

Boosting Data Utilization for Multilingual Dense Retrieval

Chao Huang^{1,2*}, Fengran Mo^{3*}, Yufeng Chen^{1,2}, Changhao Guan^{1,2},
Zhenrui Yue⁴, Xinyu Wang⁵, Jinan Xu^{1,2}, Kaiyu Huang^{1,2†}

¹Key Laboratory of Big Data & Artificial Intelligence in Transportation
(Beijing Jiaotong University), Ministry of Education

²School of Computer Science and Technology, Beijing Jiaotong University

³University of Montreal; ⁴University of Illinois Urbana-Champaign; ⁵McGill University
{huangchao, kyhuang}@bjtu.edu.cn; fengran.mo@umontreal.ca

Abstract

Multilingual dense retrieval aims to retrieve relevant documents across different languages based on a unified retriever model. The challenge lies in aligning representations of different languages in a shared vector space. The common practice is to fine-tune the dense retriever via contrastive learning, whose effectiveness highly relies on the quality of the negative samples and the efficacy of mini-batch data. Different from the existing studies that focus on developing sophisticated model architecture, we propose a method to boost data utilization for multilingual dense retrieval by obtaining high-quality hard negative samples and effective mini-batch data. The extensive experimental results on a multilingual retrieval benchmark, MIRACL, with 16 languages demonstrate the effectiveness of our method by outperforming several existing strong baselines.

1 Introduction

Multilingual dense retrieval (Nie, 2010; Zhang et al., 2023a) aims to retrieve relevant documents based on dense representation across multiple languages. The objective of the task is to enable the retriever models to handle queries and documents in various languages by establishing better representations for a set of languages during model training.

However, constructing unified dense representations for multiple languages within a single model is non-trivial. The challenges come up with different languages could have unique syntactic structures, vocabularies, and nuances, making it difficult for a single retriever to align their representations in a shared vector space via fine-tuning (Conneau, 2019; MacAvaney et al., 2020; Asai et al., 2021; Huang et al., 2023; Lin et al., 2023a). Besides, the data scarcity for low-resource languages further induces difficulty during fine-tuning, due to

*Equal contribution.

†Kaiyu Huang is the corresponding author.

Query: What are some famous Sichuan dishes?
四川有哪些著名的菜肴?

False Negatives

	# 1 Document	Relevance judgement
	...Famous Chengdu snacks are: Dandan noodles, husband and wife lung slices...	<input type="checkbox"/>
	...著名的成都小吃有: 担担面、夫妻肺片...	<input type="checkbox"/>
	...Some of Chengdu's most famous home-cooked dishes include mapo tofu and Kung pao chicken.....	<input type="checkbox"/>
	...发源于成都的一些知名家常菜品有麻婆豆腐、宫保鸡丁...	

Positive sample

	# 8 Document	Relevance judgement
	... Famous dishes that are not spicy are Dongpo pork, braised duck and sliced pork with fried rice...	<input checked="" type="checkbox"/>
	...不辣的名菜有东坡肘子、黄焖鸭、锅巴肉片...	

Figure 1: Example of false negatives, which refer to those that are relevant to the query but used as negatives in the ranking list due to a lack of relevance judgments.

insufficient/imbalanced annotated relevance judgments (Huang et al., 2024a; Thakur et al., 2024).

Existing studies attempt to address these issues from different aspects, including developing embedding models by incorporating information from multiple languages during the pre-training (Devlin, 2018; Izacard et al., 2021), fine-tuning multilingual dense retriever with additional adapter modules to allow efficient parameter sharing among models for different languages (Nogueira et al., 2019; Gururangan et al., 2020; Pfeiffer et al., 2020; Zhan et al., 2022; Lassance, 2023; Hu et al., 2023), and integrating the multilingual pre-training and language-adapter fine-tuning (Zhang et al., 2023a). Most of them address the problems from the perspective of model architecture (Huang et al., 2024b; Xu et al., 2025).

An alternative solution is to enhance the quality of data utilization. One common practice is constructing high-quality negative samples, which facilitates effective dense retriever fine-tuning under the contrastive learning (CL) paradigm, as demonstrated in many previous studies. The common way to obtain negative samples includes the BM25 negatives (Karpukhin et al., 2020; Ding et al., 2020)

and dynamic hard negatives sampling (Xiong et al., 2020) in ad-hoc search. The principle is employing the top- k retrieved candidate in a ranking list (e.g., pseudo relevance feedback (Xu and Croft, 1996)) as hard negative candidates except for the positive ones with relevance judgment. However, they usually introduce *false negatives* – the samples that should be relevant to the query but are not annotated, and then used as negatives for model training. One example is shown in Figure 1, where all three documents should be considered relevant to the given query. However, since two of them do not have relevance judgment, they would be used as negative candidates. This is a common issue since requiring the annotators to cover all existing relevance judgments is impossible. The judged part might be quite small in practice, especially on top of the huge size collection (Nguyen et al., 2016; Kwiatkowski et al., 2019; Mo et al., 2025c). To facilitate dense retriever fine-tuning, these false negatives should be excluded when sampling the hard negative set.

