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Abstract

Chain-of-Thought (CoT) reasoning improves
performance on complex tasks but introduces
significant inference latency due to its verbosity.
In this work, we propose Multiround Adap-
tive Chain-of-Thought Compression (MACC),
a framework that leverages the token elastic-
ity phenomenon—where overly small token
budgets may paradoxically increase output
length—to progressively compress CoTs via
multiround refinement. This adaptive strategy
allows MACC to dynamically determine the
optimal compression depth for each input. Our
method achieves an average accuracy improve-
ment of 5.6% over state-of-the-art baselines,
while also reducing CoT length by an average
of 47 tokens and significantly lowering latency.
Furthermore, we show that test-time perfor-
mance—accuracy and token length—can be
reliably predicted using interpretable features
like perplexity and compression rate on train-
ing set. Evaluated across different models,
our method enables efficient model selection
and forecasting without repeated fine-tuning,
demonstrating that CoT compression is both
effective and predictable. Our code will be re-
leased in https://github.com/Leon221220/
MACC.

1 Introduction

Chain-of-Thought (CoT) reasoning significantly
enhances the performance of large language mod-
els (LLMs) on complex tasks by decomposing
questions into intermediate steps and reasoning
sequentially (Nye et al., 2021; Wei et al., 2023;
Kojima et al., 2023). Recent models such as
OpenAI-o1 (OpenAI et al., 2024) and DeepSeek-
R1 (DeepSeek-AI et al., 2025) demonstrate that
Test-Time Scaling (TTS)—increasing CoT length
during inference—can further boost reasoning ac-
curacy (Snell et al., 2024; Tian et al., 2025; Yang
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Figure 1: Visualization of the Token Elasticity phe-
nomenon. As the prompt-specified token budget de-
creases, the actual token cost initially declines but even-
tually rebounds when the budget becomes too small.

et al., 2025). Nevertheless, longer CoTs substan-
tially increase inference latency and memory usage
due to larger key-value caches and the quadratic
complexity of attention for sequence length (Dao
et al., 2022; Liu et al., 2024a; SageScribe, 2025).
To address the inefficiency of lengthy CoT reason-
ing, recent work has proposed a range of compres-
sion strategies. Token-level methods (TokenSkip
(Han et al., 2025), C3oT (Kang et al., 2024)) prune
redundant steps and use fine-tuning to preserve per-
formance under compression (Jang et al., 2024; Liu
et al., 2024b; Cui et al., 2025; Shen et al., 2025a; Yu
et al., 2024). Prompt-based approaches (CoD (Xu
et al., 2025), SoT (Aytes et al., 2025), TALE-EP
(Han et al., 2025)) guide concise reasoning via rout-
ing prompts, minimal templates, or difficulty-aware
designs (Yan et al., 2025; Zhang et al., 2025; Sui
et al., 2025). Reward-based methods (O1-Pruner
(Luo et al., 2025), DAST (Shen et al., 2025b), IBPO
(Xu et al., 2025)) optimize reasoning length via re-
inforcement learning or preference modeling (Qu
et al., 2025b; Yeo et al., 2025; Chen et al., 2025).

However, prior approaches lack fine-grained
adaptability in managing the trade-off between
compression and accuracy across diverse rea-
soning inputs. Pruning- and prompt-based meth-
ods typically apply uniform compression, ignoring

12279

https://github.com/Leon221220/MACC
https://github.com/Leon221220/MACC


input-specific reasoning complexity, while reward-
driven strategies optimize global preferences with-
out instance-level control. For example, TokenSkip
performs static token pruning and often degrades
performance under tight budgets (Xia et al., 2025);
CoD uses fixed prompts without controlling rea-
soning depth per instance (Xu et al., 2025); and
TALE, though budget-aware, compresses in a sin-
gle pass without adapting to input difficulty (Han
et al., 2025). These methods lack the adaptive re-
finement needed to balance efficiency and accuracy
in a controllable, input-sensitive manner.

To address these issues, we proposed Multi-
round Adaptive Chain-of-Thought Compression, a
framework grounded in the observed phenomenon
of token elasticity-as shown in Figure 1—where
overly aggressive compression may paradoxically
increase token usage due to degraded generation
quality. Our framework consists of three main
components: (1) Chain-of-thought generation, (2)
Multi-round progressive compression, and (3) Mul-
titask fine-tuning. Given a question, we first prompt
a model to generate a full reasoning trace, which
is then progressively compressed through multiple
rounds using compressor models. Each round re-
moves redundant or verbose steps while preserving
essential information, with dynamic control over
compression ratios to adapt granularity. The final
compressed CoTs are used to fine-tune models for
efficient inference. Moreover, we proposed Perfor-
mance Estimation Hypothesis: test-time perfor-
mance of the compressed CoT can be estimated
before fine-tuning, based solely on a small set
of interpretable features derived from the train-
ing set—including compression rate, perplexity,
original model training set accuracy, and average
training set CoT length. We train lightweight re-
gression models to predict both the downstream
accuracy and token efficiency of the target model
on the test set, enabling early-stage compression
strategy selection without costly retraining. This
predictive capacity makes our framework both effi-
cient and performance-aware.

To sum up, our key contributions are:
1. We propose MACC, a multi-round compres-

sion framework that adaptively shortens reasoning
chains while preserving essential information.

2. MACC achieves 5.6% higher accuracy, re-
duces reasoning by 47 tokens on average, and low-
ers latency, while supporting efficient model selec-
tion via interpretable metrics.

3. We propose Performance Estimation Hypoth-

esis and demonstrate that fine-tuned performance
can be predicted from interpretable features on the
training set, enabling efficient strategy selection.

2 Related Work

2.1 LLM Reasoning and Token Cost

Recent advances in LLM reasoning techniques,
particularly CoT prompting and its extensions
such as self-consistency and tree-structured reason-
ing, have significantly enhanced complex problem-
solving capabilities (Wei et al., 2023; Wang et al.,
2023; Yao et al., 2023; Zhou et al., 2023). A variety
of techniques have been proposed to enhance LLM
reasoning. Chen et al. (2024) frame reasoning as
latent distribution sampling optimized via varia-
tional methods, while Ho et al. (2023) leverages
LLMs as reasoning teachers to distill knowledge
into smaller models. But at the cost of substantially
increased token consumption and computational
overhead (Wang et al., 2024; Chiang and yi Lee,
2024; Bhargava et al., 2024). To improve efficiency,
Li et al. 2021 propose a multi-hop filtering method
to discard irrelevant reasoning, but it is limited to
traditional neural networks and does not generalize
to LLMs. Zheng et al. (2023) enhance inference
speed via response length prediction and schedul-
ing, yet their method operates only at the schedul-
ing level without reducing token usage. Hao et al.
(2024) lowers token cost by replacing decoded text
with continuous latent tokens.

