts as the distractor.

ID: The keys that unlock the cabinets are here.

OOD: The keys that unlock the cabinet are here.

To test the effect of center embeddings on rule
learning, we create training sets that vary the ratio
of right-branching to center-embedded sentences
from 5% to 95%, while keeping the total number
of samples fixed.> For evaluation, we split the
original OOD test set (McCoy et al., 2020a) into
right-branching and center-embedded subsets. This
split ensures we can separately measure how well
models generalize on each kind of tree.

All seeds achieve perfect accuracy on the in-
distribution test set, but OOD performance depends
strongly on the proportion of center-embedded sen-
tences (Fig. 3, right). On the least complex training
dataset, where only 5% of sentences have center
embeddings, most seeds achieve below-random
performance on the right-branching OOD subset
and around random on the center-embedded subset.
As the proportion of center embeddings increases
(up to 50%), the majority of seeds succeed on both
OOD subsets, indicating that models have learned
the hierarchical rule. These findings confirm that
increasing data complexity through center embed-
dings promotes hierarchical generalization. In Ap-
pendix C, we further show that different subtypes
of center embedding vary in their effect on TI rules.

4 Rules stabilize training

Why do some runs fail to reliably generalize hierar-
chically even when trained on hierarchy-inducing
The original dataset also included a secondary past-tense

copying task, parallel to declaration copying in QF. We show
in App. E.1 that this task is not necessary and omit it here.
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Figure 4: Each training run either stabilizes in a simple OOD generalization rule or oscillates in its OOD
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use total variation to quantify the instability within one training run.

data? This section will show that these poor runs
are oscillating between competing rules; models
only stabilize OOD if they commit to a general rule,
whether hierarchical or linear. Under our training
conditions, some random seeds fail to stabilize re-
gardless of training set composition.

4.1 Instability During Training

Across all our model runs, training loss and ID per-
formance are both consistent across random seeds
and stable during training (See F for example train-
ing curves). Despite stable ID accuracy during
training, some random seeds lead to highly unstable
OOD accuracy accuracy oscillating during training.
We measure OOD instability across training time
using a standard metric from signal processing: to-
tal variation (TV). Specifically, we checkpoint the
model every 2K steps and measure the general-
ization accuracy Acc; at each checkpoint timestep
t € T. TV is defined as:

1
TV ="— |Acc; — Acey 1] (1)
L=

In Figure 4, we show the OOD performance of
four runs trained on different seeds - ranging from
highly stable OOD performance to high unstable
ones. We also report corresponding TV to demon-
strate that TV quantifies training instability.

4.2 Stability Ties to Rule Commitment

Why do some runs exhibit stable OOD perfor-
mances while others oscillate wildly? We now
demonstrate that regardless of training data mix,
training runs with stable OOD behavior always
commit to a universal systematic rule.

Setup:  We construct five variations of the train-
ing data using the following procedure. Each new
dataset contains 50K questions from the original
data and 50K declarations with a controllable ra-
tio between center-embedded (hierarchy-inducing)
and right-branching (linearity-inducing) sentences.

Our newly generated declarations maintain the orig-
inal dataset’s distribution of unique syntax trees.
Specifically, for each sentence in the original data,
we keep its CFG-based syntax tree but resample
words from the CFG’s vocabulary. We then train
models from 50 random seeds using the hyperpa-
rameters from Section 2.3. For each seed, we report
model OOD performance and TV in Figure 5.

Results:  As shown in Figure 5, regardless of the
data mix, the final OOD generalization accuracy
for all stable models is either 100% or 0%—that
is, they all commit to a universal systematic rule.
While either rule can be implemented by a stable
model, training data composition determines the
likelihood of training outcomes—whether a run sta-
bilizes and whether its systematic rule is hierarchi-
cal or linear. As seen previously, if the training data
is dominated by either center-embedded or right-
branching sentences, the resulting models usually
commit to the hierarchical or linear rule, respec-
tively. However, when the data is heterogeneous
(e.g., 10% of examples are linearity-inducing right-
branching sequences), the final generalization accu-
racy of stable runs is bimodally distributed across
random seeds, clustering around 100% or 0%. In
fact, the horseshoe-shaped curves in Figure 5 illus-
trate that the less stable a QF training run is, the
less universally the model applies its OOD rules.
(See Appendix E.2 for matching results on the TI
task.)

