
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 12029–12043
November 4-9, 2025 ©2025 Association for Computational Linguistics

Agentic-R1: Distilled Dual-Strategy Reasoning

Weihua Du Pranjal Aggarwal Sean Welleck Yiming Yang
Language Technologies Institute, Carnegie Mellon University
{weihuad, pranjala, swelleck, yiming}@cs.cmu.edu

Abstract

Current long chain-of-thought (long-CoT) mod-
els excel at mathematical reasoning but rely on
slow and error-prone natural language traces.
Tool-augmented agents address arithmetic via
code execution, but often falter on complex
logical tasks. We introduce a fine-tuning frame-
work, DualDistill, that distills complemen-
tary reasoning strategies from multiple teach-
ers into a unified student model. Using this
approach, we train Agentic-R1, which dynam-
ically selects the optimal strategy for each
query, invoking tools for arithmetic and algo-
rithmic problems, and using text-based rea-
soning for abstract ones. Our method im-
proves accuracy across a range of tasks, includ-
ing both computation-intensive and standard
benchmarks, demonstrating the effectiveness
of multi-strategy distillation in achieving robust
and efficient reasoning. Our project is available
at https://github.com/StigLidu/DualDistill.

1 Introduction

A recently proposed reasoning paradigm for lan-
guage models, long chain-of-thought (long-CoT)
reasoning, has achieved state-of-the-art perfor-
mance on challenging tasks such as mathemati-
cal problem solving (Guo et al., 2025; Jaech et al.,
2024). By allocating a large inference budget, these
models generate reasoning trajectories with itera-
tive self-verification and refinement. Despite this
progress, open-source long-CoT models remain
limited: Their reasoning traces rely solely on natu-
ral language, which is both computationally expen-
sive and error-prone without explicit verification.

In contrast, tool-aided reasoning provides greater
efficiency and reliability, particularly for large-
scale numerical computations and tasks that require
rigorous verification (Gao et al., 2023). Advanced
agent frameworks, such as OpenHands (Wang et al.,
2024), place language models in a multi-turn en-
vironment with a code interpreter and other tools.

Teacher 1:
Expert in Tool Use

Teacher 2:
Good at Reasoning

Agentic Trajectory Reasoning Trajectory

<think>
… (text reasoning) …
</think>
answer: xxx

<code> … </code>
<executor>
output: …
</executor>

agentic trajectory reasoning trajectory

reasoning trajectory agentic trajectory

Distill Student Model
Good at both tool use and reasoning

Sampling

… …

Composition

Self-Distill

Figure 1: Overview of DualDistill. We distill knowl-
edge from two complementary teacher models. Trajec-
tories from teachers are composed based on correctness,
enabling the student model to learn when and how to
select the appropriate strategy for each problem. Further-
more, the student internalizes these strategies through
self-distillation.

The resulting agentic trajectories are effective for
tool-intensive tasks, but often fall short on ab-
stract or conceptually complex reasoning prob-
lems (Duan et al., 2024).

To leverage the strengths of both reasoning and
tool-based strategies, we introduce DualDistill, a
novel distillation framework (Fig. 1) that combines
trajectories from two complementary teachers: one
reasoning-oriented, the other tool-augmented, in a
unified student. The resulting model, Agentic-R1,
learns to mix both strategies and dynamically se-
lects the most appropriate one for each problem,
executing code for arithmetic and algorithmic tasks
and reasoning in natural language for abstract ones.
Furthermore, the student can continue to improve
via self-distillation, better calibrating its strategy se-

12029

https://github.com/StigLidu/DualDistill

lection to its actual capabilities. Our contributions
are as follows.

• DualDistill, a distillation framework that en-
ables a language model to learn from multiple
teacher models with complementary capabili-
ties through solution trajectory composition.

• Agentic-R1, a distilled student model that
achieves strong performance in mathemati-
cal tasks requiring both tool use and complex
reasoning.

2 Related Work

Although prior efforts have integrated external
tools into language models (Gao et al., 2023;
Schick et al., 2023; Nakano et al., 2022), they are
often specialized to non-math domains or are con-
fined to shorter reasoning chains. Concurrently,
the paradigm of long chain-of-thought (long-CoT)
reasoning or inference-time compute has demon-
strated significant improvements (Guo et al., 2025;
Jaech et al., 2024). However, these approaches can
be difficult to control and may suffer from ‘over-
thinking’, particularly when applied to tool-use sce-
narios (Cuadron et al., 2025). Recent works have
combined tool use with long-CoT reasoning (Feng
et al., 2025; Song et al., 2025), but these are of-
ten applied to different domains or rely on rein-
forcement learning, which can be less stable than
our proposed distillation method. To the best of
our knowledge, DualDistill is the first framework
to employ distillation with trajectory composition
from two heterogeneous teacher models, one spe-
cializing in agentic tool-use and the other in pure
textual reasoning, creating a unified student model
capable of adaptively leveraging both strategies.
See Appendix B for a more detailed discussion.

3 Method

As illustrated in Fig. 1, DualDistill uses trajectory
composition to distill the knowledge of the comple-
mentary teachers to the student model. The student
model then applies self-distillation for a deeper
understanding of the strategies.

3.1 Trajectory Composition
Let D = {(x(i), a(i))}Ni=1 be a training set, where
x(i) denotes the i-th problem and a(i) is its corre-
sponding reference answer. Let πA and πR be two
distinct teacher policies, where πA represents the
agentic teacher and πR the reasoning teacher. For

each training instance (x, a), we randomly select
the initial teacher by sampling a binary indicator
z ∼ Bernoulli(0.5) and then produce solutions y1
and y2 as follows:

y1 ∼ zπA(· | x) + (1− z)πR(· | x),
y2 ∼ (1− z)πA(· | x, y1) + zπR(· | x, y1).

That is, after one teacher generates the initial solu-
tion y1, the other teacher subsequently generates
the second solution y2, conditioned on both the
original problem x and the preceding solution y1.

We evaluate the correctness of each solution us-
ing a rule-based grader, assigning binary correct-
ness scores g1, g2 ∈ {0, 1} to y1 and y2, respec-
tively. The distilled training trajectories are then
composed based on these correctness scores.

