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Abstract

Event Causal Identification (ECI) aims to iden-
tify fine-grained causal relationships between
events from unstructured text. Contrastive
learning has shown promise in enhancing ECI
by optimizing representation distances between
positive and negative samples. However, exist-
ing methods often rely on rule-based or ran-
dom sampling strategies, which may introduce
spurious causal positives. Moreover, static
negative samples often fail to approximate
actual decision boundaries, thus limiting dis-
criminative performance. Therefore, we pro-
pose an ECI method enhanced by Dynamic
Energy-based Contrastive Learning with multi-
stage knowledge Verification (DECLV). Specif-
ically, we integrate multi-source knowledge
validation and LLM-driven causal inference
to construct a multi-stage knowledge valida-
tion mechanism, which generates high-quality
contrastive samples and effectively suppresses
spurious causal disturbances. Meanwhile, we
introduce the Stochastic Gradient Langevin Dy-
namics (SGLD) method to dynamically gener-
ate adversarial negative samples, and employ
an energy-based function to model the causal
boundary between positive and negative sam-
ples. The experimental results show that our
method outperforms previous state-of-the-art
methods on both benchmarks, EventStoryLine
and Causal-TimeBank.

1 Introduction

Reasoning about causal relations between events is
a core component of human language understand-
ing. Event Causality Identification (ECI), a funda-
mental task in natural language processing (NLP),
aims to determine whether a causal relationship
exists between any two events within unstructured
text. It has been widely applied in various scenarios
such as knowledge graph construction (Chen et al.,
2019; Khatib et al., 2020), question answering (Oh

*Corresponding author

et al., 2017; Liu et al., 2023b), and event prediction
(Radinsky et al., 2012).

Contrastive learning (Chao et al., 2024; Ding
et al., 2024; Yin et al., 2023) has emerged as a
promising approach for enhancing ECI by learn-
ing causal representations through the construction
of positive and negative samples. However, ex-
isting methods still face challenges constructing
high-quality training samples and accurately mod-
eling causal boundaries. Existing constructions
of positive and negative samples suffer from in-
sufficient precision: most existing works predom-
inantly rely on manual rules or random sampling
to generate contrastive samples, which are often
difficult to distinguish between semantically simi-
lar but causally distinct event pairs. Moreover, as
shown in Table 1, causal instances are inherently
scarce in widely used datasets such as EventSto-
ryLine v9.0 (ESC) (Caselli and Vossen, 2017) and
Cause-TimeBank (CTB) (Mirza and Tonelli, 2014).
This scarcity further exacerbates the instability and
noise susceptibility of contrastive learning during
contrastive sample construction. Detailed analysis
and discussion are provided in Appendix A.

Spurious causal phenomena as a source of
positive example noise: current methods for con-
structing positive instances often rely on shallow
features such as temporal order and lexical co-
occurrence while neglecting deeper causal chains
grounded in human reasoning, such as “psycho-
logical motives and results”. This makes it dif-
ficult to accurately capture causal relationships
under complex semantic contexts. As shown in
Figure 1, event pairs such as (fuelede5, bashede9)
and (bashede9, smashede8) exhibit surface-level
temporal or syntactic dependencies but lack direct
causal relationships, serving as typical samples of
spurious causality. Further analysis shows that in-
troducing a mediating event can reveal an indirect
causal chain (fuelede5 → riote6 → bashede9),
which tends to be overlooked and may introduce
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Figure 1: An example from the ESC dataset, where the
dashed line represents spurious causal relationships, and
the solid line represents genuine causal relationships.

noise into positive samples.
Static negative samples cannot approximate

the true decision boundaries: current contrastive
learning methods predominantly rely on static ran-
dom negatives, resulting in a scattered negative
distribution and uniform training signals that hin-
der the modeling of nearcausal boundary instance.
In particular, when multiple event pairs with sim-
ilar semantics but different causal attributes exist
within the same sentence, simple negative sam-
pling based on semantic similarity or lexical co-
occurrence struggle to capture these subtle differ-
ences.

To improve the quality of contrastive samples in
the ECI task, we propose a contrastive sample con-
struction with a multi-stage knowledge verification,
which integrates structured knowledge validation,
generative causal reasoning, and multi-level seman-
tic discrimination. We first build an initial candi-
date pool using multi-hop semantic associations
derived from a heterogeneous event-concept graph.
We then verify causal consistency through logical
constraints from structured knowledge graphs and
inference from generative knowledge models to
eliminate spurious causal relations. Additionally,
we employ a lightweight discriminator and a large
language model (LLM) to further select and rank
samples across multiple semantic levels, yielding
more discriminative positive and negative samples.

To address the limitation of static negative sam-
ples in capturing true causal decision boundaries,

we draw inspiration from the energy function’s ca-
pacity to model node similarity in graph structures
(Zeng et al., 2025), and propose a dynamic energy-
based contrastive learning method based on SGLD
(Welling and Teh, 2011). This method employs an
adversarial dynamic sampling strategy to iteratively
maximize the energy gap between positive and neg-
ative samples, thereby enhancing the modeling of
causal boundaries in the embedding space. To sum-
marize, we propose an ECI method enhanced by
dynamic energy-based contrastive learning with
multi-stage knowledge verification (DECLV). The
main contributions of this paper are as follows:

• We propose a multi-stage verification mecha-
nism that integrates multi-source knowledge
verification and LLM-guided causal inference
to generate high-quality contrastive samples
and suppress spurious causal disturbances;

• We introduce a dynamic energy-based con-
trastive learning approach with SGLD to bet-
ter distinguish causal boundaries between pos-
itive and negative samples;

• DECLV consistently outperforms SOTA base-
lines on two benchmarks, demonstrating su-
perior causal relation identification.

