
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1160–1176
November 4-9, 2025 ©2025 Association for Computational Linguistics

The LLM Already Knows: Estimating LLM-Perceived Question Difficulty
via Hidden Representations

Yubo Zhu1,2*†, Dongrui Liu2*, Zecheng Lin2,3†, Wei Tong1‡, Sheng Zhong1, Jing Shao2‡

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 Shanghai Artificial Intelligence Laboratory

3 Xidian University
zyb@smail.nju.edu.cn {wtong, zhongsheng}@nju.edu.cn

zechenglin@stu.xdu.edu.cn {liudongrui, shaojing}@pjlab.org.cn

Abstract
Estimating the difficulty of input questions as
perceived by large language models (LLMs) is
essential for accurate performance evaluation
and adaptive inference. Existing methods typi-
cally rely on repeated response sampling, aux-
iliary models, or fine-tuning the target model
itself, which may incur substantial computa-
tional costs or compromise generality. In this
paper, we propose a novel approach for diffi-
culty estimation that leverages only the hidden
representations produced by the target LLM.
We model the token-level generation process
as a Markov chain and define a value func-
tion to estimate the expected output quality
given any hidden state. This allows for effi-
cient and accurate difficulty estimation based
solely on the initial hidden state, without gen-
erating any output tokens. Extensive experi-
ments across both textual and multimodal tasks
demonstrate that our method consistently out-
performs existing baselines in difficulty esti-
mation. Moreover, we apply our difficulty esti-
mates to guide adaptive reasoning strategies, in-
cluding Self-Consistency, Best-of-N, and Self-
Refine, achieving higher inference efficiency
with fewer generated tokens.

1 Introduction

As large language models (LLMs) grow more ca-
pable, accurately estimating question difficulty is
becoming increasingly critical. Precise difficulty
estimation not only supports difficulty-aware evalu-
ation (Ding et al., 2024; Gao et al., 2024; He et al.,
2025), enabling finer-grained assessment of model
performance across varying difficulty levels, but
also facilitates difficulty-aware training (Xue et al.,
2025; Tian et al., 2025; Ji et al., 2025), improving
model robustness and performance on challeng-
ing examples. Furthermore, difficulty estimation

* Equal contribution.
† This work was done during an internship at Shanghai

Artificial Intelligence Laboratory, supervised by Dongrui Liu.
‡ Corresponding author.

Figure 1: t-SNE visualization of last layer hidden repre-
sentations derived from input questions in a randomly
sampled 50% subset of MMBench (Yuan Liu, 2023).
Blue and orange contours represent the distributions of
hard and easy problems for the LLM, respectively, with
darker regions indicating areas of higher density. Here,
problems are classified as easy if the model’s outputs
across three independent rollouts consistently match the
ground-truth answers, and as hard otherwise.

drives the dynamic adaptation of test-time infer-
ence strategies (Pan et al., 2024; Wang et al., 2024b;
Li et al., 2024). By tailoring inference effort to in-
put difficulty, LLMs can allocate resources more
efficiently.

To this end, several attempts have been made to
distinguish between easy and difficult questions.
These include estimating question difficulty by
measuring the consistency of outputs generated by
the target LLM (Lee et al., 2025; Pan et al., 2024;
Li et al., 2024; Chen et al., 2024; Snell et al., 2024),
fine-tuning the target LLM to predict input diffi-
culty and dynamically adapt its strategies (Huang
et al., 2025; Manvi et al., 2024), and employing an
auxiliary LLM to assess question difficulty (Chen
et al., 2024; Cheng et al., 2025; Wang et al., 2024b).
These methods mainly rely on generated outputs
and typically suffer from at least one of the fol-
lowing limitations: substantial computational over-
head due to repeated output generation; potential
degradation of the target LLM’s general capabil-
ities, including robustness and safety (Qi et al.,
2024); and insufficient measurement of the rela-
tionship between the target LLM’s internal state

1160



and the difficulty of the input question.
In this paper, we examine an intuitive yet under-

explored idea, using hidden representations, rather
than generated outputs, to estimate question dif-
ficulty for LLMs. This idea originates from find-
ings that hidden representations give a finer-grained
and semantically richer view of the model’s pre-
diction logic (Zhang et al., 2024b; Yin et al., 2024;
Kong et al., 2024). To conduct an initial explo-
ration of their effectiveness, we extract hidden rep-
resentations with Qwen2.5-VL-7B-Instruct (Bai
et al., 2025) and InternVL3-8B (Zhu et al., 2025)
for questions in the MMBench dataset (Liu et al.,
2024). As shown in Figure 1, these representa-
tions clearly separate easy from hard questions,
suggesting that hidden representations may carry
information related to question difficulty.

Specifically, we present a method that models
input question difficulty by exploiting the hidden
representations produced by the target LLM. As
the model generates its response token by token,
the resulting sequence of hidden representations
reflects its reasoning dynamics throughout the gen-
eration process. We formalize this sequence of
hidden representations as a Markov chain (Norris,
1998), where the state transitions inherently reflect
the model’s autoregressive generation process. To
quantify the perceived difficulty at each state, we
define a value function over the Markov chain to es-
timate the expected output quality associated with
each state. At test time, the difficulty can be ac-
curately estimated by evaluating the value of the
initial state, which is determined solely by the input
question, without generating any tokens.

We have conducted extensive experiments to
validate the effectiveness of the proposed method
across diverse tasks, including general-purpose rea-
soning, mathematical reasoning and open-ended
problem solving, covering both pure textual and
multimodal (image-text) scenarios. In addition to
accurately estimating input question difficulty for
the target LLM, we further validate the effective-
ness of our method in adaptive reasoning scenarios.
Specifically, we refine repeat-sampling strategies
such as Self-Consistency (Wang et al., 2022), Best-
of-N (Brown et al., 2024), and Self-Refine (Madaan
et al., 2023) by adjusting the reasoning strategy
based on the estimated difficulty of each question.
Experimental results demonstrate that our method
provides accurate difficulty estimations, enabling
adaptive reasoning to achieve higher inference effi-
ciency across multiple datasets.

Overall, our approach enables accurate difficulty
estimation without generating multiple outputs at
test time, while effectively leveraging fine-grained
signals from the model itself and preserving its
general capabilities.

2 Related Work

2.1 Representations of LLMs
Recent studies have increasingly focused on the
hidden representations of LLMs, rather than solely
on their textual outputs.. These representations
have been explored in various contexts, including
alignment (Kong et al., 2024; Liu et al., 2025; Li
et al., 2023a; Zhang et al., 2024a), safety (Chen
et al., 2025; Wang et al., 2024a; Lu et al., 2025),
interpretability (Ghandeharioun et al., 2024; Jacobi
and Niv, 2025), and robustness (Lad et al.; Yan
et al., 2024).

2.2 Repeated Sampling Methods
Repeated sampling has been widely employed to
enhance the reliability and quality of LLM out-
puts. Techniques such as Best-of-N (Brown et al.,
2024), Self-Consistency (Wang et al., 2022) and
Self-Refine (Madaan et al., 2023) explore multi-
ple generation paths during inference and select or
aggregate the results to improve performance.