2.2 Chain-of-Thought Compression

To improve LLM inference efficiency, recent work
explores compressing CoT reasoning while preserv-
ing answer correctness. These approaches can be
broadly categorized into three paradigms (Liu et al.,
2025; Qu et al., 2025a). First, Token-level compres-
sion methods, such as TokenSkip (Han et al., 2025)
and C3oT (Kang et al., 2024), prune redundant
tokens or steps and use supervised fine-tuning to
maintain accuracy under varying compression ra-
tios (Jang et al., 2024; Liu et al., 2024b). Second,
Prompt design and sketch-based approaches, in-
cluding CoD (Xu et al., 2025), SoT (Aytes et al.,
2025), and TALE-EP (Han et al., 2025), guide con-
cise reasoning using routing prompts, minimalist
structures, or token-aware templates (Yan et al.,
2025; Zhang et al., 2025; Sui et al., 2025). Third,
Reward-based and preference optimization meth-
ods, such as O1-Pruner (Luo et al., 2025), DAST
(Shen et al., 2025b), and IBPO (Xu et al., 2025),
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Figure 2: Overview of MACC framework. Given an input question, model first generates a full reasoning trace
(CoT). The CoT is then progressively compressed through multiple rounds using a compressor model to remove
redundancy while retaining essential reasoning content. The resulting compressed CoTs are used to fine-tune a
smaller target model for efficient inference.

leverage reinforcement learning or preference ob-
jectives to balance length and accuracy during gen-
eration (Qu et al., 2025b).

While effective, most existing methods apply
static or globally optimized strategies, lacking
adaptability to instance-specific reasoning com-
plexity. We address this gap through multiround
adaptive compression guided by token elasticity.

3 Method

3.1 Token Elasticity Phenomenon

Recent studies have identified the Token Elasticity
phenomenon in LLMs (Han et al., 2025), where
overly tight token budgets can lead to unexpected
increases in output length due to compensatory
and redundant generation. This reveals a nonlinear
relationship between token constraints and actual
model behavior. Motivated by this, we adopt multi-
round progressive compression strategy that gradu-
ally tightens the CoT length over several steps. This
allows the model to adapt more smoothly, avoiding
abrupt information loss and mitigating the adverse
effects of over-compression.

3.2 CoT Generation

Let x denote the task input, and let Dtrain be the
training dataset and P be the prompt template. The

initial CoT C0 is generated by the target model S
conditioned on x, P , and parameters θS learned
from Dtrain:

r0 = S(x | P, θS(Dtrain)) (1)

This initial CoT serves as the uncompressed se-
quence and is iteratively refined into shorter, se-
mantically equivalent versions.

3.3 Multi-Round Progressive Compression

We then iteratively apply a sequence of N compres-
sion process {f1, f2, . . . , fN}, implemented via an
API-based compressor model, to produce a series
of compressed CoTs:

ri = fi(ri−1 | Pcompress), for i = 1, 2, . . . , N
(2)

Each fi operates over the previous CoT Ci−1 and
is guided by a fixed compression prompt Pcompress.
This design enables the gradual reduction of token
length while attempting to preserve the correctness
and reasoning validity of the original CoT.

To quantify the effect of compression at each
stage, we define the compression rate at round i as:

CRi =
|ri|tok
|r0|tok

(3)
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where tok denotes the number of tokens of the
CoT sequence.

Our objective is to adaptively determine the max-
imum achievable compression rate for each input-
specific CoT r, while preserving its reasoning va-
lidity. Instead of predefining a fixed target length or
compression ratio, we propose a progressive com-
pression framework that iteratively explores the
compressibility of r over multiple rounds. In each
compression round i, a shorter variant ri is gen-
erated. The process terminates once the length of
the newly generated chain lentok(ri) exceeds that
of the previous round lentok(ri−1), indicating that
further compression leads to redundancy or loss of
fidelity. In such cases, ri−1 is selected as the max-
imally compressed yet valid chain r∗. Formally,
the maximally compressed yet valid chain r∗ is
selected as:

r∗ = argmin
rj
|rj |tok

subject to |rj |tok < |rj−1|tok

(4)

where |rj |tok denotes the tokenized length of rj .
The selected r∗ is subsequently used to fine-tune
the target model. This adaptive criterion ensures
compression proceeds only when meaningful to-
ken reduction is achieved, avoiding redundancy or
semantic loss, and eliminating the need for man-
ual compression targets. The process of the entire
framework is shown in Algorithm 1. 1

3.4 Multi-Task Fine-Tune
After obtaining the compressed rationale r∗ via the
multi-round progressive compression framework
described in Section 3.2, we employ a multi-task
fine-tuning strategy to train the target model. We
unify training on both original and compressed
CoT by prepending a special token <compress>,
denoted as tc in the following format, signals
the model to reason based on a concise chain of
thought. Each training sample is thus formatted as:

Q [EOS] tc[EOS] Compressed CoT r∗

where ⟨Q,A⟩ indicates the ⟨question, answer⟩
pair. Formally, given a question x, compression
token tc, and the output sequence y = {yi}li=1,
which includes the compressed CoT r∗ and the an-
swer a, we fine-tunes the target LLM S, enabling

1For the reasoning model, we disentangle the CoT into the
reasoning process and the answer process, apply compression
to each component, and subsequently concatenate them to
form the final representation.

Algorithm 1: MACC: Multi-Round Adap-
tive Chain-of-Thought Compression for
Dataset Construction

Input: Training set D = {xj}Nj=1, target
model S , compressor model C,
initial prompt P , compression
prompt Pcompress, max rounds T

Output: Compressed training set
D′ = {(xj , r∗j )}Nj=1

Initialize D′ ← ∅;
foreach xj ∈ D do

r0 ← S(P(xj));
r∗ ← r0;
for i = 1 to T do

ri ← C(Pcompress(xj , ri−1));
if lentok(ri) > lentok(ri−1) then

break;

r∗ ← ri;

Add (xj , r
∗) to D′;

return D′

it to perform chain-of-thought in a compressed pat-
tern by minimizing

L =
l∑

i=1

logP (yi | x, tc,y<i;θS) (5)

where y =
{
c∗1, · · · , c∗m′ , a1, · · · , at

}
. To retain

the reasoning capabilities of LLMs, we include a
fraction of original CoT trajectories in the training
data, without setting tc.

3.5 Inference
MACC performs inference via autoregressive de-
coding. Given a question x and a compression
token tc, the input prompt follows the fine-tuning
format: Q [EOS] tc [EOS]. The LLM S then gen-
erates the output sequence ŷ step by step:

ŷ = argmax
y∗

l′∑

j=1

logP
(
yj | x, tc,y<j ;θS

)

where ŷ = {ĉ1, . . . , ĉm′′ , â1, . . . , ât′} represents
the generated output sequence, consisting of CoT
tokens ĉ and final answer tokens â. The training
and inference workflow of MACC is illustrated in
Figure 2.