In summary, by mixing linear-inducing and
hierarchical-inducing data, we create heteroge-
neous training data mixture. When training on
heterogeneous data mixtures, more seeds lead to
unstable runs. However, even with heterogeneous
mixes, some runs can still stabilize by committing
to one of the competing rules.

5 Data Diversity Leads to General Rules

In the previous section, we showed that training
runs stabilize if the model commits to a system-
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Figure 5: Training stability vs. final generalization accuracy for QF task. We create heterogeneous training
data by mixing different proportions of linear-inducing data and hierarchical-inducing data. For each data mix,
we train models on 50 random seeds and for each seed, we examine training instability (z-axis) and final OOD
generalization performance (y-axis). Grey line indicates the smoothed average curve across all five datasets.

atic rule. We now extend this finding by showing
that data diversity promotes commitment to these
systematic universal rules. We find that training
can stabilize in two ways: with less diverse data,
models stabilize by memorizing training examples,
while with more diverse data, they stabilize by com-
mitting to systematic rules (studied in the previ-
ous section). At intermediate diversity levels—as
at intermediate complexity levels (Section 4.2)—
training becomes unstable.

5.1 Measuring Data Diversity

We define a dataset’s diversity according to the syn-
tactic similarity between its sentences. We measure
a sentence pair’s similarity by the tree-edit distance
(TED) between their respective latent syntax trees
(Chomsky, 2015). When two sentences share the
same syntax tree, we can transform one into the
other while only changing their leaf-node vocabu-
lary. For example, My unicorn loves her rabbit and
Your zebra eats some apples have different vocabu-
lary but identical syntax trees. We define a dataset’s
diversity as the number of unique syntactic trees
it contains, similar to diversity metrics previously
used in both natural language (Huang et al., 2023;
Gao and He, 2024; Ramirez et al., 2022) and code
(Song et al., 2024).

5.2 Diversity and stability

In Section 4, we showed that training stabilizes if
models commit to a systematic rule. Here, we show
that data diversity shapes training instability and
rule commitment. Specifically, we find that models
trained on less diverse data can stabilize through
memorization without committing to any system-
atic rules, whereas those trained on more diverse
data stabilize through systematic rules. Previously,
we found that which rule a model commits to de-

pends on whether the training set is dominated by
hierarchy-inducing data or linearity-inducing data,
so we will analyze these two settings separately.

Hierarchy-inducing data To study the effect of
diversity in hierarchy-inducing settings, we con-
struct multiple training sets with varying levels of
syntactic diversity. Each set contains SOK question
samples and 50K center-embedded declarations.
We control diversity by changing the number of
unique syntactic trees in the declarations. For each
dataset, we train 50 random seeds and measure in-
stability using total variation (Section 4.1). We also
report a rule commitment ratio: the proportion of
runs achieving OOD accuracy either above 95% or
below 5%, which both indicate that the model has
committed to a systematic rule.

Figure 6 (left) shows three distinct regimes. At
low diversity (diversity < 5), models enter the
memorization regime: training is stable, but they
fail to commit to a rule. In Appendix G.1, we
confirm that these memorizing models apply the
hierarchical rule to syntactic structures seen during
training, but cannot extrapolate to unseen structures.
At high diversity (at least 50 unique trees), mod-
els enter the hierarchical generalization regime,
where training reliably stabilizes by committing
to the hierarchical rule. Between these extremes
lies an unstable regime (5-20 unique trees), where
the data is too diverse to memorize but not diverse
enough to teach a universal rule, leading to oscil-
lating OOD curves.

Linearity-inducing data Unlike the hierarchy-
inducing setting, linearity-inducing data (right-
branching sentences) permits little syntactic varia-
tion: the auxiliary always follows the subject noun,
leaving no natural way to increase diversity. In-
stead, we build on a mix of 99% right-branching
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Figure 6: Effect of data diversity on training stability and rule commitment. The x-axis measures syntactic
diversity as the number of unique syntax trees in the training set (Section XX). The left y-axis shows training
instability, measured with total variation (Section 4.1). The right y-axis shows the rule commitment ratio, defined
as the proportion of 50 training seeds that achieve OOD accuracy either above 95% or below 5%, indicating
commitment to a systematic rule. Left: hierarchy-inducing data; Right: linearity-inducing data, where diversity
is varied through the small fraction of hierarchical examples. In both settings, low diversity leads to stable
memorization, intermediate diversity to instability, and high diversity to stable rule commitment.

and 1% center-embedded data, which we find reli-
ably induces the linear rule. Keeping this mixture
ratio, we control diversity by varying the syntactic
structures of the center-embedded sentences. As
in the hierarchy-inducing setting, we use sets of
50K questions and 50K declarations and measure
training instability and rule commitment as before.