2.3 Difficulty Estimation
A growing body of research explores strategies for
adapting model behavior at test time based on input
difficulty, with the goal of balancing performance
and computational efficiency. These approaches
typically rely on categorizing problem difficulty.
One prominent line of work focuses on leveraging
self-consistency (Wang et al., 2022) in model out-
puts (Lee et al., 2025; Pan et al., 2024; Li et al.,
2024; Chen et al., 2024; Snell et al., 2024). How-
ever, such methods often rely on generating multi-
ple outputs at test time. Alternatively, some meth-
ods directly employ or fine-tune an auxiliary large
language models as judges to assess question diffi-
culty (Chen et al., 2024; Cheng et al., 2025; Wang
et al., 2024b). However, such auxiliary models
often fail to accurately capture the target model’s
perception of question difficulty. Another class of
approaches fine-tunes LLMs with output-level su-
pervision (Manvi et al., 2024; Huang et al., 2025).
Although these methods can improve performance
on specific reasoning tasks, they compromise the
target LLM’s general capabilities.

1161



3 Methods

The difficulty of a question, as perceived by the
target LLM, is reflected in the quality of its out-
put. One promising approach to accurately estimate
perceived difficulty while preserving the general
capabilities of the target LLM is to exploit its fine-
grained internal signals. This idea offers a potential
for model-driven difficulty estimation without re-
quiring multiple outputs at test time.

Estimating perceived difficulty using internal sig-
nals requires not only fine-grained modeling of the
generation behavior at the token level within the
LLM but also sophisticated control over the transi-
tions between generation states across all internal
representations. To tackle this challenge, we model
the generation process as a Markov chain with
token-level hidden representations(Section 3.1).
We then define a value function to capture the ex-
pected output quality at each Markov state (Sec-
tion 3.2). Finally, we train a model to learn this
value function (Section 3.3), allowing us to esti-
mate the expected output quality based on the ini-
tial state determined by the input question.

3.1 Preliminary
The behavior of transformer-based large language
models (LLMs) can be modeled as a Markov
chain (Norris, 1998; Zekri et al., 2024; Kong et al.,
2024; Kao et al., 2025). In this paper, we formalize
the autoregressive generation process of an LLM as
a Markov chain over hidden representations. This
formulation is motivated by two key factors. First,
hidden representations offer fine-grained internal
signals that reflect the model’s evolving reasoning
process (Zhang et al., 2024b; Yin et al., 2024; Kong
et al., 2024). Second, the Markov chain formula-
tion provides a structured and expressive way to
capture the transitions between hidden representa-
tions during generation. By modeling these tran-
sitions, we can establish a more direct connection
between the initial state, which represents the input
question, and the eventual output quality.

Formally, for an autoregressive LLM fθ and an
input question x, the generation process at time
step t can be described as:

Ht+1, yt+1 = fθ(Ht, yt),

where yt is the token generated at time step t.
Ht = (h0, h1, h2, . . . , ht) represents the sequence
of contextual embeddings up to time t, where each
hi is the hidden representations generated at time

step i by the LLM. In the formulation, {Ht, yt}
serves as the Markov state st, and fθ acts as the
transition function that governs the evolution of
the process over time. Specifically, s0 = {H0,x}
refers to the initial Markov state, where H0 = (h0)
is the hidden representations generated from the
input question x.

3.2 Difficulty Estimation
To assess perceived difficulty, we need to evalu-
ate the output quality of the target LLM. This
output quality is commonly evaluated using out-
come reward models (ORMs), which assess the
final result after generation (Coste et al., 2023;
Moskovitz et al., 2023). Since that, we define the
reward function R over the Markov state. Formally,
given an input question x and an output sequence
y = {y1, y2, . . . , yt}, we define the reward func-
tion R as:

R(st) =

{
Reward(y) if yt = EOS,
0 otherwise,

(1)

where EOS denotes the end-of-sequence token.
To model the expected output quality from

a Markov state, we employ the value function
V (st). The function models the expected cumula-
tive future rewards that can be obtained by starting
from the given state st. Formally, it can be de-
fined using the Bellman equation (Bellman, 1957)
as below:

V (st) = Est+1 [R(st) + γV (st+1)] . (2)

Substituting Eq. 1 into Eq. 2, we obtain:

V (st) =

{
γ Est+1 [V (st+1)] , if yt ̸= EOS,
R(st), if yt = EOS.

(3)

This V (st) represents the expected output qual-
ity for the Markov state st, based on the LLM’s
sample strategy.

To estimate the difficulty of an input question
x, we rely solely on the initial state s0, which
encodes the model’s hidden representations for
the input question x. Given the formulation of the
value function, the value V (s0) represents the ex-
pected output quality of the initial Markov state s0
under the LLM’s sampling strategy. This directly
reflects the perceived difficulty of the question by
the target LLM, based solely on the input question
itself.

1162



Therefore, the overall difficulty of the problem
is defined based on V (s0), and the input question
x is estimated accordingly as:

x ∈
{

Difficult if V (s0) ≤ τ,

Easy if V (s0) > τ,

where τ is a predefined threshold that separates
easy and difficult questions.

3.3 Training Objective

Our objective is to train a model F̂ϕ that ac-
curately approximates the value function V .
Given a training dataset D = {x(i)}ni=1,we first
use the target LLM to generate responses. For
each input x(i), we generate a token sequence
y(i) = (y

(i)
1 , y

(i)
2 , . . . , y

(i)
t ).

We interpret our training objective through the
lens of temporal difference (TD) learning (Sutton,
1988). Leveraging the structure in Eq. 3, we de-
fine the TD error at each step as the discrepancy
between the predicted value and the bootstrapped
target. Specifically, the TD error is given by:

δt =

{
γ Reward(y(i))− F̂ϕ(s

(i)
t ), if yt = EOS,

γ F̂ϕ(s
(i)
t+1)− F̂ϕ(s

(i)
t ), otherwise.

We then minimize the squared TD error over all
sampled responses:

LTD = E(x,y)∼D

[∑

t

δ2t

]
.

4 Application: Difficulty-Aware Repeated
Sampling

In this section, we propose three straightforward
strategies to empirically evaluate the performance
of our proposed difficulty estimation method in
the context of adaptive inference, based on Self-
Consistency (Wang et al., 2022) (Section 4.1), Best-
of-N (Snell et al., 2024) (Section 4.2), and Self-
Refine (Madaan et al., 2023) (Section 4.3). Our
design principle follows an adaptive strategy: com-
plex repeated sampling methods are employed for
questions identified as difficult, whereas easy ques-
tions are addressed with single sampling.

4.1 Difficulty-Aware Self-Consistency

Given question x and the initial state s0, we apply
a difficulty-aware Self-Consistency strategy. we

sample K reasoning paths

{yCoT
1 ,yCoT

2 , . . . ,yCoT
K } ∼ fθ(y | x).