In terms of multilingual retrieval, we could have more alternatives to obtain better hard negatives based on language variability and integrate them into mini-batch data, which is under-explored. This is related to how to facilitate multilingual dense retrieval by boosting the data utilization.

Motivated by this, we design a data utilization enhanced method to improve the effectiveness of multilingual dense retrieval fine-tuning from two aspects: i) obtaining high-quality hard negatives through selection and generation, and ii) constructing effective mini-batches by adjusting language and topic semantic features. The whole framework consists of three stages. The first stage is to initialize the hard negative candidate set for each given query by aggregating the retrieved results from various multilingual embedding models. Then we can select the high-quality sample by eliminating false negatives via judgments of LLMs through incorporating additional signals. The second stage aims to inject additional hard negatives by specific LLM generation to improve the data diversity and to ensure sufficient negatives in the candidate set for sampling, i.e., the size of the negative candidate set should be equal for each query after elimination. Finally, with the improved quality hard negative set for each query, we construct effective mini-batches by adjusting the language and topic distribution, and integrate the hard negative sampling weight determined after the data adjustment

into contrastive learning to facilitate retriever fine-tuning. The query-document pairs in each mini-batch should be in the same language but have diverse topics. Extensive experimental results on the multilingual retrieval dataset MIRACL (Zhang et al., 2023b) with 16 languages demonstrate the effectiveness of our method by significantly outperforming several existing strong baselines. We also provide thorough analysis experiments to understand the functionality of each stage and component.

Our contributions are summarized as follows:

- We propose a method to boost data utilization for multilingual dense retrieval fine-tuning by constructing high-quality hard negative candidates via selection and generation.
- We design effective mini-batch construction strategies by adjusting the language and topic distribution among the data points, and integrate the hard negative sampling weight into contrastive learning.
- We demonstrate the effectiveness of our approach by outperforming several existing strong baselines on a multilingual retrieval benchmark, MIRACL.

2 Related Work

Multilingual Information Retrieval. The development of multilingual information retrieval (MLIR) is important to support the demand for global information access (Oard and Dorr, 1998; Peters et al., 2012; Dwivedi and Chandra, 2016). The advancements of MLIR can be categorized into two factors: the development of benchmarks for system evaluation by covering more languages (Li et al., 2022b; Zhang et al., 2023b) and the improvement of representation learning across different languages (Lawrie et al., 2023; Yang et al., 2024). On top of the available resources, some studies (Lin et al., 2023b; Tan et al., 2024; Fang et al., 2024) aim to enhance zero-shot transfer capabilities through a novel dual-encoder architecture that jointly optimizes semantic alignment and lexical correspondence across languages.

Besides, the other studies (Multi-Granularity; Xu et al., 2024) introduce multi-granular contrastive learning combined with self-knowledge distillation to preserve language-agnostic semantic structures. Furthermore, recent studies (Ding et al.,

