
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 12202–12218
November 4-9, 2025 ©2025 Association for Computational Linguistics

Improving Clustering with Positive Pairs Generated from LLM-Driven
Labels

XiaoTong Zhang and Ying Li*

College of Computer Science and Technology, Zhejiang University, Hangzhou, China
22321341@zju.edu.cn, cnliying@zju.edu.cn

Abstract
Traditional unsupervised clustering methods,
which often rely on contrastive training of em-
bedders, suffer from a lack of label knowl-
edge, resulting in suboptimal performance.
Furthermore, the presence of potential false
negatives can destabilize the training process.
Hence, we propose to improve clustering with
Positive Pairs generated from LLM-driven
Labels (PPLL). In the proposed framework,
LLM is initially employed to cluster the data
and generate corresponding mini-cluster labels.
Subsequently, positive pairs are constructed
based on these labels, and an embedder is
trained using BYOL to obviate the need for
negative pairs. Following training, the acquired
label knowledge is integrated into K-means
clustering. This framework enables the integra-
tion of label information throughout the train-
ing and inference processes, while mitigating
the reliance on negative pairs. Additionally,
it generates interpretable labels for improved
understanding of clustering results. Empiri-
cal evaluations on a range of datasets demon-
strate that our proposed framework consistently
surpasses state-of-the-art baselines, achieving
superior performance, robustness, and compu-
tational efficiency for diverse text clustering
applications.1

1 Introduction

Unsupervised text clustering has numerous appli-
cations across various domains, such as anomaly
detection (Chandola et al., 2009), topic modeling
(Meng et al., 2022), and community detection (Su
et al., 2024). The typical workflow begins by ob-
taining text embeddings using pre-trained embed-
der models (Su et al., 2023; Liu, 2019). These em-
beddings are then subjected to conventional cluster-
ing algorithms, such as K-means or agglomerative
clustering (Day and Edelsbrunner, 1984), to per-
form the clustering task.

*Corresponding author
1https://github.com/thelittleTom/PPLL

Figure 1: The superior clustering and labeling ability
exhibited by LLM.

Recent advancements in large language models
(LLMs) (Achiam et al., 2023; Brown et al., 2020;
Dubey et al., 2024) have spurred the development
of new clustering methods that leverage LLMs to
improve performance. A promising direction is
using LLMs to provide the analysis insights from
the texts (Zhang et al., 2023; De Raedt et al., 2023)
to finetune embedder models to enhance cluster-
ing performance. However, this approach neglects
the importance of labels during training and infer-
ence and the clustering outputs lack interpretability,
requiring users to spend considerable time under-
standing the results. Moreover, these methods typi-
cally rely on contrastive learning (Gao et al., 2021)
for fine-tuning the embedder, which introduces a
dependency on negative samples, resulting in un-
stable performance (Grill et al., 2020). Another
class of methods directly employs LLMs for clus-
tering (Wang et al., 2023; Pham et al., 2024), where
LLMs generate and refine labels through iterative
self-reflection (Asai et al., 2023) and assign labels
to individual texts, while this approach can gener-
ate more interpretable labels, it incurs significant
cost.

12202

https://github.com/thelittleTom/PPLL

To address the challenges mentioned above
and harness the inherent clustering capabilities of
LLMs, as shown in Figure 1, we introduce PPLL.
This framework leverages LLMs for data cluster-
ing and label generation, which in turn guide a
lightweight embedder to efficiently identify text
clusters, as depicted in Figure 2.

Specifically, PPLL consists of three stages. In
the first stage, we acquire LLM-generated labels
and construct positive pairs. In particular, due to
the input length limitations of LLMs, we adopt
an entropy-based data batching strategy to divide
the data into batches for input. Subsequently, we
leverage the LLM to cluster each batch and gen-
erate mini-cluster labels. Positive pairs are then
constructed based on these labels, enabling us to
perform clustering from a macro-level label per-
spective and incorporate label knowledge into the
embedder training process. The second stage is
BYOL training and inference. An embedder model
is trained using the BYOL method (Grill et al.,
2020; Zhang et al., 2021c) with the positive pairs
which obviates the need for negative pairs during
fine-tuning. Subsequently, both mini-cluster labels
and texts are subjected to K-means clustering using
this trained model. The inclusion of mini-cluster
labels is intended to provide anchor points for the
K-means algorithm, thereby enhancing clustering
quality. The third stage is category label genera-
tion. The mini-cluster labels are input into a large
language model to produce human-readable and
informative labels for the resulting clusters. Exper-
imental results demonstrate that PPLL significantly
outperforms baseline methods in terms of cluster-
ing quality. Ablation studies further corroborate
the effectiveness of our data batching strategy, the
robustness of our training method, and the benefit
of using labels.

Our contributions are as follows:

• We propose PPLL, a novel framework that
leverages LLMs to generate label-based pos-
itive pairs to guide embedder clustering, and
produce category labels for each cluster.

• Unlike traditional clustering methods that rely
on contrastive learning to train embedders, we
explore the use of BYOL to achieve training
without negative pairs, mitigating the issue of
false negatives.

• Experimental results demonstrate that our ap-
proach significantly improves clustering per-
formance, with an average cost of ~$0.28 per

run on our datasets using GPT-3.5, while also
generating human-interpretable labels.

2 Related Work

Sentence Representation. The ability to effec-
tively represent sentences through embeddings is a
key aspect of NLP (Mikolov et al., 2013). With the
tremendous success of Pre-trained Language Mod-
els (PLMs), recent approaches have focused on
generating sentence embeddings by leveraging the
embedding of the [CLS] token or applying mean
pooling on the final layer of BERT (Reimers and
Gurevych, 2019).

Recently, several models (Neelakantan et al.,
2022; Wang et al., 2022a; Chuang et al., 2022;
Zhuo et al., 2023; Liu et al., 2023) have adopted
a contrastive learning framework without the need
for labeled data to learn sentence representations.
This approach pulls semantically similar sentences
closer together while pushing dissimilar ones apart.
Cheng et al. (2023) leverages LLMs to get pairwise
scores for sentence relationships to provide bet-
ter supervision signals for supervised contrastive
learning of sentence embeddings. Among these,
embedding models like Instructor (Su et al., 2023)
have demonstrated superior performance on pop-
ular benchmarks (Muennighoff et al., 2023). This
paper aims to enhance Instructor by LLMs.

Due to the issue of false negatives in contrastive
learning, BYOL (Grill et al., 2020; Zhang et al.,
2021c) and SCD (Klein and Nabi, 2022) use a
two-branch Siamese network to train the embedder
without negative pairs. To mitigate the issue of
unreliable negative pairs generated by LLMs, we
adopt BYOL (Zhang et al., 2021c) as our training
method.

Clustering with LLM. Clustering has been ex-
tensively studied in both text (Li et al., 2020; Zhong
et al., 2021) and image domains (Chang et al., 2017;
Yang et al., 2022). Recent advancements in LLMs
have spurred the development of numerous cluster-
ing methods that leverage LLMs. These methods
can be broadly categorized into three groups.

The first group (An et al., 2023; Liang et al.,
2024b; Yang et al., 2024; Feng et al., 2024) uti-
lizes LLMs to provide sentence relationships. For
instance, in unsupervised clustering, ClusterLLM
(Zhang et al., 2023) prompts LLMs with a triplet
task to infer sentence relationships, guiding the
clustering process.

12203

Figure 2: The overview of our framework PPLL. PPLL comprises three stages: (1) Label-based Positive Pair
Generation, (2) BYOL Training with Label-based K-means, and (3) Label Generation.

