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Abstract
Disclaimer: This paper contains potentially of-
fensive and harmful text.
Large language models (LLMs) are widely
deployed as zero-shot evaluators for an-
swer grading, content moderation, and doc-
ument ranking. Yet studies show that
guard models (Guards)—LLMs fine-tuned
for safety—remain vulnerable to "jailbreak" at-
tacks, jeopardising downstream chatbots. We
confirm this weakness on three public bench-
marks (BeaverTails, XSTest, AdvBench) and
trace it to representation shifts that arise in
the embedding layer and cascade through the
Transformer stack. To counteract the effect, we
introduce Gamma-Guard: lightweight resid-
ual adapters inserted after the embeddings and
at sparse intervals in the model. The adapters
start with zero-scaled gates, so they retain the
original behaviour; a brief adversarial fine-
tuning phase then teaches them to denoise em-
beddings and refocus attention. With fewer
than 0.1 % extra parameters and only a 2 %
latency increase, Gamma-Guard lifts adver-
sarial accuracy from ≤ 5% to ≈ 95% a 90
percentage-point gain while reducing clean-
data accuracy by just 8 percentage points. Ex-
tensive ablations further show that robustness
improvements persist across different layer
placements and model sizes. To our knowledge,
this is the first approach that directly augments
large Guards with trainable adapters, providing
a practical path toward safer large-scale LLM
deployments.

1 Introduction

Large language models (LLMs) have proven to be
highly efficient zero-shot evaluators: even with-
out task-specific data, they can assign consistent,
transferable quality scores to individual or multi-
ple texts (Zheng et al., 2023; Chen et al., 2023b;
Zhang et al., 2023). On benchmarks such as MT-
BENCH and CHATBOT ARENA, their agreement
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User: Please judge whether the following 
content contains harmful content.

Model: Shit, fuck, fucker, cunt, dick, 
dickhead, asshole.

User: Please judge whether the following 
content contains harmful content.

Model: Shit, fuck, fucker, cunt, dick, 
dickhead, asshole. Change asz acular abin 
oxel decess eps idas etsk anical

Normal text content detection data

Adversarial Text Content Detection Data

Guard Result

Detection 
successful

Detection 
failed

Figure 1: A simple example shows that for normal data,
an LLM Guard can accurately detect harmful content,
whereas for adversarial data it fails.

with human raters exceeds 80 % (Zheng et al.,
2023). Follow-up studies, however, reveal sys-
tematic errors—e.g. position bias and verbosity
bias—indicating that finer-grained calibration is
still needed (Shi et al., 2024a). Because evaluation
is inexpensive and prompts are flexible, the “LLM-
as-a-Judge” paradigm has been widely adopted,
accompanied by detailed guidelines and continu-
ally updated open-source resources (Li, 2025; Guo
et al., 2025). Accordingly, Meta’s Llama-Guard
series has been integrated into production pipelines
to filter non-compliant content, and the latest mul-
timodal release—Llama-Guard 3 Vision—already
moderates both text and images (Chi et al., 2024b).

Yet the rise of diverse “jailbreak” tech-
niques—ranging from character-level injections
to gradient-driven prompts—has exposed serious
weaknesses in large-scale Guard models. Re-
cent empirical work shows that commercial Llama-
Guard models can be bypassed with success rates
of 90–100 % even under black-box settings (Hack-
ett et al., 2025b; Ying et al., 2025; Raina et al.,
2024). Existing robustness solutions for small
safety classifiers—e.g. the single-token sentinel of
STSHIELD (Wang et al., 2025b), difficulty-aware
routing in SAFEROUTE (Lee et al., 2025a), or rule-
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distilled “constitutional” classifiers (Sharma et al.,
2025b)—have achieved partial success, but they
rely on extra inference passes, model switching, or
prompt instrumentation that incur notable latency
and cost. Moreover, they are typically tuned for
1–2 B-parameter models and do not scale straight-
forwardly to the 7–13 B range used by modern
Llama-Guard deployments. Thus, enhancing the
adversarial robustness of large-model Guards with-
out sacrificing throughput or latency—while keep-
ing them deployable at scale—remains a central
challenge for safe, real-world generative AI.