• g1 = 0, g2 = 1: The first teacher produces
an incorrect solution, and the second teacher
successfully corrects it. The composed trajec-
tory is structured as y1 ⊕ t−+ ⊕ y2. (Here ⊕
denotes concatenation and t−+ is a transition
segment, described later).

• g1 = 1, g2 = 1: Both teachers provide correct
solutions. We create a trajectory y1⊕t++⊕y2
to reflect complementary correct strategies.

• g1 = 1, g2 = 0: Only the initial teacher pro-
vides a correct solution. In this scenario, the
composed trajectory includes only y1.

• g1 = 0, g2 = 0: Both teachers do not solve
the problem correctly. In this case, we just
discard the problem without composing any
trajectory.

The transition segments t−+ and t++ are pre-
defined sentences indicating strategy shifts (e.g.,
"Wait, using text reasoning is too tedious, let us
try code reasoning."). More examples and detailed
descriptions can be found in Appendix A.4.1.

3.2 Training Instance Selection
We curate a training set with the instances for which
one strategy has a clear advantage over the other
in performance. Using an existing dataset such as
GSM8K (Cobbe et al., 2021) would be insufficient
in this sense as most of the problems are relatively
simple and can be solved by either strategy with-
out a significant performance difference. Instead,
we construct two contrasting subsets of Math prob-
lems from DeepMath (He et al., 2025): one can

12030

benefit more from tool-assisted reasoning, while
the other can benefit more from pure text-based
reasoning. After composition, we apply additional
filtering to balance the training dataset, resulting in
2.6k distilled trajectories. Detailed statistics can be
found in Appendix A.3.2. Further filtering details
are provided in the Appendix A.3.1.

3.3 Teacher and Student Models

As the teacher of agentic reasoning, we utilize
OpenHands (Wang et al., 2024), a tool-assisted
agent built upon Claude-3.5-Sonnet (Anthropic,
2024) to employ human-designed problem-solving
pipelines. As the teacher of text-based reasoning,
we adopt DeepSeek-R1 (Guo et al., 2025). The
details can be found in Appendix A.4.2.

As for the student model, we adopt DeepSeek-
R1-Distill-7B, which has been fine-tuned on pure
text-based reasoning trajectories and also exposed
to code-related data during pretraining. We delib-
erately choose a model already familiar with both
modalities to minimize the amount of training data
required for the strategic composition. We want to
examine whether it can effectively learn multiple
problem-solving strategies.

3.4 Self-Distillation

Although the student model learns problem-solving
strategies from multiple teachers, it can still under-
perform compared to them due to limitations such
as the smaller model sizes, leading to an ability mis-
match. For instance, we find that the student some-
times uses tools for problems that could be solved
more reliably through simple reasoning. While this
approach is valid, it can introduce errors because
the student’s tool-use ability is less mature than that
of the teachers, occasionally leading to incorrect
code and wrong answers.

To address it, we introduce self-distillation to
help the student further refine its strategy selection
based on its capabilities and the given problem.
Our self-distillation process involves the student
model generating candidate solutions, with teacher
models providing verification or corrections as aux-
iliary supervision. The process reinforces effective
strategies and corrects suboptimal ones. Specif-
ically, given a training set D = {(x(i), a(i))}Ni=1

and the student policy fine-tuned on distillation
data from teachers πS1 , we sample K trajectories
t(i,1), . . . , t(i,K) for each problem x(i):

t(i,j) ∼ πS1(· | x(i)), x(i) ∈ D, j ∈ {1, . . . ,K}.

Algorithm 1 DUALDISTILL

1: Input: Teacher policies πA, πR; student S0;
training dataset D = {(xi, ai)}Ni=1; thresholds
β1, β2; sample count K; binary grader G(·, ·)

2: Output: Trained student S2

TEACHER DISTILLATION

3: Initialize teacher-distillation buffer T1 ← ∅
4: for each (x, a) ∈ D do
5: Draw z ∼ Bernoulli(0.5)
6: y1 ∼ z πA(· |x) + (1−z)πR(· |x)
7: y2 ∼ (1−z)πA(· |x, y1) + z πR(· |x, y1)
8: g1←G(y1, a), g2←G(y2, a)
9: switch (g1, g2)

10: case (0, 1): Add y1 ⊕ t−+ ⊕ y2 to T1
11: case (1, 1): Add y1 ⊕ t++ ⊕ y2 to T1
12: case (1, 0): Add y1 to T1
13: end switch
14: end for
15: Balance T1
16: Fine-tune S0 on T1 → S1

SELF-DISTILLATION

17: Initialize self-distillation buffer T2 ← ∅
18: for each (x, a) ∈ D do
19: Sample {tj}Kj=1 ∼ πS1(· |x)
20: gj ← G(tj , a)

21: ḡ ← 1
K

∑K
j=1 gj

22: if ḡ > β1 then
23: Add a correct tj + verification to T2
24: end if
25: if ḡ < β2 then
26: Add an incorrect tj + correction to T2
27: end if
28: end for
29: Fine-tune S1 on T2 → S2

30: return S2

We then apply a binary grader G to evaluate tra-
jectory accuracy. Let g(i,j) be the score of the j-th
trajectory and g(i) be the average score for x(i), i.e.,

g(i,j) = G(t(i,j), a(i)), g(i) =
1

K

K∑

j=1

g(i,j).

If g(i) ̸= 1, the student cannot fully solve problem
x(i), and we collect informative trajectories from its
output to form a self-distillation buffer for further
training. Specifically:

• If g(i) > β1, we add a correct trajectory gener-
ated by the student, followed by a verification
from a teacher model, to the replay buffer;

12031

• If g(i) < β2, we add an incorrect student tra-
jectory, along with a corrected solution pro-
vided by a teacher, to the buffer.