Figure 6 (right) shows that the same three
regimes appear in the linearity-inducing case. At
low diversity, models memorize familiar syntactic
structures without committing to a rule. At inter-
mediate diversity, training becomes unstable; mem-
orization is no longer possible but the signal is too
weak for to induce a systematic generalization rule.
At high diversity, models stabilize in the linear gen-
eralization regime, committing to the linear rule.
This mirrors the U-shaped pattern observed with
hierarchy-inducing data, confirming that syntactic
diversity is essential for systematic generalization—
regardless of which rule is preferred.

6 Related Work
See App. A for a more detailed literature review.

Syntax and Hierarchical Generalization Mc-
Coy et al. (2018) first used the question forma-
tion task to study hierarchical generalization in
neural networks, showing that attention mecha-
nisms improved generalization performance in re-
current neural networks (RNNs). Later, McCoy
et al. (2020a) found that tree-structured architec-
tures consistently induce hierarchical generaliza-
tion. Petty and Frank (2021) and Mueller et al.
(2022) further concluded that transformers tend to

generalize linearly. This view was challenged by
Murty et al. (2023), who attributed their results
to insufficient training: decoder-only transform-
ers can generalize hierarchically, but only after
in-distribution performance has plateaued. They
named this transition from surface-level heuristics
to hierarchical generalization structural grokking.
Expanding on their findings, Ahuja et al. (2024)
showed that models only generalize hierarchically
when trained on a language modeling objective. All
of this prior work attributed hierarchical inductive
bias to model architecture or objective, whereas our
study highlights the impact of data. While previous
work observed some inconsistency across seeds
(McCoy et al., 2018, 2020b), we characterize this
random variation more specifically.

Training Dynamics and Grokking During
grokking, a neural network generalizes to a test set
long after it has overfitted to its training data. Power
et al. (2022) first observed this phenomenon in sim-
ple arithmetic tasks. This classic grokking is dif-
ferent from our main focus of structural grokking
(Murty et al., 2023). In classic grokking, the model
transitions from memorization to generalization,
allowing it to achieve non-trivial performance on
unseen data from the same distribution as the train
set. In structural grokking, a model transitions from
the simple linear rule to the hierarchical rule, allow-
ing non-trivial performance on OOD data. How-
ever, our findings also relate to classic grokking by
connecting data diversity to memorization.

Zhu et al. (2024) studied the role of data and
found that grokking only occurs when training set
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is sufficiently large, and thus more diverse. Berlot-
Attwell et al. (2023) studied how data diversity
leads to OOD compositional generalization in mul-
timodal models and Lubana et al. (2024) showed
that diversity also induces compositional behav-
iors late in LM training. Liu et al. (2022) showed
grokking can be induced by forcing a specific
weight norm, a measurement of model—though
not data—complexity. Huang et al. (2024) and
Varma et al. (2023) have shown that different cir-
cuits compete during training and that different
data and model sizes lead to different competition
and training dynamics. Competition also shapes
other phase transitions, such as transient in-context
learning (Park et al., 2024).

Random Variation Although choices like hy-
perparameters, architecture, and optimizer all
shape model outcomes, training remains inherently
stochastic. Models are sensitive to random initial-
ization and the order of training examples (Dodge
et al., 2020; Zhou et al., 2020; D’ Amour et al.,
2022; Naik et al., 2018; Sellam et al., 2021; Juneja
et al., 2022). On text classification tasks, Zhou
et al. (2020) observed OOD variability even late in
training. We investigate the source of these train-
ing inconsistencies and link them more precisely
to characteristics of the training data.

7 Discussion and Conclusions

By exploring the role of data in OOD generaliza-
tion rules, we have also revealed which settings ren-
der outcomes unpredictable. Complex data induces
more complex rules, but a mix of complex and sim-
ple examples leads to instability and inconsistency.
Likewise, higher data diversity favors universal
generalization rules over example memorization,
but intermediate diversity leads to instability and
inconsistency. These findings have implications
across machine learning and linguistics.