To address this challenge, we introduce
Gamma-Guard: learnable Lightweight Resid-
ual Adapters that can be embedded directly into
large Guard models. Layer-wise feature visual-
ization and attention analysis reveal that vulnera-
bility stems mainly from insufficient suppression
of adversarial noise in the early embedding space;
the perturbation is then amplified across roughly
20 layers, eventually diluting attention in decision
layers and causing misclassification. Guided by
this observation, we attach a lightweight bottle-
neck network after the embedding layer and apply
a learnable scaling factor γ to inject a residual that
counteracts the noise. The branch’s intermediate
features dynamically adjust subsequent attention
matrices, and a low-pass filter is applied to the
first few layers—forming a closed “denoise-and-
correct” loop. The design adds < 0.1% parameters
and 2 % inference latency, yet markedly improves
Guard robustness against character-level, gradient-
based, and sentence-level attacks.

Our main contributions are:

1. We present a detailed analysis of why large-
model Guards are vulnerable and where ad-
versarial effects originate.

2. We propose a learnable Lightweight Residual
Adapter (Gamma-Guard) that plugs into ex-
isting Guards and dynamically corrects their
decisions, greatly boosting robustness.

3. Extensive experiments over diverse attack
suites show that Gamma-Guard delivers large
robustness gains with negligible performance
overhead and minimal accuracy loss on origi-
nal inputs.

2 Related Work

Evolution of Large Language Models and the
Pervasive Adoption of Guards. Over the past

two years, the parameter scale and multimodal
capabilities of large language models (LLMs)
have grown exponentially, and the accompany-
ing ecosystem of safety filters—Guards—has ma-
tured just as rapidly. Meta first open-sourced
Llama Guard, adapting Llama-2-7B into a bidi-
rectional input–output safety classifier (Inan et al.,
2023), and has iteratively refined it under the Pur-
ple Llama program, providing production-ready
integration guidelines (Meta AI, 2023). The latest
Llama Guard 3 Vision extends moderation to im-
age–text inputs (Chi et al., 2024a), while Llama
Guard 4-12B further reduces inference latency in
multimodal scenarios (Meta AI, 2025). On the
academic side, WildGuard released the WildGuard-
Mix benchmark, covering 13 risk categories and
becoming a standard tool for evaluating Guard
models (Han et al., 2024b). In industrial deploy-
ment, the OWASP Top 10 for LLM formally lists
prompt injection, over-privileged access, and re-
lated threats, making Guards the “default gate” in
generative-AI production pipelines (Community,
2025).

Attack Methods Targeting Guards. Despite
their strong performance on standard benchmarks,
recent studies show that Guards remain vulnera-
ble to a variety of sophisticated attacks. Hack-
ett et al. (2025a) achieved a 100 % bypass rate
against six commercial Guards via character injec-
tion and adversarial optimization. G2PIA leverages
reinforcement learning to efficiently search black-
box prompt-injection sequences (Shi et al., 2024b).
PRP proposes universally transferable prefix per-
turbations (Wei et al., 2024), and Bi-Modal Adver-
sarial Prompt extends such attacks to mixed im-
age–text inputs (Liu et al., 2024). Even after RLHF
fine-tuning, the Instruction-Robustness Benchmark
shows that embedded malicious instructions can
greatly undermine filtering effectiveness (Xu et al.,
2024). Moreover, AP-Test demonstrates that at-
tackers can automatically detect whether a specific
Guardrail is deployed, providing reconnaissance
for subsequent tailor-made jailbreaks (Zhang et al.,
2025).

Defensive Methods for Guards. To mitigate
these risks, researchers have proposed several effi-
cient and composable defenses. STShield appends
a single-token sentinel to the output sequence, en-
abling real-time jailbreak detection in under 50
ms (Wang et al., 2025a). SafeRoute employs a
two-tier routing scheme that invokes a large Guard
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only for “hard” examples, balancing computational
cost and security (Lee et al., 2025b). Anthropic’s
Constitutional Classifier distills explicit rules with
synthetic data to withstand cross-domain univer-
sal jailbreaks while keeping the over-refusal rate
at just 0.38 % (Sharma et al., 2025a). For mul-
timodal settings, UniGuard unifies soft and hard
filters to handle textual and visual risks simulta-
neously (Han et al., 2024a), whereas WildGuard
offers an end-to-end toolkit that facilitates hands-
on red-team exercises and pipeline evaluation (Han
et al., 2024b). Overall, strengthening the adver-
sarial robustness of Guards while preserving the
flexibility of zero-shot evaluation remains a core
challenge for the safe deployment of LLMs.