The second group (De Raedt et al., 2023) lever-
ages LLMs to extract implicit information from
text. For instance, SynCID (Liang et al., 2024a)
employs LLMs to generate descriptions for utter-
ances and designs multiple loss functions to align
the representations of descriptions and utterances,
thereby enhancing clustering performance. Simi-
larly, Viswanathan et al. (2023) utilizes LLMs to
extract keywords from text, improving the expres-
siveness of embeddings.

The third group (Wan et al., 2024; Lam et al.,
2024; Huang and He, 2025) directly employs
LLMs for clustering without the need for training.
For instance, Pham et al. (2024) utilizes LLMs to
generate topics for documents, subsequently dedu-
plicating and assigning these topics. Similarly,
Wang et al. (2023) first employs LLMs to generate
labels for sampled inputs, then queries the LLM to
determine the relationship between the labels and
the texts, and finally assigns labels to texts using
an integer linear programming.

3 Method

3.1 Preliminary
The input space for text clustering comprises a
set of texts X (the corpus), a string G (the goal
description, e.g. "according to the intent"), and
an integer K representing the desired number of
clusters.

The output space includes K subsets of X ,
each representing a cluster, denoted as Ck where
k ∈ [K]. Optionally, the output may also include
K strings Lk, where Lk is a label or description of
cluster Ck, providing valuable insights and facili-

tating interpretation of the clustering results.

3.2 Framework Overview
Figure 2 illustrates the three-stage PPLL frame-
work. In Stage 1 (Section 3.3), we input data
batches to an LLM to generate labels for each mini-
cluster, and then collect positive pairs based on
these mini-cluster labels. In Stage 2 (Section 3.4),
we employ a BYOL approach for training the em-
bedder without negative pairs, incorporating mini-
cluster labels into the clustering process. Finally,
in Stage 3 (Section 3.5), interpretable labels are
generated for the final clusters.

3.3 Label-based Positive-Pairs Generation
This stage aims to leverage LLM to cluster texts
and generate labels, forming positive pairs for sub-
sequent training. The entire process is detailed in
Algorithm 1.

3.3.1 Entropy-based data batching
If we obtain all texts within each cluster, we can
generate positive pairs by pairing every two texts
within the same cluster. However, the K-means
clustering results obtained using embeddings are
susceptible to inaccuracies, so we subsequently
employ an LLM to refine the clustering results by
re-clustering the texts within each K-means clus-
ter. Given the limited input length of LLMs, we
propose a data batching strategy to group texts into
appropriately sized mini-batches for input.

The data batching algorithm contains two steps.
Step 1 (see Algorithm 1 line 1~2): we perform
K-means clustering on the texts and calculate the
entropy for each text. Step 2 (see Algorithm 1 line

12204

3~9): within each cluster, texts are sorted by their
entropies. Subsequently, the top and bottom γ texts
are grouped into a mini-batch Xb, resulting in a
batch size of 2γ. This process is repeated until
all texts in the cluster are processed. This strategy
ensures that both easily- and difficult-to-classify
samples are included in each mini-batch, aiding the
LLM in accurate clustering and label generation.

In particular, in step 1, after K-means cluster-
ing, we use the Student’s t-distribution to compute
the probability of assigning the sample xi to each
cluster k (Xie et al., 2016; Zhang et al., 2023):

pik =

(
1 + ∥zi − µk∥2 /α

)−α+1
2

∑
k′

(
1 + ∥zi − µk′∥2 /α

)−α+1
2

(1)

where α represents the degrees of freedom in the
Student’s t-distribution, zi is the embedding of i-th
text, µk is the mean vector of all texts in the k-th
cluster as the center of the cluster. After obtain-
ing the predictive probabilities, we use the entropy
(Lewis, 1995) to measure the uncertainty for each
sample xi:

ei = −
Kclosest∑

k=1

p′ik log
(
p′ik

)
(2)

where p′ik = pik∑Kclosest
k′=1

pik′
, Kclosest is a hyperparam-

eter that is less than or equal to the total number of
clusters K. Here, a higher ei can indicate a higher
likelihood of the model incorrectly assigning xi to
the wrong cluster.

3.3.2 LLM-based Positive-Pairs Generation
Now that we have a batch of input texts Xb for
LLM to cluster, we prompt the LLM to cluster and
label these texts using a prompt PT (see Appendix
Table 13). To accommodate user-specified cluster-
ing perspectives, a goal G is incorporated into PT .
The LLM generates cluster assignments and labels
for the texts as follows:

ϕ = PT (G,Xb) (3)

where ϕ = {(cb,j , lb,j)}Mb
j=1, cb,j denotes the j-th

mini-cluster within Xb, lb,j represents the corre-
sponding mini-cluster label (see Figure 1 and Al-
gorithm 1 line 10~14). Each text is thus assigned a
mini-cluster label, which is extracted and refined
through clustering by LLM. To mitigate the con-
straint of limited LLM input length and bridge the

Algorithm 1: Label-based Positive-Pairs
Generation

Input: Texts X = {xi}Ni=1, embeddings
Z = {zi = f(xi)}Ni=1, the half of
batch size γ, prompt PT , the cluster
goal description G

Output: Positive Pairs P

1 K clusters← Clustering(Z);
2 Compute entropy E with Eq 1, Eq 2;
3 sort the texts in each cluster by entropy E
4 Batches← []
5 for c in K sorted clusters do
6 while length(c) ≥ 2*γ do
7 c[0 : γ] + c[−γ :] to Batches
8 c← c[γ : −γ]
9 Append c to Batches

10 mini-clusters C ← {}
11 for Xb in Batches do
12 ϕ = PT (G,Xb)
13 for (cb,j , lb,j) in ϕ do
14 Append the texts in cb,j to C[lb,j]

15 Positive pairs P ←[]
16 for mini-cluster in C do
17 for (i, j) in combinations(mini-cluster,

2) do
18 Append [i, j] to P

gap between batches, we treat texts with the same
mini-cluster label as belonging to the same mini-
cluster, regardless of the batch in which they were
clustered. So, all possible unique pairs of texts
within each mini-cluster are formed as positive
training examples (see Algorithm 1 line 15~18).

3.4 BYOL Training and Label-based Kmeans
3.4.1 BYOL for finetuning embedder
We observed that LLM-based clustering often suf-
fers from false negatives, where texts within the
same class are erroneously assigned to different
clusters. To address this limitation, we adopted
BYOL training (Grill et al., 2020; Zhang et al.,
2021c), which eliminates the need for explicit neg-
ative examples and is more robust to noisy labels.

Here is the BYOL training process (see Figure
3): Two texts x1 and x2 from a positive pair are
encoded by the online network fθ and the target net-
work fξ , respectively. Both networks are initialized
from the same embedder, while ξ is maintained as
an exponential moving average (EMA) of θ during
training. Pθ denotes a predictor, a multi-layer per-

12205

Figure 3: The framework of BYOL.

ceptron applied exclusively to the online network.
A stop-gradient operation is applied to the target
network. The loss function, Lθ,ξ:

Lθ,ξ(z1, h2) = − <
z1
∥z1∥

,
h2
∥h2∥

> (4)

where z1 = pθ (fθ (x1)),h2 = fξ (x2),and ∥ · ∥
denotes the l2 − norm and <,> denotes the dot
product.

The calculation of loss involves parameters θ, ξ,
however, and during training, we only update the
parameter θ, as illustrated by the stop-gradient op-
eration in Figure 3. The function fξ is decoupled
from the optimization graph of Lθ,ξ and will be up-
dated with a weighted moving average of fθ. The
updating dynamics becomes:

θt ← θt−1 +∇θLθ,ξ,
ξt ← δξt−1 + (1− δ)θt.

(5)

Here δ is the momentum. At the inference stage,
we obtain the representation of a sentence with the
online encoder fθ.