The final prediction is selected adaptively based
on the estimated difficulty of x:

â =





fDirect
θ (x), if F̂ϕ(s0) > τ

argmax
a

K∑
k=1

I(Ans(yCoT
k ) = a), if F̂ϕ(s0) ≤ τ

Here, Ans(·) extracts the final answer from a
chain-of-thought (CoT) reasoning path.

4.2 Difficulty-Aware Best-of-N
Given question x and its initial state s0, we apply a
difficulty-aware Best-of-N strategy. we sample K
reasoning paths

{yCoT
1 ,yCoT

2 , . . . ,yCoT
K } ∼ fθ(y | x).

and then select the one with the highest predicted
correctness score:

â =




fDirect
θ (x), if F̂ϕ(s0) > τ

arg max
k=1,...,K

P (true | x,yCoT
k ), if F̂ϕ(s0) ≤ τ

Here, P (true | x, yk) denotes the model’s es-
timated probability that candidate yk is a correct
answer to input x.

4.3 Difficulty-Aware Self-Refine
Given question x and its initial state s0, we apply
a difficulty-aware Self-Refine strategy. We first
sample an initial response y0 ∼ fθ(y | x), and then
iteratively refine it for T steps to obtain a sequence
of improved responses:

{yCoT
1 ,yCoT

2 , . . . ,yCoT
t }, where yt ∼ fθ(y | x,yt−1).

The final prediction is chosen adaptively based
on the estimated difficulty of x:

â =

{
fDirect
θ (x), if F̂ϕ(s0) > τ

Ans(y(T )), if F̂ϕ(s0) ≤ τ

Here, Ans(·) extracts the final answer from the last
refined reasoning path.

1163



5 Experiments

In this section, we conduct experiments to evalu-
ate our method. Our experiments are divided into
two main parts. The first part assesses whether
our proposed method can accurately estimate the
difficulty of input questions as perceived by the
target LLMs (Section 5.2). The second part exam-
ines whether applying our difficulty estimation to
difficulty-aware repeated sampling improves per-
formance (Section 5.3).

5.1 Experiment Setup
Datasets. We select six datasets to evaluate the pro-
posed method, covering both multimodal (image-
text) and purely textual settings, and encompassing
both general-purpose and domain-specific ques-
tion answering tasks. For general-purpose reason-
ing QA, we use MMBench (Yuan Liu, 2023), Sci-
enceQA (Lu et al., 2022), commonsenseQA (Tal-
mor et al., 2018) and strategyQA (Geva et al.,
2021). For domain-specific reasoning in mathe-
matics QA, we use MathVista (Lu et al., 2024) and
gsm8k (Cobbe et al., 2021). More details can be
found in Appendix A.1.
Baselines. We compare our method with below
methods:

• prompt: A method that estimates problem dif-
ficulty by using a prompt to instruct the model
to assess the difficulty of the input question
itself.

• AG (Lee et al., 2025): A method that estimates
problem difficulty based on the consistency of
the target model’s outputs.

• LLMs-Ranking (Wang et al., 2024b): A
method that introduces an auxiliary LLM to
directly assess the difficulty of a given prob-
lem.

• HaluSearch-Gen (Cheng et al., 2025): A
training-based method that fine-tunes the
LLM to equip it with the ability to assess prob-
lem difficulty.

• HaluSearch-Critic (Cheng et al., 2025): A
variant of HaluSearch-Gen that incorporates
a critic signal into the training data to pro-
vide more explicit supervision for difficulty
assessment.

We provide more details about baseline in the
Appendix A.2.

Models. To evaluate the effectiveness of our pro-
posed method on both text-only and multimodal
datasets, we employ two advanced open-source
multimodal large language models in our experi-
ments: Qwen2.5-VL-7B-Instruct (Bai et al., 2025)
and InternVL3-8B (Zhu et al., 2025).
Evaluation Metrics. (1) Difficulty Estimation.
To evaluate the accuracy of our method in the bi-
nary classification task of question difficulty esti-
mation, we use ROC-AUC (Gönen et al., 2006) and
Macro-F1 score (Sokolova and Lapalme, 2009).
These two metrics provide a comprehensive as-
sessment of classification accuracy, even in the
presence of severe class imbalance. (2) Difficulty-
Aware Repeated Sampling. We use accuracy and
total output length to evaluate the efficiency of
the proposed difficulty estimation method when
applied to the difficulty-aware repeated sampling.
Accuracy measures the proportion of correctly
answered questions, reflecting the overall perfor-
mance, while total output length reflects the cost of
the sampling process.
Implementation Details. (1) Ground Truth.
Since the datasets are all objective questions, we
use the model’s responses in three independent
attempts to determine whether it answers all ques-
tions correctly, which serves as the ground truth for
classifying the input questions as easy or hard. (2)
Model Training. We employ a two-layer fully con-
nected neural network to implement the difficulty
estimation described in Section 3.3. In practice, we
use the last layer hidden state ht as the state st at
time step t. More details about implementation are
shown in Appendix A.3.

5.2 Main Results for Difficulty Estimation
To assess whether our method provides an accurate
estimation of input question difficulty, we conduct
experiments on six diverse datasets using two state-
of-the-art models.

Our method provides accurate difficulty esti-
mation. From the results presented in Table 1, it is
clear that our method nearly outperforms the base-
line methods across all evaluated metrics. In terms
of difficulty estimation, our method achieves strong
performance in both easy and hard question iden-
tification. Our method excels in providing precise
difficulty classification, achieving high ROC-AUC
and Macro-F1 scores. For instance, on the Sci-
enceQA dataset, our method reaches an ROC-AUC
of 93.09% and a Macro-F1 of 79.48%, demonstrat-
ing its excellent ability to classify both easy and

1164



Qwen2.5vl-7B-Instruct InternVL3-8B
Dataset Method Easy-Acc Hard-Acc ROC-AUC Macro-F1 Easy-Acc Hard-Acc ROC-AUC Macro-F1

MMBench

prompt 89.90 6.48 51.75 47.75 40.94 37.39 60.03 33.61
AG 88.27 61.90 81.04 72.17 98.59 11.76 55.99 56.62

LLMs-Ranking 74.25 33.45 44.28 51.43 98.59 2.10 42.49 48.65
HaluSearch-Gen 37.95 86.23 37.39 41.23 91.96 39.07 70.89 65.23

HaluSearch-Critic 69.41 51.08 38.99 53.48 88.27 57.14 76.37 68.27
ours 91.08 78.81 94.15 80.68 88.35 73.93 91.22 75.98

ScienceQA

prompt 98.51 1.00 50.24 46.14 56.81 32.09 55.54 39.85
AG 86.29 59.82 77.76 70.40 97.64 20.10 59.07 61.47

LLMs-Ranking 56.47 55.33 42.06 48.83 99.34 1.87 37.72 49.60
HaluSearch-Gen 93.64 18.06 44.27 56.68 96.30 39.87 70.50 69.41

