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Abstract

Automatically generated radiology reports of-
ten receive high scores from existing evalua-
tion metrics but fail to earn clinicians’ trust.
This gap reveals fundamental flaws in how cur-
rent metrics assess the quality of generated re-
ports. We rethink the design and evaluation of
these metrics and propose a clinically grounded
Meta-Evaluation framework. We define clini-
cally grounded criteria spanning clinical align-
ment and key metric capabilities, including
discrimination, robustness, and monotonicity.
Using a fine-grained dataset of ground truth
and rewritten report pairs annotated with error
types, clinical significance labels, and explana-
tions, we systematically evaluate existing met-
rics and reveal their limitations in interpreting
clinical semantics, such as failing to distinguish
clinically significant errors, over-penalizing
harmless variations, and lacking consistency
across error severity levels. Our framework of-
fers guidance for building more clinically reli-
able evaluation methods. Project link is https:
//ruochenli99.github.io/ReEvalMed/

1 Introduction

Radiology reports constitute a fundamental compo-
nent of clinical workflows, supporting diagnostic
reasoning, treatment planning, and follow-up deci-
sions (Hager et al., 2024; Vrdoljak et al., 2025).
The continued advancement of vision-language
models has enabled the direct generation of medical
reports from imaging data (Li et al., 2023; Hartsock
and Rasool, 2024; Chen et al., 2024). Although
these generated reports often attain high scores on
standard natural language processing (NLP) met-
rics, such as BLEU (Papineni et al., 2002) and
ROUGE-L (Lin, 2004), their clinical adoption has
been hindered by the lack of thorough clinical valid-
ity and reliability, which undermines clinician trust.
This reflects a critical gap where the conventional
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NLP metric scores fail to align with real-world clin-
ical utility (Zhang et al., 2025). High-scoring re-
ports can still contain factual inaccuracies, logical
inconsistencies, or omissions that could compro-
mise patient safety and care (Hartsock and Rasool,
2024; Wang et al., 2025).

This discrepancy motivates a fundamental re-
evaluation of how medical report generation is
evaluated (Jing et al., 2025; Wang et al., 2024).
Rather than relying exclusively on shallow match-
ing or general language similarity, evaluation met-
rics should also interpret clinical semantics, such
as clinically meaningful differences, and accurately
reflect the potential impact of errors on patient
care (Gu et al., 2025). Moreover, as metrics are
also used for training and benchmarking generative
models, a metric that fails to capture what clini-
cians value may falsely incentivize unsafe outputs
and thereby undermine confidence in these mod-
els. In Section 2, we analyze current LLM-based
metrics and highlight key limitations in both their
scoring design and evaluation methodology.

To address these issues, we propose a set of
clinically grounded evaluation criteria, detailed in
Section 3, that define what constitutes a clinically
reliable evaluation metric. These criteria encom-
pass two essential dimensions: (1) Alignment with
clinical needs, including accurate reporting of de-
scription, location, distance, and size; and (2) Core
metric capabilities, including discriminative ability,
robustness to clinically insignificant variations, and
monotonic sensitivity to increasing error severity.

Building upon these principles, we introduce a
Meta-Evaluation framework in Section 4 with 12
evaluation aspects that serve as probes to assess
whether a metric effectively captures clinical se-
mantics. We construct a dataset of ground truth
and rewritten reports (GT-ME pairs), annotated
with clinical significance labels and explanations
across diverse error types and evaluation aspects.
Our experiments reveal the strengths and limita-
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tions of widely used metrics, offering actionable
insights to guide the development of more reliable
and clinically aligned evaluation methods. Our
contributions are as follows:

* Rethinking LL.M-based metrics. Our de-
tailed analysis of current LLM-based evalua-
tion metrics reveals essential design flaws and
limitations in their evaluation methodology.

¢ Clinically grounded evaluation criteria.
We propose a set of evaluation criteria co-
developed with clinicians and aligned with
established standards organizations such as
the Fleischner Society (Farjah et al., 2022),
ACR Lung-RADS (Christensen et al., 2024),
and SCCT (Leipsic et al., 2014). These cri-
teria provide a solid definition of a clinically
meaningful metric, guiding both assessment
and future metric design.

* A unified Meta-Evaluation framework.
We introduce the first comprehensive Meta-
Evaluation framework for medical report met-
rics. This framework enables a more rigorous
evaluation by assessing a metric’s alignment
with clinical needs and its core capabilities.

* Empirical comparison of existing metrics.
Using our framework, we empirically bench-
mark widely used metrics. Our analysis re-
veals their strengths, limitations, and the un-
derlying factors influencing their performance,
offering insights for future development.

2 Rethinking Clinical Report Evaluation:
Limitations of Current Metrics

In clinical settings, radiology reports are essential
tools for clinicians, underpinning diagnostic rea-
soning and guiding medical decision-making. Re-
cent advances in vision-language models have led
to the development of systems capable of generat-
ing radiology reports directly from medical images
and contextual inputs, with notable examples in-
cluding MAIRA-2 (Bannur et al., 2024) and LLM-
CXR (Lee et al., 2023). Although generated reports
often perform well on standard metrics such as
BLEU (Papineni et al., 2002) and ROUGE-L (Lin,
2004), these scores are not indicative of clinical
reliability or utility in real-world decision-making.

This discrepancy stems from fundamental limita-
tions inherent in existing evaluation metrics: Con-
ventional approaches, such as BLEU and ROUGE-
L, which assess lexical overlap; RadGraph F1 (Jain
et al., 2021), which measures entity extraction and

alignment; and CheXbert-based classifiers (Smit
et al., 2020), which focus on predefined abnormal-
ities, primarily depend on surface-level matching.
These methods lack a deeper understanding of the
clinical meaning of the report and struggle to han-
dle the complexity of real-world clinical scenarios.
Recently, Large language model (LLM)-based met-
rics have demonstrated improvements over tradi-
tional surface-level matching approaches. Notably,
metrics such as GREEN (Ostmeier et al., 2024),
GEMA Score (Zhang et al., 2025), MRScore (Liu
etal., 2024b), and ReFINE (Liu et al., 2024a), lever-
age the six error categories defined in the ReXVal
dataset to construct structured scoring tables. These
scoring schemes not only capture clinically rele-
vant error types, but also integrate subjective as-
pects, including readability, grammaticality, and
coherence, which are commonly employed during
both model training and final score computation.
However, these metrics still exhibit limitations, re-
vealing a clear gap between their scoring criteria
and real-world clinical needs.

Coarse-grained scoring schemes. Many LLM-
based evaluation metrics rely on scoring tables
derived from the six error categories defined in
the ReXVal dataset: (a) false prediction, (b) omis-
sion, (c) incorrect location or position, (d) incorrect
severity, (e) mention of a comparison not present
in referenced impression, and (f) omission of com-
parison describing a change from previous study.