Inconsistent behavior across seeds. While vari-
ation in model error is often treated as unimodal
Gaussian noise in the theoretical literature (Lak-
shminarayanan et al., 2016), our findings suggest
that errors may only be distributed unimodally for
a given compositional solution. Our work joins the
growing literature that suggests random variation
can create clusters of OOD behaviors. Previously,
clusters were seen in text classification heuristics
(Juneja et al., 2022) and training dynamics (Hu
et al., 2023). In our case, OOD accuracy is clearly

bimodal only when we exclude unstable training
runs. We suggest that research on variation in train-
ing consider training stability in the future, which
may expose clustered solutions.

Implications for formal linguistics. In debates
about the poverty of the stimulus, linguists have
extensively studied the question of what data is
necessary and sufficient to learn grammatical rules
(McCoy et al., 2018; Berwick et al., 2011). In
particular, Wexler (1980) argued that all English
syntactic rules are learnable given “degree 2” data:
sentences with only one embedded clause nested
within another clause. Our center embedding re-
sults confirm that without a stronger architectural
inductive bias—the very subject of the poverty of
the stimulus debate—degree 1 data alone cannot
induce a preference for hierarchical structure. How-
ever, our work also supports the position of Light-
foot (1989) that lower degree data is adequate for
a child to learn a specific rule if they are given
sufficiently rich data outside of that rule: the LM
extrapolates from degree-1 QF examples if it has
seen enough degree-2 declaration examples to in-
duce a hierarchical bias.

Grokking, instability, and latent structure.
Classic grokking (Power et al., 2022) is different
from structural grokking. While the latter entails a
transition between generalization rules, the former
entails a transition from memorization to general-
ization. Our findings clarify both scenarios.

Structural grokking is produced by competition
between linear- and hierarchical-inducing training
subsets. Without competing subsets, the model im-
mediately learns either the linear or the hierarchical
rule without a gradual transition. When these rules
compete, training is unstable, leaving an opening
for delayed hierarchical generalization. Our study
of data diversity has similar implications for classic
grokking, where the competition is between memo-
rized heuristics and the systematic rules required to
efficiently model diverse training data. Yet again,
while a strict memorization regime is relatively sta-
ble, intermediate diversity is unstable, leading to
potential grokking dynamics.

In a sense, memorization is just another rule to
capture the training distribution. This framework
unifies the grokking literature with other phase tran-
sitions such as emergence (Schaeffer et al., 2023)
and benign interpolation (Theunissen et al., 2020).
Future work could develop this unified theory of
the effects of data diversity and complexity.
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Limitations

Our work leverages synthetic controlled settings
that are common in the language model analysis
literature. These findings, like other prominent
results in grokking and training dynamics, may not
generalize to larger scale or multitask settings.
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A Related Work Extended

A.1 Syntax and Hierarchical Generalization

While works mentioned in Section 6 focused on
models trained from scratch, another line of re-
search examined the inductive bias of pretrained
models. Mueller et al. (2024); Mueller and Linzen
(2023) pretrained transformers on text corpora such
as Wikipedia and CHILDES (MacWhinney, 2014)
before fine-tuning them on the question formation
task. They found that exposure to large amounts
of natural language data enables transformers to
generalize hierarchically.

Instead of using the question formation task as
a probe, Hewitt and Manning (2019); Murty et al.
(2022) directly interpreted model’s internal repre-
sentation to understand whether transformers con-
strain their computations to to follow tree-structure
patterns. Hewitt and Manning (2019) demonstrated
that the syntax tress are embedded in model’s rep-
resentation space. Similarly, Murty et al. (2022)
projects transformers into a tree-structured network,
and showed that transformers become more tree-
like over the course of training on language data.

Papadimitriou and Jurafsky (2023, 2020) and
Mueller et al. (2022) also studied how pretraining
data could introduce an inductive bias in language
acquisition. Papadimitriou and Jurafsky (2023)
specifically identified that by pretraining models on
data with a recursive structure their performance
when later finetuning them on natural language.
This finding is closely related to our conclusions
around the importance of recursive center embed-
dings.