2 Related Work

With the development of large language models
(LLMs), ECI has shifted from shallow pattern-
based methods to deep semantic reasoning frame-
works. Early research primarily relied on pattern
matching and feature engineering, constructing
classifiers based on lexical, syntactic, and statistical
features (Beamer and Girju, 2009). As deep learn-
ing techniques advanced, researchers have explored
four major directions to enhance ECI: Knowledge
Augmentation, which integrates external knowl-
edge bases such as ConceptNet (Speer et al., 2017)
and WordNet (Miller, 1995) to compensate for the
absence of explicit causal clues (Zuo et al., 2021b;
Chen and Mao, 2024; Ding et al., 2024; Wu et al.,
2023); Graph-based Reasoning, which leverages
graph neural networks to capture event interactions
and dependencies (Pu et al., 2023), such as event
interaction graphs (Tran Phu and Nguyen, 2021)
and semantic structures (Hu et al., 2023); Prompt-
based Learning, which adapts causal inference via
task-specific prompts, such as combining knowl-
edge injection (Liu et al., 2023a) and event con-
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Figure 2: Overall framework of the proposed DECLV method: (a) multi-source knowledge verification for
contrastive sample generation; (b) LLM-guided causal verification for sample selection and ranking; (c) dynamic
energy-based contrastive learning with SGLD.

Metric Event StoryLine Cause-TimeBank
Number of event-mention pairs 54,326 9,631
Causal proportion among event-mention pairs 10.36% 6.7%
Number of event-concept pairs 34,491 7,608
Causal proportion among event-concept pairs 5.26% 4.18%

Table 1: Statistics of causal ratios for event mention and concept pairs in ESC and CTB.

cept heterogeneous graphs (Su et al., 2025) to en-
hance semantic alignment; Contrastive Learning,
which strengthens event pair discrimination by in-
troducing positive and negative samples, such as
context-aware contrastive learning (Yin et al., 2023;
Chao et al., 2024) and knowledge graph-enhanced
contrastive learning (Ding et al., 2024). These
advancements reflect a clear trend: from shallow,
manually engineered features toward multidimen-
sional semantic modeling that integrates external
knowledge, structural reasoning, prompting, and
contrastive learning-laying the foundation for more
robust and interpretable ECI systems.

3 Methodology

3.1 Task Definition
Given a document containing multiple sentences
D = {s1, s2, . . . , sn}, each with several events
E = {e1, e2, . . . , em}, as shown in Figure 1(b), the
goal of ECI is to determine whether a causal rela-
tion exists between any two events (es, et) (s 6= t)
in the event set E based on contextual and seman-
tic cues. Figure 2 illustrates the framework of our
proposed DECLV approach, which comprises three
main modules: (a) multi-source knowledge veri-
fication (Section 3.2) and (b) LLM-guided causal
verification (Section 3.3), which together constitute
a multi-stage knowledge verification strategy; and
(c) dynamic energy-based contrastive learning with
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SGLD (Section 3.4). We describe each component
in detail below.

3.2 Contrastive Sample Construction with
Multi-Source Knowledge Verification

Multi-level Sample Pool. To enhance the diver-
sity of positive and negative samples in the ECI
task, we propose a multi-level sample pool con-
struction mechanism based on an event concept
heterogeneous graph (Su et al., 2025). As shown
in Figure 2(a), a three-layer structure event con-
cept – event mention – candidate sample is de-
signed to provide semantic grounding and contex-
tual linkage. If an event mention node lacks avail-
able candidate pairs, it inherits the samples from
its corresponding event concept node. Moreover,
if multi-hop connections exist between event men-
tions under the same event concept, their associated
samples are collected via dependency paths to fur-
ther enrich the semantic coverage of the sample
pool.

Causality Verification. While existing studies
often use structured knowledge bases like Con-
ceptNet for knowledge augmentation, ATOMIC
(Sap et al., 2019) focuses more on causal rea-
soning behind everyday human behavior, yet re-
mains underutilized in ECI tasks. The (COMET-
) ATOMIC 2020 (Hwang et al., 2021) model is
primarily trained on ATOMIC, with supplemen-
tary knowledge from ConceptNet, and focuses on
causal knowledge generation, exhibiting enhanced
capabilities in causal reasoning. Therefore, as
shown in Figure 2(a), we design a multi-source
causality verification module that integrates struc-
tured knowledge, generative commonsense reason-
ing, and semantic similarity computation, compris-
ing the following stages:

(1) Structured Knowledge Verification. For the
input event pair (es, et), explicit causal edges be-
tween them are extracted from ConceptNet, includ-
ing the Causes and LeadsTo relations. If a direct
connection exists, the event pair is classified as a
high-confidence positive sample; If no direct con-
nection is found, the word-level similarity from
WordNet (Miller, 1995) and phrase-level similar-
ity from SBERT (Reimers and Gurevych, 2019)
are further used to attempt matching with other
expressions in ConceptNet for validation.

(2) Generative Knowledge Reasoning. If struc-
tured verification fails to confirm the causal rela-
tion between an event pair (es, et), we employ the
(COMET-) ATOMIC 2020 model for generative

reasoning verification. Specifically, the model gen-
erates diverse causal inferences centered on es, and
each inferred event is scored based on its seman-
tic similarity to et using SBERT and Word2Vec
(Mikolov et al., 2013). Pairs with low overall sim-
ilarity are treated as spurious causal samples and
added to the negative pool. Details on the reason-
ing types, matching rules, and distillation criteria
are provided in Appendix B. This process lever-
ages ATOMIC’s “psychological motives and re-
sults” causal chains, effectively compensating for
the lack of subjective reasoning in structured knowl-
edge and improving the identification and verifica-
tion of complex causal paths between events.

3.3 LLM-Guided Causal Verification
Lightweight Model-based Preliminary Distilla-
tion. In this stage, we employ lightweight PLMs to
efficiently perform and coarse-to-fine distillation
of candidate samples, aiming to construct a low-
noise, high-discriminative candidate set, as shown
in Figure 2(b).