While these categories are clinically reasonable,
they remain coarse and incomplete. Several clin-
ically relevant aspects, such as size, distance, un-
certainty expression, internal contradictions, and
descriptive accuracy, are not adequately captured.
See Section 3 for details.

Questionable evaluation methodology. The
clinical validity of many recent evaluation metrics
is assessed by computing Pearson Correlations be-
tween the metric’s scores and clinician annotations
from the ReXVal dataset (Yu et al., 2023b). Specif-
ically, six radiologists annotated 50 ground-truth
and generated report sets (each set comprising one
ground-truth and four candidate reports), labeling
the number of errors per report across six prede-
fined categories. Each error was further classified
as clinically significant or insignificant. Metrics are
then validated by measuring the Pearson correlation
between their predicted scores and the aggregated
radiologist-annotated error counts, under the as-
sumption that higher correlations indicate stronger
alignment with human preferences.
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Clinical relevance Significant Insignificant

Error category 1 2 3 4 6 1 2 3 4 5 6
BERTScore reports  0.540 0.451 0.380 0.398 0.258 0.308 0.163 0.253 0.321 0.313 —0.044 0.270
BLEU reports 0.553 0.414 0.337 0.242 0.387 0.263 0.200 0.209 0.129 0.280 —0.034 —0.032
Radgraph reports 0.454 0.421 0.424 0.278 0.118 0.412 0.238 0.295 —0.026 —0.031 —0.057 0.216
S-Emb reports 0.321 0.443 0.227 0.297 0.434 0.124 0.199 0.210 0.072 —0.028 —0.002 0.128

Table 1: Average pairwise Pearson correlation of significant and insignificant error counts between six radiologists
in the ReXVal dataset. Radiologists were presented with a ground-truth report from MIMIC-CXR (Johnson et al.,
2019) and a generated report retrieved by a metric (e.g., BERTScore). They only labeled the number of clinically
significant and insignificant errors, without providing any explanation.

However, this assumption is problematic. As
shown in Table 1, we computed the average pair-
wise Pearson correlations among the six annota-
tors for each error category across candidate re-
ports. The resulting inter-annotator correlations are
notably not high, indicating a lack of consensus
among experts regarding the number and signif-
icance of errors. Consequently, a high Pearson
correlation with these radiologist annotations alone
is insufficient to demonstrate the clinical robustness
or practical reliability of a metric.

Insufficient alignment with clinical needs. In
clinical practice, radiology reports serve as a foun-
dation for diagnosis, treatment planning, and medi-
cal decision-making. Clinicians place a premium
on factual accuracy across critical aspects and are
particularly sensitive to major logical inconsisten-
cies or clinically significant errors. Meanwhile,
they are generally tolerant of minor deviations that
do not affect patient care, such as anatomically
irrelevant details or stylistic variations.

Although the ReXVal dataset distinguishes clin-
ically significant from insignificant errors, it only
provides final error counts per category as judged
by six annotators. Crucially, it does not document
the rationale for these judgments, i.e., why an er-
ror was considered significant or insignificant in
a given case. This lack of transparency prevents
follow-up metrics from learning or modeling the
clinical reasoning process behind these annotations.
As a result, scoring tables and metrics derived from
ReXVal are limited in their ability to truly align
with clinician decision-making criteria. They re-
flect annotation outcomes but not the underlying
clinical logic, making them insufficient for captur-
ing the nuanced judgment clinicians apply when
evaluating generated report.

3 What Defines a Good Metric for
Clinical Report Evaluation?

Based on consultations with clinicians and estab-
lished clinical guidelines, we identify two essen-
tial requirements for effective evaluation metrics.
These reflect the practical priorities clinicians con-
sider when interpreting radiology reports and serve
as foundational principles for metric design.

3.1 Alignment with Clinical Needs

Clinicians are the primary users of medical reports
and rely on them for downstream decisions such
as diagnosis and treatment planning. Accordingly,
what matters most is the accuracy and clinical relia-
bility of the content. A single clinically significant
error, such as misstating a tumor as 4 cm instead of
8 cm, can lead to entirely different clinical actions
and potentially cause serious medical harm. By
contrast, clinicians are generally tolerant of clini-
cally insignificant deviations, such as the inclusion
of benign incidental findings or the use of alter-
native but semantically equivalent expressions, as
long as these do not interfere with diagnostic rea-
soning or therapeutic decision-making. Motivated
by these practical considerations, we define a set of
clinically grounded evaluation criteria that reflect
the aspects clinicians prioritize when judging re-
port quality. They are listed in the leftmost column
of the first ten rows of Criteria Table 2.

Location refers to the precise anatomical site of
a lesion or abnormality (e.g., "right upper lobe").
Accurate localization is critical, as different sites of-
ten imply different etiologies and treatment strate-
gies. Incorrect location may lead to diagnostic
errors or inappropriate interventions.

Severity describes the extent or seriousness of
a finding (e.g., "mild," "severe"). Although par-
tially subjective, severity assessments inform clini-
cal urgency and therapeutic prioritization. Incorrect
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Aspect

Significant Error

Insignificant Error

GT: Multiple chronic appearing left-sided rib fractures

GT: New left retrocardiac opacity
ME: New opacity behind the heart on the left

Location : . o ;
ME: Multiple chronic appearing right rib fractures
Severity GT: Heart is mildly enlarged.
ME: Severely enlarged heart
Description GT: An irregular mass with spiculated margins
ME: A round, smooth mass
. GT: No evidence of pneumothorax
Negation .
ME: Pneumothorax is present
Modality GT: Refer to prior CT torso for full descriptive details

of esophageal abnormalities.

ME: Refer to prior abdominal ultrasound for details of

esophageal abnormalities

Size Distance

GT: Pulmonary edema has improved

Comparison
ME: Pulmonary edema has worsened

Internal
Contradiction

GT: The lungs are clear.

ME: The lungs are clear. There is consolidation in the

GT: Irregularly marginated 3-cm mass in the lingula
ME: Irregularly marginated 8-cm mass in the lingula

side

GT: Severe cardiomegaly
ME: Moderate-to-severe cardiomegaly

GT: Bibasilar patchy ill-defined opacities
ME: Bibasilar faint and poorly marginated
opacities

GT: No pleural effusion is seen

ME: There is no definite pleural effusion

GT: Consider chest CT for further evaluation

ME: CT can be considered for further
assessment

GT: ET tube within 1 cm of the carina
ME: ET tube within 0.9 cm of the carina

GT: No interval change in pleural effusion
ME: Pleural effusion is essentially unchanged

GT: No current evidence of larger pleural
effusions

ME: No current evidence of larger pleural

right base effusions. Minimal pleural effusions may exist
. GT: Whether this is pneumonia is radiographically GT: A possible infiltrate is suggested
Uncertainty indeterminate.
ME: Pneumonia exists ME: An infiltrate is likely present
. GT: A cavitary lesion, suggesting tuberculosis GT: A 3-cm mass
Terminology T . X
ME: A hole, suggesting infection ME: A 3-cm lesion
Noise GT: Irregularly marginated 3-cm mass in the lingula GT: subtle opacity may represent atelectasis
) has grown
ME: 3-cm lingula margins has been growing ME: subtble opaciti may represent atelectasi
irregularly
Stylistic GT: Bilateral left greater than right pleural effusion GT: lung... pulmonary edema... pleural
Variation effusions...