3.4.2 Label-Based Kmeans
After fine-tuning the model using BYOL with posi-
tive pairs, we extract embeddings from the trained
embedder and apply K-means clustering. To en-
hance the quality of clustering, we propose a label-
based K-means approach that incorporates both the
original texts and the LLM-generated mini-cluster
labels. By jointly clustering these two representa-
tions, we expect the cluster centers to better capture
the underlying semantic structure of the data. The
final clustering results are obtained by discarding
the mini-cluster labels and retaining only the clus-
ters of the original texts.

3.5 Label Generation
After Label-Based K-means clustering, we obtain
the set labelk = {lk,j}Nk

j by aggregating the mini-
cluster labels of texts for each class, where Nk

represents the number of mini-cluster labels in class
k. We then filter out mini-cluster labels with a
frequency below a threshold of α, retaining only
the top most frequent labels labels

′
k, denoted as:

labels
′
k = {lk,j if count(lk,j) > α|j = 1, 2, ...Nk}

(6)
We then prompt LLMs to generate an interpretable
cluster label using a prompt PG (See Appendix Ta-
ble 14) with the filtered mini-cluster labels labels

′
k

within cluster k. The LLM then generates a concise
and informative label Lk for cluster k:

Lk = PG(labels
′
k) (7)

4 Experiments

4.1 Datasets
To evaluate PPLL, we conduct experiments on
a diverse set of datasets, including CLINC(I),
MTOP(I), Massive(I) (FitzGerald et al., 2022),
GoEmo (Demszky et al., 2020), CLINC-Domain,
MTOP-Domain, and Massive-Scenario. Each
dataset is provided in two sizes, differing in the
number of data points while maintaining the same
number of clusters. The detailed statistics are re-
ported in Appendix A.1.

4.2 Experiment Details
Hyper-Parameters and Experimental Settings.
For entropy-based sampling, we set Kclosest = 25,
γ = 10. Training is conducted with a single
NVIDIA GeForce RTX 4090 (24GB). Besides, our
clustering approach utilizes Instructor embeddings
(Su et al., 2023), and for our experiments, we em-
ploy the ChatGPT (gpt-3.5-turbo-0301), Llama3
(Meta-Llama-3-8B-Instruct) as our LLMs.

To reduce cost, we run PPLL once for each
dataset. We then run K-means on datasets for 5
seeds with ground truth K. For real-world applica-
tions where the ground truth K is unknown, please
refer to Appendix C. More experimental details are
provided in the Appendix A.2.

Evaluation We employ two evaluation metrics.
Firstly, we utilize Accuracy (ACC), calculated after
applying the Hungarian algorithm (Kuhn, 1955) to
optimally map predicted clusters to ground truth
labels. Secondly, we employ Normalized Mutual
Information (NMI), which measures the mutual in-
formation between the predicted and true cluster as-
signments, normalized by their individual entropies.
ACC is considered our primary evaluation metric,

12206

Method
CLINC(I) Massive(I) MTOP(I) CLINC(D) Massive(D) MTOP(D) GoEmo Avg

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
small-scale

instructor 79.29 92.60 54.08 73.42 33.35 70.63 52.50 56.87 61.81 67.31 90.56 87.30 25.19 21.54 56.68 67.10
sccl 80.85 92.94 54.10 73.90 34.28 73.52 54.22 51.08 61.34 68.69 89.08 84.77 34.33 30.54 58.31 67.92
self-supervise 80.82 93.88 55.07 72.88 34.06 72.50 58.58 60.84 53.97 71.53 92.12 88.49 24.11 22.05 56.96 68.89
clusterLLM 82.77 93.88 59.89 76.96 35.84 73.52 52.39 54.98 61.06 68.62 93.53 89.36 27.49 24.78 59.00 68.87
clusterLLM-Iter 83.80 94.00 60.69 77.64 35.04 73.83 51.82 54.81 60.85 68.67 92.13 89.23 26.75 23.89 58.73 68.87
PPLL-llama3 84.14 94.37 60.99 76.15 44.31 75.22 57.96 60.70 57.92 65.13 92.41 88.82 35.36 31.17 61.87 70.22
PPLL-gpt3.5 84.13 94.53 61.21 75.72 40.10 75.14 59.04 61.36 62.37 68.39 91.74 88.67 39.82 35.00 62.63 71.26

large-scale
instructor 79.52 92.65 54.72 72.29 35.53 70.78 51.74 55.28 56.11 61.86 85.01 83.96 24.02 20.15 55.24 65.28
self-supervise 81.87 93.55 58.30 73.73 35.27 71.88 50.93 53.01 58.14 64.49 89.54 86.69 24.34 21.17 56.91 66.36
clusterLLM 82.29 93.91 57.70 74.24 36.80 73.16 50.12 53.46 58.14 65.50 84.08 84.57 25.23 22.19 56.34 66.72
PPLL-llama3 84.35 94.20 56.82 73.65 39.52 74.00 54.92 60.72 59.64 66.19 89.51 88.26 34.38 29.92 59.88 69.56
PPLL-gpt3.5 86.22 94.81 59.86 75.18 42.50 75.09 57.20 61.44 60.21 65.50 89.94 88.87 35.85 30.13 61.68 70.15

Table 1: Results (in %) on multiple datasets. Average over all datasets are shown in the last two columns.
Highlights(Underlines) indicate top (second) scores per column.

with higher values indicating superior clustering
performance.

4.3 Compared Methods

We compare PPLL with several baseline ap-
proaches: Instructor, which directly applies K-
means to embeddings extracted from the instructor-
large model; ClusterLLM, which prompts LLM
(gpt3.5) with a triplet task and then utilizes the la-
beled data to train the embedder; ClusterLLM-Iter,
which runs the ClusterLLM twice; self-supervised
clusterLLM, a variant of ClusterLLM that lever-
ages an embedder for pseudo-label assignment; and
SCCL (Zhang et al., 2021a), a deep text clustering
algorithm equipped with Instructor.

4.4 Main Results

We show main results on multiple datasets in Ta-
ble 1 with several variants of PPLL: PPLL-gpt3.5
adopts gpt3.5 and PPLL-llama3 adopts llama3 as
LLM (see more results in Appendix D). We make
the following observation: (1) PPLL-gpt3.5 con-
sistently improves upon Instructor. For example,
PPLL-gpt3.5 improves accuracy by 14.63% and
NMI by 13.46% on GoEmo(small-scale), and im-
proves accuracy by 11.83% and NMI by 9.98%
on GoEmo(large-scale). In contrast, clusterLLM
(Zhang et al., 2023), which also leverages GPT-
3.5, does not exhibit a significant improvement
over Instructor on Clinc(D) (small-scale), Mas-
sive(D) (small-scale), and Mtop(D) (large-scale)
datasets. (2) Our experimental results demonstrate
that the proposed method on gpt3.5 consistently
surpasses all baseline methods. Specifically, it out-
performs all baselines on a majority of small-scale
datasets and on all large-scale datasets. Further-
more, PPLL achieves the best overall performance

across all datasets, as evidenced by the highest
average scores. (3) PPLL on open-sourced LLM
Llama3 also demonstrates promising results. This
indicates that PPLL does not purely rely on the
powerful text understanding capabilities of close-
sourced LLM GPT3.5, highlighting its effective-
ness across different LLMs.

4.5 Ablation Study

Data Batching Strategy. To assess the impact
of entropy-based sampling, we conduct an ablation
study as summarized in Table 2. In the w/o entropy
configuration, we eliminate the entropy-based data
batching component and solely rely on K-means
clustering, i.e., we randomly select batches from
within each cluster to form the batches for prompt-
ing. In the w/o entropy&kmeans configuration, we
further remove the intra-cluster batching step, re-
sulting in random sampling from the entire dataset.