HaluSearch-Critic 66.37 49.55 41.49 52.82 93.09 61.68 79.44 72.50
ours 90.00 76.15 93.09 79.48 89.61 73.60 92.02 74.62

MathVista

prompt 76.90 10.76 51.32 41.95 40.94 58.57 51.79 46.94
AG 65.79 76.58 78.71 67.81 92.22 24.29 59.79 58.44

LLMs-Ranking 0.00 100.00 42.91 25.71 93.61 7.86 47.81 47.12
HaluSearch-Gen 100.00 0.60 49.66 42.25 46.39 65.00 53.42 50.46

HaluSearch-Critic 69.66 45.07 41.71 51.53 66.39 47.86 57.98 55.99
ours 85.63 64.83 86.13 75.23 84.21 71.52 86.11 77.44

StrategyQA

prompt 97.39 0.38 51.12 37.77 59.02 27.73 54.03 43.43
AG 73.16 34.96 56.95 53.85 92.65 9.66 51.16 46.34

LLMs-Ranking 0.00 100.00 55.35 27.91 88.42 17.23 58.83 50.45
HaluSearch-Gen 84.89 27.41 56.87 54.78 83.86 29.41 60.04 55.53

HaluSearch-Critic 69.78 48.51 61.58 59.21 78.07 37.50 61.06 57.58
ours 58.99 75.18 73.09 65.22 68.13 62.50 70.95 64.16

gsm8k

prompt 99.68 0.52 49.89 42.01 67.69 59.09 38.38 56.93
AG 51.54 68.58 65.60 55.23 92.36 13.18 52.77 52.74

LLMs-Ranking 0.00 100.00 51.21 22.46 97.99 4.55 67.57 49.11
HaluSearch-Gen 91.10 24.17 58.91 55.70 65.72 43.12 59.21 53.67

HaluSearch-Critic 98.01 18.68 62.21 57.87 84.23 34.21 58.97 54.43
ours 61.67 58.24 67.28 65.23 63.02 63.10 67.63 61.90

commonsenseQA

prompt 97.59 2.26 45.44 50.08 62.74 36.67 50.79 46.37
AG 78.43 62.78 73.72 67.68 96.04 13.51 54.78 55.37

LLMs-Ranking 0.00 100.00 53.77 17.89 97.20 1.62 46.64 50.05
HaluSearch-Gen 86.02 19.86 53.08 52.91 91.06 16.36 54.23 53.93

HaluSearch-Critic 58.88 46.26 52.46 48.19 71.10 58.69 53.71 51.72
ours 72.35 73.64 80.78 69.81 76.46 74.30 83.00 68.10

Table 1: Performance comparison between our method and other approaches. “Easy-Acc”refers to the proportion of
questions classified as easy out of all the easy questions, while “Hard-Acc”refers to the proportion of questions
classified as easy out of all the hard questions.

hard questions accurately.

Among the baselines, AG yields the strongest
performance in most cases. This is primarily due
to its consistency-based evaluation strategy, which
leverages the output information of the target LLM
itself. In addition, LLM-Ranking exhibits less sta-
ble performance, which can be attributed to two
factors. First, it relies on an auxiliary model to as-
sess the difficulty directly from the input, without
leveraging the internal characteristics of the tar-
get LLM. Our method, by leveraging the internal
hidden representations of the target LLM, offers a
more direct and fine-grained reflection of its rea-
soning process, resulting in improved stability and
generalization across datasets.

The time cost of our method for assessing in-
put question difficulty at test time is low. This
time cost directly affects the efficiency of subse-

quent tasks that rely on difficulty estimation. Fig-
ure 2 presents the evaluation results. As shown,
our method consistently requires less time com-
pared to other baselines across all datasets, ensur-
ing efficient difficulty estimation. For prompt, AG,
and LLM-Rankings, this training-free method in-
evitably involves extensive preprocessing of the
questions during the test time, resulting in sig-
nificant time costs. For HaluSearch-Gen and
HaluSearch-Critic, although they learn difficulty
estimation during training, they still require a sin-
gle evaluation to allow the model to perceive the
difficulty. In contrast, our method only requires
the hidden representations generated by the target
LLM from the input questions at test time, enabling
fast and efficient difficulty assessment.

Since our method does not involve training
the target LLM itself, it does not impair the

1165



MMBench ScienceQA MathVista StrategyQA gsm8k commonsenseQA
0

50

100

tim
e

(m
in

ut
es

)

prompt AG LLM-Ranking HaluSearch-Gen HaluSearch-Critic ours

Figure 2: Time comparison for difficulty estimation across different datasets and methods at test time for qwen2.5vl-
7B-Instruct. To ensure a fair comparison, we randomly selected 400 questions from the test set of each dataset to
evaluate the time cost.

0.0 0.5 1.0 1.5 2.0 2.5
Number of Tokens ×106

87.0

87.5

88.0

88.5

Ac
cu

ra
cy

SC on MMBench

0 1 2 3 4 5 6 7
Number of Tokens ×106

83.5

84.0

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

SC on ScienceQA

0.0 0.2 0.4 0.6 0.8 1.0
Number of Tokens ×106

68

70

72

Ac
cu

ra
cy

SC on MathVista

0.0 0.5 1.0 1.5 2.0 2.5
Number of Tokens ×106

86.5

87.0

87.5

88.0

Ac
cu

ra
cy

BoN on MMBench

0 1 2 3 4 5 6 7
Number of Tokens ×106

83.5

84.0

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

BoN on ScienceQA

0.0 0.2 0.4 0.6 0.8 1.0
Number of Tokens ×106

64

66

68

70

72

Ac
cu

ra
cy

BoN on MathVista

0.5 1.0 1.5 2.0
Number of Tokens ×106

85.5

86.0

86.5

87.0

87.5

88.0

Ac
cu

ra
cy

SR on MMBench

0 1 2 3 4 5
Number of Tokens ×106

82

83

84

85

Ac
cu

ra
cy

SR on ScienceQA

0.0 0.2 0.4 0.6 0.8 1.0
Number of Tokens ×106

64

66

68

70

72

Ac
cu

ra
cy

SR on MathVista

Base Prompt AG LLMs-Ranking HaluSearch-Gen HaluSearch-Critic Ours

Figure 3: Performance comparison of difficulty-aware sampling methods across multiple datasets for Qwen2.5vl-7B-
instruct. "SC" refers to Self-Consistency, "BoN" refers to the Best-of-N, and "SR" refers to Self-Refine. "Number
of Tokens" represents the total number of output tokens generated on the test set. For SC and BoN, the budget K is
set to 10, while for SR, the budget K is set to 5.

model’s general capabilities.

5.3 Main Results for Difficulty-Aware
Repeated Sampling

Figure 3 shows the performance of different
difficulty-aware sampling methods on MMBench,
ScienceQA, and MathVista under three sam-
pling strategies: Self-Consistency (SC), Best-of-N
(BoN), and Self-Refine (SR). We apply the six base-
line methods introduced in the section 5.1 solely
for difficulty estimation, and incorporate these diffi-
culty estimation into the difficulty-aware sampling
framework proposed in section 4.