ME: Fluid accumulation on both sides of the chest,

more on the right

ME: pleural effusions... lung...pulmonary
edema...

Table 2: Examples of clinically significant and insignificant errors across evaluation aspects, shown as Ground Truth

(GT) and Meta-Evaluation Rewrite (ME) pairs.

severity may mislead clinicians regarding the risk
level of a condition.

Description captures the morphological charac-
teristics of a lesion, such as its size, shape, and edge
properties (e.g., "well-defined,""irregular"). These
features are key to differential diagnosis and malig-
nancy assessment, directly affecting downstream
clinical decisions.

Negation explicitly indicates the absence of cer-
tain abnormalities (e.g., "no pneumothorax"). Ac-
curate negation narrows the differential diagnosis.
Errors or omissions in negation may lead to serious
misdiagnoses.

Modality awareness assesses whether the re-
port and its recommendations are appropriate given
the imaging modality used (e.g., X-ray, CT). Each

modality has different resolution capabilities and
clinical applications; failure to account for modality
limitations may result in inappropriate conclusions.

Size and distance includes quantitative mea-
surements of lesions (e.g., "4.5 cm") and positional
relationships (e.g., "catheter tip 2 cm above the
carina"). Such information is crucial for tumor
staging, disease assessment, and device placement.
Misstatements may directly affect treatment deci-
sions and prognosis.

Comparison and progression captures tem-
poral changes by comparing current findings to
prior imaging (e.g., "increased," "unchanged"). It
helps evaluate disease progression and treatment re-
sponse, and guides follow-up planning. Omission
or misstatement may disrupt clinical continuity.
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I

Content
_—

Ground-Truth

Report Rewrite Report Significant Error

— “Irregularly 9 cm mass.”
%

LLM Insignificant Paraphrase
“Irregularly 3.5 cm mass.”

Irregularly 3 cm mass.

Rules

Criteria Table

Figure 1: Rewrite report contains a significant error or
an insignificant error.

Internal contradiction identifies logical incon-
sistencies within the same report (e.g., "clear lungs"
in one sentence and "left lung infiltrate" in another).
It undermines the credibility of the report and can
lead to clinical misjudgment or patient harm.

Medical terminology usage assesses whether
medical terms are used accurately and clearly.
While some stylistic variation is acceptable, re-
ports should avoid too ambiguous or misleading
language. Incorrect terminology can impede accu-
rate interpretation and decision-making.

Uncertainty expression involves the use of
hedging terms (e.g., "may," "possibly," "suspicious
for") to reflect diagnostic uncertainty. Properly
expressed uncertainty helps clinicians plan differ-
ential diagnoses and additional tests. Omitting or
misrepresenting uncertainty may result in overcon-
fident or incorrect decisions.

"nn

3.2 Metric Capabilities: Discrimination,
Robustness, and Monotonicity

Beyond alignment with clinical needs, a good met-
ric should also possess the following capabilities:

Discriminative ability. Reliable metrics should
be capable of distinguishing between clinically
acceptable and clinically dangerous reports. Re-
ports containing serious errors that could lead to
adverse clinical decisions should receive substan-
tially lower scores.

Robustness ability. Evaluation metrics should
exhibit robustness to clinically insignificant vari-
ations, meaning they should avoid penalizing re-
ports that differ from the reference only in superfi-
cial form, while remaining clinically equivalent in
content. Examples are provided in Table 2. Specif-
ically, Grammatical noise refers to grammatical
errors, typographical mistakes, or non-standard
phrasing that do not affect the underlying clinical

meaning. Stylistic variation refers to differences in
expression that do not alter the underlying clinical
meaning (e.g., reordering sentences of findings).
Such variation may arise from institutional tem-
plates, clinician-specific phrasing preferences, or
differences in information ordering.

Monotonicity. A well-calibrated metric should
exhibit a monotonic response to increasing clinical
error severity, with scores consistently decreasing
as errors become more serious. This property re-
flects the metric’s ability to not only detect errors,
but to differentiate their clinical significance.

4 Meta-Evaluation Framework: Dataset
Construction and Metric Assessment

4.1 Dataset and Metric

We evaluate metrics using two primary sources of
clinical data: the ReXVal dataset and the MIMIC-
CXR dataset. From MIMIC-CXR (Johnson et al.,
2019), we randomly sampled 50 radiology reports.
Additionally, we selected 20 information-rich re-
ports from ReXVal, as identified by experienced
radiologists with extensive clinical expertise.

The evaluation includes the following reference-
based metrics from the general NLP community:
BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang* et al., 2020), which primarily
assess surface-level lexical or semantic similarity.
AlignScore (Zha et al., 2023), a factuality-based
metric, assesses whether one sentence supports an-
other (entailment).

In addition to these general-purpose metrics, we
include several domain-specific metrics tailored
for medical report evaluation. RaTEScore (Zhao
et al., 2024) is a structured, entity-aware metric
specifically designed for medical report evaluation.
CheXbert-F1 (Smit et al., 2020) extracts 14 pre-
defined thoracic disease labels and classifies their
status. The final micro F1 score evaluates only ex-
act label matches. RadGraph-F1 (Jain et al., 2021)
converts free-text reports into structured graphs via
named entity recognition (NER) and relation ex-
traction (RE). GREEN (Ostmeier et al., 2024) is
an LLM-based metric that identifies and explains
clinically significant errors in generated reports.

4.2 Discriminative Ability and Robustness

4.2.1 Rewrite Report

We constructed a dataset of paired reports, each
consisting of a Ground Truth (GT) report and a
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Group Example
0 "should be repositioned" — "consideration should be given to repositioning"
1 "mild cardiomegaly” — "mild enlargement of the cardiac silhouette"
2 "right lower and left upper lobes" — "left lower and right middle lobes"
3 "No current evidence of pleural effusions, pulmonary edema, or pneumonia" — "consolidation in right

middle lobe; moderate right-sided pleural effusion; small left apical pneumothorax"

4 Report first states "The previous right internal jugular vein catheter was removed", then later fabricates

"malpositioned right internal jugular catheter"

Table 3: Examples of rewritten errors grouped by severity, where a higher group ID indicates greater severity.

Ground-Truth Report

i “Irregularly 3 cm mass.” Discriminative

Score
Significant Error ) Report
“Irregularly 9 cm mass. Metric
i Ground-Truth Report
i “Irregularly 3 cm mass.” Robustness
Score

Insignificant Paraphrase
“Irregularly 3.5 cm mass.”