A.2 Random Variation

Specific training choices, such as hyperparameters,
are crucial to model outcomes. However, even
when controlling for these factors, training ma-
chine learning models remains inherently stochas-
tic—models can be sensitive to random initializa-
tion and the order of training examples. Zhou et al.
(2020); D’ Amour et al. (2022); Naik et al. (2018)
reported significant performance differences across
model checkpoints on various analysis and stress
test sets. Zhou et al. (2020) further found that in-
stability extends throughout the training curve, not
just in final outcomes. To investigate the source of
this inconsistency, Dodge et al. (2020) compared
the effects of weight initialization and data order,
concluding that both factors contribute equally to
variations in out-of-sample performance.

Similarly, Sellam et al. (2021) found that repeat-
ing the pre-training process on BERT models can
result in significantly different performances on
downstream tasks. To promote more robust experi-
mental testing, they introduced a set of 25 BERT-
BASE checkpoints to ensure that experimental con-
clusions are not influenced by artifacts, such as
specific instances of the model. In this work, we
also observe training inconsistencies across runs
on OOD data, both during training and at conver-
gence. Unlike prior studies that focus on implica-
tions of random variations on experimental design,
we study the source of training inconsistencies and
link these inconsistencies to simplicity bias and the
characteristics of the training data.

A.3 Simplicity Bias

Models often favor simpler functions early in train-
ing, a phenomenon known as simplicity bias (Her-
mann and Lampinen, 2020), which is also common
in LMs. Choshen et al. (2022) found that early LMs
behave like n-gram models, and Saphra and Lopez
(2019) observed that early LMs learn simplified ver-
sions of the language modeling task. McCoy et al.
(2019) showed that even fully trained models can
rely on simple heuristics, like lexical overlap, to
perform well on Natural Language Inference (NLI)
tasks. Chen et al. (2023) further explored the con-
nection between training dynamics and simplicity
bias, showing that simpler functions learned early
on can continue to influence fully trained models,
and mitigating this bias can have long-term effects
on training outcomes.

Phase transitions have been identified as markers
of shifts from simplistic heuristics to more complex
model behavior, often triggered by the amount of
training data or model size. In language models,
Olsson et al. (2022) showed that the emergence of
induction heads in autoregressive models is linked
to handling longer context sizes and in-context
learning. Similar phase transitions have been stud-
ied in non-language domains, such as algorithmic
tasks (Power et al., 2022; Merrill et al., 2023) and
arithmetic tasks (Nanda et al., 2023; Barak et al.,
2022).

In the context of hierarchical generalization,
Ahuja et al. (2024) used a Bayesian approach to
analyze the simplicity of hierarchical versus linear
rules in modeling English syntax. They argued that
transformers favor the hierarchical rule because it is
simpler than the linear rule. However, their model
fails to explain (1) why learning the hierarchical
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Figure 7: Components of the original QF and T1I training data. Left: QF training data contains samples of two
tasks types: question formation and declaration copying. We break down samples in the declaration copying task
by branching type. We also breakdown center-embedded sentences based on whether the main subject serves the
subject or object in the embedded clause. Right: TI training data also contains samples of two task types: tense
inflection and past tense copying. Similar to QF, we breakdown tense inflection samples by branching types, and
breakdown center-embedded sentences in the tense inflection samples by subject/object type.

rule is delayed (i.e., after learning the linear rule)
and (2) why hierarchical generalization is inconsis-
tent across runs. In this work, we offer a different
perspective, showing that a model’s simplicity bias
towards either rule is driven by the characteristics
of the training data.

B Training Data Samples

B.1 Question Formation

We use the term declarations to refer to the dec-

laration copying task and questions refer to the

question formation task. Here are two examples

randomly taken from the training data:

e Declaration Example: our zebra doesn’t
applaud the unicorn decl our zebra
doesn’t applaud the unicorn .

* Question Example: some unicorns do move .
quest do some unicorns move ?

Both tasks begin with an input declarative sen-
tence, followed by a task indicator token (decl or
quest), and end with the output. During training,
the entire sequence is used in the causal language
modeling objective. The ID validation set and the
OOD generalization set only contain question for-
mation samples. In Figure 7 (left), we show a
breakdown of two task types in QF training data.

B.2 Tense Inflection

e Past Example: our peacocks above our
walruses amused your zebras PAST our
peacocks above our walruses amused your
zebras .