(1) MPNet-based Initial Distillation. Given a
query sample q, MPNet (Song et al., 2020) encodes
its sentence representation hq. Then, we separately
retrieve the Top-K most similar samples from the
positive candidate pool and the negative candidate
pool based on cosine similarity, forming the initial
candidate positive set Cpos

q and candidate negative
set Cneg

q . The similarity is computed as:

hi = MPNet(xi), xi ∈ CandidatePool (1)

sim(hq, hi) =
hq · hi

‖hq‖‖hi‖
(2)

(2) Semantic Matching with SimCSE. To en-
hance robustness, SimCSE (Gao et al., 2021), a con-
trastive learning-based sentence encoder, is used
to re-encode the query and each candidate sample
into deep semantic vectors sq and si. Based on
the refined similarity scores, we separately re-rank
Cqpos and Cqneg. To unify the selection process,
we define a selection operator SelectK/2(·): given
a candidate set, it selects K/2 samples according
to the scoring rule controlled by a sign variable σl.
Specifically, if l = pos, then σl = +1, indicating
that the top-K/2 most similar positive samples to
the query are retained; if l = neg, then σl = −1,
meaning that the bottom-K/2 least similar negative
samples are preserved, as defined in Equations 3
and 4.
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si = SimCSE(xi) (3)

Ĉl
q = SelectK/2

(
{σl · sim(sq, si) | xi ∈ Cl

q}
)

(4)

Finally, two subsets are formed: the positive
sample set Pq, which includes candidate positive
samples that are semantically consistent with the
causal logic of q, and the negative sample set Nq,
which contains candidate negative samples that are
semantically irrelevant and non-causal.

LLM-Guided Fine-grained Selection and
Ranking. Building on initial distillation by
lightweight models, we introduce DeepSeek LLM
(Bi et al., 2024) to perform causal reasoning and
fine-grained ranking over candidate samples. Its
optimized sparse attention enables effective mod-
eling of long-range event dependencies, while its
causality-oriented pretraining (DeepSeek-AI et al.,
2024) better aligns with the needs of ECI tasks. As
shown in Figure 2(b1), we employ prompt engineer-
ing to guide the LLM in multi-dimensional causal
evaluation of candidate pairs (see Appendix F),
and perform ranking and selection based on aggre-
gated scores (see Appendix G). In Figure 2(b2), the
top-scoring positive and lowest-scoring negative
sample is retained based on the multi-dimensional
scores, as defined in Equations 5 and 6.

pq = argmaxScore(x) x ∈ Pq (5)

nq = argmin Score(x) x ∈ Nq (6)

Finally, based on the selected samples, we
employ RoBERTa (Liu et al., 2019) as the en-
coder to integrate prompt information during sen-
tence embedding and construct training triplets
(zq, zpos, zneg). We design an analogy-style
prompt template and a causal label set for the ECI
task to compute the causal scores of event pairs, as
detailed in Appendix C. In this way, the prompt in-
formation is effectively incorporated into the event
embeddings, enhancing both the model’s causal
perception ability and the semantic discriminability
of the samples. The proposed two-stage distillation
framework combines the efficiency of lightweight
models with the causal reasoning capabilities of
the LLM, providing high-quality supervision for
subsequent energy-based contrastive learning.

3.4 Dynamic Energy-Based Contrastive
Learning with SGLD

Energy Function Modeling. To capture deeper
and dynamically evolving semantic interactions
between query samples and candidate samples,
we design an energy function based on multi-
dimensional feature fusion, as defined in Equa-
tion 7. As shown in Figure 2(c), this function as-
signs low energy values to causal event pairs and
high energy values to non-causal event pairs, pro-
gressively widening the semantic gap between pos-
itive and negative samples in the embedding space,
thereby enhancing the discriminative power of the
representations. In each input group, the query
sample zq represents the encoded sentence contain-
ing a specific event pair with prompt augmenta-
tion, while the candidate samples z ∈ Z, where
Z = zpos ∪ zneg, include both positive and nega-
tive samples. Specifically, the input to the energy
function is composed of five components: the con-
catenation zq and z (i.e., [zq; z]), their element-wise
interaction zq � z, the difference vector zq − z, and
a semantic attention vector generated by a gating
mechanism, defined as σ(Wg[zq; z] + bg), where
Wg and bg are learnable parameters, and σ denotes
the sigmoid activation function.

E(zq, z) = −W2 · ReLU
(
W1 ·

[
zq; z; zq � z;

zq − z;σ
(
Wg · [zq; z] + bg

)]
+ b1

)
+ b2 (7)

After feature fusion, the resulting representation
is fed into the first linear layer with weight ma-
trix W1 ∈ Rh×5d and bias b1 ∈ Rh. The ReLU-
activated output is then passed through a second
linear layer with weight matrix W2 ∈ R1×h and
bias b2 ∈ R to produce the final energy value. The
energy function outputs a scalar value that reflects
the semantic compatibility between zq and z, where
a lower energy value indicates a stronger causal cor-
relation. By introducing a negative sign, the model
is encouraged during training to lower the energy
values of positive samples and raise those of neg-
ative samples, thereby learning a sharper causal
decision boundary in the embedding space.

Dynamic Negative Sample Generation via
SGLD. In contrastive learning, the quality of sam-
ple construction directly affects the discriminative
capability of the model. Since positive samples
typically exhibit clear semantic features but are
limited in quantity, excessive augmentation may
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lead the model to overfit superficial patterns, mak-
ing it challenging to learn intrinsic representations
of causal structures. Therefore, improving sample
quality hinges on optimizing the construction of
negative samples. To this end, we introduce the
Stochastic Gradient Langevin Dynamics (SGLD)
(Welling and Teh, 2011) method, which iteratively
generates more semantically challenging adversar-
ial negative samples by injecting noise and incor-
porating energy gradient information based on the
original negative samples. This approach dynami-
cally enhances the discriminative capacity of nega-
tive samples and employs an annealing mechanism
to facilitate progressive exploration of the energy
space. Specifically, the update rule for SGLD is as
follows.

z̃(t+1) = z̃(t) − ηt
2
∇z̃E(zq, z̃

(t))

+ εt, εt ∼ N (0, ηt)
(8)

Here, zq denotes the query sample, z̃(t) repre-
sents the negative sample generated at the t-th iter-
ation, Nt is the annealing step size at step t, and εt
is the Gaussian noise term. A polynomial anneal-
ing strategy is employed to control the variation of
the step size.