3.6 Performance Estimation Hypothesis
Empirical observations suggest that the down-
stream performance of compressed CoT reason-
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ing—measured by fine-tuned accuracy and CoT
length—is correlated with interpretable features
such as compression rate and perplexity. Based on
this, we hypothesize that compressed performance
can be predicted prior to fine-tuning:

Given a compressor model C, a target model S,
and a training set Dtrain, we define a feature vec-
tor x that encodes compression-related statistics,
including the compression rate, perplexity, origi-
nal CoT length, accuracy of both compressor and
target model (the answer accuracy on training set).
The downstream performance y = [Acc,Len] on
test set Dtest can be estimated as follows:

P (y | x) = P (x | y) · P (y)

P (x)
(6)

In practice, we approximate the posterior using
Bayesian regression (e.g., Bayesian Ridge), yield-
ing predictive distributions:

y ∼ N
([

µ1

µ2

]
,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])
(7)

where µ(·) and σ2(·) denote the posterior mean and
variance conditioned on the compression features.

This probabilistic formulation enables principled
estimation of post-compression performance, sup-
porting early-stage strategy selection without costly
full fine-tuning. In practice, we implement this
with Bayesian ridge regression, which provides
both predictive means and uncertainty estimates.
The effectiveness of this hypothesis is empirically
validated in Section 4.4.2.

4 Experiments

4.1 Baseline

To benchmark the effectiveness of our proposed
compression framework, we compare against two
recent and representative methods for efficient CoT
reasoning:
• TokenSkip (Xia et al., 2025). Compresses

chain-of-thought by pruning low-importance to-
kens and fine-tuning the model to generate concise
rationales based on a target compression ratio.
• TALE (Han et al., 2025). TALE controls CoT

length by estimating token budgets from problem
complexity, enabling efficient inference with mini-
mal accuracy loss.
• Prompt. Following Xia et al. (2025), we

guides the LLM to shorten its CoT output by incor-
porating explicit instructions into the prompt. For

example, the input may include a directive such as:
“Please reduce 50% of the words in your Chain-of-
Thought reasoning.”
• O1-Pruner (Luo et al., 2025). O1-Pruner em-

ploys reinforcement learning–based fine-tuning to
generate concise, non-redundant reasoning traces
that preserve accuracy while enhancing efficiency
and reducing computational cost.
•CoT-Valve (Ma et al., 2025). CoT-Valve learns

a controllable parameter-space direction that adapts
reasoning trace length to problem difficulty, reduc-
ing inference cost while maintaining competitive
performance.

4.2 Models and Datasets

For evaluation, we use three math datasets with
increasing difficulty: GSM8K (Cobbe et al., 2021),
MATH and AIME24 (30 Olympiad level math
problems). For MATH, we evaluate on a 500-
example subset (MATH-500) from Lightman et al.
(2023), which reliably reflects full-benchmark per-
formance. GPT-4o-mini serves as the compres-
sor for its strong reasoning and efficiency (Ope-
nAI, 2024), while models include LLaMA-3.1-
8B-Instruct (Grattafiori et al., 2024), Qwen2.5-
3B-Instruct and Qwen2.5-7B-Instruct (Yang et al.,
2024), well as DeepSeek-R1-distill-Qwen-1.5B
and DeepSeek-R1-distill-Qwen-7B (DeepSeek-AI
et al., 2025), fine-tuned with compressed rationales
via our multi-task strategy in Section 3.4.

Evaluation Metrics

We evaluate MACC using four key metrics to com-
prehensively assess reasoning performance and effi-
ciency: accuracy (percentage of correctly answered
questions), average CoT token count (to quantify
reasoning verbosity), inference latency, and Token
Efficiency.

We define Token Efficiency a composite metric
defined as:

Token Efficiency =
Acc

Length
× 100

where Acc denotes accuracy and Length the aver-
age CoT tokens. This metric captures the trade-off
between accuracy and efficiency, with higher val-
ues indicating more effective reasoning and provid-
ing a comprehensive measure of performance and
cost-effectiveness.
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Methods Model
GSM8K MATH-500

Acc. ↑ Tokens ↓ Lat. (s) ↓ TE. ↑ Acc. ↑ Tokens ↓ Lat. (s) ↓ TE. ↑

ORIGINAL

LLaMA-3.1-8B 86.2 213.17 1.33 40.44 48.6 502.60 6.83 9.67
Qwen2.5-7B 91.4 297.83 1.96 30.69 71.4 574.85 6.65 12.42
Qwen2.5-3B 83.7 314.87 1.99 26.58 61.6 578.51 5.90 10.65

PROMPT

LLaMA-3.1-8B 76.9 136.48 1.08 56.35 37.6 335.92 3.78 11.19
Qwen2.5-7B 82.7 175.83 1.12 47.03 49.1 355.47 3.45 13.81
Qwen2.5-3B 71.3 185.22 1.28 38.49 42.0 423.88 3.98 9.91

TOKENSKIP

LLaMA-3.1-8B 78.2 113.05 0.86 69.17 40.2 292.17 3.53 13.76
Qwen2.5-7B 86.0 151.44 0.89 56.79 52.8 330.8 3.12 15.96
Qwen2.5-3B 74.4 170.55 1.02 43.62 44.2 396.29 3.74 11.15

TALE LLaMA-3.1-8B 78.5 139.63 0.88 56.22 - - - -

MACC (OURS)
LLaMA-3.1-8B 81.1 88.57 0.75 91.57 44.0 198.04 2.05 22.22
Qwen2.5-7B 86.2 148.76 0.87 57.94 58.4 254.89 2.02 22.91
Qwen2.5-3B 80.5 216.25 1.33 37.22 54.0 265.80 2.20 20.32

Table 1: Performance comparison on GSM8K and MATH-500 using three base models across five CoT
compression methods: Original, Prompt-only, TokenSkip, TALE, and our proposed MACC. Metrics include
Accuracy, Token count, Latency (s), and Token Efficiency (Accuracy per token, scaled by 100). Bold values
indicate the best results under each setting.