* Present Example: your unicorns that our
xylophones comforted swam PRESENT
your unicorns that our xylophones
comfort swim .

The tense inflection task is indicate by the PRESENT
token. The secondary task only requires repeating
the given sentence, which is always in the past
tense, and the copying task is marked by the PAST
token. In Appendix E.1, show that the past-tense
copying task is not necessary.

C Further Partitions on
Center-Embedded Sentences

C.1 Two Subtypes of Center-Embedded
Sentences

In Section 3, we showed that center-embedded sen-
tences drive hierarchical generalization in both the
QF and TI tasks. Here, we further partition center-
embedded sentences based on the syntactic role
of the main subject (i.e., the subject of the main
clause) within the modifying clause. Specifically,
we classify them into two types:

1. Subject-type: The main subject serves as
the subject within the clause.
Example: The keys that unlock the cabinet
are on the table.

2. Object-type: The main subject serves as the
object within the clause.
Example: The keys that the bear uses are on
the table.

This partition is motivated by their distinct
subject-verb dependency patterns. In subject-type
sentences, both the main verb (from the main
clause) and the embedded verb (from the relative
clause) depend on the main subject. In contrast,
object-type sentences exhibit a nested subject-verb
structure. Our goal is to investigate whether dif-
ferences in subject-verb dependency patterns in-
fluence the model’s preference for the hierarchical
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Figure 8: Both subtypes of center-embedded sentences induce hierarchical generalization in QF. We train
models on datasets containing different ratios of object-type v.s. subject-type center-embedded sentences. We then
evaluate on models on two OOD generalization set, one containing unambiguous object-type center-embedded
sentences and the other unambiguous subject-type center-embedded sentences.
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Figure 9: Subject-type center-embedded sentences gives a stronger bias towards hierarchical generalization
in TI. We train models on datasets containing different ratios of object-type v.s. subject-type center-embedded
sentences. We then evaluate on models on three OOD generalization set, one containing unambiguous object-type
center-embedded sentences, one unambiguous subject-type center-embedded sentences, and one unambiguous

right-branching sentences.

rule.

C.2 QF Task Results

The original QF training data contains roughly
equal amount of two subtypes of center-embedded
declarations, shown in Figure 7 (left). We investi-
gate whether the two subtypes of center-embedded
sentences differentially influence the model’s pref-
erence for the hierarchical rule in the QF task.
For all training data variants, we fix 50K ques-
tion formation samples and 50K declaration copy-
ing samples, with the latter containing only center-
embedded sentences but varying the ratio between
the two subtypes. To analyze generalization behav-
ior on a more granular level, we partition the gener-
alization set (composed solely of center-embedded
sentences) into the two subtypes as well. Models
are trained on 30 random seeds, and results are
shown in Figure 8. Regardless of the data mix,
the model consistently favors the hierarchical rule
across both partitions of the generalization set. This

suggests that, for question formation, both subtypes
of center-embedded sentences equally contribute
to the model’s ability to identify the main auxiliary.

C.3 TI Task Results

The original TI training data contains almost twice
amount of subject-type center-embedded sentences
than object-type ones, shown in Figure 7 (left).
We repeat a similar experiment for the TI task,
fixing the total number of tense inflection sam-
ples to 100K. As shown in Section 3.3, models
exhibit the strongest hierarchical generalization
when trained on primarily center-embedded sen-
tences. Therefore, in the following data variants,
99% of the samples are center-embedded sentences,
with the remaining 1% being right-branching sen-
tences. Within the center-embedded samples, we
vary the ratio between the two subtypes. To eval-
uate generalization, we split the generalization
set into three groups: the two subtypes of center-
embedded sentences and right-branching sentences.
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Models trained on 30 random seeds show that,
across all three generalization sets, accuracy is posi-
tively correlated with the proportion of subject-type
center-embedded sentences (Figure 9). However,
even when models are trained predominantly on
object-type center-embedded sentences (teal vio-
lins in Figure 9), they still show a clear preference
toward hierarchical generalization. Thus, while
both subtypes drive hierarchical generalization in
TI, subject-type center-embedded sentences have a
stronger effect.

D Varying Data Ratios for Question
Formation
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Figure 10: Hierarchical generalization in QF is sensitive
to compositions of declaration-copying samples.