ηt = ηend + (ηstart − ηend)

(
1− t+ 1

T

)γ

(9)

This strategy allows for greater exploratory capa-
bility during the early sampling stages while grad-
ually stabilizing in the later stages. It facilitates the
generation of adversarial negative samples that lie
closer to the semantic boundary, thereby enhancing
the model’s sensitivity and discriminative power
near the decision boundary.

Lcon(zq) = − log
e−E(zq ,zpos)/τ

e−E(zq ,zpos)/τ + e−E(zq ,z̃neg)/τ

(10)

Finally, we use the InfoNCE contrastive loss
function for training, as shown in Equation 10.
Here, z̃neg denotes the dynamic negative samples
generated by SGLD, and τ is the temperature co-
efficient. This loss function strengthens the energy
difference between positive and negative samples,
guiding the model to form a clearer causal semantic
boundary in the embedding space.

3.5 Training strategy
For each sentence S in the input document D∗

and its annotated event pairs (es, et), we construct
the input based on a prompt template. The causal
relationship between the event pair is determined
by predicting the probability of the word at the
[MASK] position. The model’s output probability
at the [MASK] position is denoted as pst ∈ (0, 1),
while the ground-truth label yst ∈ (0, 1) indicates
whether the event pair exhibits a causal relation-
ship. We supervise the prediction results using the
following cross-entropy loss function.

Lce(es, et) =

− [yst log pst + (1− yst) log(1− pst)]
(11)

Finally, we combine the cross-entropy loss and
the contrastive loss with appropriate weighting to
form the complete training objective.

Ltotal(es, et) = Lce(es, et) + λ · Lcon(zq) (12)

Here, λ is a hyperparameter used to balance the
causal prediction and semantic contrastive tasks.

4 Experiments

4.1 Datasets and Evaluation Metrics
We conduct evaluations on two publicly avail-
able ECI benchmark datasets: EventStoryLine
v9.0 (ESC) (Caselli and Vossen, 2017) and Cause-
TimeBank (CTB) (Mirza and Tonelli, 2014), with
their statistics summarized in Appendix A: ESC
consists of 22 topics, 258 documents, and 5,334
event mentions, while CTB contains 183 doc-
uments and 6,811 event mentions. Following
widely adopted data-splitting strategies from pre-
vious studies (Gao et al., 2023; Chao et al., 2024;
Su et al., 2025), we apply 5-fold document-level
cross-validation on ESC and 10-fold on CTB. In
addition, we adopt Precision (P), Recall (R), and
F1-score (F1) as evaluation metrics.

4.2 Parameter Settings
We adopt the pre-trained language model
RoBERTa-base1 as the backbone encoder to per-
form contextual modeling over the input event se-
quences. The model consists of 12 Transformer
encoder layers, each with a hidden size of 768 and

1https://huggingface.co/roberta-base/

12254



Methods Model EventStoryLine Cause-TimeBank
P R F1 P R F1

Feature-based
methods

DD(Mirza and Tonelli, 2014) - - - 67.3 22.6 33.9
Seq (Choubey and Huang, 2017) 32.7 44.9 37.8 - - -

Knowledge-augmented
methods

LearnDA(Zuo et al., 2021b) 42.2 69.8 52.6 41.9 68 51.9
KADE(Cao et al., 2021) 61.5 73.2 66.8 56.8 70.6 66.7
DPF(Huang et al., 2024) 55.9 69.8 62.1 53.7 64.2 58.5

Graph-based
methods

RichGCN(Tran Phu and Nguyen, 2021) 49.2 63.0 55.2 39.7 56.5 46.7
SemSIn(Hu et al., 2023) 50.5 63.0 56.1 52.3 65.8 58.3
ECLEP(Pu et al., 2023) 49.3 68.1 57.1 50.6 63.4 56.3

Prompt-adjusted
methods

KEPT(Liu et al., 2023a) 50.0 68.8 57.9 48.2 60 53.5
DPJL(Shen et al., 2022) 65.3 70.8 67.9 63.6 66.7 64.6
LCKER(Su et al., 2025) 65.3 70.8 67.9 63.6 66.7 64.6

Contrastive learning
methods

CauSeRL(Zuo et al., 2021a) 41.9 69.0 52.1 43.6 68.1 53.2
GCKAN(Ding et al., 2024) 50.9 60.6 55.3 52.2 60.7 56.1
ICCL(Chao et al., 2024) 67.5 73.7 70.4 63.7 68.8 65.4
DECLV(ours) 71.8 74.3 73.8 67.8 71.3 72.4

Table 2: Experimental Results on the ESC and CTB Datasets(%).

12 attention heads. During training, we employ
AdamW (Loshchilov and Hutter, 2017) as the op-
timization algorithm. The learning rate is set to
1e-5 for the pre-trained parameters and 1e-4 for
the newly added parameters. The batch size is set
to 6, and the model is trained for 20 epochs. For
structured knowledge validation, the word-level
similarity threshold is set to 0.6, and the sentence-
level threshold is set to 0.75. For the generative
reasoning module, the maximum length of gener-
ated text is 50, with up to 5 candidate events. In
the lightweight distillation stage, we adopt a top-
k (k=100) strategy to filter high-confidence can-
didates. In the contrastive learning module, the
weight of the contrastive loss λ is set to 0.5, and
the temperature parameter τ is set to 0.07.