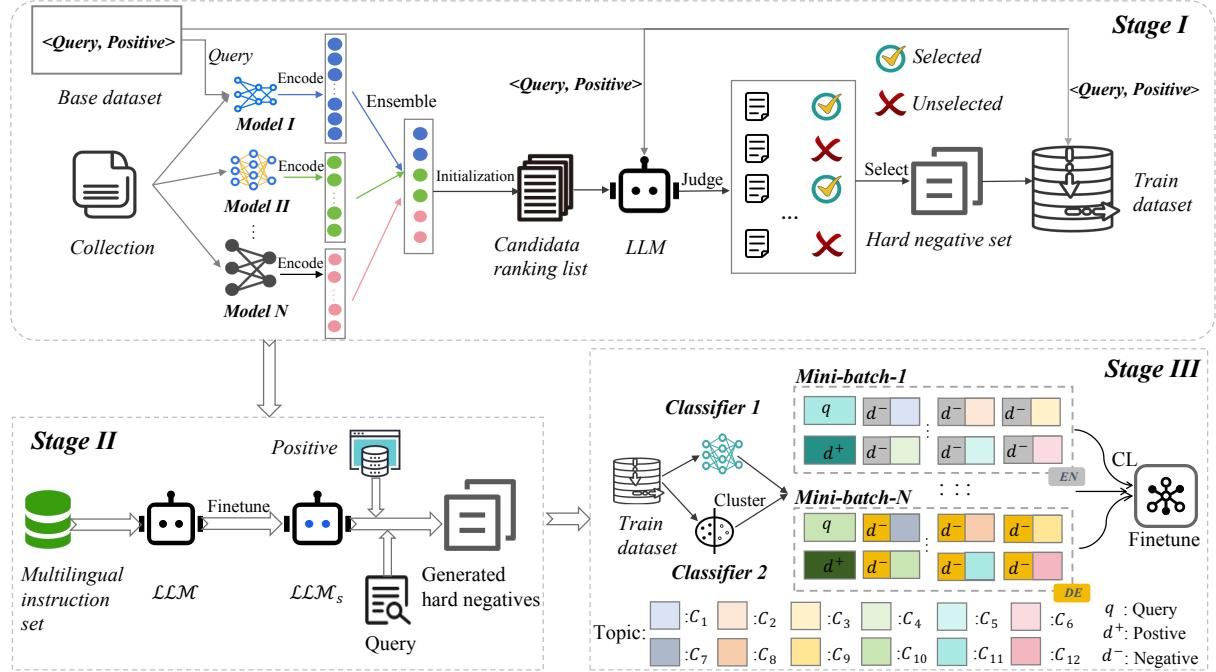


Figure 2: Overview of our framework including three stages: i) construction of hard negative set, ii) LLM-aided hard negative generation, and iii) effective mini-batch construction to facilitate contrastive learning with language and topic information adjustments, where we ensure the languages are consistent, while the topics are diverse.

2024; Thakur et al., 2023) explore data augmentation strategies via large language models (LLMs) and observe that synthetic multilingual training data can enhance model robustness against linguistic variations. Different from the existing studies that focus on cross-lingual alignment, model architecture design, and data augmentation, we explore how to leverage the available data to facilitate dense retriever fine-tuning from a data utilization enhancement perspective.

Hard Negative Mining for Dense Retrieval. The efficacy of hard negative in dense retrieval has been demonstrated in previous studies (Karpukhin et al., 2020; Xiong et al., 2020; Mo et al., 2023b, 2024). Theoretical studies (Zhou et al., 2024; Maharana and Bansal, 2022; Mo et al., 2025b) demonstrate that dynamic hard negative selection mechanisms effectively enhance embedding space separability via curriculum-based sampling strategies. To address the scarcity of authentic hard negatives, generative models have been employed to construct contextually coherent yet semantically contradictory negative samples through controlled textual perturbation techniques (Qiao et al., 2023; Mo et al., 2023a; Li et al., 2024a; Su et al., 2025; Mo et al., 2025a). Hybrid contrastive learning frameworks (Li et al., 2022a; Zhao and Shu, 2025) by integrating static and dynamic negative mining

strategies achieve better performance on semantic textual similarity benchmarks. Different from the existing methods that focus on single-language or static negative mining, our study investigates how to construct negative samples via selection and generation.

3 Methodology

3.1 Task Definition

Multilingual dense retrieval aims to retrieve relevant information across multiple languages via dense representation. Given a set of language $\{l\}_{t=1}^T$ and a query q^l , a multilingual retriever is expected to identify the relevant documents d_q^+ from the corresponding large collection \mathcal{C}_l under the monolingual setting, i.e., the query q^l and its candidate documents $\mathcal{D}_l = \{d_i^l\}_{i=1}^k$ are in the same language l , where $\mathcal{D}_l \subset \mathcal{C}_l$ and $|\mathcal{D}_l| \ll |\mathcal{C}_l|$.

3.2 Method Overview

Our proposed method aims to facilitate effective multilingual dense retrieval fine-tuning by constructing better hard negative samples and mini-batch data. Then, the hard negative sampling weight is integrated upon each query with the contrastive learning objective. The method overview is presented in Figure 2, which includes three stages: i) construction of hard negative set (Sec. 3.3), ii)

Multilingual LLM-aided hard negative generation (Sec. 3.4), and iii) effective mini-batch construction to facilitate contrastive learning (Sec. 3.5).

3.3 Hard Negatives Set Construction

The common practice to initialize a set of hard negative candidates for a specific query is to eliminate the positive sample from a top-k ranking list produced by another type of retriever, e.g., BM25 (Robertson et al., 2009). However, it might include a portion of false negatives due to the candidate documents at the top-rank position could still be relevant without relevance judgments according to the principle of pseudo relevant feedback (Xu and Croft, 1996). Utilizing the false negative samples as hard negative signals might be harmful for dense retriever fine-tuning.

Hard Negative Candidate Initialization. To obtain the true negatives under multilingual scenarios, we first design a multilingual retriever ensemble approach for representation fusion to produce the initial candidate set. Specifically, we employ multiple multilingual retrievers with different linguistic understanding capabilities to encode the query q^l and every candidate document d_i^l . Then, a feature extraction layer \mathbf{E} is employed to unify the output of each encoder f_z into the same dimension and concatenate them as $\mathcal{V}(q^l, d_i^l) = \mathbf{E}(f_1(q^l, d_i^l)) \circ \dots \circ \mathbf{E}(f_z(q^l, d_i^l))$. Finally, the logit of the $\mathcal{V}(q^l, d_i^l)$ is used as the score to produce the top- k candidate ranking list $\phi(q^l)$.