Report
Metric

Figure 2: Discriminative Score and Robustness Score.

corresponding Meta-Evaluation Rewrite (ME), to
test whether metrics can distinguish clinically sig-
nificant from insignificant errors and remain robust
to clinically irrelevant variations.

We categorized the differences between GT and
ME into three primary error types. Omission: A
clinically relevant fact present in the GT is missing
in the ME. Fabrication: The ME introduces a
clinically relevant fact that is not present in the GT.
Inaccuracy: The same clinical fact is described
inconsistently between GT and ME.

For each evaluation aspect listed in the Criteria
Table 2, we prompted DeepSeek-R1 (Guo et al.,
2025) to rewrite the GT report by modifying only
one targeted aspect. The rewrites yield paired sam-
ples that contain either clinically significant or clin-
ically insignificant errors. For example, as shown
in Figure 1, under the Size/Distance aspect, an ex-
ample clinically significant inaccuracy could be:

GT: "Irregularly marginated 3 cm mass."

ME: "Irregularly marginated 9 cm mass."

For those clinically high-impact aspects: Lo-
cation, Severity, Description, and Comparison /
Progression, we generated 10 significant and 10
insignificant error pairs for each of the three error
types (omission, fabrication, inaccuracy). For the
remaining aspects, we randomly sampled across er-

ror types while ensuring that each aspect contained
10 significant and 10 insignificant pairs. In total,
the dataset comprises 400 expert-validated GT-ME
report pairs.

To preserve semantic fidelity and ensure isola-
tion of the targeted error, we retained substantial
contextual content in both GT and ME reports for
significant error pairs, ensuring that the introduced
change is the primary deviation. In contrast, for in-
significant error pairs, we intentionally reduced the
amount of surrounding context and kept only the
modified part when appropriate, to prevent metrics
from giving high scores just because the reports
look similar overall. All generated report pairs
were reviewed and validated by experienced clin-
icians to ensure consistency with real-world clini-
cal understanding and relevance, with explanations
provided alongside each pair.

4.2.2 Discriminative and Robustness Score

We applied multiple existing evaluation metrics to
all constructed report pairs. For each metric, we
separately computed the average scores for clini-
cally significant and clinically insignificant error
pairs, as shown in Figure 2. The Discriminative
Score is defined as the average score assigned to
clinically significant error pairs. Lower scores in-
dicate that the metric effectively penalizes critical
errors, reflecting strong discriminative ability. The
Robustness Score is defined as the average score as-
signed to clinically insignificant error pairs. Higher
scores suggest that the metric tolerates minor, clin-
ically irrelevant variations, indicating desirable ro-
bustness. Together, these two scores offer a com-
prehensive assessment of each metric’s capacity
to distinguish between clinically meaningful and
negligible errors. We further report confidence in-
tervals to present a more transparent view of each
metric’s consistency and variability.
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Error Severity Groups

Error Severity

Figure 3: Monotonicity evaluation using five error sever-
ity groups (Group 0—4), ranging from stylistic variations
to severe logical contradictions.

4.3 Test Monotonicity

To assess whether evaluation metrics exhibit mono-
tonic sensitivity to increasing error severity, we
conducted a controlled test using a subset of the
ReXVal dataset. We selected four GT reports and,
for each, constructed corresponding ME reports
with varying levels of error severity. These were
organized into five groups (Group 0—4), each con-
taining the same four GT-ME pairs, with severity
increasing incrementally from minor stylistic varia-
tions to severe logical contradictions. Examples for
each group are provided in Table 3, and the overall
grouping design is illustrated in Figure 3.

Group 0: Stylistic Variation (Clinically In-
significant). Contains purely stylistic or linguistic
changes that do not alter clinical meaning. Ex-
amples include hedging expressions, synonymous
reformulations, or reordering descriptive sentences.

Group 1: Minor Factual Errors (Clinically
Insignificant). Involves minor factual inaccura-
cies that are clinically negligible and do not affect
diagnostic interpretation or treatment decisions.

Group 2: Single Error (Clinically Significant).
Introduces a single clinically significant error that
may plausibly affect downstream clinical decisions.

Group 3: Multiple Errors (Clinically Signif-
icant). Introduces multiple (typically three) clini-
cally significant errors, collectively increasing the
risk of diagnostic misguidance.

Group 4: Logical Contradiction (Severe Er-
rors). Introduces internal inconsistencies or logical
contradictions, such as describing the presence of
a structure previously stated to be absent. Such
contradictions severely undermine clinician trust in
the report and are considered critical failures.

For each group, we computed the average met-
ric score across its four GT-ME pairs for each
evaluation metric under consideration. We then
analyzed the score trajectory across severity levels
to assess whether the metric exhibits a monotonic
decreasing trend. A consistent decline in score as

—8— Green
Rate
—8— Meteor
—@— CheXbert
—&— BERT-F1
—8— BLEU
Align

Average Score

—8— Rouge-L
0.2+ RadGraph

0 1 2 3 2
Error Level

Figure 4: Metric scores vs. clinical error severity. Ide-
ally, metric scores should decrease monotonically with
increasing error severity.

error severity increases indicates that the metric is
well-calibrated. It appropriately reflects the clinical
impact of errors through its scoring behavior.

S Results and Analysis

5.1 Discriminative Ability and Robustness

We assess each metric’s ability to differentiate clin-
ically significant and insignificant errors using the
Discriminative Score and Robustness Score, as
summarized in Tables 4 and 5.

General NLP metrics lack clinical knowledge
and aspect sensitivityy. BLEU, METEOR, and
ROUGE-L all exhibit poor robustness, frequently
penalizing stylistic or structural variations that
are clinically harmless. This stems from their
reference-based design, which focuses on surface-
level lexical or token overlap. BLEU shows rela-
tively stronger discriminative ability, particularly
for omission-related errors, but its extreme sensi-
tivity to surface overlap leads to unjustified penal-
ties. METEOR and ROUGE-L perform poorly on
both scores, indicating limited clinical applicability.
Overall, these metrics lack domain-specific under-
standing and fail to distinguish clinically significant
from insignificant errors.

BERT-F1 achieves a high Robustness Score, in-
dicating strong tolerance to clinically insignificant
variations. However, it also yields a relatively high
Discriminative Score, suggesting that it fails to ad-
equately penalize clinically significant errors. This
implies that while BERT-F1 is resistant to super-
ficial changes, it lacks the sensitivity needed to
distinguish harmful clinical deviations.