4.3 Baselines
To demonstrate the effectiveness of this work, we
compare our method with previous state-of-the-
art models. For the EventStoryLine and Cause-
TimeBank datasets, the baselines include the fol-
lowing five categories. Feature-based methods:
Seq (Choubey and Huang, 2017), DD (Mirza and
Tonelli, 2014). Knowledge-augmented methods:
LearnDA (Zuo et al., 2020), KADE (Wu et al.,
2023), DPF (Huang et al., 2024). Graph neu-
ral network-based methods: RichGCN (Tran Phu
and Nguyen, 2021), SemSIn (Hu et al., 2023),
ECLEP (Pu et al., 2023). Prompt-adjusted meth-
ods: KEPT (Liu et al., 2023a), DPJL (Shen et al.,

2022), LKCER (Su et al., 2025). Contrastive learn-
ing methods: CLINK (Zuo et al., 2021a), GCKAN
(Ding et al., 2024), ICCL (Chao et al., 2024). an
in-context contrastive learning approach for ECI.
A detailed description of the baselines is provided
in Appendix D.

4.4 Main Result
Table 2 presents our experimental results on the
ESC and CTB datasets, clearly demonstrating the
performance differences among various methods
on the ECI task. Overall, knowledge-enhanced
and graph-based reasoning approaches alleviate the
limitations of feature-driven models in event repre-
sentation by incorporating external knowledge and
modeling event structures. Prompt-based learning
methods further exploit latent causal knowledge
within PLMs by reformulating causal prediction
as a PLM-driven lexical generation task. Building
on these foundations, the integration of contrastive
learning, as exemplified by methods such as ICCL,
further enhances the model’s ability to distinguish
between causal and non-causal event pairs. No-
tably, our proposed DECLV method surpasses ex-
isting state-of-the-art models by 3.4% and 7% in F1
score on the ESC and CTB datasets, respectively.
Its superior performance on the low-resource CTB
dataset further demonstrates the effectiveness of
our sample optimization strategy in scenarios with
limited annotated data. Further analysis reveals that
DECLV mitigates the noise typically introduced
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Methods EventStoryLine Cause-TimeBank
P R F1 P R F1

DECLV 71.8 74.3 73.8 67.8 71.3 72.4
-ECL 71.3 67.1 69.5 66.9 70.5 70.9
-QSS 70.9 66.7 66.5 65.5 66.1 65.8
-CLda 69.0 65.9 67.2 66.6 67.1 66.4
-CLqo 65.4 68.8 66.7 65.2 67.4 65.8

Table 3: Ablation Results of Different Modules on the
ESC and CTB Datasets (%).

during sample construction by incorporating high-
quality positive and negative samples. Moreover,
the dynamically generated negative samples effec-
tively reshape the semantic space, encouraging the
model to establish clearer causal boundaries.

4.5 Ablation Study
This section analyzes the contribution of each mod-
ule in DECLV to performance, as well as the design
of the energy function, through ablation studies.

Module Ablation. As shown in Table 3, we eval-
uate the following settings: -ECL, which removes
the SGLD-based energy contrastive learning while
retaining static samples to assess the impact of dy-
namic semantic perturbation; -QSS, which replaces
the generation and selection mechanism with ran-
dom similarity sampling to evaluate the effect of
sample quality; -CLda, which retains high-quality
samples but removes the contrastive loss to isolate
the effect of data augmentation; and -CLqo, which
uses only original query samples to assess prompt
learning performance without any contrastive in-
formation. The results show that each module con-
tributes significantly to modeling causal-semantic
boundaries. Notably, the SGLD mechanism and
high-quality sample strategy provide the greatest
improvements in both discriminative ability and
generalization performance.

Feature Ablation of the Energy Function. To
further validate the effectiveness of each input fea-
ture in the energy function, we conduct feature
ablation experiments by removing them one at a
time: -Interaction, which removes element-wise
interactions zq � z to evaluate the contribution of
fine-grained semantic alignment to causal compati-
bility; -Difference, which removes difference vec-
tors zq − z to assess the role of directionality and
relative displacement in causal discrimination; and
-Attention, which removes gated attention mecha-
nism σ

(
Wg · [zq; z]+ bg

)
to examine whether adap-

tive dimension selection helps focus on discrimina-

Setting Removed Feature P R F1
Full model – 67.8 71.3 72.4
-Interaction zq � z 61.9 70.6 69.7
-Difference zq − z 65.7 69.5 72.2
-Attention Gated attention 65.7 64.5 67.3

Table 4: Feature ablation of the energy function on the
CTB dataset (%).

Figure 3: Embedding visualization of event pairs on
ESC corpus. The yellow dots represent correctly pre-
dicted positive samples, and the blue dots represent
correctly predicted negative samples.

tive subspaces. As shown in Table 4, each feature
contributes positively to model performance, with
element-wise interaction and gated attention show-
ing the most significant impact on causal discrimi-
nation ability.

4.6 Embedding Visualization
To verify the effectiveness of the DECLV method,
we visualize the embedding distributions on the
ESC test set using t-SNE (Hinton and Roweis,
2002), as shown in Figure 3. w/o CL denotes
prompt learning without contrastive learning, and
Standard CL refers to standard contrastive learning
with similarity-based sampling. The rightmost fig-
ure shows our method. Compared to the baselines,
DECLV yields clearer boundaries between positive
and negative samples, effectively enhancing the
model’s ability to distinguish boundary events.

4.7 Case Study
This section presents a case study to demonstrate
the effectiveness of the DECLV method. Due to
the class imbalance between positive and negative
samples in the ESC and CTB datasets, random
sampling often results in positive examples that are
overly similar to the query sentence, thereby weak-
ening the training signal. As shown in Figure 4,
ICCL tends to select positive examples with high
similarity to the query sentence, leading to limited
semantic diversity. In contrast, DECLV generates
and selects semantically relevant but diverse posi-
tive and negative samples, thereby improving the
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Figure 4: Case Study. Comparison of semantic diversity
in positive and negative samples generated by DECLV
(Top) and ICCL (Bottom).

Figure 5: Results of few shot on ESC corpus.

modeling and identification of causal boundaries
while preserving causal relevance.