False Negative Selection. With the initial ranking list $\phi(q^l)$, we aim to identify the false negatives. To achieve this, we leverage a large language model \mathcal{LLM} to judge each candidate document $d_i^l \in \phi(q^l)$ paired with corresponding query and positive sample pair (q^l, d_i^+) via a designed prompt to produce three granularity of relevance: irrelevant, partially relevant, and highly relevant, denoted as 0, 1, and 2, respectively. Finally, only the ones judged as irrelevant remained in the hard negative candidate set \mathcal{NC}_q , where the size of \mathcal{NC}_q is denoted as $|\mathcal{NC}_q|$.

$$\mathcal{NC}_q = \{d_i^l \in \phi(q^l) \mid \mathcal{LLM}(q^l, d_i^+, d_i^l) = 0\}$$

3.4 LLM-aided Hard Negative Generation

A part of the false hard negative candidates would be filtered out after the sample selection in the initial set \mathcal{NC}_q for query q^l . To ensure the number of samples in the hard negative candidate set \mathcal{NC}_q of each query is the same for negative sampling

during the multilingual dense retriever fine-tuning, we provide the supplement for the query that does not have enough negative candidates, i.e., $|\mathcal{NC}_q| < N$, where N is a pre-defined constant. To this end, we conduct specific instruction fine-tuning under a multilingual scenario for an LLM to equip it with the generation ability of hard negatives.

Multilingual Instruction Fine-tuning. The assumption is that a multilingual LLM with specific multilingual instruction fine-tuning can achieve precise negative generation with better capacity to identify multilingual samples (Li et al., 2024b), compared to the vanilla \mathcal{LLM} used in stage one for hard negative judgment. To implement this, we leverage the summarization-related instructions from the Alpaca dataset (Taori et al., 2023) as \mathcal{I}_s and translate them into each language l by Google Translate (Google) to form a multilingual instruction set \mathcal{I}'_s . Then, the vanilla \mathcal{LLM} is fine-tuned with \mathcal{I}'_s to produce its variant \mathcal{LLM}_s .

Positive-Driven Back-Forward Generation. With the multilingual instruction fine-tuned \mathcal{LLM}_s , we summarize the positive d_q^+ in terms of the corresponding query q^l , which aims to obtain query-centric key information from a lengthy document. Then, we continue to generate a new query on top of the summary \mathcal{S}_q^l and use it to obtain additional negatives \mathcal{NC}'_q via the multilingual retriever ensemble mechanism in the previous stage 1. We add the top candidates \mathcal{NC}_q^t from \mathcal{NC}'_q in \mathcal{NC}_q to ensure the number of final hard negatives for each query is equal to N , i.e., $|\mathcal{NC}_q| + |\mathcal{NC}_q^t| = N$.

3.5 Effective Mini-Batch Construction to Facilitate Contrastive Learning

The contrastive learning (CL) paradigm is widely used in dense retriever fine-tuning due to its sophistication in leveraging the negatives. The training objective is formulated as

$$\mathcal{L}_{\text{MR}} = -\log \frac{e^{\text{sim}(q^l, d_q^+)}}{e^{\text{sim}(q^l, d_q^+)} + \sum_{d_q^- \in \{\mathcal{D}_-\}} e^{\text{sim}(q^l, d_q^-)}}$$

where $\text{sim}(q^l, d_q^+)$ denote the cosine similarity between the query and document.

For multilingual retrieval, the query q^l used in the same mini-batch could be from various languages. A natural property of CL is the usage of in-batch negatives, where each query-document pair could be negative for the other samples in the same

mini-batch. Thus, increasing the difficulty of distinguishing between different samples in the same batch can increase the challenge of model training. Following this principle, we ensure the language of each query-document pair in a mini-batch is the same, since the samples in various languages could be easier to identify due to the lower similarity, compared to those in the same language.

Besides, we also enable each mini-batch to include data samples from various topics to enhance the diversity of semantic features for fine-tuning. The topic information is obtained by employing two classifiers (Joulin et al., 2016; Joulin, 2016) to perform text classification on each positive document d_q^+ at different granularities. Then, we cluster the output labels of the two classifiers corresponding to each data sample into the predefined C topics as $C = \{C_1, C_2, \dots, C_{12}\}$. Based on the language and topic information, we construct each mini-batch with monolingual and multi-topic data samples by uniform sampling, according to the number of samples for various languages and topics. This ensures that low-resource languages and underrepresented topics are adequately represented. In addition, for each data point, we apply a weighted mechanism for negative sampling. The weight assigned to each negative is

$$\omega(d_q^-) = \alpha_l(d_q^-) + \beta_c(d_q^-)$$

where $\alpha_l(\cdot)$ and $\beta_c(\cdot)$ are the language weight and topic weight based on the portion of each category. Finally, the loss calculation for each mini-batch \mathcal{B} is incorporated with the weight and vanilla contrastive learning loss as

$$\mathcal{L}_{\text{final}} = \frac{1}{|\mathcal{B}|} \sum_{(q, d^+, d^-) \in \mathcal{B}} \omega(d^-) \times \mathcal{L}_{\text{MR}}$$

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We evaluate our model on the multilingual retrieval benchmark MIRACL (Zhang et al., 2023b). Following prior study (Zhang et al., 2023a), we conduct dense retrieval via Pyserini (Lin et al., 2022) and use nDCG@10 and Recall@100 as evaluation metrics. More details are provided in Appendix A.