Here, β1 and β2 are hyperparameters that control
the difficulty of the problems selected for the replay
buffer. We set β1 = 0 and β2 = 0.9, a relatively
low threshold that encourages diversity in the col-
lected examples. In addition, we use K = 16
trajectory samples per problem. Verification (or
correction) consists of a correct trajectory from the
teacher model with some transition words; see Ap-
pendix A.4.1 for details. Because we observed a
gap in the coding ability between the student and
the teacher, we provide only text-based reasoning
solutions as the teacher’s answers at this stage.

The pseudocode for our complete algorithm,
DualDistill, is listed in Algorithm 1.

4 Experiments

4.1 Benchmarks

We evaluated our method on several benchmarks
that test different aspects of mathematical reason-
ing, including tasks where tool-aided calculation is
hypothesized to provide a significant advantage.

DeepMath-L. DeepMath (He et al., 2025) is a
comprehensive dataset of mathematical and STEM
problems compiled from various benchmarks. We
curate a subset of 87 problems with large answers
(absolute value greater than 105). These problems
are excluded from our fine-tuning data, although
they may appear in some pretraining corpora. We
refer to this evaluation set as DeepMath-L, with the
assumption that code-aided computation is more
effective in solving such problems.

Combinatorics300. This benchmark consists of
300 combinatorics problems aggregated from di-
verse math test sets. Each problem yields an answer
larger than 104, reflecting the factorial growth in
combinatorial counts. We hypothesize that tool-
aided reasoning is important for handling the enu-
meration and sampling required in such tasks.

Standard Mathematical Benchmarks. To as-
sess the generalizability of our approach, we further
evaluate on widely used mathematical reasoning
tasks, including MATH500 (Lightman et al., 2023),
AMC (AI-MO, 2024), and AIME (2025, Parts I
and II) (AIME, 2025).

4.2 Baselines
We compare against the following strong baselines:

• DeepSeek-R1-Distill. A distilled version
of DeepSeek-R1 fine-tuned on long chain-
of-thought trajectories, representing a strong
baseline for pure language-based reasoning.

• Qwen-2.5-Instruct (w/ tool, w/o tool) (Yang
et al., 2024). A general-purpose short-CoT
model with optional tool-use capabilities. The
tool-augmented variant serves as a competi-
tive baseline for tool-aided strategies.

The training configuration details are provided in
Appendix A.2.

4.3 Evaluation Metrics
To assess both reasoning quality and computational
efficiency, we adopt the Accuracy at Budget metric.
Let t = (t0, t1, . . . , tL) be the trajectory generated
by the model, where each tℓ denotes the ℓ-th out-
put token, and let a be the reference answer. The
accuracy under a computational budget b is defined
as:

Acc(b) = G
(
t0:min(b,L), a

)
,

where G is a binary grader that evaluates whether
the model’s partial output matches the ground truth.
We report results under two budgets: Standard (S,
4096), a moderate token budget for language model
reasoning, and Large (L, 32768), which approxi-
mates an unbounded budget and allows the model
to reason adequately. Inference and grader details
can be found in Appendix A.6.

4.4 Results
As shown in Table 1, our student model, Agentic-
R1, demonstrates substantial performance improve-
ments in DeepMath-L and Combinatorics300, two
challenging datasets that benefit from both agentic
and reasoning strategies. Specifically, our model
outperforms two similarly sized models, each spe-
cializing exclusively in tool-assisted (Qwen2.5-7B-
Instruct) or pure reasoning (DeepSeek-R1-Distill-
7B) strategies. Agentic-R1 surpasses tool-based
models by intelligently adopting reasoning strate-
gies when appropriate, while maintaining greater
efficiency compared to pure reasoning models on
standard mathematical tasks. However, we note
a slight performance decrease in relatively sim-
pler benchmarks (MATH500) compared to the pure
text-reasoning model, and a detailed discussion is
provided in the limitations section.

12032

Model Budget DeepMath-L Combinatorics300 MATH500 AIME AMC avg.

Qwen2.5-7B-Instruct (w/o tool) S
L

17.2
17.5

21.8
21.8

75.1
75.2

8.0
8.0

42.9
42.9

33.0
33.1

Qwen2.5-7B-Instruct (w/ tool) S
L

34.7
34.7

28.9
28.9

70.2
70.2

14.7
14.7

51.1
51.1

39.9
39.9

DeepSeek-R1-Distill-7B S
L

34.7
56.3

34.7
44.5

83.1
89.2

23.3
40.7

61.2
84.8

47.4
63.1

Agentic-R1-7B (ours) S
L

37.0
59.3

36.9
49.4

80.0
82.4

28.0
40.7

64.3
82.2

49.3
62.8

Agentic-R1-7B-SD (ours) S
L

40.0
65.3

38.2
52.0

82.5
93.3

27.3
40.7

66.3
85.8

50.9
67.4

Table 1: Main Results. We evaluate on five benchmarks under two budgets: S (4096) and L (32768). The results
are averaged over 5 seeds with T = 0.6. The best results are highlighted in bold, and the second-best results are
underlined. Agentic-R1 demonstrates significant gains on DeepMath-L and Combinatorics300, where both complex
reasoning and tool use are crucial, while maintaining comparable performance on common math tasks. Furthermore,
through self-distillation, Agentic-R1-SD can enhance performance and outperform baselines on nearly all tasks.

Qualitative Examples. We provide illustrative
trajectories demonstrating Agentic-R1’s adaptive
strategy-switching capability: (1) initially using the
tool-assisted strategy and then switching to textual
reasoning to correct an incorrect initial solution
(Fig. 6); and (2) starting with textual reasoning
and then switching to the tool-assisted strategy to
bypass tedious manual calculations (Fig. 7).

Agentic-R1 Knows When to Use Tools. An in-
triguing observation is that Agentic-R1 learns when
to appropriately invoke code tools purely through
supervised fine-tuning. For instance, Combina-
torics300 contains problems involving large nu-
merical computations, which makes the tools par-
ticularly beneficial. Consequently, Agentic-R1 acti-
vates at least one code execution tool in 79.2% of
the Combinatorics300 problems, while the usage
of the tool drops to only 52.0% in the relatively
simpler AMC dataset.