Data composition details We construct varia-
tions of the training data using the following pro-
cedure. Each new dataset contains 50K questions
(reused from the original data) and 50K declara-
tions, where we control the ratio between center-
embedded and right-branching sentences. These
datasets are used for the experiments in Section 4.2.
To generate additional declarations, we keep the
distribution of the unique syntax structures in orig-
inal dataset. Specifically, for each sentence in the
original data, we extract the syntax tree using the
CGeF rules and resample words from the vocabulary
to create new sentence samples.

Sensitivity to data compositions We use the five
datasets above to examine how different mix ra-
tios affect a model’s preference towards the hierar-
chical generalization. The median generalization
accuracy, along with error bars representing the
35th and 65th percentiles, is shown in Figure 10.
First, note that there is a sharp performance drop
between the blue bar and the right-most orange
bar. This sharp transition indicates that mixing

in as little as 1% of right-branching declarations
significantly reduces the model’s likelihood of gen-
eralizing hierarchically. Interestingly, when the
dataset is predominantly right-branching declara-
tions, models consistently achieve 0% generaliza-
tion accuracy, indicating a strong preference for the
linear rule across all training runs. However, note
that there is another sharp transition between the
green bar and the left-most orange bar. This tran-
sition indicates that as soon as we remove the 1%
of center-embedded sentences, the model fails to
learn either the linear rule or the hierarchical rule.
As a result, the generalization accuracy is close to
random guess (~ 25%). This transition is closely
studied in Section 5.1, where we examine how data
diversity leads to rule commitment.
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Figure 11: Past-copy task is not necessary to induce
hierarchical generalization in TL.

Additional Analysis for Section 4.2 Figure 12
shows the relationship between data homogene-
ity and training stability. When the training data is
dominated by either linearity-inducing (99% linear)
or hierarchy-inducing (0% linear) examples, more
random seeds lead to stable OOD curves. When the
training data is a heterogeneous mix instead, poten-
tial rules compete, leading to a higher proportion
of unstable training runs.

E Additional Results on Tense Inflection

E.1 A Secondary Task is Not Necessary

In the original of TI training data (McCoy et al.,
2020a), a secondary task is also included to mimic
the question formation training data. In this sec-
ondary task, instead of transforming a sentence
from the past tense to the present tense, the model
simply needs to repeat it. For concrete examples,
see Appendix B. Figure 7 (right) shows a break-
down of the two tasks in the original TI training
data. In experiments conducted in Section 2.2, we
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Figure 12: Training is unstable when different sub-
sets of data compete. Balanced mixtures of right-
branching and center-embedded sentences have higher
total variation than mixtures dominated by one or the
other subset.

have eliminated the used of this secondary task be-
cause center-embedded sentences can be included
in the tense inflection training samples without vi-
olating the ambiguity requirement. Here, we use
the training data originally proposed by McCoy
et al. (2020a) to confirm that the use of secondary
task is indeed not necessary. Specifically, we re-
move all the past-tense-copying samples from the
original training data and train models on the tense-
inflection task only. We evaluate the model’s gener-
alization performance on two OOD set containing
unambiguous right-branching and unambiguous
center-embedded sentences, shown in Figure 11.
We can see that the model’s OOD performances
are the same with or without the secondary task.

E.2 Training Instability and Rule
Commitment for TI

We repeat the same total variation analysis in Sec-
tion 4 for the tense inflection task. We use the data
mixes from Section 3.3. Specifically, we include
only tense inflection samples and vary the ratio
between linearity-inducing (i.e., right-branching)
and hierarchy-inducing (i.e., center-embedded) sen-
tences. In Section 3.3, we have already con-
cluded that the hierarchical rule is always preferred
for center-embedded sentences regardless of data
mixes. For this reason, we are interested in exam-
ining the rule preference and training stability for
unambiguous right-branching sentences. In Fig-
ure 13 we visualize the relationship between total
variation and the final generalization accuracy on
unambiguous right-branching sentences. The quali-
tative behavior is similar to what we have observed

in QF (Section 4.2).