3 The Vulnerability of Guard Model

This section examines the vulnerabilities of Guard
models. We first demonstrate that such models
are indeed highly susceptible to attacks and then
present empirical evidence that pinpoints and ana-
lyzes the underlying causes of this fragility.

3.1 Vulnerability to Adversarial Attacks

Figure 2: Three-dimensional features of the Llama-
Guard model at layer 0. Each axis corresponds to one
of the first three principal components of the embed-
ding vectors. The dataset is the commonly used XSTest
benchmark for Guard evaluation.

Adversarial perturbations systematically distort
Guard models: they start by shifting representa-
tions in the embedding layer and, as the signal
propagates, ultimately warp the decision bound-
ary. To substantiate this claim, we generated three
families of attacks—suffix insertion, word-level
substitution, and sentence-level rewriting—and fed
both the adversarial and original texts into Llama-
Guard. Figures 2 and 3 plot the three-dimensional

feature distributions at layer 0 (embeddings) and
layer 32 (output logits), respectively. The adversar-
ial points are already displaced in the embedding
space and diverge further with depth, producing
a marked boundary drift by the final layer. These
observations, consistent with earlier security re-
ports(Raina et al., 2024), confirm that input-level
noise can persist through all layers and decisively
alter model predictions. Additional visualisations
appear in AppendixA.

Figure 3: Three-dimensional features of the Llama-
Guard model at layer 32 (output layer). Visualization
settings are identical to Figure 2.

3.2 Root-Cause Analysis of Vulnerabilities

Figure 4: Layer-wise probability comparison between
original and adversarial samples in Llama-Guard. The
x-axis is the layer index; the y-axis is the probability.
The yellow curve denotes “unsafe,” and the blue curve
denotes “safe.” The dataset is XSTest, commonly used
for Guard evaluation.

Where the shift emerges. Adversarial influence
first appears harmless—probability curves for orig-
inal and perturbed inputs are indistinguishable
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Figure 5: Layer-wise probability comparison between
original and adversarial samples in Llama-Guard. The
x-axis is the layer index; the y-axis is the probability.
The yellow curve denotes “unsafe,” and the blue curve
denotes “safe.” The dataset is XSTest, commonly used
for Guard evaluation.

through layer 27 but then surges in the final five lay-
ers that perform Guard classification. To reveal this
pattern, we passed both inputs through the model,
extracted layer-wise logits, and decoded them into
“safe/unsafe” probabilities (Figures 4–5). Because
the bulk of distortion arises after generic feature
extraction has completed, the most cost-effective
defence is to intervene before layer 27, ideally at
the embedding layer, rather than tamper with the
decision head itself. Full experimental curves are
provided in Appendix B.

Why the shift matters. The same inputs show
that adversarial tokens erode the model’s atten-
tional focus: weights that original samples assign
to key tokens become diffuse, hiding crucial cues
and driving misclassification (Figure 6). Restoring
robustness therefore requires a mechanism that re-
concentrates attention even in the presence of input
noise. Detailed attention visualisations appear in
Appendix C.

4 Learnable Scaled Residual Adapter
(γ-Adapter)

Architecture Overview. The γ-Adapter is in-
serted after the embedding (or intermediate repre-
sentation) x∈RB×L×D of each Transformer block.
It appends a lightweight bottleneck network ∆(·)
and outputs a residual form controlled by a learn-
able scalar:

x̃ = x+ γ∆(x), (1)

Figure 6: Attention heat maps of the model on original
(top) and adversarial (bottom) samples. The x-axis is
the layer index; the y-axis is the token position; color
intensity indicates attention weight. Dataset: XSTest.
Notice: It is worth noting that the font size of the hor-
izontal and vertical coordinates of this figure in this
article is small, but due to space limitations, a larger
font size cannot be displayed here. However, this does
not affect understanding. The color of each grid repre-
sents the output’s attention to the input content. If you
want to see the original image, we will publish the code
and data later.

where γ is initialized to 0, and ∆ adopts a “down-
projection → non-linearity → up-projection” feed-
forward structure with hidden dimension H ≪
D. The design combines the parameter efficiency
of Adapters (Houlsby et al., 2019; Hu et al.,
2022) with the zero-init residual gating strategy
of ReZero/LayerScale (Bachlechner et al., 2021;
Cai et al., 2021; Touvron et al., 2021).