Across all datasets and sampling strategies,
our method consistently achieves the highest ac-
curacy while consuming fewer or comparable

numbers of tokens. For example, on ScienceQA
under SC, our method reaches the highest accu-
racy while using fewer tokens than most baselines.
On MathVista, our method demonstrates substan-
tial improvements under both BoN and SR, outper-
forming all other approaches in terms of accuracy.
Although the prompt method tends to consume
fewer tokens, this is largely due to its inclination
to classify most questions as easy. However, such
over-simplification often leads to lower overall ac-
curacy, as it fails to allocate sufficient reasoning
effort for genuinely difficult questions.

The results for other budget are shown in Fig-
ure 4 in Appendix.

1166



Qwen2.5vl-7B-Instruct InternVL3-8B
Dataset Method Easy-Acc Hard-Acc ROC-AUC Macro-F1 Easy-Acc Hard-Acc ROC-AUC Macro-F1

RLHF-V

prompt 99.80 0.00 50.10 49.14 45.80 56.00 50.82 34.20
LLMs-Ranking 60.08 36.36 47.36 39.49 75.66 18.99 44.75 46.82
HaluSearch-Gen 97.17 46.15 45.83 58.71 94.61 34.14 82.48 66.72

HaluSearch-Critic 95.09 65.85 67.32 71.94 94.96 65.85 67.32 75.22
ours 79.64 70.79 82.84 67.39 81.05 71.83 85.95 79.83

VLFeedback

prompt 90.49 11.22 49.12 48.43 76.59 43.18 51.47 50.04
LLMs-Ranking 85.03 16.33 49.92 49.91 69.96 11.36 33.23 41.73
HaluSearch-Gen 98.99 48.78 69.36 58.16 96.47 6.68 50.19 55.73

HaluSearch-Critic 99.07 48.61 72.72 62.77 96.04 66.66 71.84 65.79
ours 92.39 80.50 92.16 75.57 93.96 73.21 74.94 77.82

Table 2: Performance comparison between our method and other approaches.

Method train dataset test dataset ROC-AUC Macro-F1

HaluSearch-Gen
ScienceQA MMBench

50.89 49.93
HaluSearch-Critic 58.27 46.57

ours 89.03 73.73

HaluSearch-Gen
StrategyQA commonsenseQA

52.16 50.98
HaluSearch-Critic 49.66 47.55

ours 65.69 56.08

Table 3: Generalization comparison between training-
based approaches.

ScienceQA commonsenseQA
Model ROC-AUC Macro-F1 ROC-AUC Macro-F1

Qwen2.5-VL-3B-Instruct 90.05 77.60 79.48 66.04
Qwen2.5-VL-7B-Instruct 93.04 79.48 80.78 67.66
Qwen2.5-VL-32B-Instruct 94.32 79.46 84.02 70.84
Qwen2.5-VL-72B-Instruct 95.40 78.69 85.51 70.10

Table 4: Difficulty estimation performance across model
sizes.

6 Further Analysis

In this section, we conduct further analyses to vali-
date the robustness, generalizability, and scalability
of our method.

6.1 Performance on Open-ended Questions

To comprehensively assess the applicability of our
method beyond open-ended tasks, we evaluate its
performance on two open-ended datasets, includ-
ing RLHF-V (Yu et al., 2023) and VLFeedback (Li
et al., 2023b). We adopt LLaVA-Critic (Xiong
et al., 2024) as the reward model to score the
responses generated by the target model. These
scores are used as ground-truth difficulty annota-
tions. Specifically, a score below 50 indicates a
hard question, while a score above 50 denotes an
easy one, with 100 being the highest possible score.
The experimental results are presented in Table 2.
These results demonstrate that our method also per-
forms well in open-ended scenarios.

6.2 Cross-Domain Generalization

Generalization Across Datasets. To evaluate
the cross-domain generalization capability of our
method, we train it on one dataset and directly
evaluate it on a different domain. This setting
tests whether the learned difficulty estimation can
generalize to new types of inputs. We compare
our method with a training-based baseline that is
trained and evaluated on the same domain. The re-
sults are shown in Table 3, demonstrating that our
method maintains strong performance even under
domain shifts.

Generalization Across Models. Beyond dataset-
level generalization, we further investigate whether
the learned value function can generalize across
different LLMs. Generalizing across models is
inherently challenging, as different LLMs en-
code distinct and model-specific feature represen-
tations depending on their architecture and train-
ing data (Zhang et al., 2024b; Dang et al., 2024).
We train on Qwen2.5-7B-Instruct and evaluate on
LLaMA-3.1-8B-Instruct. As shown in Table 5, we
observe a notable drop in ROC-AUC and Macro-F1
scores, suggesting that direct transfer across het-
erogeneous models is limited. To address this, we
adopt a strategy of training a separate lightweight
value function for each target model. We further
conduct experiments to compare the training-time
cost of our method with existing approaches. As
shown in Table 6, our method requires significantly
less training time compared to training-based ap-
proaches.

Dataset Trained Model Test Model ROC-AUC Macro-F1

commonsenseQA Qwen2.5-7B-Instruct LLaMA-3.1-8B-Instruct 47.29 43.21
StrategyQA Qwen2.5-7B-Instruct LLaMA-3.1-8B-Instruct 49.74 40.15

Table 5: Generalization performance of the value func-
tion across different LLMs.

1167



Method MMBench (minutes) ScienceQA (minutes)

HaluSearch-Gen 5.32 5.20
HaluSearch-Critic 10.23 9.15
Ours 1.56 1.85

Table 6: Training-time comparison with baseline meth-
ods. 400 samples were randomly selected for evalua-
tion.

6.3 Scalability Across Model Sizes

To evaluate the scalability of our method with re-
spect to model size, we conduct experiments on
LLMs of different scales. Specifically, we apply
our difficulty estimation framework to models of
varying sizes within the same architecture fam-
ily, including Qwen2.5-VL-3B-Instruct, Qwen2.5-
VL-7B-Instruct, Qwen2.5-VL-32B-Instruct, and
Qwen2.5-VL-72B-Instruct. All experiments are
performed on the ScienceQA dataset to ensure a
consistent evaluation setting. The results, presented
in Table 4, show that our method maintains con-
sistently high performance across different model
sizes.

Model 3 4 5 6

Qwen2.5-VL-7B-Instruct 80.68 80.82 80.51 80.92
InternVL3-8B 75.98 75.52 76.42 76.55

Table 7: Effect of the number of inference attempts on
Macro-F1 scores (MMBench).

6.4 Ablation Study

Ablation on Inference Attempts. We further per-
form ablation studies to investigate the impact of
the number of independent inference attempts in
our framework. Specifically, we vary the number
of attempts from 3 to 6 and evaluate the Macro-F1
scores on the MMBench dataset. As shown in Ta-
ble 7, the results demonstrate that three attempts
are already sufficient to capture the variability of
model outputs, while additional attempts yield only
marginal improvements.