The ablation study presented in Table 2 reveals
a substantial performance degradation when w/o
entropy or when w/o entropy&kmeans, particu-
larly for the primary metric ACC. Furthermore,
the pair accuracy in Table 2 demonstrates that our
proposed method of combining easy and hard sam-
ples, along with the incorporation of prior knowl-
edge (i.e., pre-clustering with K-means), effectively
improves the accuracy of LLM-generated labels.
Despite achieving a lower pair-acc, the w/o en-
tropy&kmeans method demonstrates comparable
or even superior overall performance compared to
clusterLLM baselines in Table 1, highlighting the
robustness of PPLL. However, on the MTOP(I) and
Massive(D) datasets, we observe that the w/o en-
tropy&kmeans method outperforms PPLL-gpt3.5
method. This can be attributed to the fact that
our method restricts LLM inputs to instances that

12207

Method
CLINC(I) Massive(I) MTOP(I) CLINC(D)

ACC NMI Pair-Acc ACC NMI Pair-Acc ACC NMI Pair-Acc ACC NMI Pair-Acc

PPLL-gpt3.5 84.13 94.53 92.06 61.21 75.72 77.26 40.10 75.14 83.33 59.04 61.36 80.75
- w/o entropy 83.87 94.62 90.24 60.20 76.16 76.95 40.50 74.61 84.06 57.24 60.92 75.24
- w/o entropy&kmeans 80.19 93.37 10.71 58.10 75.77 18.67 43.44 75.26 46.32 53.35 58.12 45.76

Method
Massive(D) MTOP(D) GoEmo Avg

ACC NMI Pair-Acc ACC NMI Pair-Acc ACC NMI Pair-Acc ACC NMI Pair-Acc

PPLL-gpt3.5 62.37 68.39 79.92 91.74 88.67 94.27 39.82 35.00 59.86 62.45 71.17 81.06
- w/o entropy 58.41 67.87 79.36 89.80 87.69 94.76 37.51 34.38 48.15 61.08 70.90 78.39
- w/o entropy&kmeans 65.00 70.44 49.09 89.67 87.52 64.97 25.00 22.17 9.79 59.25 68.95 35.04

Table 2: Ablation results on data batching strategy on small scale datasets. Pair-Acc refers to the accuracy of positive
pairs, indicating the proportion of positive pairs that actually belong to the same ground class.

Method
CLINC(I) Massive(I) MTOP(I) CLINC(D) Massive(D) MTOP(D) GoEmo Avg

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

PPLL-self-γ=1 80.33 93.40 58.84 74.98 38.50 74.60 57.70 59.92 57.79 66.93 88.19 87.86 37.09 33.92 59.78 70.23
PPLL-llama3-γ=1 81.09 93.75 62.54 76.17 48.89 76.29 55.54 58.81 62.00 65.93 88.95 86.43 34.32 30.29 61.90 69.67
PPLL-llama3-γ=2 83.88 94.37 60.75 76.09 46.30 76.79 55.04 59.35 59.14 66.10 86.60 86.92 40.59 34.28 61.76 70.56
PPLL-llama3-γ=5 84.21 94.52 61.29 76.59 45.94 75.77 60.14 61.15 61.64 67.12 86.73 86.95 37.67 32.10 62.52 70.60
PPLL-llama3-γ=10 84.14 94.37 60.99 76.15 44.31 75.22 57.96 60.70 57.92 65.13 92.41 88.82 35.36 31.17 61.87 70.22

Table 3: Ablation on Input size to LLM on small scale datasets.

Gold Label Generated Label

make call Phone call
greeting Greetings

how old are you Age-related queries
who do you work for Workplace Inquiries

what are your hobbies Interest and leisure activities
expiration date Credit card expiration date

Table 4: Examples of generated labels on CLINC(I)
(small scale).

are considered to be within the same cluster by
the embedding model. In contrast, the w/o en-
tropy&kmeans method, lacking this prior knowl-
edge, is more likely to group together instances that
should belong to the same class but are incorrectly
classified as separate classes due to the embedder’s
limitations.

Impact of Input size to LLM. This section
presents an ablation study on the input size to the
LLM, as shown in Table 3. Specifically, we employ
Llama3 as the LLM for prediction and vary the
input size by adjusting the parameter γ. There are
several observations from the results.

Firstly, PPLL demonstrates consistent perfor-
mance across various settings of γ, highlighting
its robustness to different input sizes.

Secondly, the results show that Llama3 achieves

better performance with γ=5 than with γ=10 (ex-
cept for MTOP(D)), indicating that the model’s
performance may deteriorate when handling ex-
cessively large amounts of text. This observation
underscores the significance of data batching.

Thirdly, a comparison between our proposed
method and PPLL-self-γ=1 (a self-supervised base-
line where LLM are removed with γ=1) reveals a
substantial improvement in terms of ACC and NMI
across all datasets. This finding highlights the sig-
nificant contribution of LLM-derived knowledge
to our model’s performance.

Fourth, when PPLL-llama3-γ=1, the small
batch size causes LLM to assign all input pairs
to a single mini-cluster. Nevertheless, by cluster-
ing texts based on mini-cluster labels obtaining
more positive pairs, PPLL avoids degenerating to
PPLL-self-γ=1. Comparisons between PPLL-self-
γ=1 and PPLL-llama3-γ=1 demonstrate that in-
corporating LLM knowledge generally enhances
performance by introducing valuable label knowl-
edge. However, in some datasets, PPLL-llama3-
γ=1 underperforms PPLL-self-γ=1. This may be
attributed to the limited input size when γ=1, re-
sulting in insufficient samples for LLM to compare
and consequently lower positive pair accuracy. See
Appendix G for more analysis on γ.

Label-Based kmeans. Figure 4 presents an ab-
lation study designed to assess the impact of label-

12208

(a) the accuracy of Mtop(I). (b) the accuracy of Clinc(D). (c) the accuracy of GoEmo.

Figure 4: Ablation result of Label-Based Kmeans on small scale datasets.

based K-means on clustering performance. We
compare the accuracy of different checkpoints on
three datasets when using GPT-3.5 as the LLM,
with and without the inclusion of mini-cluster label
information. Figure 4 and Table 9 in Appendix
demonstrate that incorporating label information
into K-means can significantly improve clustering
accuracy. However, the performance can degrade
in cases where the mini-cluster labels are of low
quality. Nevertheless, our proposed evaluation met-
ric in Appendix B allows us to select the most ef-
fective configuration, considering both label-based
and label-free K-means.

4.6 Generated New Labels

To study the quality of labels produced by PPLL
for the resulting clusters, we conduct a compara-
tive analysis between the gold standard labels and
PPLL generated labels (section 3.5) on the CLINC
dataset. Table 4 compares label generation across
different categories. For clusters with specific in-
tents (e.g., make call, greeting), PPLL can accu-
rately generate their corresponding intent labels.
For general user questions, PPLL effectively con-
denses queries into high-level intent labels. For
example, Who do you work for is transformed into
Workplace Inquiries. Meanwhile, the generated la-
bels effectively integrate additional cluster details,
leading to more precise and informative intent la-
bels. For example, the gold label expiration date is
refined to Credit card expiration date. Our findings
indicate that PPLL, which leverages the power of
LLMs, is capable of uncovering latent semantic
meanings within text, enabling the generation of
high-quality, interpretable labels.

4.7 Visualization

We visualize the embeddings of Instructor and
PPLL on the GoEmo with the t-SNE technique

(a) Instructor. (b) PPLL.