AlignScore, a factuality-based metric, has the
lowest overall Discriminative Score as well as a low
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Metric |  Comparison/Progression | Cont. Description Location Mod. | Neg. | Noise Sc\cntv S/D S/V | Unc. | Term. | Overall C1
E F o S E F o E F o S S S E S

Align 61.03 71.54 88.81 65.02 | 59.92 7391 9343 | 50.94 52.66 95.01 | 55.40 | 79.22 | 74.96 | 71.17 80.88 96.58 | 77.60 | 49.94 | 72.52 | 59.38 71.50 [65.06,77.93]
BERT-FI  98.40 97.54 96.55 96.03 | 97.56 98.29 97.35 | 99.46 98.41 97.27 | 95.06 | 97.72 | 94.89 | 99.19 98.39 97.97 | 99.12 | 93.47 | 97.73 | 95.90 | 97.31 [96.63,98.00]
BLEU 86.23 8I1.10 67.78 76.01 | 83.44 87.99 79.28 | 87.95 81.19 71.34 | 68.11 | 82.99 | 60.81 | 90.02 85.53 80.26 | 91.60 | 58.80 | 75.53 | 73.63 78.48 [74.37,82.59]
CheXbert  96.67 94.10 96.23 85.62 | 80.71 93.87 89.96 | 99.89 93.94 93.44 | 80.89 | 69.22 | 85.82 | 9544 95.27 99.27 | 94.38 | 79.11 | 60.27 | 69.42 87.68 [82.79,92.56]
GREEN 67.89  77.90 78.44 68.08 | 69.45 83.14 77.88 | 66.55 74.57 74.90 | 69.17 | 80.55 | 73.98 | 73.98 82.73 74.67 | 83.87 | 51.15 | 83.81 | 73.21 74.30 [70.90, 77.69]
METEOR 94.17 93.47 78.95 86.24 | 90.16 97.92 86.36 | 96.32 97.88 84.78 | 79.86 | 90.59 | 81.28 | 95.33 98.15 91.03 | 97.22 | 73.11 | 89.34 | 85.82 89.40 [86 2.57]
RadGraph 85.66 86.06 85.63 78.57 | 77.03 86.07 79.79 | 90.47 84.51 79.61 | 72.60 | 89.24 | 68.72 | 87.00 88.40 87.96 | 92.01 | 58.22 | 86.33 | 63.08 81.35 [77 28, 85.42]
RaTE 89.49 89.42 84.74 87.66 | 89.96 9598 90.48 | 93.11 95.68 84.69 | 88.15 | 91.69 | 79.76 | 90.38 95.29 91.02 | 96.78 | 78.43 | 92.67 | 78.64 89.20 [86.77,91.63]
Rouge-L  91.32 90.14 86.10 8331 | 89.75 9394 91.10 | 9423 91.46 89.07 | 77.17 | 88.67 | 75.44 | 94.51 93.01 93.33 | 95.84 | 69.02 | 88.18 | 82.39 87.90 [84.77,91.02]

Table 4: Discriminative Score (clinically significant errors). Lower values indicate better discrimination of errors.
Cont.: Contradiction. Mod.: Modality. Neg.: Negation. S/D: Size/distance. S/V: Stylistic Variation. Unc.:
Uncertainty. Term.: Terminology. E: Inaccuracy error. F: Fabrication error. O: Omission error. S: Inaccuracy,

fabrication, and omission errors are randomly and evenly distributed.

Metric T Comparison/Progression | Cont. Description Location Mod. | Neg. | Noise Seventy S SIvV Unc lerm. Overall CI
E F o S E F o E F (o] S S S E S

Align 5222 38.03 76.92 51.59 | 36.60 27.00 9429 | 88.71 51.73 83.13 | 63.45 | 61.08 | 95.70 | 51.77 57.55 83.52 | 25.82 | 74.77 | 80.52 | 66.73 63.06 [53.67,72.45]
BERT-FI  91.25 93.83 93.57 95.18 | 89.08 95.18 95.61 | 9453 95.14 97.35 | 88.66 | 88.91 | 92.99 | 90.02 93.36 97.55 | 93.81 | 89.32 | 94.19 | 90.21 9299 | [91.75,94.22]
BLEU 29.76 5295 37.36 56.30 | 2391 57.79 58.05 | 57.20 58.46 61.89 | 21.99 | 24.90 | 40.55 | 0.00 4528 56.27 | 49.11 | 29.81 | 4545 | 30.74 | 41.89 [34.61,49.16]
CheXbert 9493 92.36 97.48 84.57 | 83.06 91.40 90.02 | 95.35 88.83 99.25 | 86.55 | 83.83 | 93.61 | 94.61 88.64 98.93 | 94.95 | 80.19 | 89.68 | 80.03 90.41 [87.82,93.00]
GREEN 81.67 80.00 76.67 67.17 | 75.00 63.33 75.00 | 78.24 66.33 73.33 | 91.00 | 82.50 | 84.17 | 60.00 56.67 70.00 | 90.00 | 65.05 | 77.50 | 81.67 74.76 [70.60,78.93]
METEOR 60.02 88.01 71.33 84.39 | 53.87 86.68 73.48 | 79.94 9230 82.22 | 44.03 | 49.20 | 70.98 | 41.61 83.43 81.62 | 81.99 | 50.28 | 77.57 | 51.13 70.20 [63.02,77.39]
RadGraph  57.11 7247 67.83 73.18 | 2594 63.94 66.82 | 61.34 67.27 78.55 | 44.34 | 39.08 | 52.50 | 44.07 56.08 7491 | 64.33 | 43.80 | 83.46 | 34.16 | 58.56 [51.66, 65.46]
RaTE 64.30 84.60 71.32 83.57 | 63.11 8555 89.81 | 78.03 82.62 84.02 | 63.25 | 64.57 | 7549 | 75.15 79.71 80.50 | 78.13 | 72.26 | 88.58 | 63.80 | 76.42 [72.52,80.31]
Rouge-L ~ 54.47 73.03 78.89 7444 | 46.94 77.59 82.83 | 71.92 7638 86.66 | 42.55 | 46.60 | 64.72 | 61.61 69.22 87.32 | 71.47 | 35.54 | 67.98 | 48.91 65.95 [59.26, 72.65]

Table 5: Robustness Score (clinically insignificant errors). Higher values indicate greater robustness to clinically
irrelevant variations. Metrics with bold indicate top performance in that column.

Robustness Score, indicating that it cannot reliably
distinguish clinically significant from insignificant
errors. This stems from its lack of medical knowl-
edge, which limits its capacity to capture clinically
relevant relationships, particularly in the presence
of subtle but significant semantic shifts.
Non-LLM medical-specific metrics often con-
sider too few aspects or rely on rigid match-
ing. RaTE, although structured and medical-entity-
based, lacks sufficient medical grounding and fails
to capture clinical priorities or severity distinctions
in a nuanced way. While it demonstrates reason-
ably high robustness, its Discriminative Score is
unexpectedly higher than its Robustness Score,
reflecting an overreliance on surface-level entity
matching and an inability to capture deeper clini-
cal semantics or error impact. CheXbert-F1 gave
consistently high scores to both types of errors,
failing to reflect severity. This is because its fi-
nal F1 score evaluates only exact matches against
14 predefined thoracic disease labels, ignoring se-
mantic variations, contextual cues, and clinically
equivalent paraphrases. RadGraph-F1, by contrast,
shows a high Discriminative Score but a low Ro-
bustness Score. While theoretically powerful, it is
overly sensitive to entity boundaries, relation for-
mats, and exact phrasing. Even semantically equiv-
alent rewrites, such as reordering or lexical varia-
tion, may reduce the score due to graph-matching
failures, which highlights its poor robustness to

stylistic variation and clinical equivalence.