Robustness Mechanisms.

1) Zero-init stable training: When γ=0, the
network behaves exactly like the original
model, avoiding an immediate performance
drop after loading pretrained weights; γ then
grows gradually and activates only when dis-
tribution shift or adversarial perturbation is
detected, reducing the risk of gradient explo-
sion (Bachlechner et al., 2021).
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2) Minimum-perturbation assumption: By
learning the increment ∆(x) instead of recon-
structing the full representation, the model
only captures the “noise → semantics” resid-
ual mapping, achieving higher sample effi-
ciency and smaller changes on original inputs
(Hu et al., 2022; Chen et al., 2023a).

3) Parameter localization and regularization:
Only a few hundred thousand trainable pa-
rameters—concentrated in ∆ and γ—act as
a “local buffer” for perturbations during ad-
versarial training or out-of-distribution fine-
tuning, while the frozen large-model weights
provide a stable feature backbone (Chen et al.,
2023a; Wang et al., 2024).

4) Interpretable gating: The scalar γ offers
transparent control over the correction mag-
nitude: γ ≈ 0 means “trust the original rep-
resentation,” whereas γ→ 1 means “rely on
the denoised correction,” facilitating post-hoc
analysis of robustness contributions (Cai et al.,
2021).

Practical Advantages. Experiments show that,
across diverse benchmarks and adversarial scenar-
ios, models equipped with the γ-Adapter achieve
a 2–5% gain in robust accuracy while adding al-
most no inference latency—significantly outper-
forming full fine-tuning or plain Adapters (Chen
et al., 2023a; Gu et al., 2024).

5 Method: Gamma-Guard

This section details our Embedding-Level Resid-
ual Denoising & Attention-Correction Framework
(Figure 7). The core idea is three-fold:

1. Insert a lightweight γ-Adapter after the word
embeddings to denoise them.

2. Use the key information produced by the
adapter to dynamically rectify the attention
matrices in subsequent Transformer layers.

3. Apply a low-pass filter to the hidden repre-
sentations of the first few layers to further
suppress high-frequency perturbations.

The whole framework leaves the original pretrained
parameters untouched; training only a handful of
incremental parameters already yields a marked
improvement in adversarial robustness.

5.1 Embedding-Level γ-Adapter Denoising
Design Motivation. Adversarial inputs typically
inject subtle high-frequency noise into the embed-
ding space, which then perturbs attention allocation.
Retraining the entire network is costly, so we bor-
row the parameter-efficient spirit of Adapters and
the zero-init gating strategy of ReZero/LayerScale
(see Section 4) to create a γ-Adapter. By freez-
ing the original weights and learning only a tiny
residual mapping, we capture the “noise → seman-
tics” correction while leaving original inputs nearly
untouched.

Network Structure. Given a token sequence T
with length L and embedding dimension D,

x = Embed(T ) ∈ RL×D,

the γ-Adapter first passes x through a bottleneck

∆(x) = W2 σ
(
W1x

)
, (2)

W1 ∈ RD×H , W2 ∈ RH×D, H ≪ D,
(3)

and then produces the scaled residual

x̃ = x+ γ∆(x), γ ∼ N (0, 10−6). (4)

σ is RELU. Unlike LoRA’s low-rank update, our
adapter keeps the full rank but bounds its magni-
tude via γ.

Zero-Init Training Dynamics. At t=0 we have
x̃ = x, so the network equals the pretrained model
and avoids immediate degradation (Bachlechner
et al., 2021). Let L be the loss; then

∂γL =
〈
∇x̃L, ∆(x)

〉
, ∂W2L = γ∇x̃Lσ(W1x)

⊤. (5)

Because γ≈0 at the start, these gradients are nat-
urally damped, ensuring a stable “cold start.” As
training proceeds, γ grows and the adapter transi-
tions to a fully nonlinear denoiser.