Ablation on Order of the Markov Process. We
also examine the impact of considering higher-
order Markov processes by redefining the state as a
tuple of the previous k states. Experiments are con-
ducted on the MMBench dataset using Qwen2.5-
VL-7B-Instruct. As shown in Table 8, the differ-
ences in ROC-AUC and Macro-F1 are marginal
(within ±1 point), indicating that the choice of k
has minimal impact on overall performance.

k ROC-AUC Macro-F1

1 94.15 80.68
2 93.19 81.11
3 94.07 80.76

Table 8: Effect of Markov order k on difficulty estima-
tion performance (MMBench).

Ablation on Answer Extraction Method. we
also examine the reliability of the answer extrac-
tion process. In particular, we replace our original
extractor with GPT-4o on the MMBench dataset.
As shown in Table 9, the results remain highly con-
sistent, with differences in ROC-AUC and Macro-
F1 within ±1.5 points. This indicates that potential
extraction errors caused by formatting inconsisten-
cies or partial reasoning have minimal impact on
reward labeling and difficulty estimation.

Model Method ROC-AUC Macro-F1

Qwen2.5-VL-7B-Instruct
Ours 94.15 80.68

Ours + GPT-4o 94.26 79.63

InternVL3-8B
Ours 91.22 75.98

Ours + GPT-4o 92.69 76.36

Table 9: Effect of different answer extractors on perfor-
mance (MMBench).

7 Conclusion

We propose a lightweight approach for estimating
question difficulty by leveraging the hidden repre-
sentations of LLMs. By modeling the generation
process as a Markov chain and introducing a value
function over hidden states, our method enables
efficient and accurate difficulty estimation without
requiring output generation. Experimental results
across diverse tasks demonstrate that our approach
improves difficulty classification performance and
enhances inference efficiency when applied to adap-
tive reasoning.

8 Limitations

While our method avoids costly response sampling
and preserves model generality, it requires access
to token-level hidden representations from the tar-
get LLM, which may not be readily accessible in
certain closed-source systems. Additionally, our
approach currently focuses on single-turn inputs
and may require adaptation for multi-turn or conver-
sational settings. Exploring broader generalization
to unseen domains and tasks remains future work.

1168



9 Acknowledgements

We sincerely thank all the anonymous reviewers
for their constructive feedback. This work was
supported in part by the Shanghai Artificial In-
telligence Laboratory, the National Natural Sci-
ence Foundation of China (NSFC) under Grants
62372226, 62272215, and 62002159, and in part
by the Fundamental Research Funds for the Central
Universities.

References
Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-

bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. 2025. Qwen2. 5-vl technical
report. arXiv preprint arXiv:2502.13923.

Richard Bellman. 1957. Dynamic Programming.
Princeton University Press.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Guanxu Chen, Dongrui Liu, Tao Luo, and Jing Shao.
2025. Seer: Self-explainability enhancement of large
language models’ representations. arXiv preprint
arXiv:2502.05242.

Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep
Saha, Elias Stengel-Eskin, and Mohit Bansal.
2024. Magicore: Multi-agent, iterative, coarse-
to-fine refinement for reasoning. arXiv preprint
arXiv:2409.12147.

Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong
Wen. 2025. Think more, hallucinate less: Mitigat-
ing hallucinations via dual process of fast and slow
thinking. arXiv preprint arXiv:2501.01306.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve
math word problems, 2021. URL https://arxiv.
org/abs/2110.14168, 9.

Thomas Coste, Usman Anwar, Robert Kirk, and
David Krueger. 2023. Reward model ensembles
help mitigate overoptimization. arXiv preprint
arXiv:2310.02743.

Yunkai Dang, Kaichen Huang, Jiahao Huo, Yibo Yan,
Sirui Huang, Dongrui Liu, Mengxi Gao, Jie Zhang,
Chen Qian, Kun Wang, et al. 2024. Explain-
able and interpretable multimodal large language
models: A comprehensive survey. arXiv preprint
arXiv:2412.02104.

Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu
Wu, Aakriti Agrawal, Avi Schwarzschild, Tianyi
Zhou, Tom Goldstein, John Langford, Animashree
Anandkumar, et al. 2024. Easy2hard-bench: Stan-
dardized difficulty labels for profiling llm perfor-
mance and generalization. Advances in Neural Infor-
mation Processing Systems, 37:44323–44365.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, et al. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. arXiv preprint arXiv:2410.07985.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lu-
cas Dixon, and Mor Geva. 2024. Patchscopes: A
unifying framework for inspecting hidden representa-
tions of language models. In Forty-first International
Conference on Machine Learning.

Mithat Gönen et al. 2006. Receiver operating charac-
teristic (roc) curves. SAS Users Group International
(SUGI), 31:210–231.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu
Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen
Liang, Wenxuan Wang, et al. 2025. Deepmath-103k:
A large-scale, challenging, decontaminated, and veri-
fiable mathematical dataset for advancing reasoning.
arXiv preprint arXiv:2504.11456.

Chengsong Huang, Langlin Huang, Jixuan Leng, Ji-
acheng Liu, and Jiaxin Huang. 2025. Efficient test-
time scaling via self-calibration. arXiv preprint
arXiv:2503.00031.

Jonathan Jacobi and Gal Niv. 2025. Superscopes:
Amplifying internal feature representations for
language model interpretation. arXiv preprint
arXiv:2503.02078.

Yunjie Ji, Sitong Zhao, Xiaoyu Tian, Haotian Wang,
Shuaiting Chen, Yiping Peng, Han Zhao, and Xian-
gang Li. 2025. How difficulty-aware staged rein-
forcement learning enhances llms’ reasoning capa-
bilities: A preliminary experimental study. arXiv
preprint arXiv:2504.00829.

Ching-Chia Kao, Chia-Mu Yu, Chun-Shien Lu, and
Chu-Song Chen. 2025. Safety alignment depth in
large language models: A markov chain perspective.
arXiv preprint arXiv:2502.00669.

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du,
Yuchen Zhuang, Yifei Zhou, Yue Song, Rongzhi
Zhang, Kai Wang, and Chao Zhang. 2024. Aligning
large language models with representation editing: A
control perspective. Advances in Neural Information
Processing Systems, 37:37356–37384.

1169



Vedang Lad, Wes Gurnee, and Max Tegmark. The re-
markable robustness of llms: Stages of inference? In
ICML 2024 Workshop on Mechanistic Interpretabil-
ity.

Sungjae Lee, Hyejin Park, Jaechang Kim, and Jungseul
Ok. 2025. Semantic exploration with adaptive gating
for efficient problem solving with language models.
arXiv preprint arXiv:2501.05752.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023a. Inference-
time intervention: Eliciting truthful answers from a
language model. Advances in Neural Information
Processing Systems, 36:41451–41530.