Implementation Details. We conduct multilingual dense retriever fine-tuning via mixing all languages as training data based on Tevatron (Gao

et al., 2022). The validation set is 10% of the training set with a random sample. Then, the trained retriever is applied to each language for evaluation. We employ mBERT (Devlin et al., 2019), mDPR (Zhang et al., 2023b), mE5 (Wang et al., 2022) and BGE (Chen et al., 2024) as the base models of our method. For hard negatives selection and generation, we employ the Llama-3.1-70B-instruct (Dubey et al., 2024) model. For topic information in mini-batch construction, we use two classification models trained on the DBpedia Ontology and Yahoo Answers datasets provided in fastText model (Joulin et al., 2016; Joulin, 2016). More implementation details are provided in Appendix B.1 and our released code at https://github.com/miaomiao1205/xir_BDUMDR.

Baselines Methods. We compare our method with several widely-used and strong baselines, including: (1) **BM25** (Robertson et al., 2009): an unsupervised lexical match retriever with strong generalization ability, (2) **mBERT** (Devlin et al., 2019): a multilingual version of BERT that provides dense contextualized representations, (3) **mDPR** (Zhang et al., 2023b): a dense passage retriever fine-tuned with contrastive learning on Enlish MS MARCO (Bajaj et al., 2016) dataset, (4) **mContriever** (Izacard et al., 2021): an unsupervised multilingual dense retriever trained on Enlish MS MARCO version, (5) **mE5_{large}** (Wang et al., 2022): a multilingual text embedding model optimized for retrieval and semantic similarity tasks, and (6) **BGE** (Chen et al., 2024): a state-of-the-art multilingual embedding model designed for cross-language retrieval and semantic matching.

In addition, we also compare our hard negatives construction approach with several existing strategies, including: (1) **Naive Top-K** (Karpukhin et al., 2020): Using top-k retrieved candidate documents except the positive ones as hard negatives, (2) **Top-K shifted by N** (Xiao et al., 2023): Removing top-N retrieved candidate documents first and using the remaining as hard negatives, (3) **TopK-Abs** (Lee et al., 2024; Merrick et al., 2024; Ding et al., 2020): Using top-N retrieved candidate documents whose similarity score is lower than a pre-defined threshold as hard negatives, (4) **TopK-MarginPos** (Moreira et al., 2024): The threshold is set as the upper-bound similarity score of the positive minus a fixed margin, and (5) **TopK-PercPos** (Moreira et al., 2024): The threshold is determined by the percentage of the maximum similarity score of the positive. For Top-K shifted by N, TopK-Abs, TopK-

Model	Avg	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh
BM25	39.4	48.1	50.8	35.1	31.9	33.3	55.1	18.3	45.8	44.9	36.9	41.9	33.4	38.3	49.4	48.4	18.0
mBERT	39.9	46.2	42.8	37.6	44.8	46.2	45.9	41.8	38.6	27.8	41.4	40.1	39.8	29.2	34.4	33.2	48.9
mDPR	41.5	49.9	44.3	39.4	47.8	48.0	47.2	42.5	38.3	27.2	43.9	41.9	40.7	29.9	35.6	35.8	51.2
mContriever	43.3	52.5	50.1	36.4	41.8	21.5	60.2	31.4	28.6	39.2	42.4	48.3	39.1	56.0	52.8	51.7	41.0
mE5 _{large}	66.5	76.0	75.9	52.9	52.9	59.0	77.8	54.5	62.0	52.9	70.6	66.5	67.4	74.9	84.6	80.2	56.0
BGE	<u>69.2</u>	<u>78.4</u>	<u>80.0</u>	<u>56.9</u>	<u>56.1</u>	60.9	<u>78.6</u>	58.3	59.5	<u>56.1</u>	<u>72.8</u>	<u>69.9</u>	<u>70.1</u>	<u>78.7</u>	<u>86.2</u>	<u>82.6</u>	62.7
Ours _{mBERT}	57.9 [†]	66.2 [†]	65.5 [†]	48.8 [†]	48.5 [†]	52.7 [†]	64.8 [†]	53.4 [†]	45.4 [†]	44.9 [†]	61.9 [†]	56.2 [†]	55.5 [†]	64.3 [†]	76.3 [†]	67.4 [†]	54.8 [†]
Ours _{mDPR}	66.8 [†]	75.7 [†]	74.1 [†]	55.9 [†]	55.8 [†]	<u>61.0</u> [†]	75.8 [†]	60.7 [†]	53.8 [†]	52.1 [†]	71.2 [†]	67.8 [†]	65.1 [†]	73.9 [†]	84.2 [†]	74.8 [†]	65.9
Ours _{mE5}	67.4 [†]	77.2 [†]	76.7 [†]	52.1	52.4	59.8 [†]	77.6	56.2 [†]	<u>61.7</u>	53.4 [†]	71.5 [†]	68.3 [†]	67.2	75.4 [†]	84.8 [†]	80.9 [†]	62.9 [†]
Ours _{BGE}	70.6[†]	80.6[†]	80.8[†]	57.6[†]	57.4[†]	62.2[†]	79.6[†]	<u>59.8[†]</u>	61.4 [†]	<u>57.5[†]</u>	<u>74.6[†]</u>	<u>71.8[†]</u>	<u>71.6[†]</u>	<u>79.6[†]</u>	<u>87.3[†]</u>	<u>83.2[†]</u>	<u>65.3[†]</u>