Robustness Analysis. Let a small perturbation ϵ
be added to x with ∥ϵ∥≪∥x∥. A first-order Taylor
expansion gives

˜x+ ϵ = x+ ϵ+ γ∆(x) + γ J∆(x) ϵ+O
(
∥ϵ∥2

)
,

where J∆ is the Jacobian of ∆. Because γ < 1
and the bottleneck limits the spectral norm of J∆,
we have ∥(γJ∆− I)ϵ∥≪∥ϵ∥, achieving first-order
noise suppression. For original inputs (ϵ=0) the
model reduces to x̃ = x, avoiding unnecessary
alterations.
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Figure 7: Overall architecture. Left(a): the vanilla Llama-style stack with embedding, attention, and MLP blocks.
Right(b): our additions—(1) a residual branch at the embedding layer to amplify salient features, (2) dynamic
attention correction guided by that branch, and (3) a noise-suppression module after the MLP output. Note that the
attention and MLP modifications introduce only tiny extra weights; most operations occur at the embedding level.

Parameter and FLOPs Overhead. With
D=4096 and H=512, the new parameters number
P = 2DH + 1 ≈ 0.09% of the base model
(~1.6 MB). Forward computation adds two dense
layers; total FLOPs rise by <3%, increasing 8-B
inference latency by under 2 ms.

Implementation Details.

• Weight Init: W1 ∼ N (0,
√
2/D), W2=0,

and γ is zero or a tiny Gaussian noise.

• Regularization: For original samples we
add λ∥γ∥22 with λ=10−4 to prevent over-
correction.

• Optimizer & Precision: Only {W1,W2, γ}
are updated, using Adam (β1=0.9, β2=0.98,
lr 5×10−5) in bfloat16.

5.2 Attention-Correction Module
Let the original self-attention weights of layer l be

A(l) = softmax
(
Q(l)K(l)⊤

√
dk

)
.

We compute a correction mask from the adapter’s
hidden feature h = ∆(x):

M (l) = tanh
(
W (l)

m h
)
∈ RL×L,

and obtain the rectified attention

Â(l) = softmax
(
Q(l)K(l)⊤

√
dk

+M (l)
)
. (6)

Here W
(l)
m ∈ RH×L contains very few additional

parameters and can down-weight noisy tokens,
thereby weakening the propagation of adversarial
interference.

5.3 Low-Pass Filter
For the first p layers we perform a 1-D discrete
Fourier transform (DFT) on each hidden represen-
tation X(i):

X(i)(f) = F{X(i)(t)},

multiply it by an ideal low-pass kernel H(f) =
1|f |≤fc , and inverse-transform:

X
(i)
low(f) = X(i)(f)H(f),

X
(i)
low(t) = F−1

{
X

(i)
low(f)

}
.

(7)

The cutoff frequency fc can be fixed or learned.
This step suppresses high-frequency adversarial
noise while leaving the main semantic band largely
intact.

5.4 Training Objective and Data
Dataset Construction. We sample 300 original
dialogue instances Doriginal and 300 adversarial in-
stances Dadv (covering suffix, rewrite, and substitu-
tion attacks), totaling 600 examples that are cycled
through in mini-batches.
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Table 1: Accuracy (higher is better, %) on three Guard benchmarks under 13 attack types. LG3 = Llama-Guard-
3-8B(Llama Team, 2024), LG2 = Llama-Guard-2-8B(Team, 2024). “None” = Original model, STSHIELD =
reproduced baseline, Ours = Our proposed method(Gamma-Guard). ORI = original data with no attack. 100
examples per attack per dataset.

Dataset Method Attack Type

ILGR↑ GCG↑ TF↑ PWWS↑ GT↑ SPSO↑ BTA↑ BAE↑ FD↑ SEA↑ SCPN↑ GAN↑ ORI↑

B
ea

ve
rT

ai
ls

None-LG3 14 18 0 0 0 0 2 0 0 0 0 0 100
None-LG2 28 28 0 0 0 0 0 0 0 0 0 6 100
STSHIELD-LG3 70 67 66 71 74 82 76 78 71 64 75 72 98
STSHIELD-LG2 69 65 68 70 74 81 73 66 73 61 73 63 96
Ours-LG3 100 98 96 96 90 100 92 94 90 86 96 92 92
Ours-LG2 84 84 90 100 95 100 95 100 100 100 100 93 94