Figure 5: Scatter plots for t-SNE of embeddings on
GoEmo (small-scale)

in Figure 5. The figure shows the embeddings
generated by Instructor are unable to effectively
differentiate between different clusters. However,
PPLL enhances the cohesiveness of embeddings
within the same cluster while simultaneously sepa-
rating different clusters. This indicates that PPLL
enables the model to extract goal attributes from
each text, clustering content of the same cluster
within the scope of labels generated by the LLM.
See Appendix F for more visualizations.

5 Conclusion

We introduce PPLL that leverages the clustering
and label generation capabilities of LLMs to guide
embedders in unsupervised clustering for various
tasks. By prompting LLM to generate mini-cluster
labels, we enable the construction of positive pairs
based on these labels. These mini-cluster labels are
then integrated into K-means to refine cluster cen-
ters in order to further incorporate label knowledge.
PPLL also generates semantically rich and inter-
pretable labels for each cluster. Furthermore, we
train the embedder using the BYOL method, which
obviates the need for negative pairs, enhancing its
robustness. Extensive experiments demonstrate
that PPLL not only enhances clustering quality but

12209

also generates appropriate labels.

Limitations

Despite the promising results obtained by our
method, it is important to acknowledge several lim-
itations. First, as discussed in Section 4.5, our
method’s reliance on LLM-generated mini-cluster
labels for K-means introduces a potential draw-
back: suboptimal LLM-generated labels can de-
grade the overall performance. However, as de-
tailed in Appendix B, we propose a strategy to
determine whether to incorporate label-based K-
means, mitigating the negative impact of poten-
tially poor LLM-generated labels. Second, PPLL
is primarily designed for text data, limiting its ap-
plicability to multimodal scenarios. Third, PPLL
incurs some computational overhead due to its re-
liance on LLMs for dataset labeling and training.
However, the analysis in the Appendix H demon-
strates that the overall cost remains relatively low
and within acceptable limits. Last, PPLL relies
on feedback from the LLM, which may introduce
potential risks of data leakage and other security
concerns.

Acknowledgments

This work is supported by the Regional Innovation
and Development Joint Fund of the National Nat-
ural Science Foundation of China (U22A6001),
the National key R&D Plan Program of China
(2022YFC3601604) and Zhejiang Province Elite
Program Project (2023C03162).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Wenbin An, Wenkai Shi, Feng Tian, Haonan Lin, QianY-
ing Wang, Yaqiang Wu, Mingxiang Cai, Luyan Wang,
Yan Chen, Haiping Zhu, et al. 2023. Generalized cat-
egory discovery with large language models in the
loop. arXiv preprint arXiv:2312.10897.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Varun Chandola, Arindam Banerjee, and Vipin Kumar.
2009. Anomaly detection: A survey. ACM Comput.
Surv., 41(3).

Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shim-
ing Xiang, and Chunhong Pan. 2017. Deep adaptive
image clustering. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
5879–5887.

Qinyuan Cheng, Xiaogui Yang, Tianxiang Sun, Linyang
Li, and Xipeng Qiu. 2023. Improving contrastive
learning of sentence embeddings from ai feedback.
arXiv preprint arXiv:2305.01918.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljačić, Shang-
Wen Li, Wen-tau Yih, Yoon Kim, and James
Glass. 2022. Diffcse: Difference-based contrastive
learning for sentence embeddings. arXiv preprint
arXiv:2204.10298.

William HE Day and Herbert Edelsbrunner. 1984. Effi-
cient algorithms for agglomerative hierarchical clus-
tering methods. Journal of classification, 1(1):7–24.

Maarten De Raedt, Fréderic Godin, Thomas Demeester,
and Chris Develder. 2023. Idas: Intent discov-
ery with abstractive summarization. arXiv preprint
arXiv:2305.19783.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A dataset of fine-grained emo-
tions. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4040–4054, Online. Association for Computational
Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zijin Feng, Luyang Lin, Lingzhi Wang, Hong Cheng,
and Kam-Fai Wong. 2024. Llmedgerefine: Enhanc-
ing text clustering with llm-based boundary point
refinement. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 18455–18462.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron

12210

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372

Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
et al. 2022. Massive: A 1m-example multilin-
gual natural language understanding dataset with
51 typologically-diverse languages. arXiv preprint
arXiv:2204.08582.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Guo, Mohammad Gheshlaghi Azar, et al.
2020. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284.

Alexander Hoyle, Rupak Sarkar, Pranav Goel, and
Philip Resnik. 2023. Natural language decompo-
sitions of implicit content enable better text represen-
tations. arXiv preprint arXiv:2305.14583.

Chen Huang and Guoxiu He. 2025. Text clustering as
classification with llms. Preprint, arXiv:2410.00927.

Fan Huang, Haewoon Kwak, and Jisun An. 2023. Is
chatgpt better than human annotators? potential and
limitations of chatgpt in explaining implicit hate
speech. In Companion Proceedings of the ACM Web
Conference 2023, WWW ’23, page 294–297. ACM.

Tassilo Klein and Moin Nabi. 2022. Scd: Self-
contrastive decorrelation for sentence embeddings.
arXiv preprint arXiv:2203.07847.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Michelle S. Lam, Janice Teoh, James A. Landay, Jef-
frey Heer, and Michael S. Bernstein. 2024. Concept
induction: Analyzing unstructured text with high-
level concepts using lloom. In Proceedings of the
CHI Conference on Human Factors in Computing
Systems, CHI ’24, page 1–28. ACM.

David D Lewis. 1995. A sequential algorithm for train-
ing text classifiers: Corrigendum and additional data.
In Acm Sigir Forum, volume 29, pages 13–19. ACM
New York, NY, USA.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH
Hoi. 2020. Prototypical contrastive learning
of unsupervised representations. arXiv preprint
arXiv:2005.04966.

Jinggui Liang, Lizi Liao, Hao Fei, and Jing Jiang. 2024a.
Synergizing large language models and pre-trained
smaller models for conversational intent discovery.
In Findings of the Association for Computational
Linguistics ACL 2024, pages 14133–14147.

Jinggui Liang, Lizi Liao, Hao Fei, Bobo Li, and Jing
Jiang. 2024b. Actively learn from llms with uncer-
tainty propagation for generalized category discovery.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 7838–7851.

Jiduan Liu, Jiahao Liu, Qifan Wang, Jingang Wang, Wei
Wu, Yunsen Xian, Dongyan Zhao, Kai Chen, and
Rui Yan. 2023. Rankcse: Unsupervised sentence
representations learning via learning to rank. arXiv
preprint arXiv:2305.16726.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, and
Jiawei Han. 2022. Topic discovery via latent space
clustering of pretrained language model representa-
tions. In Proceedings of the ACM web conference
2022, pages 3143–3152.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2023. MTEB: Massive Text Embed-
ding Benchmark. Preprint, arXiv:2210.07316.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005.

Soham Parikh, Quaizar Vohra, Prashil Tumbade, and
Mitul Tiwari. 2023. Exploring zero and few-shot
techniques for intent classification. arXiv preprint
arXiv:2305.07157.

Letian Peng, Yuwei Zhang, and Jingbo Shang. 2024.
Controllable data augmentation for few-shot text
mining with chain-of-thought attribute manipulation.
Preprint, arXiv:2307.07099.

Chau Minh Pham, Alexander Hoyle, Simeng Sun,
Philip Resnik, and Mohit Iyyer. 2024. Topicgpt: A
prompt-based topic modeling framework. Preprint,
arXiv:2311.01449.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. Preprint, arXiv:1908.10084.

Gaurav Sahu, Olga Vechtomova, Dzmitry Bahdanau,
and Issam H. Laradji. 2023. Promptmix: A class
boundary augmentation method for large language
model distillation. Preprint, arXiv:2310.14192.