4.8 Few-shot Setting
We compare the F1 performance of DECLV and
ICCL under varying proportions of training data on
the ESC dataset, as shown in Figure 5. As the train-
ing data decreases, DECLV shows a substantially
smaller performance drop compared to the base-
line. For example, when only 20% of the training
data is retained, DECLV still significantly outper-
forms ICCL, demonstrating superior generalization
in few-shot settings.

Furthermore, under the zero-shot setting, we
compare the sentence-level ECI performance of
PLMs such as BERT and RoBERTa, and main-
stream LLMs including GPT-3.5-turbo, GPT-
4 (Goswami et al., 2020), and DeepSeek-V3
(DeepSeek-AI et al., 2024). The results, summa-
rized in Table 5, demonstrate that DECLV consis-
tently outperforms both PLMs and LLMs in fine-
grained local causal inference. A more detailed

Methods EventStoryLine Cause-TimeBank
P R F1 P R F1

BERT 38.1 56.8 45.6 41.4 45.8 43.5
RoBERTa 42.1 64.0 50.8 39.9 60.9 48.2

gpt-3.5-turbo 27.6 80.2 41.0 6.9 82.6 12.8
gpt-4 27.2 94.7 42.2 6.1 97.4 11.5

DeepSeek-V3 20.9 74.5 30.3 3.5 23.3 5.91

Table 5: Intra-sentence causality identification results
of different PLMs and LLMs on the ESC and CTB
corpus.

analysis and discussion of these findings are pro-
vided in Appendix E.

5 Conclusion

We propose a dynamic energy-based contrastive
learning method for ECI. The approach integrates
structured knowledge validation, generative causal
reasoning, and multi-level semantic discrimination
capabilities of the LLM to construct high-quality
training instances and mitigate spurious causal
noise. Furthermore, we introduce an SGLD-based
mechanism for dynamic adversarial negative sam-
pling and employs an energy function to model
the causal boundary between positive and negative
samples. The experimental results on two widely
used datasets demonstrate the effectiveness of our
method in improving ECI performance.

Limitations

In this paper, we investigate the role of a single
energy function in modeling positive and negative
samples, without exploring multi-level energy inter-
actions(Deng et al., 2023; Zhang et al., 2024). The
current energy function also lacks adaptivity and re-
lies on manually defined structures and parameters,
limiting its generalization. While it captures causal
boundaries numerically, its semantic interpretabil-
ity remains limited. Future work could incorporate
explainability-oriented analysis methods (Fan et al.,
2025; Zhao et al., 2024; Fan et al., 2024) to further
explore the semantic nature of causal boundaries.
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A Analysis of Causal Event Sparsity in
Datasets

To further investigate the data-level challenges
faced by current contrastive learning methods in
ECI, we conducted a statistical analysis on two
widely used datasets: EventStoryLine v9.0 (ESC)
(Caselli and Vossen, 2017) and Cause-TimeBank
(CTB) (Mirza and Tonelli, 2014). Specifically, we
calculated the proportion of causal relations among
event-mention pairs and event-concept pairs. As
shown in Table 1, the proportion of causal event-
mention pairs is only 10.36% in ESC and even
lower in CTB, at 6.7%. When aggregating these
mentions into higher-level event-concept pairs (Su
et al., 2025), the proportions drop significantly
to 5.26% and 4.18%, respectively. This analysis
highlights the difficulty of obtaining high-quality
positive examples from the original datasets and
explains why contrastive learning approaches are
particularly vulnerable to data sparsity and noise
during sample construction.

B Generative Causal Reasoning
Distillation Rules

In order to more accurately verify the causal re-
lationship between an event pair, we apply the
(COMET-)ATOMIC2020 (Hwang et al., 2021)
commonsense reasoning model when structured
knowledge verification fails to identify a direct
causal link. The model generates candidate events
associated with the source event es, covering five
types of causal relations: Causes, xEffect, xReason,
xIntent, and xNeed. We assign different weights
to these relations: Causes, xReason, and xEffect,
which indicate more direct causal links, are as-
signed greater weight, while xIntent and xNeed,
which represent motivational or prerequisite rela-
tions, are treated as auxiliary cues.

We then compute the semantic similarity be-
tween each generated candidate and the target event
et using SBERT (Reimers and Gurevych, 2019)
and Word2Vec (Mikolov et al., 2013), and assign
scores accordingly. If the overall score falls below
a predefined threshold, the event pair is consid-
ered a spurious causal relationship and added to the
negative sample pool. The main distillation rules
include:

• es and et share the same xReason, suggesting
a common cause rather than a direct causal
link;

• es is the xReason of et but lacks an explicit
Causes relation;

• The xEffect inferred from es is semantically
dissimilar to et.

By incorporating COMET-based generative
reasoning and leveraging the psychologically
grounded “psychological motives and results”
chains provided by the ATOMIC knowledge base,
this approach effectively compensates for the limi-
tations of structured knowledge, which focuses on
objective facts and lacks subjective causal reason-
ing. It enhances the verification of causal plausibil-
ity between event pairs and improves the modeling
and validation of complex causal pathways.

C Prompt Design for PLM Encoding

To enhance the causal awareness of PLMs during
the embedding stage, we introduce a prompt-based
learning mechanism that concatenates the event
pairs in the query sample with an analogy-style
prompt template, guiding the model to focus on
causal relation discrimination. The prompt tem-
plate is shown in Equation 13. We adopt RoBERTa
(Liu et al., 2019) as the base encoder, where event
semantics and task instructions are integrated into
the model input via prompting.

ECI(q) = The event < /t1 > es < /t2 >

has the < /ts > [MASK] < /t6 >

the event < /t3 > et < /t4 >
(13)

Given an event pair (es, et) (s 6= t) in a
query sample, we define a causal label set γ =
{Causality, noCausality} and compute the causal
score of (es, et) based on the probability distribu-
tion over this label set at the masked position.