Table 1: Multilingual retrieval performance with nDCG@10 score on the MIRACL dataset across 16 languages. [†] denotes significant improvements with t-test at $p < 0.05$ between our methods with the same corresponding backbone model. **Bold** and underline indicate the best and the second best result.

Method	Avg	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh
Naive Top-K	67.6	78.6	79.3	51.2	51.0	59.5	77.8	56.6	58.2	50.3	72.2	69.5	69.3	78.1	85.8	82.0	62.8
Top-K shifted by N	67.8	78.1	79.6	52.1	51.6	60.2	77.6	57.1	58.4	51.4	71.8	69.8	69.4	77.6	85.4	82.1	63.2
TopK-Abs	67.8	78.4	79.2	51.9	51.8	59.8	77.8	57.3	58.2	51.8	71.6	69.9	69.5	78.2	85.2	81.8	63.0
TopK-MarginPos	67.9	77.8	79.1	52.8	52.2	60.2	78.0	57.5	58.6	52.2	71.4	69.7	68.8	78.5	85.6	82.2	62.5
TopK-PercPos	68.1	78.8	79.6	52.4	52.8	60.0	77.5	57.6	58.8	52.4	72.4	69.9	69.4	78.3	85.9	81.6	63.4
Ours	70.6	80.6	80.8	57.6	57.4	62.2	79.6	59.8	61.4	57.5	74.6	71.8	70.8	79.6	87.3	83.2	65.3

Table 2: Comparison of different hard negative construction methods based on the BGE model for multilingual retrieval evaluated on the MIRACL dataset with nDCG@10 scores. **Bold** indicates the best result.

MarginPos, and TopK-PercPos, we set the hyper-parameters as N=10, 0.6, 0.15, and 90% for their optimal performance, respectively. More configuration details are provided in Appendix B.3.

4.2 Main Results

The main results on MIRACL datasets with 16 languages are presented in Table 1.

We observe that our method outperforms baseline methods on most languages, except slightly lower on a few high-resource ones, e.g., French (fr) and Chinese (zh). Specifically, we achieve 1.4% absolute gain compared to the state-of-the-art BGE on average scores. The superior effectiveness can be attributed to two aspects: (1) the high-quality hard negatives mined by our multilingual retriever ensemble mechanism and the aid from multilingual LLM for hard negative generation further enhance the semantic discrimination ability, and (2) the richer supervision signals and semantic information provided by the effective mini-batch construction, which increase the challenge for the model during training. Moreover, adapting our method to different backbone models consistently yields improved performance, with BGE generally achieving the best results, except in French (fr) and

Ablation	nDCG@10	Recall@100
Full Model	70.6	95.9
w/o Stage 1	66.9	93.1
w/o Stage 2	68.5	94.3
w/o Stage 3	68.8	94.5

Table 3: Ablation on three stages of our methods based on the BGE on MIRACL. i) Stage 1: Multilingual Retriever Ensemble for Hard Negatives Set Construction, ii) Stage 2: LLM-aided Hard Negative Generation, and iii) Stage 3: Effective Mini-Batch Construction.

Chinese (zh). Such a phenomenon indicates the feasibility of our method to further improve the multilingual retrieval performance on top of any sophisticated models.

4.3 Comparison among Hard Negative Mining Methods

We compare our strategy with several existing approaches based on BGE to validate our negative construction mechanism, which filters false negatives and leverages a multilingual LLM. The results are reported in Table 2, which shows that our strategy consistently achieves the best results on MIRACL across all languages. Specifically, our strategy outperforms the second-best method (TopK-PercPos) by 2.5% absolute improvement, which

Ablation	nDCG@10	Recall@100
Full Model	70.6	95.9
w/o mE5 _{large}	69.2	95.0
w/o BGE	69.1	94.9

Table 4: Ablation on hard negative samples initialization by integrating various models with average scores on MIRACL.