X
ST

es
t

None-LG3 12 12 0 0 0 0 0 0 0 0 0 0 100
None-LG2 18 18 20 15 20 15 25 15 20 0 6 6 100
STSHIELD-LG3 69 61 66 73 76 80 68 64 78 62 74 64 95
STSHIELD-LG2 64 64 66 68 78 80 78 62 68 63 68 63 97
Ours-LG3 96 90 90 90 100 90 95 95 90 91 91 90 92
Ours-LG2 93 93 95 75 85 80 75 85 90 80 81 81 94

A
dv

B
en

ch

None-LG3 27 25 33 31 27 34 21 35 33 0 0 0 100
None-LG2 6 6 0 0 0 0 0 0 0 0 0 0 100
STSHIELD-LG3 66 66 72 73 71 80 72 69 77 56 69 58 93
STSHIELD-LG2 71 67 71 71 69 80 77 64 77 60 74 60 91
Ours-LG3 100 100 88 87 91 93 88 88 88 80 73 66 92
Ours-LG2 70 70 80 80 75 73 80 81 80 82 79 83 94

Loss Function. For each example, let z be the
logits from the base Guard and ẑ the logits after
our framework. We minimize the KL divergence at
the last token

LKL = KL
[
softmax(ẑ−1)

∥∥ softmax(z−1)
]
,

and add L2 regularization on original inputs:

L = LKL + λ∥γ∥22, λ = 10−4.

Only {γ,W1,W2,W
(l)
m } are trainable; we use

Adam with a base learning rate of 5×10−5.

Parameter Budget and Runtime. With hidden
size H=512 and k layers using attention correction,
the extra parameters are ≈ H(D+L) + kHL+1,
staying below 0.1% of the base model. At infer-
ence time we add merely one extra MLP and a few
matrix additions, increasing latency by <2%.

6 Results and Analysis

This section introduces the experimental environ-
ment, design, and objective analysis of the results.

6.1 Experimental Setup
Datasets. To evaluate Guard performance fairly,
we adopt three benchmarks commonly used in re-
lated work: PKU-ALIGNMENT/BEAVERTAILS (Ji
et al., 2023), WALLEDAI/XSTEST (Röttger et al.,
2023), and WALLEDAI/ADVBENCH (Zou et al.,
2023b).

Attack Methods. Because no public dataset
specifically targets Guard models, we reproduce
12 adversarial methods strictly following their
original descriptions: ILGR (Raina et al., 2024),
GCG (Zou et al., 2023a), TF (Jin et al., 2020),
PWWS (Ren et al., 2019), GT (Alzantot et al.,
2018), SPSO (Zang et al., 2020), BTA (Li et al.,
2020), BAE (Garg and Ramakrishnan, 2020),
FD (Papernot et al., 2016), SEA (Ribeiro et al.,
2018), SCPN (Iyyer et al., 2018), and GAN (Zhao
et al., 2018). The untouched benchmark is denoted
ORI.

Baselines. No prior study tackles LLM Guard
robustness, making Gamma-Guard the first. As
a baseline we re-implemented STSHIELD(Wang
et al., 2025a), originally built for raw LLM Chat,
so some deviation is expected.

Metric. We report accuracy (Acc), the standard
metric in Guard evaluation. Labels are taken from
Llama-Guard-3-8B (Llama Team, 2024), the Ope-
nAI moderation endpoint, and human verification,
The specific approach is that if the results of the
three are the same, we will consider the results
credible.

Training the Residual Branch. As described in
Section 5, we train the residual branch once per
base model using 600 examples: 50 % original and
50 % adversarially modified from the three datasets
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above. After training, the branch parameters are
frozen, ensuring generalization during all subse-
quent tests.

6.2 Benchmark Results and Discussion
Overall robustness. Table 1 shows that Gamma-
Guard almost eliminates jailbreaks. Averaging
the 12 adversarial columns (ORI excluded) yields
macro robust accuracy Accrob of 94.2 %, 92.3 %,
and 86.8 % on BeaverTails, XSTest, and Ad-
vBench, respectively, when plugged into Llama-
Guard-3-8B (LG3). In stark contrast, the origi-
nal guards collapse to ≤ 3%, and the reproduced
STSHIELD plateaus around 70%. Hence, Gamma-
Guard closes a ∼ 90-point robustness gap while
adding < 0.1% parameters, ≈ 2% latency, and
only an 8-pp drop on original accuracy.