We construct triplet training samples
(zq, zpos, zneg) consisting of the query pair
and the positive and negative samples selected via
the LLM. Specifically, zq represents the embedding
of the original query sample after concatenation
with the prompt; zpos refers to the embedding of
the most causally plausible positive sample pq, as
selected by the LLM, after concatenation with the
prompt; and zneg refers to the embedding of the
least causally plausible or semantically perturbed
negative sample nq, also selected by the LLM and
concatenated with the prompt.

In this way, prompt information is effectively
incorporated into the embedding representation,
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which not only enhances the models causal percep-
tion but also improves the semantic discriminability
of the samples.

D Baselines

Table 3 presents the experimental results of base-
line models on the EventStoryLine and Cause-
TimeBank datasets. The baselines are categorized
and described as follows: Feature-based methods:
1)Seq (Choubey and Huang, 2017), a model for par-
titioning event temporal relationships in ECI. 2)DD
(Mirza and Tonelli, 2014), a data-driven method.
Knowledge-augmented methods: 1)LearnDA
(Zuo et al., 2020), a learnable knowledge-guided
data augmentation method. 2)KADE (Wu et al.,
2023), a method that enhances ECI through struc-
tured knowledge and analogical reasoning. 3)DPF
(Huang et al., 2024), a method for integrating
task-specific knowledge from commonsense graphs
into ECI. Graph neural network-based meth-
ods: 1)RichGCN (Tran Phu and Nguyen, 2021), a
GCN-based document-level ECI model. 2)SemSIn
(Hu et al., 2023), a semantic structure network-
based method for ECI. 3)ECLEP (Pu et al., 2023),
a method that enhances ECI using event pair
interaction graphs. 4)Prompt-adjusted meth-
ods: 1)KEPT (Liu et al., 2023a), a knowledge-
augmented and prompt-adjusted method for ECI.
2)DPJL (Shen et al., 2022), a prompt-adjusted ap-
proach for enhancing ECI. 3)LKCER (Su et al.,
2025), a prompt-based approach that integrates
LLM knowledge and a heterogeneous concept-
level event graph for ECI. Contrastive learning
methods: 1)CLINK (Zuo et al., 2021a), the first
work introducing contrastive learning to ECI using
static positive-negative pairs. 2)GCKAN (Ding
et al., 2024), a graph-based contrastive method en-
hanced with external knowledge. 3)ICCL (Chao
et al., 2024), an in-context contrastive learning ap-
proach for ECI.

E Zero-shot Evaluation

To further investigate the capabilities of different
model types in zero-shot ECI tasks, we compared
the performance of PLMs based on masked lan-
guage modeling (BERT, RoBERTa) with main-
stream LLMs (GPT-3.5-turbo, GPT-4 (Goswami
et al., 2020), DeepSeek-V3 (DeepSeek-AI et al.,
2024)) on sentence-level ECI tasks. The experimen-
tal results are shown in Table 5. Despite LLMs hav-
ing stronger global semantic understanding, their

F1 scores in this task are significantly lower than
those of PLMs. This phenomenon is consistent
with the empirical findings of Gao et al. (Gao
et al., 2023), who concluded that PLMs are bet-
ter at modeling fine-grained causal relationships
between events, while LLMs have certain limita-
tions in local logical reasoning. It is worth noting
that although DeepSeek-V3 performs excellently
in long-text causal analysis (DeepSeek-AI et al.,
2024), its sliding window attention mechanism lim-
its coverage of the local context, leading to poor
performance in sentence-level tasks. The above
results indicate a significant and close coupling be-
tween model architecture and task characteristics.
MLM-driven PLMs exhibit higher adaptability for
local causal identification tasks, while generative
LLMs show clear disadvantages in comparison.
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F LLM-Generated Multi-Dimensional Evaluation Framework

Prompt Input:

You are a senior expert in causal relation evaluation. You are tasked with identifying and scoring the
quality of candidate examples across the following five positive and five negative dimensions. Please
generate the evaluation criteria strictly according to the procedure below:

1. Background

Task: Compare the causal relation quality between the original sentence and each candidate sentence,
and produce an actionable multi-dimensional evaluation framework.

Output Format: A Markdown list in which each dimension includes a Name, Description, Key Points,
and Example Scoring Guidelines.

2.Positive Criteria (5 Dimensions)

Causal Logical Consistency: Does the candidate sentence preserve the same causal chain as the
original sentence?

Semantic Scene Similarity: Are the background context, theme, and participants in the candidate
sentence highly aligned with those in the original sentence?

Syntactic & Structural Fit: Does the candidate sentence use similar connective words, syntactic
patterns, and stylistic choices as the original sentence?

Event Hierarchical Relatedness: Do the events described in the candidate sentence correspond, at the
level of concept category and verb semantics, to the core causal events in the original sentence?

Information Completeness: Does the candidate sentence include all essential causal elements (cause,
effect, conditions, etc.) without omitting key information?

3.Negative Criteria (5 Dimensions)

Causal Logical Incoherence: Does the candidate sentence conflict with or completely invert the causal
relation of the original sentence?

Semantic Scene Disparity: Do the theme, context, or participants in the candidate sentence diverge
significantly from those in the original sentence?

Syntactic & Structural Discrepancy: How much does the expression style, logical connectors, and
syntactic structure of the candidate sentence differ from the original?

Event Semantic Conflict: Do the event categories, verbs, or semantics in the candidate sentence
directly conflict with those of the core event in the original sentence?

Information Missingness or Redundancy: Does the candidate sentence omit critical causal elements
or introduce irrelevant information that disrupts overall coherence?

4.Scoring Guidelines

Use a 15 scale for each dimension, where 5 represents optimal performance and 1 represents the poorest
performance.

For each dimension, provide one Typical Example and outline the criteria for high, medium, and low
scores.

5.Example Output Format

Positive Criterion 1: Causal Logical Consistency
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Description: The candidate sentence must maintain the same causal reasoning chain as the original
sentence.