LLM-based medical-specific metrics often rely
heavily on ReXVal error categories, with a scoring
framework that covers only a limited set of error
types and lacks comprehensive coverage of clini-
cally relevant semantic dimensions. This limitation
extends to several newer LLM-based metrics that
inherit similarly simplified scoring tables. GREEN
achieves a better Discriminative Score than most
metrics, performing particularly well on omissions
of description and severity, indicating its ability to
penalize clinically significant errors. However, it
still suffers from a notably low Robustness Score,
suggesting a tendency to over-penalize minor, clin-
ically irrelevant differences and thus limiting its
practical reliability.

Opverall, the results show that while some metrics
perform well in either discrimination or robustness,
none excel at both. Moreover, most existing met-
rics do not capture clinical semantics, which is
essential to evaluate reports from the perspective
of a clinician. These findings highlight the need for
clinically grounded, error-aware evaluation.

5.2 Monotonicity

As illustrated in Figure 4, although different met-
rics exhibit varying absolute scores, their overall
trends across severity groups are remarkably con-
sistent. From Group 0 to Group 1, all metrics show
a decreasing trend, indicating that each metric can
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reliably distinguish stylistic variations (clinically
negligible) from minor factual errors (still clini-
cally insignificant but of slightly higher concern).
Similarly, from Group 2 to Group 3, we observe
a consistent decline across all metrics, suggesting
that they are sensitive to the increased number of
clinically significant errors, even if this sensitivity
may stem more from the extent of textual changes
than from a true understanding of clinical sever-
ity. These patterns indicate that existing metrics
possess some limited ability to capture differences
in error severity, particularly when differences are
accompanied by large textual modifications.

However, two key transitions reveal important
weaknesses. From Group 1 to Group 2, all metrics
unexpectedly show an increase in scores, implying
a failure to distinguish clinically significant single
errors from clinically insignificant factual devia-
tions. This reversal can be attributed to our data
set design: insignificant errors in Group 1 often
involve larger surface-level changes (which do not
affect clinical interpretation), while significant er-
rors in Group 2 are more localized, with most of the
surrounding context preserved, potentially mislead-
ing surface-based metrics. From Group 3 to Group
4, metrics again show an increase in scores, reflect-
ing their difficulty in detecting logical contradic-
tions. This is likely because logical contradictions
in Group 4 are introduced via small, localized in-
sertions (e.g., contradicting earlier statements with
a single sentence), while Group 3 reports contain
multiple significant edits across the text. Metrics
that rely heavily on overall textual similarity may
struggle to penalize these subtle but clinically criti-
cal inconsistencies.

In summary, although existing metrics are sen-
sitive to gross differences in error severity, they
struggle with fine-grained distinctions, particularly
in separating clinically significant from insignifi-
cant errors and in detecting logical contradictions.

6 Conclusion

In this paper, we rethink the design and evalu-
ation of the existing metrics for medical report
generation, arguing that effective metrics evalua-
tion should not rely solely on coarse radiologists’
counting-based annotations.

To address this, we introduce a clinically
grounded Meta-Evaluation framework and show
that many existing metrics fail to capture clinical
semantics, a critical requirement for evaluations

that align with clinical judgement. To ground our
Meta-Evaluation framework, we define clinical se-
mantics as the fine-grained, decision-informing cri-
teria within medical reports. We create an expert-
annotated dataset of GT-ME report pairs to sim-
ulate a broad spectrum of clinically relevant sce-
narios and real-world diagnostic needs. Our multi-
dimensional framework enables a rigorous evalua-
tion of clinical alignment and core metric capabili-
ties, including a metric’s discriminative ability, its
robustness to clinically insignificant variations, and
its monotonic sensitivity to increasing error sever-
ity. Our findings uncover a critical misalignment
between existing metrics and clinical needs.

General NLP metrics lack both clinical knowl-
edge and aspect sensitivity. Likewise, existing
medical-specific metrics often suffer from insuf-
ficient aspects and rigid matching. Although these
metrics reflect thoughtful and valuable design ef-
forts, our in-depth Meta-Evaluation concludes that
the limitations of these metrics stem from the omis-
sion of clinically critical aspects during their formu-
lation. We view these metrics as a strong founda-
tion for further improvement and encourage future
research to incorporate clinical aspects more explic-
itly. Our Meta-Evaluation framework can function
as a diagnostic lens to pinpoint where current met-
rics fall short and serve as an important stepping
stone toward developing more clinically aligned
evaluation tools.

Limitations

Scalability of dataset construction. The current
pipeline for building the Meta-Evaluation dataset
requires manual verification to ensure clinical ac-
curacy, limiting scalability compared to other med-
ical domains (Sun et al., 2016, 2024). A more
automated and scalable framework is needed.
Limited evaluation of metric interpretability.
Interpretability and error localization are essential
for clinical users to understand and trust evaluation
metrics. Although our criteria table supports fine-
grained error attribution, we do not directly assess
the metric’s interpretability in this study. Future
work will explore this dimension more explicitly.
Limited Evidence for Modality Transferabil-
ity. Our criteria and Meta-Evaluation framework
are designed to be modality-agnostic and theoret-
ically generalizable to other domains (e.g., CT,
MRI), but we have not validated them beyond CXR.
Future work will explore broader imaging settings.
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A Appendix: Aspect Explanation

These aspect-level scores enable clinicians and re-
searchers to assess whether existing metrics truly
capture clinical semantics. Our dataset contains the
explanation for each GT-ME pair.

Location errors can directly affect treatment de-
cisions, especially in surgery or local therapy. Mis-
reporting lesion sites may lead to incorrect staging,
inappropriate treatment, or unnecessary procedures.
Significant(S): Confusing "medial right apex" with
"medial left and right apex" in a lung cancer case
changes the interpretation from a unilateral lesion
to bilateral involvement. This could result in a
staging upshift (e.g., from MO to M1a (Rami-Porta
et al., 2024)), causing clinicians to abandon cura-
tive options (e.g., surgery or SBRT) and turn to
systemic therapies or additional diagnostics. In-
significant(I): Omitting "right" in "blunting of the
costophrenic angle on the right" is often tolera-
ble. Clinicians can easily identify the affected side
through imaging comparison, and this does not
typically alter clinical decisions.