Agentic-R1 Learns from Imperfect Teach-
ers. Although OpenHands, based on Claude-3.5-
Sonnet, is not a strong standalone reasoning agent
and sometimes performs worse than the student’s
initial model (R1-Distill-7B), the student model
still effectively acquires valuable agentic strate-
gies through distillation. For example, the agentic
strategy teacher achieves only 48.4% accuracy on
Combinatorics300, yet after training, the student’s
performance improves significantly from 44.7%
to 50.9%, surpassing the teacher. This shows that
demonstrations from an imperfect agentic teacher
can still yield meaningful gains in the student.

4.5 Ablation Study

Dataset DeepMath-L AIME AMC

w/o composition 40.0% 34.0% 50.8%
w/ composition 59.3% 40.7% 82.2%

Table 2: Trajectory Composition. We compare per-
formance between composition and non-composition
distillation in the large budget setting; composition is
always better.

Trajectory Composition. To verify the effective-
ness of our data composition strategy, we compare
it with a training strategy that does not use compo-
sition, meaning that each student trajectory is either
fully generated by the agentic teacher or fully gener-
ated by the reasoning teacher. As shown in Table 2,
our composition strategy consistently surpasses its
non-composition counterpart.

5 Conclusion

We propose DualDistill, an efficient distillation
framework based on trajectory composition, allow-
ing a student model to learn from multiple teacher
models specialized in different domains of problem
solving. Using the appropriate strategy for each
problem, our trained model, Agentic-R1, achieves
superior performance in benchmarks that require
both reasoning and tool-assisted capabilities. This
approach demonstrates the potential for unifying
diverse problem-solving strategies within a single
model, opening new directions for building versa-
tile and adaptive language agents.

12033

Limitations

While our approach demonstrates strong overall
performance, several limitations remain for future
work. First, the transition words connecting dif-
ferent strategies within composed trajectories are
currently designed manually. As a result, the output
produced by the trained student model can occa-
sionally lack naturalness and fluidity, especially
when switching between strategies. Moreover, the
student model after self-distillation may exhibit
repetitive behavior. Developing methods for more
coherent and automatic transitions between strate-
gies could further enhance the readability and over-
all quality of the content generated by the student
model.

Second, our training dataset contains approx-
imately 2.6k composed trajectories. While this
appears sufficient to teach a model that has been
pre-trained on both text reasoning and code gen-
eration (e.g., DeepSeek-R1-Distill-7B) to choose
between strategies, it is likely insufficient for train-
ing a model to learn a new reasoning strategy from
scratch. For example, DeepSeek-R1-Distill was
fine-tuned on over 800k distilled examples to ac-
quire long CoT reasoning capabilities. Expanding
the dataset and covering a wider range of strategies
will be an important direction for future research.

Acknowledgments

This work was supported in part by the National
Science Foundation under Grant Nos. DMS-
2434614 and DMS-2502281.

References
Pranjal Aggarwal and Sean Welleck. 2025. L1:

Controlling how long a reasoning model thinks
with reinforcement learning. arXiv preprint
arXiv:2503.04697.

AI-MO. 2024. AIMO Validation AMC. Dataset,
Apache-2.0 licence. Accessed 2025-05-17.

AIME. 2025. American invitational mathemat-
ics examination (aime). https://www.maa.org/
math-competitions/aime. Organized by Mathe-
matical Association of America (MAA).

Anthropic. 2024. Claude 3.5 sonnet model card adden-
dum. Technical report, Anthropic. Accessed 16 May
2025.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts

prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. Preprint,
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu,
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao,
Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana
Klimovic, Graham Neubig, and Joseph E. Gonzalez.
2025. The danger of overthinking: Examining the
reasoning-action dilemma in agentic tasks. Preprint,
arXiv:2502.08235.

Jinhao Duan, Renming Zhang, James Diffenderfer,
Bhavya Kailkhura, Lichao Sun, Elias Stengel-Eskin,
Mohit Bansal, Tianlong Chen, and Kaidi Xu. 2024.
Gtbench: Uncovering the strategic reasoning limita-
tions of llms via game-theoretic evaluations. arXiv
preprint arXiv:2402.12348.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-
ment learning for strategic tool use in llms. Preprint,
arXiv:2504.11536.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu
Chen, Yue Wang, Linfeng Song, Dian Yu, Zhen-
wen Liang, Wenxuan Wang, and 1 others. 2025.
Deepmath-103k: A large-scale, challenging, decon-
taminated, and verifiable mathematical dataset for ad-
vancing reasoning. arXiv preprint arXiv:2504.11456.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. Preprint, arXiv:2305.02301.

HuggingFace. 2025. Math-verify: A robust mathemati-
cal expression evaluation system.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1

12034

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://www.maa.org/math-competitions/aime
https://www.maa.org/math-competitions/aime
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify

others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou,
Soneya B Hossain, Baishakhi Ray, Varun Kumar, Xi-
aofei Ma, and Anoop Deoras. 2024. Ledex: Training
llms to better self-debug and explain code. Advances
in Neural Information Processing Systems, 37:35517–
35543.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-r1: Training llms to reason and
leverage search engines with reinforcement learning.
Preprint, arXiv:2503.09516.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal,
Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, and
1 others. 2024. Training language models to self-
correct via reinforcement learning. arXiv preprint
arXiv:2409.12917.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng
Xue, Keqin Bao, Tian Ding, Ruoyu Sun, Benyou
Wang, Xiang Wang, Junyang Lin, and 1 others. 2025a.
Cort: Code-integrated reasoning within thinking.
arXiv preprint arXiv:2506.09820.

Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi
Yang, Beichen Zhang, Xiang Wang, Bowen Yu,
Binyuan Hui, Junyang Lin, and Dayiheng Liu. 2025b.
Start: Self-taught reasoner with tools. arXiv preprint
arXiv:2503.04625.