Key Points:

- Clear cause-then-effect ordering

- Complete and coherent reasoning chain

Example Scoring:

- 5 points: Causal relation fully consistent; reasoning is clear and natural

- 3 points: Generally consistent, but with occasional logical jumps or missing connectives

- 1 point: Causal relation is vague or completely inverted

(Subsequent dimensions follow the same format)

Please generate the full set of 5 positive and 5 negative evaluation criteria, each with corresponding
example scoring guidelines, according to the requirements above.

Final Selected LLM Output:

Positive Evaluation Criteria:

Criterion 1: Causal Logical Consistency

Description: Does the candidate sentence exhibit a clear and reasonable causal relationship with the
original sentence (i.e., does it reflect a similar causeeffect logic)?

Requirements:

Events occur in a clear cause-then-effect order

A coherent reasoning chain connects cause and effect Scoring Suggestions:

5 points: Fully consistent with the original causal logic; reasoning flows naturally

3 points: Generally consistent but somewhat forced or missing connectives

1 point: Causal relationship is vague or absent

Criterion 2: Semantic Scene Similarity

Description: Is the candidate sentence similar to the original in terms of semantic content or situational
context?

Requirements:

Involves the same or similar theme (e.g., weather, behavior, social phenomena)

Shares similar subjects/objects or participant roles Scoring Suggestions:

5 points: Highly similar to the original; scenarios almost overlap

3 points: Contexts are comparable but with some differing elements

1 point: Themes are completely different; scenes are unrelated

Criterion 3: Syntactic & Structural Fit
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Description: Does the candidate sentence maintain consistency with the original in terms of expression
style and structure?

Requirements:

Uses similar causal connectives (e.g., because therefore, due to resulting in)

Syntax is smooth and the language style is similar Scoring Suggestions:

5 points: Expression style and structure are almost identical to the original

3 points: Basically similar with minor structural differences

1 point: Structure is completely different; lacks formal coherence

Criterion 4: Event Hierarchical Relatedness

Description: Do the events in the candidate sentence relate to the core causal events in the original
sentence at the level of concepts, types, or verb semantics?

Requirements:

Events belong to the same category (e.g., natural phenomena, behavioral decisions, mental states)

Core verbs or event semantics are similar (e.g., illnesstreatment vs. injurybandaging) Scoring Sugges-
tions:

5 points: Candidate events and original events match closely in semantic category and verb action

3 points: Some relatedness but at different conceptual levels

1 point: Events are entirely unrelated; concepts do not match

Negative Evaluation Criteria:

Criterion 1: Causal Incoherence

Description: Does the candidate sentence conflict with or lack coherence in its causal logic compared
to the original sentence?

Requirements:

No clear causal reasoning chain

Events appear in reverse order or without logical precedence

May exhibit reverse causation or spurious causality

Scoring Suggestions:

5 points: Causal logic is completely contradictory or clearly wrong (e.g., effect before cause)

3 points: Some conflict or causal relation is ambiguous

1 point: No clear causality but also no direct contradiction (non-causal)

Criterion 2: Semantic Disparity

Description: Is the candidate sentence significantly different from the original in semantic theme or
situational context?

Requirements:

Different thematic domain
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Participant roles are entirely inconsistent

No overlap in context or background

Scoring Suggestions:

5 points: Semantic scenarios are completely different (e.g., weather phenomena vs. business decisions)

3 points: Contexts differ but remain comparably acceptable (e.g., physical discomfort vs. work stress)

1 point: Partial overlap in scenario, though causal logic remains unrelated

Criterion 3: Syntactic Mismatch

Description: Does the candidate sentence differ markedly from the original in structure and expression?

Requirements:

Lacks causal connectives (e.g., no causal conjunctions)

Grammar or expression style is inconsistent; tone is disjointed Scoring Suggestions:

5 points: Sentence structure is entirely different, with no causal framework

3 points: Noticeable structural differences, but some connectives or logical clues remain

1 point: Minor structural differences, overall expression still similar

Criterion 4: Event Conceptual Divergence

Description: Do the events in the candidate sentence differ or conflict significantly from the core causal
events of the original in category, action, or conceptual level?

Requirements:

Belongs to completely different event categories (e.g., mental state vs. technical operation)

Verb semantics are in conflict or entirely unrelated

Scoring Suggestions:

5 points: Event types conflict or concepts are directly opposed (e.g., help vs. harm)

3 points: Different event categories without direct opposition

1 point: Different conceptual levels but with some semantic connection (e.g., cold vs. flu)

G Prompt Design for LLM-Guided Fine-Grained Distillation and Ranking

Prompt Input:

You are a senior expert in causal relation analysis. Please follow the procedure below to perform
fine-grained distillation and ranking of causal consistency between the main sentence and each candidate
positive (or negative) example. All events are annotated with tags: <t1></t1> for the first event and
<t3></t3> for the second event.

Context Sentence:

“sentence”

Event 1:

<t1>event1</t1>
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Event 2:

<t3>event2</t3>

Candidate Examples (Positive/Negative):

examples_str

Analysis & Ranking Procedure:

1. Semantic Parsing:

- Type of main event “<t1>event1</t1>”: [fill in]

- Type of main event “<t3>event2</t3>”: [fill in]

- Core verb: [fill in]

- Key participants: [fill in]

2. Reference Evaluation Criteria:

- See Appendix B for positive and negative evaluation dimensions.

3. Per-Example Scoring (Score each example from 15 on each criterion):

Example <i>:

Criterion 1 (Causal Logical Consistency): [1–5] Reason: _____

Criterion 2 (Semantic Scene Similarity/Disparity): [1-5] Reason: _____

Criterion 3 (Syntactic & Structural Fit/Mismatch): [1-5] Reason: _____

Criterion 4 (Event Hierarchical Relatedness/Conflict): [1-5] Reason: _____

4. Aggregate Ranking:

- Rank example IDs in descending order by total score:

“[Example 3] > [Example 1] > [Example 2] > ...”

5. Final Selection:

- Best Example (Positive/Negative): [ID] [Original Example Sentence]

- Key Evidence: [Cite specific scoring rationale]

- Confidence: [Value]

- Runner-Up Options: [ID1, ID2]
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