12211

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2410.00927
https://arxiv.org/abs/2410.00927
https://doi.org/10.1145/3543873.3587368
https://doi.org/10.1145/3543873.3587368
https://doi.org/10.1145/3543873.3587368
https://doi.org/10.1145/3543873.3587368
https://doi.org/10.1145/3613904.3642830
https://doi.org/10.1145/3613904.3642830
https://doi.org/10.1145/3613904.3642830
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2307.07099
https://arxiv.org/abs/2307.07099
https://arxiv.org/abs/2311.01449
https://arxiv.org/abs/2311.01449
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2310.14192
https://arxiv.org/abs/2310.14192
https://arxiv.org/abs/2310.14192

Dominik Stammbach, Vilém Zouhar, Alexander Hoyle,
Mrinmaya Sachan, and Elliott Ash. 2023. Revis-
iting automated topic model evaluation with large
language models. Preprint, arXiv:2305.12152.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
Embedder, Any Task: Instruction-Finetuned Text Em-
beddings. Preprint, arXiv:2212.09741.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang,
Chuan Zhou, Wenbin Hu, Cecile Paris, Surya Nepal,
Di Jin, Quan Z. Sheng, and Philip S. Yu. 2024. A
comprehensive survey on community detection with
deep learning. IEEE Transactions on Neural Net-
works and Learning Systems, 35(4):4682–4702.

Vijay Viswanathan, Kiril Gashteovski, Carolin
Lawrence, Tongshuang Wu, and Graham Neubig.
2023. Large language models enable few-shot clus-
tering. Preprint, arXiv:2307.00524.

Mengting Wan, Tara Safavi, Sujay Kumar Jauhar, Yujin
Kim, Scott Counts, Jennifer Neville, Siddharth Suri,
Chirag Shah, Ryen W White, Longqi Yang, Reid
Andersen, Georg Buscher, Dhruv Joshi, and Nagu
Rangan. 2024. Tnt-llm: Text mining at scale with
large language models. Preprint, arXiv:2403.12173.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022a. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Yufei Wang, Can Xu, Qingfeng Sun, Huang Hu,
Chongyang Tao, Xiubo Geng, and Daxin Jiang.
2022b. Promda: Prompt-based data augmentation for
low-resource nlu tasks. Preprint, arXiv:2202.12499.

Zihan Wang, Jingbo Shang, and Ruiqi Zhong. 2023.
Goal-driven explainable clustering via language de-
scriptions. Preprint, arXiv:2305.13749.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. In International conference on machine learning,
pages 478–487. PMLR.

Chen Yang, Bin Cao, and Jing Fan. 2024. Tec: A novel
method for text clustering with large language models
guidance and weakly-supervised contrastive learning.
In Proceedings of the International AAAI Conference
on Web and Social Media, volume 18, pages 1702–
1712.

Mouxing Yang, Yunfan Li, Peng Hu, Jinfeng Bai,
Jiancheng Lv, and Xi Peng. 2022. Robust multi-view
clustering with incomplete information. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
45(1):1055–1069.

Dejiao Zhang, Feng Nan, Xiaokai Wei, Shang-Wen Li,
Henghui Zhu, Kathleen McKeown, Ramesh Nalla-
pati, Andrew O. Arnold, and Bing Xiang. 2021a.

Supporting clustering with contrastive learning. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5419–5430, Online. Association for Computa-
tional Linguistics.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu.
2021b. Discovering new intents with deep aligned
clustering. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14365–
14373.

Haode Zhang, Haowen Liang, Liming Zhan, Albert Y. S.
Lam, and Xiao-Ming Wu. 2024a. Revisit few-shot
intent classification with plms: Direct fine-tuning vs.
continual pre-training. Preprint, arXiv:2306.05278.

Yan Zhang, Ruidan He, Zuozhu Liu, Lidong Bing, and
Haizhou Li. 2021c. Bootstrapped unsupervised sen-
tence representation learning. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5168–5180.

Yuwei Zhang, Siffi Singh, Sailik Sengupta, Igor Sha-
lyminov, Hang Su, Hwanjun Song, and Saab Man-
sour. 2024b. Can your model tell a negation from
an implicature? unravelling challenges with intent
encoders. Preprint, arXiv:2403.04314.

Yuwei Zhang, Zihan Wang, and Jingbo Shang. 2023.
Clusterllm: Large language models as a guide for
text clustering. arXiv preprint arXiv:2305.14871.

Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang
Huang, Minghua Deng, Liqiang Nie, Zhouchen Lin,
and Xian-Sheng Hua. 2021. Graph contrastive clus-
tering. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 9224–
9233.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jacob
Steinhardt. 2022. Describing differences between
text distributions with natural language. Preprint,
arXiv:2201.12323.

Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan
Klein, and Jacob Steinhardt. 2023. Goal driven dis-
covery of distributional differences via language de-
scriptions. Preprint, arXiv:2302.14233.

Wenjie Zhuo, Yifan Sun, Xiaohan Wang, Linchao Zhu,
and Yi Yang. 2023. Whitenedcse: Whitening-based
contrastive learning of sentence embeddings. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 12135–12148.

12212

https://arxiv.org/abs/2305.12152
https://arxiv.org/abs/2305.12152
https://arxiv.org/abs/2305.12152
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://doi.org/10.1109/TNNLS.2021.3137396
https://doi.org/10.1109/TNNLS.2021.3137396
https://doi.org/10.1109/TNNLS.2021.3137396
https://arxiv.org/abs/2307.00524
https://arxiv.org/abs/2307.00524
https://arxiv.org/abs/2403.12173
https://arxiv.org/abs/2403.12173
https://arxiv.org/abs/2202.12499
https://arxiv.org/abs/2202.12499
https://arxiv.org/abs/2305.13749
https://arxiv.org/abs/2305.13749
https://doi.org/10.18653/v1/2021.naacl-main.427
https://arxiv.org/abs/2306.05278
https://arxiv.org/abs/2306.05278
https://arxiv.org/abs/2306.05278
https://arxiv.org/abs/2403.04314
https://arxiv.org/abs/2403.04314
https://arxiv.org/abs/2403.04314
https://arxiv.org/abs/2201.12323
https://arxiv.org/abs/2201.12323
https://arxiv.org/abs/2302.14233
https://arxiv.org/abs/2302.14233
https://arxiv.org/abs/2302.14233

A Experimental Details

A.1 Dataset Details
The CLINC dataset, originally for out-of-scope
detection, was adapted by focusing on in-domain
utterances to evaluate intent clustering. A domain
discovery dataset, CLINC(D), was also created us-
ing domains as labels. Similarly, Massive(I)/(D)
and MTOP(I)/(D) from MTEB were adapted for
clustering by removing low-instance intents and
keeping only English data. The train and test splits
of all datasets were used as large- and small-scale
datasets, respectively. The GoEmotions dataset, for
fine-grained emotion detection, was also used for
evaluation.

Table 5 reports the detailed statistics for the
CLINC(I), MTOP(I), Massive(I), GoEmo, CLINC-
Domain, MTOP-Domain, and Massive-Scenario
datasets. These datasets cover intent classification,
emotional clustering, and domain-specific scenar-
ios.

Task Name #Clusters #data(small) #data(large)

Intent
CLINC(I) 150 4,500 15,000
MTOP(I) 102 4,386 15,638

Massive(I) 59 2,974 11,510

Emotion GoEmo 27 5,940 23,485

Domain
CLINC(D) 10 4,500 15,000
MTOP(D) 11 4,386 15,667

Massive(D) 18 2,974 11,514

Table 5: Dataset Statistics.