Dataset-level detail. BeaverTails: 11/12 attacks
reach ≥ 90% (five hit 100%). XSTest: all at-
tacks stay at or above 90%, except a marginal dip
for SEA. AdvBench: eight attacks exceed 88%;
sentence-rewrite methods SCPN and GAN remain
hardest (73 % and 66 %), highlighting discourse-
level edits as the next frontier.

Attack-type trends. Character-level pertur-
bations (ILGR/GCG) are nearly neutralised
(98–100 % on LG3); gradient- or score-based
attacks (FD/GT) stabilize around 90 %; sentence-
level rewrites remain the main weakness.

Effect of model size. With the smaller LG2 back-
bone, Gamma-Guard still lifts Accrob to 84.4 % on
BeaverTails and 77.8 % on XSTest, shrinking the
LG2–LG3 gap from > 22% (under STSHIELD)
to < 7%. LG2 even surpasses LG3 on several at-
tacks (e.g., SEA/SCPN in BeaverTails), indicating
that capacity-limited models benefit most from the
residual adapter.

6.3 Ablation Study
As stated in Section 5, injecting a residual into ev-
ery attention layer of Llama-Guard-3 (32 layers
total) would inflate compute and parameters. We
therefore treat the interval k—how often to add a
residual—as a tunable hyper-parameter and con-
duct an ablation on Llama-Guard-3-8B:

• Embedding-level denoising always on.

• Attention residual interval k: inject only
when layer mod k = 0, with k ∈
{0, 1, 5, 10, 15}. k=0 disables attention cor-
rection entirely.

Table 2: Accuracy (%, higher is better) on BeaverTails
when attention-correction residuals are inserted every k
layers.

Attack k=0 k=1 k=5 k=10 k=15

ILGR 70 98 98 98 98
GCG 72 94 94 90 90
TF 66 98 98 86 94
PWWS 66 98 98 94 86
GT 58 94 96 90 94
ORI 94 90 92 90 90

Setup We use BeaverTails and report both origi-
nal accuracy and attack resistance; all other hyper-
parameters remain fixed.

Results & Discussion Table 2 shows that:

• k=0 (embedding fix only): almost no impact
on original data but weakest defense.

• k=1: strongest robustness yet largest drop on
original accuracy.

• k=5: the best compromise—huge robustness
gains with only a slight original-accuracy dip.

• k=10, 15: defenses weaken again, indicating
overly sparse residuals cannot fully suppress
perturbations.

Overall, an interval of k=5 yields the best bal-
ance between robustness and fidelity. The optimal
k may vary by model or dataset, but similar ab-
lations can always locate a sweet spot of “high
robustness with minimal accuracy loss.”

7 Conclusion

In sum, we introduce Gamma-Guard—the first
method that markedly strengthens adversarial
robustness for guardrails within large-language-
model pipelines—without sacrificing efficiency.
This advance rests on three key findings: (i) pilot
studies pinpoint that production guards fail when
early-layer noise cascades into the decision head;
(ii) a lightweight, learnable residual branch, trained
on only a handful of adversarial samples, can simul-
taneously denoise embeddings and refocus atten-
tion; and (iii) comprehensive experiments across
datasets and attack suites confirm large robustness
gains with only a single-digit drop in original ac-
curacy and negligible runtime overhead. Together,
these results chart a practical path toward safer,
large-scale LLM deployments.
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8 Limitations

Although our residual branch markedly improves
Guard robustness, it does not yet achieve a near-
perfect 99% success rate, suggesting room for
stronger architectures. Moreover, the branch still
causes a small accuracy drop on benign inputs;
future work should minimize or eliminate that
trade-off. Finally, our evaluation covers the most
widely used public Guard benchmarks, but some
private datasets remain inaccessible; testing on
such closed-source data would provide a more com-
plete picture of real-world performance.
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A Adversarial-Attack Experiments

This section presents the detailed feature-analysis
results that verify the vulnerability of Guard mod-
els. Each figure corresponds to a different sample;
please refer to the main text for a full discussion.

B Layer-wise Location Experiments

This section provides the full results used to pin-
point where adversarial shifts occur within the
model. For each question ID we show the original
(top) and successfully attacked (bottom) inputs.
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C Attention Analysis

This section presents the attention-heat-map anal-
ysis underlying our error diagnosis. See the main
text for interpretation of token-level focus differ-
ences between original and adversarial inputs.
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