Methods Model
GSM8K MATH-500 (OOD) AIME24 (OOD)

Acc. ↑ Tokens ↓ TE. ↑ Acc. ↑ Tokens ↓ TE. ↑ Acc. ↑ Tokens ↓ TE. ↑

ORIGINAL
R1-Qwen-1.5B 79.0 978 8.08 80.6 4887 1.65 29.4 12073 0.24
R1-Qwen-7B 87.9 682 12.89 90.2 3674 2.45 53.5 10306 0.52

O1-PRUNER
R1-Qwen-1.5B 74.8 458 16.33 82.2 3212 2.56 28.9 10361 0.28
R1-Qwen-7B 87.6 428 20.47 86.6 2534 3.42 49.2 9719 0.51

TALE
R1-Qwen-1.5B 70.1 1170 5.99 76.2 3107 2.45 20.0 8915 0.22
R1-Qwen-7B 91.0 522 17.43 91.6 2530 3.62 33.3 8602 0.39

COT VALVE
R1-Qwen-1.5B 70.4 805 8.74 76.5 2705 2.82 23.4 5601 0.42
R1-Qwen-7B 90.8 364 24.94 89.4 1975 4.52 43.3 6315 0.69

MACC (OURS)
R1-Qwen-1.5B 79.3 471 19.61 76.0 1954 3.73 26.7 7099 0.38
R1-Qwen-7B 90.1 361 27.37 86.8 2039 5.74 50.0 6144 0.81

Table 2: Performance comparison of DeepSeek-R1-distill-Qwen-1.5B and DeepSeek-R1-distill-Qwen-7B on
GSM8K, MATH-500 (OOD), and AIME24 (OOD) across five CoT compression methods: Original, O1-Pruner,
TALE and CoT-Valve. Bold values indicate the best results under each setting.

4.3 Results

4.3.1 Main Result
Table 1 presents a comprehensive comparison of
five CoT compression methods—Original, Prompt,
TokenSkip, TALE, and our proposed MACC—on
GSM8K and MATH-500, using three instruction-
tuned models: LLaMA-3.1-8B-Instruct, Qwen2.5-
7B-Instruct, and Qwen2.5-3B-Instruct. MACC
consistently achieves the best trade-off between
accuracy and efficiency across all settings.

On GSM8K, MACC improves accuracy over To-

kenSkip by +2.9 points on LLaMA-3.1-8B-Instruct
and +0.2 points on Qwen2.5-7B-Instruct, while re-
ducing the average CoT length by over 20%. This
leads to a clear gain in Token Efficiency, as fewer to-
kens are used without compromising performance.
On MATH-500, which involves more complex rea-
soning, MACC continues to outperform TokenSkip,
achieving +3.8 and +5.6 point gains in accuracy on
LLaMA and Qwen2.5-7B, respectively. It also re-
duces inference latency (from 3.53s to 2.05s on
LLaMA), highlighting its practicality for efficient
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Figure 3: Accuracy (left) and average CoT length
(right) across compression rounds for three Models.
Larger models tend to retain higher accuracy under ag-
gressive compression.

reasoning. Even with the smaller Qwen2.5-3B
model, MACC shows consistent improvements,
confirming its robustness across different model ca-
pacities. In contrast, Prompt performs worse than
TokenSkip in both accuracy and efficiency, lead-
ing to the lowest Token Efficiency overall. These
results demonstrate that MACC effectively com-
presses CoT while preserving reasoning quality
and reducing computational cost.

In Table 2, MACC demonstrates consistent ad-
vantages over existing CoT compression meth-
ods on both in-distribution (GSM8K) and out-of-
distribution benchmarks (MATH-500, AIME24)
across different reasoning models. Specifically,
MACC achieves competitive or superior accuracy
while substantially reducing the average reasoning
length, leading to markedly higher token efficiency
compared to O1-Pruner, TALE, and CoT-Valve.
For example, on GSM8K, MACC attains compara-
ble accuracy to the strongest baselines but with far
shorter CoTs, yielding the highest token efficiency
for both the 1.5B and 7B models. On the more
challenging OOD datasets, MACC maintains sta-
ble accuracy while compressing reasoning traces
more aggressively than competitors, thus striking
a more favorable balance between efficiency and
correctness. These results highlight the robustness
and generalizability of MACC, showing that its
adaptive multi-round compression strategy effec-
tively mitigates performance degradation under dis-
tribution shift while delivering consistent efficiency
gains.

4.3.2 Effect of Compression Rounds

Figure 3 shows how fine-tuned accuracy and aver-
age CoT length evolve as the number of compres-
sion rounds increases under the MACC framework.
As expected, the average length of the reasoning
chains steadily decreases across rounds, demon-
strating that MACC’s progressive strategy effec-
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Figure 4: Comparison of compressed CoT perfor-
mance across different compressors on llama3.1-8B-
Instruct after 5 round. Each point represents the ac-
curacy and average CoT length achieved by different
compressors. Models toward the upper-left indicate bet-
ter trade-offs between efficiency and accuracy.

tively eliminates redundant content while preserv-
ing the information necessary for reasoning.

The effect on accuracy, however, varies with
model scale. Larger models like Qwen2.5-7B are
more robust, maintaining high accuracy even with
shorter CoTs. In contrast, smaller models suffer
greater performance drops under aggressive com-
pression, likely due to limited capacity to recover
from incomplete rationales.

These results support the design of MACC’s
adaptive stopping mechanism, which halts com-
pression once further reduction harms accuracy.
They also suggest that compression depth should
be tailored to the model’s capacity, avoiding over-
compression. Full results are provided in Table 9,
Table 10, and Table 11 in Appendix A.

4.3.3 Effect of Different Compressor Models
Next, we investigate how the choice of compres-
sor model affects the quality of CoT compres-
sion, using LLaMA-3.1-8B-Instruct as the target
model and GSM8K as the evaluation benchmark.
As shown in Figure 4, different compressors ex-
hibit distinct trade-offs between compressed ratio-
nale length and fine-tuned accuracy across multiple
compression rounds.

High-capacity compressors such as GPT-4o and
GPT-4o-mini maintain high accuracy while sig-
nificantly reducing CoT length, showing strong
ability to preserve essential reasoning under com-
pression. In contrast, lower-capacity models like
GPT-4.1-nano and GPT-3.5-turbo cause greater
accuracy drops, indicating weaker semantic fidelity
and limited robustness in preserving logical consis-
tency.

Overall, our results highlight that higher-
capacity compressors tend to produce more com-
pact yet informative rationales, enabling better fine-
tuning outcomes. These findings underscore the
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Figure 5: Effect of compression rate and perplexity
on compressed CoT length and fine-tuned accuracy
across different models.. Each subplot shows the re-
lationship between a compression feature and a target
metric, with model-specific quadratic fits.

importance of selecting an appropriate compressor
model in multi-round compression pipelines, es-
pecially when targeting smaller or more sensitive
student models.