A.2 Implementation Details
To assess the performance under different data
scales, we conduct experiments on both large and
small datasets. For large datasets, to reduce com-
putational cost, we employ a pre-clustering step
using K-means to partition the data into Q clusters.
Subsequently, we select the data point closest to
the centroid from each cluster to form a smaller
dataset for subsequent analysis. For instance, in
the GoEmo dataset, we initially cluster 23,485 data
points into 23485/4≈5871 clusters and then pro-
ceed with our proposed method using the resulting
5,871 data points. During the final clustering out-
put phase, the class labels of the Q cluster centers
are propagated to their corresponding neighboring
nodes.

We fine-tune the embedder on the dataset for
a single epoch, adopting hyperparameters largely
consistent with those used in Zhang et al. (2021c).
The Kclosest hyperparameter was set to a fixed

value of 25 for different datasets, which is an em-
pirical parameter derived from our experimental
results.

We evaluate the model’s performance in terms of
Overall Silhouette Score and pair-score (Appendix
B) to determine the optimal learning rate (selected
from 1e-4, 5e-5) and the need for label-based K-
means. This evaluation is conducted without re-
lying on ground truth labels. Moreover, to miti-
gate overfitting and reduce the impact of potential
noise in the LLM-generated labels, we evaluate the
model every quarter of an epoch in terms of Overall
Silhouette Score and pair-score. This results in a
total of 16 potential configurations for each dataset,
from which the optimal one in terms of Overall
Silhouette Score and pair-score is automatically
selected as output.

B Overall Silhouette Score and Pair-Score

To automatically select the relatively better config-
uration in the absence of ground truth labels, we
propose a novel evaluation method. This method in-
volves two primary metrics. The first one is Overall
Silhouette Score (ss), which reflects the cohesive-
ness of the clusters. The second evaluation met-
ric is pair-score, which is designed to assess the
model’s accuracy. To calculate the pair-score, we
first obtain embeddings using a pre-trained embed-
der. Subsequently, we perform K-means cluster-
ing on these embeddings to form extremely small
clusters, each containing an average of only two
texts. We hypothesize that these mini-clusters are
the same true class, and thus, the pairs within these
clusters are considered true positive pairs. For each
clustering result of the configuration to be evalu-
ated, we assess whether these positive pairs are as-
signed to the same cluster to obtain the pair-score:

pair − score =

∑N
i=1 I(C[Pi,0] = C[Pi,1])

N
(8)

where C[Pi,0] denotes the predicted cluster assign-
ment of Pi,0. Pi,0 and Pi,1 form the i-th pair. I{·}
is an indicator function.

Our overall evaluation process is as follows:
Step 1, we calculate the ss and pair-score for

each configuration, and then compute the score as

score = pair-score*(1 + ss) (9)

Step 2, for results obtained with different learning
rates, we first select the top two based on the score.
Then, we compare the pair-score of these top two

12213

scale small large

Method
CLINC(D) Massive(D) CLINC(I) Massive(D)

ACC NMI ACC NMI ACC NMI ACC NMI

Overall Silhouette Score&Pair-Score 59.04 61.37 61.14 67.79 86.22 94.82 60.21 65.50
Overall Silhouette Score 58.21 60.13 61.02 67.74 84.45 94.53 57.69 64.97

Table 6: The actual clustering performance of configurations selected by different evaluation methods without
ground truth.

results (since the cohesion, reflected by ss, may
vary due to different learning rates, it is unfair to
consider ss in this comparison). So we select the
result with the highest pair-score. As shown in
Table 6, employing Overall Silhouette Score and
Pair-Score for evaluation is more effective in iden-
tifying superior configurations among the 16 candi-
dates compared to using Overall Silhouette Score
alone, thus enabling more accurate unsupervised
evaluation of checkpoint performance.

C Real-world Applications

The proposed method is predicated on the assump-
tion of a known number of clusters, a condition
that is not reflective of most real-world applica-
tions where the true number of clusters is often
undetermined. To solve this issue, we utilize the
filtering strategy (Zhang et al., 2021b) to estimate
K.

Initially, we estimate an upper bound on the num-
ber of clusters, denoted as K

′
. Subsequently, we

utilize the pre-trained Instructor model to extract
embeddings from the dataset. These embeddings
are then clustered using the K-means algorithm.
We subsequently filter the resulting clusters, re-
taining only those that are densely populated and
exhibit well-defined boundaries. Smaller and less
distinct clusters are discarded. Formally, the filter
process is defined as follows:

KI =

K
′

∑

i=1

I(|Si| >
N

K ′) (10)

where |Si| is the i-th grouped cluster size, N is
the size of the dataset, I(·) is the indicator func-
tion, which returns 1 if the condition within the
parentheses is satisfied and 0 otherwise.

Having obtained an initial estimate of KI , we
proceed with data batching and prompt the LLM
to generate mini-cluster labels. Subsequently, we
reapply the filtering process using the mini-cluster

labels to refine the estimated number of clusters,
resulting in Kllm. We can further refine our estima-
tion by applying the filtering process to the mini-
cluster labels using the trained embedder, resulting
in an additional estimate denoted as Ke. As shown
in Table 7, our model provides the most accurate
estimate of the number of clusters, with minimal
error, outperforming the ClusterLLM model which
relies on GPT-3.5 for estimation. This empirically
validates the significance of incorporating label
knowledge and the effectiveness of training the em-
bedder using positive pairs, enabling the embedder
to better capture the underlying data distribution
and facilitate accurate clustering.

Moreover, we conducted experiments using the
estimated Ke to explore the influence of the number
of clusters. Results in Table 8 show that our model
achieves competitive performance, even without
prior knowledge of the true number of clusters,
highlighting the robustness of our proposed method.

D More result of PPLL

Table 10 presents the experimental results of
PPLL using Mistral-7B-Instruct-v0.2 and gpt4o.
As demonstrated, PPLL achieves superior perfor-
mance compared to other methods. Moreover, a
comparison with gpt-3.5 reveals a positive correla-
tion between the capability of the LLM used and
the effectiveness of PPLL-based clustering. Impor-
tantly, PPLL still exhibits remarkable performance
even when utilizing a less capable open-source 7B
LLM.

E The variance of PPLL’s results

Table 11 reveals that PPLL exhibits a similar level
of stability to ClusterLLM-Iter, as evidenced by the
comparable variance in their K-means clustering
results over five random seeds (values are scaled
by 100 in the table), while achieving higher ACC
and NMI.

12214

Method
CLINC(I) MTOP(I) MTOP(D)

K(Pred) Error K(Pred) Error K(Pred) Error

clusterLLM 142 5.33 92 9.80 18 63.64
Instructor-KI 169 12.67 118 15.69 14 27.27
ours-Kllm 161 7.33 105 2.94 13 14.29
ours-Ke 157 4.67 104 1.96 11 0.0

Table 7: The results of predicting K with an unknown number of clusters. We set K
′

as three times of the ground
truth number of clusters during clustering and run K-means on datasets for 5 seeds to get more accurate K.

CLINC(I) MTOP(I) MTOP(D)
Cluster Num K ACC NMI ACC NMI ACC NMI

K=GT#clusters 84.13 94.53 40.10 75.14 91.74 88.67
K=Ke 83.80 94.40 40.33 74.82 90.88 88.45

Table 8: Experimental results of different cluster number K. "K=GT#clusters" means K is the ground truth number
of clusters.

F More Results of Feature Visualization

We also visualize the learned embeddings of In-
structor and our method on the Mtop(I) (small-
scale) and Mtop(D) (small-scale) dataset with the
t-SNE technique in Figure 6. We can still see that
our method significantly improves the Instructor’s
ability to form compact and distinct clusters.