Xiang Li, Shizhu He, Jiayu Wu, Zhao Yang, Yao Xu,
Yang jun Jun, Haifeng Liu, Kang Liu, and Jun Zhao.
2024. MoDE-CoTD: Chain-of-thought distillation
for complex reasoning tasks with mixture of decou-
pled LoRA-experts. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 11475–11485, Torino, Italia.
ELRA and ICCL.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming
Yang. 2024. Lean-star: Learning to interleave think-
ing and proving. arXiv preprint arXiv:2407.10040.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.
Preprint, arXiv:2112.09332.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Yiqing Shen, Liwu Xu, Yuzhe Yang, Yaqian Li, and
Yandong Guo. 2022. Self-distillation from the last
mini-batch for consistency regularization. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11943–11952.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025. R1-searcher: Incentivizing the
search capability in llms via reinforcement learning.
Preprint, arXiv:2503.05592.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi-
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, and 1 others. 2024. Open-
hands: An open platform for ai software developers
as generalist agents. In The Thirteenth International
Conference on Learning Representations.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2025. Inference scaling laws: An
empirical analysis of compute-optimal inference for
problem-solving with language models. Preprint,
arXiv:2408.00724.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

12035

https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.09516
https://aclanthology.org/2024.lrec-main.1003/
https://aclanthology.org/2024.lrec-main.1003/
https://aclanthology.org/2024.lrec-main.1003/
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Tong Zheng, Lichang Chen, Simeng Han, R Thomas
McCoy, and Heng Huang. 2025. Learning to reason
via mixture-of-thought for logical reasoning. arXiv
preprint arXiv:2505.15817.

A Appendix

A.1 Code and Dataset
Our code is available at https://github.com/
StigLidu/DualDistill; Training data is avail-
able at https://huggingface.co/datasets/
VanishD/DualDistill.

A.2 Training Configuration
Loss Masking. To prevent the student model
from learning incorrect patterns from unsuccessful
attempts, we exclude specific segments of trajecto-
ries from the loss calculation. Specifically, trajec-
tory segments occurring before a transition from
incorrect to correct reasoning (i.e., t−+) are omit-
ted. Additionally, the executor’s feedback and the
code blocks resulting in execution errors are also
excluded from influencing the loss computation.

Hyperparameters. For fine-tuning the student
model Agentic-R1 on teacher distilled trajectories,
we use 4× A6000 GPUs for a total of 12.7 hours.
The model is trained for 4 epochs using the AdamW
optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 1 × 10−5. We set the maximum
context length to 16,384 tokens for teacher distilla-
tion and 8,192 for self-distillation, and discard all
training examples that exceed this limit.

A.3 Dataset Details
A.3.1 Problem Filtering Heuristics
To curate a training dataset that can guide a student
model in learning when to apply agentic versus
pure text-based reasoning, we construct two subsets
of mathematical problems.

Agentic-Favored Subset. We identify problems
where tool use is highly beneficial using two heuris-
tics:

• Numerical Scale: Problems whose final inte-
ger answers exceed an absolute value of 1, 000
often require nontrivial arithmetic operations
or algorithms that are more suitable for tool-
assisted computation.

• Difficulty Under Constraints: We use a base-
line text reasoning-only model, DeepSeek-R1-
Distill-7B, with a limited context length (4096
tokens). Problems unsolvable under the con-
straint with one trial are deemed more difficult
and suitable for agentic strategies.

Pure Reasoning-Favored Subset. To balance
the dataset, we include problems in which agent
execution is error-prone. These are selected by
identifying the cases where the tool-assisted strat-
egy fails and produces incorrect output.

We apply this selection process to DeepMath-
103K (He et al., 2025) and balance the two subsets
to ensure that the model sees roughly equal repre-
sentation from both strategies during training.

A.3.2 Dataset Scale

case g1, g2 = 1, 1 g1, g2 = 1, 0 g1, g2 = 0, 1

number 685 600 1393

Table 3: Dataset Scale. We report the number of train-
ing examples in each correctness category. Recall that
g1 and g2 represent the correctness of the first and sec-
ond teachers, respectively.

After running the two teachers on the filtered
subset and composing the trajectories, the final
distilled dataset contains 2, 678 examples. The de-
tailed count for each correctness category is listed
in Tab. 3.

A.4 Composition Trajectory

A.4.1 Transition Segment
When the teacher changes, a hand-designed transi-
tion segment is added to signify and point out the
meaning of the transition. There are three typical
transition segments t, which are shown in Table 4.
The transition segments used in self-distillation are
the same as those used in teacher distillation.

A.4.2 Trajectory Composition
Implementation

To transform multi-turn agentic trajectories from
OpenHands logs into a suitable training for-
mat, we extract content from the log fields
labeled ‘thought’, ‘code’, and ‘final thought’
along with their associated executor feedback, if
any. Each extracted content is then enclosed
within distinct resource tags—<think></think>,
<code></code>, <answer></answer> or <execu-
tor></executor>—and concatenated sequentially.

12036

https://github.com/StigLidu/DualDistill
https://github.com/StigLidu/DualDistill
https://github.com/StigLidu/DualDistill
https://github.com/StigLidu/DualDistill
https://huggingface.co/datasets/VanishD/DualDistill
https://huggingface.co/datasets/VanishD/DualDistill
https://huggingface.co/datasets/VanishD/DualDistill
https://huggingface.co/datasets/VanishD/DualDistill

Inference Prompt

System: A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>.
The final answer should be enclosed within boxed tags, i.e., answer here .
Meanwhile, you can use Python code to help you reason. The code should be enclosed within <code> </code> tags. For
example, <code> code here </code>.
An executor will run the code and provide feedback immediately after the code. The executor feedback should be
enclosed within <executor> </executor> tags.
You can use the executor feedback to improve your reasoning.

Figure 2: Inference Prompt. The system prompt used to guide the model during inference. Instructions highlighted
in brown indicate guidance specific to tool usage.

Meaning Content

tool (×) → text (✓) Wait, the code is not
correct, let’s try text
reasoning.

text (×) → tool (✓) Wait, use text reasoning is
too tedious, let’s try code
reasoning.

A (✓) → B (✓) Wait, we can also use
{B}-reasoning as an
alternative way to verify
the solution.