Ablation	nDCG@10	Recall@100
Full Model	70.6	95.9
w/o LLM judgment	67.5	93.3
w/o ground-truth	68.1	93.8

Table 5: Ablation on hard negative samples filtering by providing various references with average scores.

demonstrates our better effectiveness. This is contributed by the ability of our method to capture complex semantic relationships, and thus, more high-quality hard negative samples could be selected for model training. The additional experimental results on top of other backbone models are provided in Appendix D.

4.4 More Comparison

Ablation Study. We investigate the effectiveness of each component within our methods on the MIRACL. The results are shown in Table 3. We observe that each component can contribute about 2% absolute gain of the NDCG@10 score, and the effectiveness of stage 1 is more obvious than the other two. Such results indicate the importance of maintaining high-quality samples in the hard negatives candidate set, which is consistent with previous studies (Karpukhin et al., 2020; Zhang et al., 2023b). Then, continuing to polish the candidate set (e.g., generating new samples from LLM) can further enhance the utilization of hard negatives for contrastive retriever fine-tuning. Additionally, we can also observe that the model performs worse than BGE without combining all three stages. This is because the functionality of our three stages is consistent, including data quality detection, data sample generation, and diversity utilization in mini-batches. Thus, it is possible that only combining them to obtain optimal results, especially when the backbone model is powerful, e.g., the training procedure of BGE, might already integrate some of these data utilization aspects.

Impact of Hard Negatives Set Construction. We investigate the impact of hard negative candidate initialization and false negative filtering in

Ablation	nDCG@10	Recall@100
Full Model	70.6	95.9
w/o MIFT	69.4	95.2
w/o PDBG	69.2	95.1

Table 6: Ablation on LLM-aided hard negative generation via different strategies with average scores.

Method	nDCG@10	Recall@100
Full Model	70.6	95.9
w/o Topic Balance	70.3	95.6
w/o Same Language	69.4	94.7
w/o Both	68.5	94.3

Table 7: Performance of constructed effective mini-batch for multilingual dense retriever fine-tuning.

our hard negative construction mechanism. Table 4 shows the performance for the initialization with different models. We observe a performance drop when removing either model’s retrieved results for the integration on the construction of candidate hard negatives, i.e., without mE5_{large} or BGE, which suggests that relying on a single model is insufficient for generating high-quality hard negative candidates.

For false negative filtering, Table 5 presents the score with different filtering approaches. We find that either removing the ground-truth information or the LLM judgment results in a performance drop. Besides, the results indicate that the LLM judgment contributes more to identifying false negatives, which confirms our conjecture that the multilingual ability of LLMs is beneficial to select hard negatives in multilingual dense retrieval.

Impact of the Strategies for LLM-aided Hard Negative Generation. In addition to identifying false negatives, we also utilize LLMs for hard negative generation. Table 6 shows the impact of using various mechanisms for the negative generation. We can observe that both multilingual instruction fine-tuning (MIFT) and positive-driven back-forward generation (PDBG) can improve the retrieval performance. The improvement can be attributed to MIFT, which directly impacts the LLM’s understanding of task requirements, thereby enabling PDBG to generate additional hard negatives in a complementary paradigm that facilitates retriever fine-tuning.

Impact of Effective Mini-Batch Construction for Model Fine-tuning. We adjust the language and topic distribution in the mini-batch for model fine-tuning. Table 7 reflects the effectiveness of

Hard Negatives	Avg.	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh
From Retrieval	90.9	92.4	97.1	80.6	83.9	90.9	92.2	88.0	92.9	90.0	88.7	90.7	87.8	95.7	96.1	96	89.8
From LLM	9.1	7.6	2.9	19.4	16.1	9.1	7.8	12.0	7.1	10.0	11.3	9.3	12.2	4.3	3.9	4.0	10.2
Elimination	19.5	17.3	9.4	32.6	19.7	19.8	18.2	27.3	17.1	20.9	22.9	19.7	24.5	12.0	12.1	12.1	21.3

Table 8: The first two rows present the statistics of the hard negatives obtained from retrieval (stage 1) and generated from LLM (stage 2). The last row reports the percentage of the eliminated false hard negatives across all languages.

Sampling Weight Type			nDCG@10
ω	α	β	
0.95	0.55	0.4	69.5
0.85	0.45	0.4	70.6
0.75	0.55	0.2	68.6
0.65	0.45	0.2	69.9

Table 9: Performance of our model with different hard negative sampling weights. ω : hard negative sampling weight. α : language weight. β : topic weight.

our strategies for constructing mini-batches. We can see that both keeping all the data points in the same language (w/o Topic Balance) and balancing topic distribution (w/o Same Language) within a mini-batch are helpful for the retriever model fine-tuning. In addition, applying them simultaneously can further improve the final performance. These results emphasize the effectiveness of language consistency and topic equilibrium in mini-batch construction.