Disease severity often guides treatment choices.
Misreporting severity can lead to suboptimal deci-
sions. For instance, choosing surgery when medi-
cation suffices, or delaying surgery when urgently
needed. S: The original report described focal
consolidation with stable cardiomegaly. The mod-
ified version added "diffuse severe opacities bi-
laterally," falsely suggesting acute deterioration
(e.g., ARDS or severe pneumonia). This may
prompt unnecessary escalation of treatment (e.g.,
broad-spectrum antibiotics, aggressive ventilator
settings); trigger additional diagnostics (e.g., bron-
choscopy, BAL) (Qadir et al., 2024) I: Adding
"mild elevation of the right hemidiaphragm" to a
report on small bilateral effusions usually has no
clinical consequence. This finding is common and
non-specific, often due to benign factors like body
position, mild diaphragm laxity, or small effusions.
It rarely requires intervention and does not alter
management.

Lesion morphology (e.g., margin, internal tex-
ture, and structural characteristics) is essential for
tumor diagnosis and staging. Errors in descrip-
tion can lead to misclassification of malignancy
and inappropriate treatment. S: Changing "irreg-
ularly marginated" and "has grown" to "smoothly
marginated" and "no change" understates malig-
nant risk (Wood, 2015). This may mislead clini-
cians into assuming the lesion is benign, resulting

in: delayed diagnostic workup (e.g., CT, functional
evaluation); missed early treatment opportunities;
potential progression of undiagnosed cancer. I:
Replacing "irregularly marginated" with "poorly
defined mass with uneven edges" conveys a similar
clinical implication—both suggest malignancy and
warrant further evaluation. Thus, such phrasing
differences do not affect clinical interpretation or
decision-making.

Negative findings are essential for ruling out
differential diagnoses and avoiding unnecessary
interventions. Misreporting such information can
lead to overtreatment and increased medical bur-
den. S: Changing "no pneumothoraces” to "right
pneumothorax" introduces a critical false positive.
In patients with heart failure, this may trigger emer-
gency responses such as chest tube placement,
delay proper heart failure management, and risk
unnecessary invasive procedures (Roberts et al.,
2023). I: Omitting mention of food content in the
esophagus has little clinical impact. Such findings
are common and do not typically influence diag-
nostic or therapeutic decisions.

Different diseases require appropriate imaging
modalities. Incorrect statements about what can be
seen on a given modality, or misleading follow-up
recommendations, may result in wasted resources
and misinformed clinical decisions. S: Claiming
that "esophageal mural thickening is clearly delin-
eated on X-ray" is incorrect—such findings require
CT (Interventional Medicine Center Association,
CHA, 2021). This may cause confusion, unnec-
essary concern, and inappropriate reliance on sub-
optimal diagnostic imaging. I: Referring to "CT"
without specifying "chest CT" is generally accept-
able. Physicians can interpret the intent correctly
based on prior reports and standard diagnostic path-
ways in clinical contexts.

Quantitative descriptors (Heiman et al., 2025),
such as lesion size or device position, are criti-
cal for diagnosis, staging, and treatment planning.
Misstatements may lead to overtreatment, under-
treatment, or delays in care. S: Describing a 3-cm
mass as a "very large mass" may falsely suggest a
tumor > 5 cm, resulting in higher T-stage classifica-
tion under lung cancer TNM criteria (Rami-Porta
et al., 2024). This can lead clinicians to: aban-
don curative surgery due to perceived inoperability;
overestimate disease aggressiveness; order unnec-
essary invasive procedures or specialist referrals. I:
Adding a normal cardiothoracic ratio (e.g., 0.49)
to a report about rib fractures has minimal clinical
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relevance. It does not impact fracture management
or related clinical decisions.

Temporal comparisons are key to evaluating
disease progression and treatment response. In
conditions like hepatocellular carcinoma (HCC),
small changes in lesion size over time can redefine
response categories (e.g., partial response vs. pro-
gression) (Vogel et al., 2025), directly influencing
clinical decisions. S: Changing the interpretation
from "pulmonary edema improved" to "worsened"
misleads clinicians into believing the patient is de-
teriorating. This may lead to: escalation of med-
ication (e.g., higher diuretic doses); unnecessary
ICU monitoring or imaging; increased healthcare
costs and patient anxiety. I: Replacing "less severe"
with "slightly improved" conveys the same clinical
direction (i.e., improvement). It does not alter risk
assessment or treatment planning.

Major internal contradictions can undermine
the credibility of a radiology report and may render
the findings clinically unreliable. Such errors are
often flagged in quality control and may directly
endanger patient safety. S: Stating "lungs are clear"
immediately after describing large pleural effusion,
atelectasis, and possible consolidation introduces a
severe inconsistency. This may cause clinicians to
question the report’s validity and hesitate to act on
its findings. I: Saying "no clear current evidence
of chronic pulmonary changes" after suggesting
chronic changes introduces a mild inconsistency,
but not a true contradiction. Clinicians can still
interpret the statement within clinical contexts and
proceed appropriately.

Expressions of uncertainty in radiology reports
guide clinicians toward cautious decision-making,
including further testing or observation. Replacing
uncertain language with unjustified certainty can
mislead treatment and compromise patient safety.
S: Changing "may represent atelectasis or pneu-
monia" to a definitive "represents atelectasis," and
describing possible free air as confirmed, may lead
clinicians to: dismiss infection unnecessarily (e.g.,
withholding antibiotics); initiate premature surgi-
cal interventions based on presumed pneumoperi-
toneum. This compromises diagnostic objectivity
and risks inappropriate treatment. I: Phrases like
"may be" vs. "appears to be" both reflect clinical
uncertainty and do not meaningfully alter diagnos-
tic interpretation or next steps.

Accurate use of medical terminology is essen-
tial for precise communication and diagnostic clar-
ity. Substituting standard terms with vague or non-

professional expressions can obscure clinical mean-
ing and delay appropriate care. S: Replacing "pleu-
ral effusion” with "pleural empyema" constitutes
a critical error. This falsely suggests a localized
infection requiring urgent drainage (e.g., chest tube
placement), potentially leading to unnecessary in-
vasive procedures, prolonged hospital stays, and
inappropriate antibiotic use, while the actual cause
(e.g., heart failure, malignancy) is overlooked. Sim-
ilarly, substituting "atelectasis" with a phrase like
"possible mass" incorrectly raises suspicion for ma-
lignancy, potentially triggering unnecessary biop-
sies, CT scans, and significant patient anxiety. I:
Using lay terms like "breathing tube" for "endo-
tracheal tube" or "feeding tube" for "enteric tube"
does not affect clinical interpretation when tube
position and anatomy are described clearly. These
variations preserve the report’s medical accuracy.

Minor linguistic errors, such as typos or gram-
matical mistakes, are common in clinical reports
and typically do not affect interpretation. However,
when noise alters the meaning of a sentence, it
can mislead clinical decisions. S: Changing "most
likely due to low lung volumes and positioning"
to "unlikely the cause" reverses the interpretation
of a key finding. This may prompt unnecessary
concern over a mediastinal abnormality, leading
to further testing or referrals. I: Typos like "lin-
gulas", "growed", "studys", "atelectasi”, "adeno-
carcinomia" are linguistically incorrect but do not
affect the core diagnostic message. Clinicians can
readily infer the intended meaning without clinical
misunderstanding.