F Training Instability

In Figure 14, we visualize the training dynamics for
30 independent runs when trained on the original
QF data. Each run differs in both model initializa-
tion and data order. Notice that the training dynam-
ics for runs exhibit grokking behaviors: OOD gen-
eralization is delayed when compared to training
loss convergence and validation performance con-
vergence. These runs share a similar progression in
training loss, validation accuracy, and generaliza-
tion accuracy up until moment when the training
loss converges. Interestingly, after convergence on
training loss, all runs reach 0% on the generaliza-
tion set, indicating that the model strictly prefers
linear rules on OOD data. After that, models start
to achieve non-trivial performance in generaliza-
tion accuracy. However, for many runs the general-
ization accuracy does not increase monotonically.
Instead, we observe massive swings in generaliza-
tion accuracy during this training period as well as
large inconsistency across different seeds. Overall,
training is always stable for ID data while the per-
formance for OOD data is inconsistent across seeds.
We visualize runs with different of total variation
values in Figure 4.

G Data Diversity and Memorization
Patterns

G.1

We investigate model behavior when trained on
data with limited diversity. By analyzing a model’s
generalization accuracy across different syntactic
types, we aim to distinguish patterns indicative of
either memorization or generalization.

Memorization Patterns

Measuring data similarity Building on the di-
versity measure from Section 5.1, we now use Tree-
Edit Distance (TED) as a measure of sentence sim-
ilarity. As before, we first construct syntax trees us-
ing CFG rules, then calculate TED using the Zhang-
Shasha Tree-Edit Distance algorithm (Zhang and
Shasha, 1989). We define TED=0 for sentences
that share the same syntax structure but differ only
in vocabulary. This similarity measure allows us to
quantify, for each sample in the OOD generaliza-
tion set, the closest matching sentence type in the
training data. In the memorization regime, where
the model encounters only a few syntax types, we
suspect it cannot extrapolate rules to syntactically
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Figure 13: Total Variation v.s. final generalization accuracy for TI task. Similar to Figure 5, we observe the
same horseshoe shaped behavior between training stability and final generalization accuracy on right-branching

sentences for the TI task.

Training Dynamics for Question Formation
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Figure 14: Training dynamics on original QF data across 50 random seeds. Training loss (lower left) and
in-distribution validation accuracy (fop right) is stable during training and consistent across random seeds. In
contrast, the model’s performance on OOD generalization set (lower right) is both unstable during training and
inconsistent across seeds. The instability and inconsistency is most prominent during grokking (i.e., when training
loss has converged). Even with a learning rate decay (top right), the OOD behaviors for some seeds remain unstable

throughout training.

distinct OOD sentences. In contrast, with a more
diverse syntax exposure, rule extrapolation may en-
able the model to apply rules even to OOD sentence

types.

Experiment To verify our intuition about mem-
orization and generalization, we train models on
two variations of the QF data. In the first variation,
the declaration-copying task has data diversity set
to 1, meaning only one syntax type appears, and
we specifically choose one with center embedding.
In the second variation, the declaration-copying
task has diversity set to 5, with all 5 types con-
taining center embeddings. For both datasets, the
question-formation task remains unchanged, con-
sisting solely of right-branching sentences. For
the diversity=1 dataset, we calculate TED for each
unique syntax type in the OOD set against the sin-
gle syntax type in the declaration-copying task. For
the diversity=5 dataset, we compute TED between

each OOD sample and the five syntax types in
the declaration-copying task, taking the minimum.
This TED score provides a measure of similarity
between the OOD samples and those encountered
during training. Our goal is to determine, based
on training with these datasets, which OOD syntax
types the model applies the hierarchical rule to.

Result In Figure 15, we visualize the final gen-
eralization accuracy for each OOD syntax type
against its TED relative to the training data. When
trained on low-diversity data (Figure 15, left), gen-
eralization accuracy is negatively correlated with
TED. For syntax types seen in the declaration-
copying task (TED=0) and those similar to it, the
model applies the hierarchical rule. However, for
syntax types with high TED, the model’s behavior
is random (25%), indicating failure to follow any
rule. As data diversity increases slightly (Figure 15,
right), generalization accuracy no longer correlates
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Figure 15: OOD generalization vs. syntactic similarity to training data. At low data diversity, model memorizes
syntactic patterns and applies the hierarchical rule only on syntax structures similar to ones appeared in the training
data. At high data diversity, model can extrapolates the hierarchical rule and can apply it even on unseen syntax
structures that are dissimilar to training data.

with TED, suggesting that once the model begins
to extrapolate the hierarchical rule, it can apply this
rule to a wider range of OOD syntax types.
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