Table 4: Transition Segment. The transition segments
are used to connect trajectories from different teachers.
‘Tool’ and ‘text’ in the table represent agentic and pure
text reasoning strategies, respectively. ✓ and × mean
whether the trajectory is correct or not.

For reasoning trajectories from DeepSeek-R1, we
specifically apply the <answer></answer> tag to
the content outside the long CoT part (i.e., beyond
the <think></think> segment).

We aim for the student model to select the most
efficient strategy inherently. Thus, we enforce a
token budget on the first teacher’s inference: If y1
does not complete within a randomly determined
inference budget L0, the inference is stopped and
labeled unsuccessful. In contrast, we do not impose
any token budget constraint on the trajectory of the
second teacher y2.

During preliminary experiments, we observed
substantial differences in the distributional charac-
teristics between the OpenHands trajectories (πA)
and DeepSeek-R1 trajectories (πR). To avoid per-
formance degradation of y2 due to potential con-
tamination from combined inputs, we assume con-
ditional independence and explicitly define the
teacher model inference policy as π(· | x, y1) =
π(· | x).

A.5 Qualitative Example
We observed that Agentic-R1 shows several
promising behaviors: (1) The model initially adopts
tool-aided reasoning, but yields incorrect outputs
after several attempts, and then the model automat-
ically switches to text reasoning and finally derives
the correct answer (Fig. 6); (2) The model initially
tries to apply text reasoning for a combinatorial
problem, and then changes to tool-aided reasoning
to reduce computational complexity (Fig. 7).

A.6 Inference Details
For all evaluation experiments, we use the VLLM
framework (Kwon et al., 2023) to enable fast infer-
ence via prefix caching, which significantly accel-
erates multi-turn tool calls. In the tool-augmented
setting, the language model is allowed to invoke a
Python executor up to 10 times per problem, with
each execution capped at 3 seconds. During in-
ference, whenever the model outputs the special
token </code>, the generation process is temporar-
ily paused, the preceding code block is executed,
and the resulting feedback is appended to the on-
going generation enclosed with <executor> </ex-
ecutor> before resuming inference. Although tool
execution introduces up to 30 seconds of additional
runtime per query in the worst case, this cost is
relatively small compared to the time-intensive
pure text reasoning process, which can take several
minutes to reach a conclusion using DeepSeek-R1-
Distill-7B on 2×A6000 GPUs. Additionally, the
prompt template is listed in Fig. 2.

The grader evaluates output trajectories in two
steps:

• Exact match: The grader extracts the fi-
nal non-think block: a code result (‘<execu-
tor>. . . </executor>’) or a direct answer (‘<an-
swer>. . . </answer>’), and compares it with
the gold answer.

12037

• Fuzzy match: If no exact match is found,
the full output is passed to MathVerify (Hug-
gingFace, 2025), an open-source verifier that
checks mathematical equivalence. This helps
capture correct answers that may appear ear-
lier in the trace, ensuring a fairer comparison
for long-CoT baselines (e.g., DeepSeek-R1-
Distill) when facing length truncation.

A.7 Full Results
We report the performance trend of different mod-
els tested in various token budgets. Please refer to
Fig. 4 for individual benchmarks and Fig. 3 for the
average.

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Token Budget

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

0.353

0.474

0.631

0.329
0.330 0.331

0.399 0.399 0.3990.405

0.493

0.628

0.375

0.509

0.674
Average Accuracy

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)
Agentic-R1-7B-SD (Ours)

Figure 3: The average accuracy across benchmarks un-
der various token budgets.

B Related Work

Tool-Augmented Reasoning. Integrating exter-
nal tools into the language model chain-of-thought
(CoT) has substantially improved the accuracy
of numerical and factual tasks. Early program-
aided methods, such as PaL (Gao et al., 2023) and
PoT (Chen et al., 2023), demonstrated significant
gains by converting reasoning steps into executable
programs, thereby delegating precise computations
to code interpreters. Other lines of work, includ-
ing WebGPT (Nakano et al., 2022) and ReAct (Yao
et al., 2023), introduced agent-like reasoning frame-
works that interleave tool invocation (e.g., web
searches or API calls) within multi-step reasoning.
Toolformer (Schick et al., 2023) further generalized
this approach by training language models to self-
supervise API calls on various tasks such as arith-
metic, translation, and retrieval. START (Li et al.,
2025b) and CoRT (Li et al., 2025a) use hint-based
prompting to activate tool use behavior, followed
by rejection sampling fine-tuning (RFT) for self-
improvement. However, unlike DualDistill, these
methods typically focus on short-CoT, or primar-
ily use prompting or heuristic-based tool invoca-

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Token Budget

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

0.205

0.347

0.563

0.172 0.172 0.175

0.345
0.347

0.347
0.299

0.370

0.593

0.251

0.400

0.653
DeepMath-Large Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)
Agentic-R1-7B-SD (Ours)

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Token Budget

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

0.265

0.347

0.445

0.215 0.218 0.218

0.287 0.289 0.289
0.317

0.369

0.494

0.268

0.382

0.520
Combinatorics300 Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)
Agentic-R1-7B-SD (Ours)

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Token Budget

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

0.762

0.831

0.892

0.751 0.751 0.752

0.697 0.702 0.702

0.754
0.800

0.824

0.682

0.825

0.933
MATH500 Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)
Agentic-R1-7B-SD (Ours)

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Token Budget

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

0.093

0.233

0.407

0.080 0.080 0.080

0.147
0.147 0.147

0.173

0.280

0.407

0.167

0.273

0.407
AIME2025 Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)
Agentic-R1-7B-SD (Ours)

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Token Budget

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

0.441

0.612

0.848

0.427
0.429 0.429

0.518
0.511 0.511

0.482

0.643

0.822

0.506

0.663

0.858
AMC Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)
Agentic-R1-7B-SD (Ours)

Figure 4: Performance trend of different tested models
under various token budgets on the five benchmarks.

12038

Agentic Trajectory Example

User: For real numbers x and y, define ∇(x, y) = x− 1

y
. Evaluate ∇(2,∇(2,∇(2, . . .∇(2,∇(2, 2)) . . .)))︸ ︷︷ ︸

2016∇s

=
m

n

for relatively prime positive integers m and n, and compute 100m+ n.