4.4 Estimating Compressed CoT Effectiveness

Given the significant impact of compressor choice
on the quality of CoT reasoning, it becomes in-
creasingly important to assess, a priori, how a tar-
get model will perform when fine-tuned on com-
pressed rationales. Instead of relying on exhaustive
training and evaluation for every possible compres-
sion strategy, we investigate whether the down-
stream accuracy of the target model can be effec-
tively predicted in advance. To this end, we explore
a lightweight performance estimation framework
conditioned on both the chosen compressor and
the architecture of the target model. Specifically,
we aim to estimate fine-tuned accuracy using a
set of interpretable and readily available features
extracted from compressed CoTs—such as token
length, perplexity, and compression ratio. This
approach enables efficient compression strategy
selection without incurring the full cost of model
retraining, and offers a practical pathway toward
scalable and adaptive CoT compression.

Based on Performance Estimation Hypothesis,
we model their relationship in a probabilistic man-
ner in Section 4.4.2.

4.4.1 Analyse of Features
To better understand the factors influencing post-
compression performance, we analyze how inter-
pretable features correlate with both the average
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Figure 6: Relationship between compressed CoT
length and fine-tuned accuracy across models. Each
point denotes a sample colored by target model. Longer
compressed CoTs yield higher accuracy, suggesting the
need to preserve key reasoning steps.

CoT length and the fine-tuned accuracy. Figure 5
show that compression rate and perplexity are mod-
erately correlated with the resulting CoT length
(r = 0.37 and r = −0.40, respectively), serving
as a proxy for reasoning verbosity.

Figure 6 illustrates the relationship between the
length of compressed CoT sequences and the down-
stream accuracy of fine-tuned models. A clear pos-
itive correlation is observed: longer compressed
CoTs tend to yield higher fine-tuned accuracy. This
highlights the need to preserve essential reasoning
during compression, as over-truncation harms fi-
delity and performance. The results support the
core design of the MACC framework, which adap-
tively determines compression depth to balance
brevity and correctness. Additionally, the figure
reveals that higher-capacity models achieve better
accuracy at comparable CoT lengths, suggesting an
interaction between model capacity and robustness
to compression.

4.4.2 Evaluating Predictability of Compressed
CoT Effectiveness

To validate the Performance Estimation Hypothe-
sis, we test whether fine-tuned accuracy can be pre-
dicted from interpretable features before training.
We train regression models that take compression-
related statistics—such as compression rate, per-
plexity of compressed CoT, original CoT length,
and Compressor Accuracy—as inputs to estimate
the downstream performance.

We experiment with both random forest and
Bayesian ridge regressors under 5-fold cross-
validation. As shown in Figure 7, the predicted
accuracies closely align with the true values, with
low residuals across samples. This indicates that
compressed CoT effectiveness is highly predictable
using lightweight feature sets.

Figure 8 shows that original CoT accuracy and
length are the strongest predictors of fine-tuned ac-
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Figure 7: Bayesian Ridge regression results for pre-
dicting compressed CoT performance using features
obtained from training set. Top row shows predictions
and residuals for CoT length after compression; bottom
row for fine-tuned accuracy. Predictions are based on
training-set features before fine-tuning, demonstrating
strong alignment with ground truth.

curacy, followed by compressed CoT perplexity.
Notably, the compression rate itself contributes the
least predictive signal, suggesting that surface-level
reduction is less indicative of reasoning quality
compared to semantic coherence or input-specific
difficulty. These findings highlight the value of
model- and CoT-aware features for estimating com-
pression quality.

These results support our hypothesis in Sec-
tion 3.6: training-set features reliably predict per-
formance, enabling efficient compressor selection
without fine-tuning.

5 Discussion

5.1 Performance Estimation as a Complement
to MACC

MACC’s adaptive stopping criterion optimizes
compression depth but leaves compressor selection
unresolved, as different compressors interact vari-
ably with the student’s knowledge distribution. To
address this, the Performance Estimation Hypoth-
esis (PEH) leverages interpretable features (e.g.,
perplexity, compression rate, accuracy) to predict
compressed CoT effectiveness prior to fine-tuning,
thereby enabling efficient compressor choice while
MACC adaptively controls compression extent.

5.2 Compressor as a Proxy for Target Model

The effectiveness of CoT compression depends on
both shortening and compressor–student compati-
bility; overly strong compressors may remove steps
critical for smaller students, as seen when GPT-4o-
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Figure 8: Bayesian Ridge regression weights for pre-
dicting fine-tuned accuracy and compressed CoT
length using features extracted from the training set.
Bars show feature importance (mean ± std), reflecting
key factors for downstream performance.

mini yielded more suitable rationales than GPT-4o
for mid-sized models.

Compression quality hinges on the align-
ment between compressor and student, and the
Performance Estimation Hypothesis provides a
lightweight means to assess this compatibility
before fine-tuning, enabling efficient compres-
sor–student selection.

5.3 Contrasting CoT Compression and
Distillation

Although both MACC and CoT distillation exploit
reasoning traces, their roles are distinct. Distilla-
tion transfers knowledge from a stronger teacher to
a weaker student, enhancing reasoning capability,
whereas MACC compresses self-generated CoTs
via external APIs to optimize efficiency without in-
troducing new knowledge. In essence, distillation
focuses on ability transfer, while MACC empha-
sizes efficiency within existing capacity.

6 Conclusion

This paper presents MACC, a novel framework for
adaptive and performance-aware compression of
CoT reasoning. By leveraging the token elasticity
phenomenon and multi-round refinement, MACC
substantially reduces the length of reasoning chains
with only minimal loss in accuracy. Extensive ex-
periments across models and benchmarks demon-
strate that MACC consistently outperforms prior
approaches in terms of efficiency, accuracy, and la-
tency. Furthermore, we show that key metrics such
as post-compression accuracy and token usage can
be reliably predicted using interpretable features.
This enables informed compressor selection and
efficient deployment, improving the scalability of
CoT-based inference.
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Limitations

While MACC achieves substantial gains in com-
pression efficiency and reasoning accuracy, it has
several limitations. The reliance on external com-
pressors (e.g., GPT-4o-mini) introduces potential
model bias and limits applicability in low-resource
settings. The multi-round process, while adaptive,
adds preprocessing latency that may affect deploy-
ment speed. Additionally, compression prompts
are task-agnostic, which may hinder performance
on domains requiring structured reasoning. Lastly,
our performance estimation relies on a limited fea-
ture set, which may not generalize well to unseen
model-task combinations.
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A Appendix

A.1 Correlation Analysis Between Compression
Features and Downstream Performance

Tables 3 and 4 report the Pearson correlation coef-
ficients between various compression-related fea-
tures (e.g., perplexity, compression rate, original
CoT length) and two key downstream metrics: ac-
curacy and average CoT length after fine-tuning.