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi
Wang, Liang Chen, Yazheng Yang, Benyou Wang,
and Lingpeng Kong. 2023b. Silkie: Preference distil-
lation for large visual language models.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.
2024. Escape sky-high cost: Early-stopping self-
consistency for multi-step reasoning. arXiv preprint
arXiv:2401.10480.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. 2024. Mm-
bench: Is your multi-modal model an all-around
player? In European conference on computer vi-
sion, pages 216–233. Springer.

Zhenhua Liu, Lijun Li, Ruizhe Chen, Yuxian Jiang,
Tong Zhu, Zhaochen Su, Wenliang Chen, and Jing
Shao. 2025. Iterative value function optimization for
guided decoding. arXiv preprint arXiv:2503.02368.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In Inter-
national Conference on Learning Representations
(ICLR).

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurIPS).

Xiaoya Lu, Dongrui Liu, Yi Yu, Luxin Xu, and Jing
Shao. 2025. X-boundary: Establishing exact safety
boundary to shield llms from multi-turn jailbreaks
without compromising usability. arXiv preprint
arXiv:2502.09990.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534–46594.

Rohin Manvi, Anikait Singh, and Stefano Ermon. 2024.
Adaptive inference-time compute: Llms can predict
if they can do better, even mid-generation. arXiv
preprint arXiv:2410.02725.

Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas
Sandholm, Ruslan Salakhutdinov, Anca D Dragan,
and Stephen McAleer. 2023. Confronting reward
model overoptimization with constrained rlhf. arXiv
preprint arXiv:2310.04373.

J.R. Norris. 1998. Markov Chains. Cambridge Univer-
sity Press.

Jiabao Pan, Yan Zhang, Chen Zhang, Zuozhu Liu, Hong-
wei Wang, and Haizhou Li. 2024. Dynathink: Fast
or slow? a dynamic decision-making framework for
large language models. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 14686–14695.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi
Jia, Prateek Mittal, and Peter Henderson. 2024. Fine-
tuning aligned language models compromises safety,
even when users do not intend to! In ICLR.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Marina Sokolova and Guy Lapalme. 2009. A system-
atic analysis of performance measures for classifica-
tion tasks. Information processing & management,
45(4):427–437.

Richard S Sutton. 1988. Learning to predict by the
methods of temporal differences. Machine learning,
3:9–44.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting
Chen, Yiping Peng, Yunjie Ji, Han Zhao, and Xian-
gang Li. 2025. Deepdistill: Enhancing llm reason-
ing capabilities via large-scale difficulty-graded data
training. arXiv preprint arXiv:2504.17565.

Haoyu Wang, Bingzhe Wu, Yatao Bian, Yongzhe Chang,
Xueqian Wang, and Peilin Zhao. 2024a. Probing the
safety response boundary of large language models
via unsafe decoding path generation. CoRR.

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan,
Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao Hu, and
Kan Li. 2024b. Make every penny count: Difficulty-
adaptive self-consistency for cost-efficient reasoning.
arXiv preprint arXiv:2408.13457.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

1170



Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye,
Haoqi Fan, Quanquan Gu, Heng Huang, and Chun-
yuan Li. 2024. Llava-critic: Learning to evaluate mul-
timodal models. arXiv preprint arXiv:2410.02712.

Boyang Xue, Qi Zhu, Hongru Wang, Rui Wang, Sheng
Wang, Hongling Xu, Fei Mi, Yasheng Wang, Lifeng
Shang, Qun Liu, et al. 2025. Dast: Difficulty-
aware self-training on large language models. arXiv
preprint arXiv:2503.09029.

Tianyi Yan, Fei Wang, James Y Huang, Wenxuan Zhou,
Fan Yin, Aram Galstyan, Wenpeng Yin, and Muhao
Chen. 2024. Contrastive instruction tuning. In Find-
ings of the Association for Computational Linguistics
ACL 2024, pages 10288–10302.

Fangcong Yin, Xi Ye, and Greg Durrett. 2024. Lofit:
Localized fine-tuning on llm representations. Ad-
vances in Neural Information Processing Systems,
37:9474–9506.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao
Zheng, Maosong Sun, et al. 2023. Rlhf-v: Towards
trustworthy mllms via behavior alignment from fine-
grained correctional human feedback. arXiv preprint
arXiv:2312.00849.

Yuanhan Zhang Bo Li Songyang Zhang Wangbo Zhao
Yike Yuan Jiaqi Wang Conghui He Ziwei Liu Kai
Chen Dahua Lin Yuan Liu, Haodong Duan. 2023.
Mmbench: Is your multi-modal model an all-around
player? arXiv:2307.06281.

Oussama Zekri, Ambroise Odonnat, Abdelhakim
Benechehab, Linus Bleistein, Nicolas Boullé, and
Ievgen Redko. 2024. Large language models as
markov chains. arXiv preprint arXiv:2410.02724.

Honggen Zhang, Xufeng Zhao, Igor Molybog, and
June Zhang. 2024a. Real: Response embedding-
based alignment for llms. arXiv preprint
arXiv:2409.17169.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang,
Yong Liu, Yu Qiao, and Jing Shao. 2024b. Reef:
Representation encoding fingerprints for large lan-
guage models. arXiv preprint arXiv:2410.14273.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu,
Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan,
Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xue-
hui Wang, Yue Cao, Yangzhou Liu, Xingguang Wei,
Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li,
Jiahao Wang, Nianchen Deng, Songze Li, Yinan
He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He,
Botian Shi, Xingcheng Zhang, Wenqi Shao, Jun-
jun He, Yingtong Xiong, Wenwen Qu, Peng Sun,
Penglong Jiao, Han Lv, Lijun Wu, Kaipeng Zhang,
Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang,
Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua
Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. 2025.
Internvl3: Exploring advanced training and test-time
recipes for open-source multimodal models.

1171

http://arxiv.org/abs/2504.10479
http://arxiv.org/abs/2504.10479


A Appendix

A.1 Datasets Details

A.1.1 MMBench

MMBench (Yuan Liu, 2023) is a multimodal
dataset designed to evaluate the understanding ca-
pabilities of large language models. We randomly
sample 50% of the data as the training set, 45% as
the test set, and the remaining 5% as the validation
set for determining the threshold τ .

A.1.2 ScienceQA

ScienceQA (Lu et al., 2022) is a multimodal dataset
for science question answering, annotated with an-
swers, lectures, and explanations. We use the offi-
cial training, test, and validation splits provided by
the dataset to determine the threshold τ .

A.1.3 MathVista

MathVista (Lu et al., 2024) is a dataset designed
to combine challenges from diverse mathematical
and visual reasoning tasks. We randomly sample
50% of the data as the training set, 45% as the test
set, and the remaining 5% as the validation set for
determining the threshold τ .

A.1.4 StrategyQA

StrategyQA (Geva et al., 2021) is a dataset con-
sisting of strategy questions, their decompositions,
and supporting evidence paragraphs. We follow the
official test split, and randomly sample 95% of the
official training data for training, with the remain-
ing 5% used as the validation set for determining
the threshold τ .