Model:
<think>
Let me help solve this step by step.
1) Let’s understand what we’re calculating:
* We have a function ∇(x, y) = x− 1

y

* We’re nesting this function 2016 times
* Each time, the first argument is 2
* The innermost y starts with 2
2) Let’s try to see if there’s a pattern by calculating the first few terms: Let’s write a Python program to help us:
</think>
<code>

def nabla(x, y):
return x - 1/y

Let 's calculate first several terms
result = 2 # Starting value
for i in range (10): # First 10 iterations

result = nabla(2, result)
print(f\"After {i+1} iterations: {result }\")

</code>
<executor>

After 1 iterations: 1.5
... (omitted) ...
After 10 iterations: 1.0909090909090908

</executor>
<think>
Looking at the pattern, it seems the values are converging. Let’s try to understand what’s happening:
1) Let’s call the sequence an where a1 = 2 and an+1 = ∇(2, an)
2) For any term after the first: an+1 = 2− 1

an

3) If this sequence converges to some value L, then: L = 2− 1
L

4) This gives us: L2 = 2L− 1, L2 − 2L+ 1 = 0, (L− 1)2 = 0, L = 1
5) Let’s verify this is indeed what we get after 2016 iterations:
</think>
<code>

result = 2 # Starting value
for i in range (2016):

result = nabla(2, result)
print(f\"After 2016 iterations: {result }\")
Let 's convert to fraction
from fractions import Fraction
final = Fraction(result).limit_denominator ()
print(f\"\
As a fraction: {final }\")
Calculate 100m + n
m = final.numerator
n = final.denominator
print(f\"\
100m + n = {100*m + n}\")

</code>
<executor>

After 2016 iterations: 1.0004957858205237
As a fraction: 2018/2017
100m + n = 203817

</executor>
<think>
After 2016 iterations, we get 2018

2017
, and 100m+ n = 203817. Let’s verify these numbers are correct:

1) 2018 and 2017 are indeed relatively prime (2017 is prime)
2) The value is very close to but slightly larger than 1, which matches our convergence analysis
3) For 100m+ n: 100(2018) + 2017 = 203817

Therefore, 203817
</think>
<answer> 203817 </answer>

Figure 5: An example agentic trajectory derived from OpenHands.

12039

tion, lacking mechanisms to automatically balance
long-term reasoning against tool use based on task
complexity.

Long Chain-of-Thought Reasoning. Recent ap-
proaches have highlighted significant performance
improvements by scaling the length of the inference
time chain-of-thought (CoT). GPT-o1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) used
outcome-driven reinforcement learning to generate
extensive reasoning trajectories, substantially out-
performing short-CoT baselines in complex math
and reasoning benchmarks. Similarly, S1 (Muen-
nighoff et al., 2025) and L1 (Aggarwal and Welleck,
2025) demonstrated scaling curves showcasing a
log-linear relationship between performance and
inference compute. Empirical evidence supports
that an increase in inference computation can of-
ten yield more cost-effective gains than an increase
in model size alone (Wu et al., 2025). However,
long-CoT models frequently encounter overthink-
ing, which is the generation of overly long reason-
ing that leads to redundant or incorrect outcomes,
especially in tool use scenarios, a phenomenon
known as the reasoning-action dilemma (Cuadron
et al., 2025). Our work addresses these issues by
teaching a student model when to switch between
internal reasoning and tool-based execution adap-
tively.

Reasoning Models with Tool-Calling. Recently,
some works have explored the idea of combin-
ing long-form reasoning with explicit tool invo-
cation. R1-Searcher (Song et al., 2025) and Search-
R1 (Jin et al., 2025) introduced reinforcement-
learning-based retrieval policies within reasoning
loops, achieving substantial performance improve-
ments in open-domain question-answering tasks.
However, unlike these methods, DualDistill is
specifically tailored for math tasks. Similarly, Re-
Tool (Feng et al., 2025) trained a reasoning model
with tool use for math tasks. However, unlike these
approaches that rely on expensive and unstable
reinforcement learning techniques, DualDistill is
a simple distillation approach, leading to a more
data-efficient and practical training setup.

Distillation in Large Language Models. Knowl-
edge distillation is widely used to transfer capa-
bilities from larger models to smaller and more
efficient models (Sanh et al., 2019; Hsieh et al.,
2023). Recent extensions include multi-teacher
distillation frameworks, which aggregate knowl-

edge from multiple similarly structured teachers (Li
et al., 2024). However, existing distillation works
typically assume homogeneous teacher models or
single-modal reasoning paradigms. In contrast, our
proposed DualDistill explicitly utilizes heteroge-
neous teacher models: One specialized in agen-
tic tool use and the other in pure textual reason-
ing. DualDistill proposes an innovative approach
to composing trajectories that effectively guides the
student to learn from and combine both strategies.

Self-Taught Learning. A growing line of work
explores methods for language models to auto-
matically improve from their own generated out-
puts or feedback, a paradigm often referred to as
self-taught learning or self-distillation. Early ap-
proaches in this area explored self-taught learning
with pseudo-labels, where a model generates ra-
tionales or answers on unlabeled data and subse-
quently fine-tunes itself on these predictions (Ze-
likman et al., 2022; Wang et al., 2022). Shen et al.
(2022) introduces self-distillation using the output
of the previous mini-batch as soft targets, improv-
ing the consistency of the output without external
teachers. In the LLM era, fine-tuning LLMs on
self-generated trajectories with a rule-based veri-
fier has been applied in many domains, including
coding tasks (Jiang et al., 2024), theorem prov-
ing (Lin et al., 2024), math tasks (Kumar et al.,
2024), and others. A concurrent work (Zheng et al.,
2025) enables self-evolving reasoning across mul-
tiple modalities and fuses them during inference.

C License

Our training dataset is constructed based on exist-
ing datasets, language models, and software. The
following lists the relevant resources and their cor-
responding licenses.