G More analysis on γ

In the table 12, we present the accuracy of the pos-
itive pairs generated by PPLL in Stage 1. Here,
γ=1 corresponds to processing two texts per batch
by LLM, thus limiting the comparison to pairwise
interactions, akin to the approach in ClusterLLM
(Zhang et al., 2023). Conversely, γ=5 corresponds
to processing ten texts per batch. This comprehen-
sive global comparison enables the LLM to develop
a more nuanced understanding of even challenging
samples, leading to improved clustering accuracy
and, consequently, a higher-quality training dataset
for the embedder. Table 12 shows that increasing
the number of texts processed per batch enhances
the accuracy of the positive pairs generated by the
LLM. It is precisely this extensive comparison that
allows PPLL to effectively enhance clustering per-
formance, thus demonstrating the efficacy of our
proposed method.

H Discussion on Computational Costs

Utilizing GPT-3.5 as the LLM in Stage 1 for Equa-
tion 3 with γ=10 incurs an average cost of $0.0012

per batch, resulting in an average cost of $0.25422
for a small-scale dataset (average length of 4,237
in our experiments). Subsequently, training the em-
bedder for one epoch using BYOL takes 4 minutes
with a single NVIDIA GeForce RTX 4090 (24GB),
followed by an average cost of $0.03 for Stage 3 us-
ing GPT-3.5. Thus, PPLL demonstrates a relatively
low computational cost for small-scale datasets.
For large-scale datasets, the approach detailed in
the Appendix A.2 can be used to reduce them to a
manageable size for annotation and training, thus
maintaining a similar computational cost to small-
scale datasets. Overall, PPLL demonstrates rela-
tively low computational overhead, achieving both
enhanced clustering quality and the generation of
appropriate labels at a negligible cost.

I More Related Work

LLM as generator Recent works (Hoyle et al.,
2023; Parikh et al., 2023) have leveraged the gener-
ative capabilities of large language models (LLMs)
for a wide range of applications. Some studies, in-
cluding Zhong et al. (2022) and Zhong et al. (2023),
have employed LLMs to generate datasets. For
instance, Zhang et al. (2024b) designed a special-
ized dataset using LLMs to improve embedders’
understanding of two crucial real-world semantic
concepts: negation and implicature. Some studies
(Zhang et al., 2024a; Wang et al., 2022b), leverage
LLMs for text augmentation. For instance, Peng
et al. (2024) employs LLMs to extract attributes
from text using LLMs, and modify these attributes

12215

Method Mtop(I) CLINC(D) GoEmo

w/o label-based kmeans 33.35 52.50 25.19
label-based kmeans 33.57 57.82 27.41

Table 9: Comparison of methods with and without label-based K-means clustering when the embedder is not
finetuned by BYOL (Accuracy).

Method
CLINC(I) Massive(I) MTOP(I) CLINC(D) Massive(D) MTOP(D) GoEmo Avg

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
PPLL-Mistral 84.22 94.30 60.03 76.00 41.46 74.85 58.40 58.66 58.02 68.21 92.71 88.29 35.45 31.71 61.47 70.29
PPLL-gpt4o 86.49 95.09 62.70 77.62 43.86 76.69 60.54 60.21 62.33 69.79 94.21 90.40 39.67 35.60 64.26 72.20

Table 10: Results (in %) on multiple small scale datasets. Average over all datasets are shown in the last two
columns.

to generate diverse synthetic sentences, thereby
enriching the training data. Similarly, Sahu et al.
(2023) utilizes LLMs to generate challenging sam-
ples to assist embedders in identifying class bound-
aries. Additionally, LLMs have been employed for
data annotation, as demonstrated in Huang et al.
(2023), which highlights the powerful capabilities
of ChatGPT in this task. Some studies, such as
Stammbach et al. (2023), have employed LLMs
for evaluation tasks. For instance, they designed
tasks to assess the quality of generated topics and
found that LLMs can provide evaluations that align
well with human judgments, outperforming exist-
ing automated metrics. This paper concentrates
on utilizing LLMs for data clustering and label
generation.

J Prompt Templates

See Table 13, 14 for the prompt templates that we
used in our framework.

(a) Mtop(I)-Instructor. (b) Mtop(I)-ours. (c) Mtop(D)-Instructor. (d) Mtop(D)-ours.

Figure 6: Scatter plots for t-SNE of embeddings on small scale datasets.

12216

Method
CLINC(I) Massive(I) MTOP(I) CLINC(D) Massive(D) MTOP(D) GoEmo

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
clusterLLM-Iter 0.41 0.21 0.96 0.21 0.97 0.79 1.91 1.15 4.33 1.59 3.81 1.21 1.76 0.68
PPLL-llama3 0.79 0.13 1.44 0.23 1.17 0.31 2.84 1.05 1.25 0.76 2.73 1.10 2.31 0.40
PPLL-gpt3.5 0.48 0.10 2.03 0.51 1.43 0.61 2.51 1.60 1.25 0.76 3.17 1.10 1.09 0.52

Table 11: The variance of results, derived from five independent runs with different random seeds on the small-scale
dataset.

Method CLINC(I) Massive(I) MTOP(I) CLINC(D) Massive(D) MTOP(D) GoEmo Avg

llama3-γ = 1 71.41 62.75 81.26 44.02 65.16 62.58 17.16 57.76
llama3-γ = 5 87.85 73.93 86.33 66.97 78.94 94.31 26.72 73.58

Table 12: Pair accuracy (Pair-acc) obtained in Stage 1 of PPLL under different settings of γ.

Prompt template PT for generating mini-clusters and mini-cluster labels.

Instruction
##Context
- *Goal* Your goal is to cluster the input utterances into meaningful categories **{according}**.
- *Data* The input data will be a markdown table with utterances including the following columns:
- **id** utterance index.
- **utterance** utterance.

##Requirements

Format
- Output clusters as a **markdown table**with each row as a category with the following columns:
- **id**: all the utterance ids associated with this category
- **description**: the {goal} of the category that should be less than **4** words
Here is an example of your output：
”’markdown
|id|description|
|utterance ids|the {goal} of the category|
”’

###Quality
- **No** **overlap** or **inclusion** among the categories.
- **Do not include vague categories** such as "Other","General","Unclear","Miscellaneous" or "Undefined" in the cluster table.
- Provide your answers between the tags: <cluster table>your generated cluster table</cluster table>, <explanation>explanation of
your reasoning process within {n_exp} words</explanation>.
- If the data points convey the **same** {goal}, you should output just one category.
- **Description** can **accurately** and **consistently** classify the Data **without ambiguity**. A data point must have and only
belong to one category.

Data
{data_table}

Output

Table 13: A prompt template for clustering a batch of texts and generating mini-cluster labels, where the Chain-
of-Thought (COT) method is used to improve the accuracy of the results. In practice, users need to modify the
components highlighted in Bold (e.g., changing "according" to "according to the intent" and "goal" to "intent") to
suit their specific dataset.

12217

Prompt template PG for generating labels.

Instruction
##Context
- *Goal* Your goal is to summarize the input data into a meaningful LABEL **{according}**.
- *Data* The input data will be a markdown table containing category descriptions and the corresponding number of
utterances for each category, with the following columns:
- **category description** A description of the category, generated by clustering related utterances.
- **number** The number of utterances that belong to this category.

##Requirements
- Provide your answers between the tags: <summary>your generated summary LABEL with less than 8 words</summary>,
<explanation>explanation of your reasoning process within {n_exp} words</explanation>.

Data
{data_table}

Output

Table 14: A prompt template for generating a new summary label for mini-cluster labels, where the Chain-of-
Thought (COT) method is used to improve the accuracy of the results. In practice, users need to modify the
components highlighted in Bold (e.g., changing "according" to "according to the intent" and "goal" to "intent") to
suit their specific dataset.

12218