Specifically, Table 3 shows correlations with
post-finetuning accuracy, while Table 4 focuses on
average CoT length. Across models, compressed
perplexity and compression rate exhibit strong cor-
relations with performance outcomes, validating
their predictive utility. Notably, compressed per-
plexity tends to negatively correlate with accuracy
and positively with output length, reinforcing its
role as a proxy for semantic loss during compres-
sion. These results support the feasibility of es-
timating performance outcomes based on inter-
pretable, compression-time statistics.

Table 3: Pearson correlation between compression-
related features and fine-tuned accuracy.

Model Feature n Pearson r p-value

LLaMA-3.1-8B CR 20 0.54 1.30×10−2

LLaMA-3.1-8B PPL 20 −0.81 1.30×10−5

LLaMA-3.1-8B Len 20 0.65 1.80×10−3

Qwen2.5-3B CR 20 0.21 3.90×10−1

Qwen2.5-3B PPL 20 −0.56 1.10×10−2

Qwen2.5-3B Len 20 0.98 1.20×10−14

Qwen2.5-7B CR 20 0.42 6.50×10−2

Qwen2.5-7B PPL 20 −0.70 6.50×10−4

Qwen2.5-7B Len 20 0.63 2.80×10−3

Table 4: Pearson correlation between compression-
related features and compressed CoT length.

Model Feature n Pearson r p-value

LLaMA-3.1-8B CR 20 0.99 5.50×10−16

LLaMA-3.1-8B PPL 20 −0.93 1.90×10−9

LLaMA-3.1-8B Len 20 1.00 3.50×10−20

Qwen2.5-3B CR 20 0.37 1.10×10−1

Qwen2.5-3B PPL 20 −0.67 1.30×10−3

Qwen2.5-3B Len 20 1.00 9.00×10−21

Qwen2.5-7B CR 20 0.96 5.00×10−11

Qwen2.5-7B PPL 20 −0.91 3.60×10−8

Qwen2.5-7B Len 20 0.99 3.80×10−17

A.2 Prompt Templates

We provide the prompt templates used for both
initial CoT generation and subsequent compression
rounds.

Initial CoT Generation Prompt:

40 50 60 70 80 90 100
Avg CoT Length (Tokens)

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

gpt-4o-mini
gpt-4o
gpt-3.5-turbo
gpt-4.1-nano
gpt-4.1-mini
gpt-4.1
DeepSeek-V3

2 3 4 5
Compression Rounds

40

50

60

70

80

90

100

110

Av
g 

Le
ng

th
 (

To
ke

ns
) gpt-4o-mini

gpt-4o
gpt-3.5-turbo
gpt-4.1-nano
gpt-4.1-mini
gpt-4.1
DeepSeek-V3

Figure 9: Bayesian Ridge regression weights for pre-
dicting accuracy and CoT length using features obtained
from training set. Bars show mean feature importance
with standard deviation.

Please reason step by step, and put your
final answer within boxed.

QUESTION:\n<Here is Question>\n

Compression Prompt (for each round):

You have a question now:\n
QUESTION:\n<Here is Question>\n
THOUGHT PROCESS: <Here is Original CoT>\n
ANSWER:\n<Here is Final Answer>\n
Now you need to simplify the THOUGHT PROCESS
and retain the key information needed to
solve the question.
And do not add additional information that
is not included in the original THOUGHT
PROCESS.\n
SIMPLIFIED THOUGHT PROCESS:

A.3 Example of Multi-Round CoT Compression

Table 5 and 6 presents a case study illustrating
the progressive compression behavior of different
compressors (GPT-4o-mini, GPT-3.5-turbo) on the
same arithmetic question. Each row represents the
reasoning trace generated at a specific compression
round.

We observe that higher-capacity models (e.g.,
GPT-4o-mini) tend to produce more concise yet
faithful compressed outputs in fewer rounds, while
smaller models require more rounds to converge.
Across all compressors, the CoT length gradu-
ally shrinks while preserving the correct final an-
swer, which validates the effectiveness of our multi-
round adaptive compression mechanism.

A.4 Detailed Results of Compression and
Fine-tuning

Tables 9, 10, and 11 provide the full experimental
results for all combinations of Model and compres-
sor under different compression rounds. Each row
shows the original Chain-of-Thought (CoT) length
and accuracy, the compressed output’s perplexity
and token length, and the downstream accuracy
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Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?

GPT-4o-mini

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2: 48 ÷ 2 = 24.
So, Natalia sold 24 clips in May. 3. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: 1. Natalia sold 48 clips in April. 2. In May, she sold half of that: 48 ÷ 2 = 24. 3. Total clips
sold in April and May: 48 + 24 = 72. 72

Round 2: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72. 72

Round 3: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72.
Round 4: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72.
Round 5: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72.

GPT-3.5-turbo

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2:48 ÷ 2 = 24 3.
So, Natalia sold 24 clips in May. 4. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: Natalia sold 48 clips in April and half as many, which is 24 clips, in May, totaling 72 clips
sold altogether in April and May.
Round 2: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 3: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 4: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 5: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.

DeepSeek-V3

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2:48 ÷ 2 = 24 3.
So, Natalia sold 24 clips in May. 4. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: 1. April clips sold: 48 2. May clips sold: 48 ÷ 2 = 24. 3. Total clips sold: 48 + 24 = 72 72

Round 2: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

Round 3: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

Round 4: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

Round 5: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

GPT-4o

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2:48 ÷ 2 = 24 3.
So, Natalia sold 24 clips in May. 4. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: 1. Natalia sold 48 clips in April. 2. She sold half as many in May: (48 div 2 = 24). 3. Total
clips sold in April and May: (48 + 24 = 72). 72

Round 2: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 3: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 4: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.

Table 5: Example of Multi-Round CoT Compression results on GSM8K across different compressors. Each row
shows the reasoning chain under different compression rounds. The selected CoT is marked in blue

12292



Question: What is the sum of the values of x that satisfy the equation x2 − 5x+ 5 = 9?

GPT-4o-mini

Round 0 (Original): Step 1: Write down the given equation The given equation is x2 − 5x + 5 = 9.
Step 2: Subtract 9 from both sides of the equation to set it equal to zero Subtracting 9 from both sides
gives x2 − 5x − 4 = 0. Step 3: Use the quadratic formula to find the solutions for x The quadratic

formula is x =
−b±

√
b2−4ac

2a
, where a = 1, b = −5, and c = −4. Step 4: Plug the values of a, b, and c

into the quadratic formula Plugging in the values gives x =
−(−5)±

√
(−5)2−4(1)(−4)

2(1)
. Step 5: Simplify

the expression under the square root Simplifying the expression gives x = 5±√
25+16
2

. Step 6: Continue
simplifying the expression under the square root Continuing to simplify gives x = 5±

√
41

2
. Step 7: The

sum of the values of x is the sum of the two solutions The sum of the values of x is 5+
√

41
2

+ 5−
√
41

2
.