Stylistic differences, when semantically equiva-
lent, usually do not impact clinical decisions. How-
ever, poor phrasing, ambiguous emphasis, or incor-
rect wording can reduce report clarity or lead to
clinical misjudgment. S: Changing a report that
indicates clinical improvement (e.g., improving
edema, resolving effusions, low lung volumes) to
one that suggests deterioration (e.g., no edema, per-
sistent effusions, normal lung inflation) reverses
the overall interpretation. These conflicting sig-
nals may mislead treatment evaluation and disrupt
appropriate care. I: Changes in sentence order or
phrasing using a different template do not alter di-
agnostic content. Both versions communicate the
same findings and support the same clinical inter-
pretation.
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B Appendix: Additional Clarification

CheXbert-F1 classifies each of 14 thoracic condi-
tions into four categories: Positive, Negative, Un-
certain, and Blank. The final score is computed as
the micro-averaged F1 across all condition—label
pairs. While this offers more granularity than bi-
nary classification, the metric still relies on discrete
label matching and is limited in several ways: (/)
it cannot detect clinically important nuances such
as changes in severity (e.g., "small effusion" vs.
"large effusion"), (2) it ignores how multiple find-
ings interact or contradict each other (e.g., stating
"no pleural effusion" in one sentence and "mod-
erate right pleural effusion” in another), and (3)
it is insensitive to paraphrasing, hedging, or indi-
rect language that may shift the clinical implication
without altering the label category. Thus, while
CheXbert is valuable for structured disease extrac-
tion, it lacks the semantic depth required to evaluate
subtle but clinically significant variations in report
generation. This concern has also been echoed
in recent work—the GEMA score (Zhang et al.,
2025).

We did not include certain metrics in our Meta-
Evaluation framework for the following reasons.
CheXprompt (Zambrano Chaves et al., 2025) and
RadCliQ (Yu et al., 2023a) output structured error
counts, such as per ReXVal category, rather than a
scalar score, which makes them incompatible with
our pairwise evaluation. As previously discussed,
simple error counting is also inherently limited.
Similarly, FineRadScore (Huang et al., 2024) em-
ploys an LLM to classify and explain errors line
by line, but it does not provide a single numerical
output and is highly dependent on sentence-level
formulations.

Furthermore, since our goal is not to rank met-
rics in an absolute sense, we chose not to conduct
statistical significance tests such as t-tests. Instead,
we aim to demonstrate that many existing metrics
lack the ability to capture clinical semantics and to
provide guidance for future metric design.

Data Availability. Our dataset is derived from
MIMIC-CXR and ReXVal, both of which are dis-
tributed under the PhysioNet Credentialed Health
Data License 1.5.0. Our work uses only these pub-
licly available, credentialed datasets, and our de-
rived dataset does not involve new data collection
from patients. As a result, we cannot openly redis-
tribute the report texts. Instead, we provide anno-
tation guidelines, error taxonomy, and processing

scripts so that credentialed users can reproduce our
dataset from their own copies of MIMIC-CXR and
ReXVal.

We have also initiated the process of submit-
ting our derived dataset to PhysioNet for controlled
release under the same license, ensuring compli-
ance with patient privacy and reproducibility stan-
dards. Updated information can be found at https:
//github.com/ruochenli99/ReEvalMed.

Intended Use. Our use of MIMIC-CXR and
ReXVal strictly followed their intended purpose
of research-only use. The derived dataset inher-
its the same restrictions and is provided solely for
research, not for clinical decision-making or com-
mercial applications.

Privacy and Safety. MIMIC-CXR and ReXVal
have been de-identified by the dataset providers in
compliance with HIPAA. No personally identify-
ing information or offensive content is present in
these datasets. Our derived dataset contains only
de-identified report texts and annotation labels, and
does not introduce any additional personally identi-
fying or offensive content.

Documentation. All evaluation metrics used
in this work were implemented via publicly avail-
able repositories, each with its own documentation
and license (e.g., MIT, Apache 2.0). We used the
official or widely adopted implementations with-
out modification to ensure reproducibility, and we
provide references to the original papers.

MIMIC-CXR and ReXVal, which consist of En-
glish radiology reports (findings sections) from
chest X-rays collected at a large U.S. academic
medical center. Our derived dataset focuses on the
findings of the report. No demographic attributes
of patients are included.

Experiment Details. For generating rewritten
reports, we used the DeepSeek-R1 7B model with
fixed prompts and standard decoding settings, run
locally on an NVIDIA H100 80GB GPU. Nonethe-
less, regardless of the model used, all generated
modifications were carefully reviewed and val-
idated by clinical experts to ensure correctness
and clinical plausibility. The evaluation metrics
were used via their publicly released implementa-
tions without modification, relying on their default
model sizes and parameters. All experiments are
lightweight and inference-only.

Descriptive Statistics. We report confidence
intervals for each evaluation metric. For the Dis-
criminative Score and Robustness Score, results
are computed as the mean over 10 samples per
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evaluation aspect.

Use of AI Assistants. ChatGPT and Grammarly
were used to support writing and editing tasks, in-
cluding drafting LaTeX tables, formatting refer-
ences, and suggesting wording for writing paper.

C Appendix: Future Work

Prior evaluation assessments, often based on a
single correlation coefficient, may obscure im-
portant limitations. Our proposed aspect-based
Meta-Evaluation framework aims to explicitly test
whether metrics can distinguish between clinically
significant and insignificant errors across a wide
range of real-world report variations, offering a
path toward more clinically aligned metric design.

Moving forward, we hope future metric devel-
opment can incorporate these clinical aspects more
explicitly. For example:

Knowledge infusion (e.g., integrating domain-
specific ontologies or structured clinical guidelines)
may help metrics reason about subtle but clinically
meaningful variations.

Chain-of-thought prompting or step-by-step
reasoning could guide LLM-based metrics to bet-
ter assess the semantic consistency and clinical
implications of generated content.

Agent-based debate or multi-agent delibera-
tion may offer a way to simulate clinical decision-
making dynamics when evaluating borderline cases
or conflicting evidence.

An automatic and scalable workflow is critical,
as high-quality dataset construction in clinical do-
mains is inherently labor-intensive due to the need
for expert validation. However, we designed our
annotation protocol with future scalability in mind.
Specifically, we found that LL.M-based rewriting
(guided by structured prompts) can generate clini-
cally realistic error types across dimensions (e.g.,
severity, location, description). Current genera-
tions are generally acceptable to clinicians upon
review. They significantly reduce clinical work-
load, especially when paired with targeted expert
review rather than full manual rewriting. In future
iterations, we plan to explore more robust semi-
automated pipelines combining LLM generation
and selective expert validation. This can enable
scalable benchmark extension without sacrificing
quality.
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