• OpenHands: An open-source agent frame-
work under the MIT License;

• DeepSeek-R1: An open-source language
model under the MIT License;

• Claude-3-5-Sonnet: A commercial language
model under a proprietary license; accessible
via the Anthropic API and supported cloud
platforms;

• MATH500: An open-source math dataset un-
der the MIT License;

12040

• DeepMath: An open-source math dataset un-
der the MIT License.

All third-party resources were used following their
licenses and intended use, as publicly specified.
Our model and dataset are released under the MIT
License.

D Use of AI Assistants

For this project, we use AI assistants for paper edit-
ing (e.g., grammar, spelling, word choice) and to
assist with the running of experiments (e.g., script-
ing, automation support).

E Potential Risks

Our work focuses on a model distillation frame-
work for mathematical reasoning tasks, using syn-
thetic and publicly available data. It does not
involve deployment or the use of personal data.
Therefore, we do not identify significant risks re-
lated to safety, privacy, fairness, or security within
the current scope.

One potential data-related risk arises from the
distillation of the teacher models. Although our
training data is public, trajectory distillation may
produce misleading or hallucinatory content. Such
distilled data may require filtering if applied to
sensitive domains in future work.

12041

Agentic-R1 Behavior I

User: Evaluate the limit:

lim
n→∞

n

√
n(4n) + (4n)n

[(
2 +

1

n2

)18

−
(
4 +

4

n2

)9
]

Model:
<think>
Let me break this down and solve it step by step.
... (Omitted) ...
Let me write some code to help verify these observations.
</think>
<code>

import numpy as np
def first_expr(n):

return (n**(4*n) + (4*n)**n)**(1/n)
def second_expr(n):

return (2 + 1/n**2) **18 - (4 + 4/n**2) **9
Let 's test for large n
n = 1000
print(f"First expression for n={n}: {first_expr(n)}")
print(f"Second expression for n={n}: {second_expr(n)}")

</code>
<executor>

OverflowError: int too large to convert to float

</executor>
<think>
Let me modify the code to use logarithms to better understand the growth:
</think>
<code>

... (Omitted) ...
print(f"Log of first expression grows like {log_first_expr (1000) /1000}")
print(f"Log of second expression grows like {log_second_expr (1000) }")

</code>
<executor>

Log of first expression grows like 10.907755278982137
Log of second expression grows like 0.0

</executor>
<think>
Let me analyze this:
... (Omitted) ...
Let me verify this with very large n:
</think>
<code>

n = 10**10
first = (n**(4*n) + (4*n)**n)**(1/n)
second = (2 + 1/n**2) **18 - (4 + 4/n**2) **9
print(f"First expression = {first }") # This will show as inf , but we know it grows like n^4
print(f"Second expression = {second }") # Should approach 0

</code>
<executor>

Error: Code execution timed out.

</executor>
<think>
... (Omitted) ...
Wait, the code is not correct, let’s try text reasoning.
Okay, so I need to evaluate this limit:
... (Omitted) ...
However, 2^16 is 65536, and 65536 * 9 is indeed 589,824. So, perhaps the answer is 589,824.
</think>
<answer> 589, 824 </answer>

Figure 6: Example Behavior I of Agentic-R1. The model initially attempts to solve the problem using the tool to
compute a limit expression, but fails after several attempts. Notably, it then transitions to a pure text-based reasoning
strategy and successfully arrives at the correct solution.

12042

Agentic-R1 Behavior II

User: Determine the number of tuples (k1, k2, . . . , k26) such that each ki is either 0, 1, or 3, and the sum k1 + k2 +
. . .+ k26 = 15.
Model:
<think>
Okay, so I need to figure out how many 26-tuples there are where each element is either 0, 1, or 3, and the total sum is
15.
... (Omitted) ...
Let me compute each term step by step.
First, y=0:
x=15, y=0. Then the number of tuples is C(26,15)*C(11,0). C(26,15) is the same as C(26,11) because C(n,k) = C(n,
n-k). So C(26,11). C(11,0) is 1. So total is C(26,11).
Similarly, y=1:
x=12, y=1. Number of tuples is C(26,12)*C(14,1). C(26,12) is the same as C(26,14). C(14,1) is 14. So total is
14*C(26,14).
Wait, use text reasoning is too tedious, let’s try code reasoning.
</think>
<think>
Let me think about this problem systematically.
Let’s break this down:
1) We need to find the number of 26-tuples where each element is 0, 1, or 3
2) The sum of all elements must be 15
3) This is a constrained counting problem that can be solved using dynamic programming
4) Let’s use Python to implement a solution
5) We’ll need to:

- Create a 2D DP table where dp[i][j] represents the number of ways to make sum j using first i numbers
- For each position i, we can use 0, 1, or 3
- We’ll build this up from 0 to 26 numbers
- The final answer will be in dp[26][15]

</think>
<code>

def count_tuples ():
dp[i][j] represents number of ways to make sum j using first i numbers
dp = [[0] * 16 for _ in range (27)] # 27 numbers (0-26) and sums 0-15
Base case: 0 numbers can only make sum 0
dp [0][0] = 1
for i in range(1, 27):

for j in range (16):
if j >= 0: dp[i][j] += dp[i-1][j] # Try adding 0
if j >= 1: dp[i][j] += dp[i-1][j-1] # Try adding 1
if j >= 3: dp[i][j] += dp[i-1][j-3] # Try adding 3

return dp [26][15]
result = count_tuples ()
print(f"The number of valid 26-tuples is: {result }")

</code>
<executor>

The number of valid 26-tuples is: 853423740

</executor>
<think>
Let me verify this result with another approach to make sure it’s correct:
</think>
<code>

... (Omitted) ...
verified_result = verify_result ()
print(f"Verified result: {verified_result }")

</code>
<executor>

Verified result: 853423740

</executor>
<think>
I have verified the result using two different approaches and both give the same answer.
</think>
<answer> 853, 423, 740 </answer>

Figure 7: Example Behavior II of Agentic-R1. The model first attempts to solve the combinatorial problem via
text-based reasoning, but switches to tool-assisted reasoning due to computational complexity. It then implements a
dynamic programming algorithm to solve the problem efficiently and verify the result.

12043