Step 8: Simplify the sum of the two solutions Simplifying the sum gives 10
2

. Step 9: Simplify the fraction
Simplifying the fraction gives 5. The final answer is: 5

Round 1: Step 1: Write down the given equation The given equation is x2 − 5x+ 5 = 9. Step 2: Set the
equation to zero Subtracting 9 from both sides gives x2 − 5x− 4 = 0. Step 3: Use the quadratic formula

Using the quadratic formula x =
−b±

√
b2−4ac

2a
with a = 1, b = −5, and c = −4. Step 4: Substitute

values into the formula Substituting gives x =
5±

√
(−5)2−4(1)(−4)

2(1)
. Step 5: Simplify the expression This

simplifies to x = 5±√
25+16
2

= 5±
√
41

2
. Step 6: Find the sum of the solutions The sum of the solutions is

5+
√

41
2

+ 5−
√
41

2
= 10

2
= 5. The final answer is: 5

Round 2: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√

41
2

. Step 5:
Find the sum of the solutions The sum is 5+

√
41

2
+ 5−

√
41

2
= 5. Final answer: 5

Round 3: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√

41
2

. Step 5:
Find the sum of the solutions The sum is 5+

√
41

2
+ 5−

√
41

2
= 5. Final answer: 5

Round 4: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√

41
2

. Step 5:
Find the sum of the solutions The sum is 5. Final answer: 5

Round 5: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√

41
2

. Step 5:
Find the sum of the solutions The sum is 5. Final answer: 5

Round 6: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√

41
2

. Step 5:
Find the sum of the solutions The sum is 5. Final answer: 5

Round 7: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√

41
2

. Step 5:
Find the sum of the solutions The sum is 5. Final answer: 5

Round 8: Step 1: Write down the given equation The equation is x2 − 5x + 5 = 9. Step 2: Set
the equation to zero Subtracting 9 gives x2 − 5x − 4 = 0. Step 3: Use the quadratic formula Using

x =
−b±

√
b2−4ac

2a
with a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This gives

x = 5±√
25+16
2

= 5±
√

41
2

. Step 5: Find the sum of the solutions The sum is 5+
√

41
2

+ 5−
√
41

2
= 10

2
= 5.

The final answer is: 5

Table 6: Example of Multi-Round CoT Compression results on MATH across different compressors. Each row
shows the reasoning chain under different compression rounds. The selected CoT is marked in blue
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after fine-tuning the Model.
These detailed tables validate our key findings:

• Increasing compression rounds leads to more
compact reasoning traces but also higher per-
plexity.

• Compressors like GPT-4o and GPT-4o-mini
consistently preserve semantic integrity bet-
ter under aggressive compression, leading to
superior fine-tuned accuracy.

• Lower-capacity compressors (e.g., GPT-3.5-
turbo) experience sharper performance degra-
dation under deeper compression.

We also observe that while the average CoT
length drops by over 60% in many cases, the fine-
tuned accuracy retains over 90% of its original
value when using a well-matched compressor.

Table 9 reports the full results of multi-round
compression and model fine-tuning across differ-
ent compressors and Models. For each configura-
tion, we list the number of compression rounds,
the original CoT accuracy and length, the result-
ing compression rate, perplexity of the compressed
CoT, and the fine-tuned model accuracy.

These results demonstrate the trade-off between
compression depth and downstream performance.
While deeper compression rounds reduce CoT
length, they also tend to increase perplexity and
reduce fine-tuned accuracy, especially under low-
capacity compressors. Notably, models com-
pressed by GPT-4o or GPT-4o-mini consistently
outperform others in both efficiency and accuracy
retention.

A.5 Implementation Details

Table 7 lists the hyperparameters used for Model
fine-tuning across different datasets. We adopt
LoRA (Hu et al., 2021), an efficient and repro-
ducible approach that has been widely verified as
effective in LLM fine-tuning, to train our models.
The rank r is set to 8, and the scaling parameter
α is set to 16. MACC is characterized by its low
training cost, with training taking -1.5 hours for the
7B model. During inference, the maximum num-
ber of tokens is set to 16384. We implement our
training process using the LLaMA-Factory (Zheng
et al., 2024) library 2.

2https://github.com/hiyouga/LLaMA-Factory

Parameter Value

LoRA rank 8
LoRA alpha 16
Learning rate 2× 10−5

Batch size 32
Epochs 3
Max sequence length 16384
Precision bfloat16
Optimizer AdamW
Scheduler Cosine with warmup

Table 7: Fine-tuning hyperparameters for Models.

A.6 Performance Estimation Setup
We use Bayesian Ridge regression as our default
performance estimator. All features are normalized
to zero mean and unit variance. We train one model
per Model using 5-fold cross-validation with 80/20
train/test split.

For comparison, we also evaluate Random For-
est regression with 100 trees, which shows similar
but less interpretable results.

We report the average R2 across folds for each
model and target in Table 8.

Model R2 (Accuracy) R2 (CoT Length)

LLaMA3.1-8B 0.81 0.87
Qwen2.5-7B 0.78 0.91
Qwen2.5-3B 0.73 0.89

Table 8: Prediction performance of Bayesian Ridge on
held-out data.
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Table 9: MACC compression results for Model: LLaMA-3.1-8B. Each row shows the result of multi-round
compression using a specific compressor.