A.1.5 gsm8k

GSM8K (Cobbe et al., 2021) is a dataset of high-
quality, linguistically diverse grade school math
word problems. We follow the official test split,
and randomly sample 95% of the official training
data for training, with the remaining 5% used as
the validation set for determining the threshold τ .

A.1.6 commonsenseQA

CommonsenseQA (Talmor et al., 2018) is a
multiple-choice question answering dataset that
requires diverse types of commonsense knowledge
to predict the correct answer. We use the official
training, test, and validation splits provided by the
dataset to determine the threshold τ .

A.2 Baselines Details
A.2.1 prompt
The method estimates problem difficulty by using a
prompt to instruct the model to assess the difficulty
of the input question itself. The prompt is shown
in Table 10.

A.2.2 AG
AG (Lee et al., 2025) is a method that estimates
problem difficulty based on the consistency of the
target model’s outputs. We implement Adaptive
Gating for difficulty estimation following the orig-
inal setup, which uses Chain-of-Thought (CoT)
reasoning with k = 10 samples.

A.2.3 LLMs-Ranking
LLMs-Ranking (Wang et al., 2024b) is a method
that introduces an auxiliary LLM to directly assess
the difficulty of a given problem. We reproduce
its Difficulty Ranking and Problem Partition com-
ponents for difficulty estimation. For Difficulty
Ranking, we use Chain-of-Thought (CoT) sam-
pling and follow the original settings by using a
batch size B = 8 and the number of random split
rounds R = 5. For Problem Partition, we set the
pre-sample size p = 4 and the judge window size
k = 32, consistent with the original implementa-
tion.

A.2.4 HaluSearch-Gen
HaluSearch-Gen (Cheng et al., 2025) is a training-
based method that fine-tunes the LLM to equip it
with the ability to assess problem difficulty. We
employ GPT-4o to generate reward data and fine-
tune Qwen2.5-VL-7B-Instruct to equip the model
with the ability to perceive question difficulty. The
prompt used to generate reward data is shown as in
Table 11.

A.2.5 HaluSearch-Critic
HaluSearch-Critic(Cheng et al., 2025) is a vari-
ant of HaluSearch-Gen that incorporates a critic
signal into the training data to provide more ex-
plicit supervision for difficulty assessment. We
employ GPT-4o to generate reward data and fine-
tune Qwen2.5-VL-7B-Instruct to equip the model
with the ability to perceive question difficulty. The
prompt used to generate reward data is shown as in
Table 12.

1172



You will be given a question between [Question begin] and [Question end]. And the image of
this question will be provided.

Please answer the following:

Is this question difficult for you? Answer strictly with only "Yes" or "No". Do not provide
any explanation.

[Question begin]
question
[Question end]

Table 10: Prompt used in baseline “prompt”.

Please rate the difficulty of the following question for the model to answer correctly. The
difficulty reflects how likely the model is to make mistakes, misunderstand, or fail to generate
a complete and correct response. Use the provided correct and generated answers to guide
your judgment.

There are five levels of question difficulty:
1 - Very Easy: The question is straightforward, and the model is almost certain to answer it
correctly.
2 - Easy: The question is generally easy, though minor misunderstandings are possible.
3 - Moderate: The model may partially struggle with this question, with some risk of mistakes
or omissions.
4 - Hard: The model is likely to make noticeable errors or fail to fully understand the question.
5 - Very Hard: The question is highly challenging, and the model is very likely to answer it
incorrectly or with significant flaws.

Only output the score (a number), do not give any explanation. Do not penalize for incomplete
answers unless they indicate misunderstanding or error. Use the correct answer as a reference.

[question begin]
{question}
[question end]

Correct Answer: {correct_answer}
Generated Answer: {generated_answer}

Table 11: Prompt for generating reward data in HaluSearch-Gen.

1173



Please rate the difficulty of the following question for the model to answer correctly. The
difficulty reflects how likely the model is to make mistakes, misunderstand, or fail to generate
a complete and correct response. Use the provided correct and generated answers to guide
your judgment.

There are five levels of question difficulty:
1 - Very Easy: The question is straightforward, and the model is almost certain to answer it
correctly.
2 - Easy: The question is generally easy, though minor misunderstandings are possible.
3 - Moderate: The model may partially struggle with this question, with some risk of mistakes
or omissions.
4 - Hard: The model is likely to make noticeable errors or fail to fully understand the question.
5 - Very Hard: The question is highly challenging, and the model is very likely to answer it
incorrectly or with significant flaws.

Give your explanation on the first line, and output the score (a number) on the second line.
Do not penalize for incomplete answers unless they indicate misunderstanding or error. Use
the correct answer as a reference.

[question begin]
{question}
[question end]

Correct Answer: {correct_answer}
Generated Answer: {generated_answer}

Table 12: Prompt for generating reward data in HaluSearch-Critic.

1174



A.3 Implementation Details
Our method is implemented using Python 3.9.21
and PyTorch 2.5.1, and runs on a single NVIDIA
A100 GPU. The sampling temperature T for LLMs
is set as 0.5. For the two-layer fully connected
neural network, the learning rate is set as 1× 10−4.

1175



0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Tokens ×106

86.5

87.0

87.5

88.0

88.5

Ac
cu

ra
cy

SC on MMBench

0.0 0.5 1.0 1.5 2.0
Number of Tokens ×106

83.5

84.0

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

SC on ScienceQA

0.0 0.2 0.4 0.6 0.8 1.0
Number of Tokens ×106

64

66

68

70

72

Ac
cu

ra
cy

SC on MathVista

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Tokens ×106

86.0

86.5

87.0

87.5

88.0

88.5

89.0

Ac
cu

ra
cy

BoN on MMBench

0.0 0.5 1.0 1.5 2.0
Number of Tokens ×106

84.0

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

BoN on ScienceQA

0.0 0.2 0.4 0.6 0.8 1.0
Number of Tokens ×106

64

66

68

70

72

Ac
cu

ra
cy

BoN on MathVista

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Tokens ×106

85.5

86.0

86.5

87.0

87.5

Ac
cu

ra
cy

SR on MMBench

0.0 0.5 1.0 1.5 2.0
Number of Tokens ×106

82

83

84

85

Ac
cu

ra
cy

SR on ScienceQA

0.0 0.2 0.4 0.6 0.8 1.0
Number of Tokens ×106

64

66

68

70

72

Ac
cu

ra
cy

SR on MathVista

Base Prompt AG LLMs-Ranking HaluSearch-Gen HaluSearch-Critic Ours

Figure 4: Performance comparison of difficulty-aware sampling methods across multiple datasets for Qwen2.5vl-7B-
instruct. "SC" refers to Self-Consistency, "BoN" refers to the Best-of-N, and "SR" refers to Self-Refine. "Number
of Tokens" represents the total number of output tokens generated on the test set. For SC and BoN, the budget K is
set to 5, while for SR, the budget K is set to 3.

1176