Model Compressor Rounds Original
Acc

Compressor
Acc

Original
Len

Compression
Rate PPL Compressed

Len
Finetuned

Acc

LLaMA3.1-8B GPT-3.5-turbo 2 86.1 0.840 147.46 0.325 5.762 59.92 0.509
LLaMA3.1-8B GPT-3.5-turbo 3 86.1 0.840 147.46 0.310 6.133 55.53 0.491
LLaMA3.1-8B GPT-3.5-turbo 4 86.1 0.840 147.46 0.300 6.343 53.85 0.478
LLaMA3.1-8B GPT-3.5-turbo 5 86.1 0.840 147.46 0.292 6.471 52.22 0.466
LLaMA3.1-8B GPT-4.1-mini 2 86.1 0.949 190.29 0.278 5.696 54.99 0.713
LLaMA3.1-8B GPT-4.1-mini 3 86.1 0.949 190.29 0.262 6.029 48.43 0.676
LLaMA3.1-8B GPT-4.1-mini 4 86.1 0.949 190.29 0.252 6.183 46.61 0.649
LLaMA3.1-8B GPT-4.1-mini 5 86.1 0.949 190.29 0.246 6.255 45.77 0.643
LLaMA3.1-8B GPT-4.1-nano 2 86.1 0.905 252.29 0.301 5.141 61.57 0.776
LLaMA3.1-8B GPT-4.1-nano 3 86.1 0.905 252.29 0.291 5.377 58.17 0.766
LLaMA3.1-8B GPT-4.1-nano 4 86.1 0.905 252.29 0.285 5.490 56.88 0.738
LLaMA3.1-8B GPT-4.1-nano 5 86.1 0.905 252.29 0.281 5.552 55.60 0.738
LLaMA3.1-8B GPT-4o 2 86.1 0.953 273.57 0.420 4.793 84.17 0.788
LLaMA3.1-8B GPT-4o 3 86.1 0.953 273.57 0.402 5.107 79.16 0.768
LLaMA3.1-8B GPT-4o 4 86.1 0.953 273.57 0.390 5.287 77.08 0.766
LLaMA3.1-8B GPT-4o 5 86.1 0.953 273.57 0.382 5.389 76.34 0.761
LLaMA3.1-8B GPT-4o-mini 2 86.1 0.922 330.37 0.497 4.227 99.57 0.809
LLaMA3.1-8B GPT-4o-mini 3 86.1 0.922 330.37 0.482 4.419 93.48 0.802
LLaMA3.1-8B GPT-4o-mini 4 86.1 0.922 330.37 0.472 4.517 90.57 0.805
LLaMA3.1-8B GPT-4o-mini 5 86.1 0.922 330.37 0.464 4.584 88.58 0.812

Table 10: MACC compression results for Model: Qwen2.5-3B.

Model Compressor Rounds Original
Acc

Compressor
Acc

Original
Len

Compression
Rate PPL Compressed

Len
Finetuned

Acc

Qwen2.5-3B GPT-3.5-turbo 2 83.7 0.840 147.46 0.325 5.762 164.75 0.753
Qwen2.5-3B GPT-3.5-turbo 3 83.7 0.840 147.46 0.310 6.133 144.35 0.704
Qwen2.5-3B GPT-3.5-turbo 4 83.7 0.840 147.46 0.300 6.343 102.87 0.584
Qwen2.5-3B GPT-3.5-turbo 5 83.7 0.840 147.46 0.292 6.471 102.17 0.580
Qwen2.5-3B GPT-4.1-mini 2 83.7 0.949 190.29 0.278 5.696 202.04 0.799
Qwen2.5-3B GPT-4.1-mini 3 83.7 0.949 190.29 0.262 6.029 199.71 0.804
Qwen2.5-3B GPT-4.1-mini 4 83.7 0.949 190.29 0.252 6.183 202.05 0.811
Qwen2.5-3B GPT-4.1-mini 5 83.7 0.949 190.29 0.246 6.255 200.17 0.804
Qwen2.5-3B GPT-4.1-nano 2 83.7 0.905 252.29 0.301 5.141 203.00 0.825
Qwen2.5-3B GPT-4.1-nano 3 83.7 0.905 252.29 0.291 5.377 201.23 0.826
Qwen2.5-3B GPT-4.1-nano 4 83.7 0.905 252.29 0.285 5.490 202.89 0.824
Qwen2.5-3B GPT-4.1-nano 5 83.7 0.905 252.29 0.281 5.552 202.15 0.825
Qwen2.5-3B GPT-4o 2 83.7 0.953 273.57 0.420 4.793 210.98 0.804
Qwen2.5-3B GPT-4o 3 83.7 0.953 273.57 0.402 5.107 208.16 0.807
Qwen2.5-3B GPT-4o 4 83.7 0.953 273.57 0.390 5.287 207.44 0.804
Qwen2.5-3B GPT-4o 5 83.7 0.953 273.57 0.382 5.389 206.06 0.792
Qwen2.5-3B GPT-4o-mini 2 83.7 0.922 330.37 0.497 4.227 217.85 0.818
Qwen2.5-3B GPT-4o-mini 3 83.7 0.922 330.37 0.482 4.419 214.69 0.817
Qwen2.5-3B GPT-4o-mini 4 83.7 0.922 330.37 0.472 4.517 214.21 0.810
Qwen2.5-3B GPT-4o-mini 5 83.7 0.922 330.37 0.464 4.584 216.25 0.805

Table 11: MACC compression results for Model: Qwen2.5-7B.

Model Compressor Rounds Original
Acc

Compressor
Acc

Original
Len

Compression
Rate PPL Compressed

Len
Finetuned

Acc

Qwen2.5-7B GPT-3.5-turbo 2 91.4 0.840 147.46 0.325 5.762 80.68 0.624
Qwen2.5-7B GPT-3.5-turbo 3 91.4 0.840 147.46 0.310 6.133 66.28 0.557
Qwen2.5-7B GPT-3.5-turbo 4 91.4 0.840 147.46 0.300 6.343 50.64 0.440
Qwen2.5-7B GPT-3.5-turbo 5 91.4 0.840 147.46 0.292 6.471 60.97 0.525
Qwen2.5-7B GPT-4.1-mini 2 91.4 0.949 190.29 0.278 5.696 71.76 0.791
Qwen2.5-7B GPT-4.1-mini 3 91.4 0.949 190.29 0.262 6.029 61.87 0.753
Qwen2.5-7B GPT-4.1-mini 4 91.4 0.949 190.29 0.252 6.183 59.74 0.735
Qwen2.5-7B GPT-4.1-mini 5 91.4 0.949 190.29 0.246 6.255 58.86 0.732
Qwen2.5-7B GPT-4.1-nano 2 91.4 0.905 252.29 0.301 5.141 71.77 0.826
Qwen2.5-7B GPT-4.1-nano 3 91.4 0.905 252.29 0.291 5.377 70.35 0.821
Qwen2.5-7B GPT-4.1-nano 4 91.4 0.905 252.29 0.285 5.490 66.94 0.806
Qwen2.5-7B GPT-4.1-nano 5 91.4 0.905 252.29 0.281 5.552 65.50 0.799
Qwen2.5-7B GPT-4o 2 91.4 0.953 273.57 0.420 4.793 137.63 0.860
Qwen2.5-7B GPT-4o 3 91.4 0.953 273.57 0.402 5.107 129.21 0.845
Qwen2.5-7B GPT-4o 4 91.4 0.953 273.57 0.390 5.287 117.46 0.847
Qwen2.5-7B GPT-4o 5 91.4 0.953 273.57 0.382 5.389 121.62 0.838
Qwen2.5-7B GPT-4o-mini 2 91.4 0.922 330.37 0.497 4.227 180.00 0.878
Qwen2.5-7B GPT-4o-mini 3 91.4 0.922 330.37 0.482 4.419 169.46 0.873
Qwen2.5-7B GPT-4o-mini 4 91.4 0.922 330.37 0.472 4.517 129.99 0.707
Qwen2.5-7B GPT-4o-mini 5 91.4 0.922 330.37 0.464 4.584 148.76 0.863
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