5 Analysis

5.1 Quantitative Analysis of Improved Hard Negatives

We conduct a quantitative analysis to comprehensively understand the aspects of our method to improve hard negatives. The results are shown in Table 8. The first row indicates the percentage of false negative samples eliminated from the initial hard negative candidates. We can see that over 20% samples would be filtered out, while some differences remain across various languages. The results might be related to the multilingual ability of LLMs, e.g., the high-resource languages (en, fr, ja, ru, etc.) tend to be identified much more easily.

Since we cannot control how many false negatives would be eliminated, the generated hard negatives supplied by fine-tuned LLMs are used to enhance the diversity of hard negative candidates from another aspect. The corresponding statistics are shown in the second and third rows in Table 8, where the ratio of hard negatives produced by the initialization and selection in the first stage versus the LLM-aided generated samples in the second

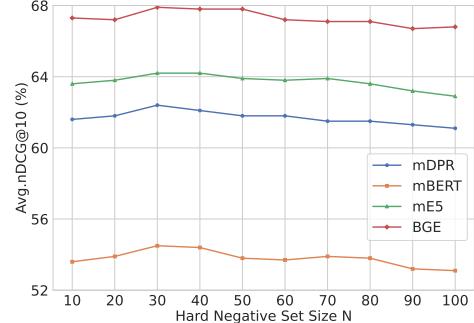


Figure 3: Model performance with average NDCG@10 on different initial hard negative candidate set sizes N .

stage is about 1:9. The better data ratio could be further explore in future study.

5.2 Weight of Hard Negative Sampling

During the mini-batch construction, the hard negative sampling weights are obtained automatically based on the portion of the language and topic among the data points. To analyze the impact of hard negative sampling weights, we manually control them to conduct additional analysis. The results are shown in Table 9. We observe that the hard negative sampling weights could be an empirical value in terms of better retrieval performance. Either reducing the language weight or increasing the topic weight β provides more semantic features, both benefit for obtaining better contrastive samples.

5.3 Impact of Initial Hard Negative Candidate Set Size

Figure 3 shows the average retrieval performance on different initial hard negative candidate set sizes N . We observe that for each backbone model, the performance peak usually occurs when N is between 30 to 40. Such results indicate that the optimal size for the constructed hard negative candidate set should be empirically selected, since smaller N cannot ensure sufficient potential high-quality candidates, while a larger N might increase the

difficulty for identification.

6 Conclusion

In this work, we propose a method to boost data utilization for multilingual dense retrieval contrastive fine-tuning from two aspects: i) obtaining high-quality hard negatives through selection and generation, and ii) constructing effective mini-batches by adjusting language and topic semantic distribution. By addressing the false hard negative issues and obtaining the high-quality ones, we integrate them into negative sampling with constructing effective mini-batches during retriever fine-tuning. Experimental results show that our method outperforms several existing strong baselines on a multilingual retrieval benchmark and demonstrates the superior effectiveness on boosting data utilization.

Limitations

Although with better performance, the multiple stages involved with calling LLMs in our method might raise cost concerns, which can be optimized by using an efficient or low-cost LLM. Nevertheless, it is conducted during the training phase, so no efficiency issue for inference would be raised. Besides, the judgment of false negatives via LLMs might still be inaccurate, which is an open question in utilizing pseudo relevance feedback (PRF) in terms of information retrieval. The document in PRF could be positive or negative for a given query, while we cannot determine it absolutely without relevance judgment. Thus, a more sophisticated mechanism for false negative judgment can be explored in the future, and some potential human validation could be helpful to improve the accuracy of the identification mechanism.

Acknowledgements

The research work described in this paper has been supported by the Fundamental Research Funds for the Central Universities (2024JBZY019) and the National Nature Science Foundation of China (No. 62476023, 62406018, 62376019). The work is also supported by the Henan Provincial Science and Technology Research Project (No. 252102210102). The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve this paper.

References

Akari Asai, Xinyan Yu, Jungo Kasai, and Hanna Hajishirzi. 2021. One question answering model for many languages with cross-lingual dense passage retrieval. *Advances in Neural Information Processing Systems*, 34:7547–7560.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016. Ms marco: A human generated machine reading comprehension dataset. *arXiv preprint arXiv:1611.09268*.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. 2024. Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation. *arXiv preprint arXiv:2402.03216*.

A Conneau. 2019. Unsupervised cross-lingual representation learning at scale. *arXiv preprint arXiv:1911.02116*.

Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pages 4171–4186.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie Hu, Luu Anh Tuan, and Shafiq Joty. 2024. Data augmentation using llms: Data perspectives, learning paradigms and challenges. In *Findings of the Association for Computational Linguistics ACL 2024*, pages 1679–1705.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Xin Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. 2020. Rocketqa: An optimized training approach to dense passage retrieval for open-domain question answering. *arXiv preprint arXiv:2010.08191*.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*.

Sanjay K Dwivedi and Ganesh Chandra. 2016. A survey on cross-language information retrieval. *International Journal on Cybernetics & Informatics (IJCI) Vol. 5*.

Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Ruifeng Xu. 2024. Enhancing noise robustness of retrieval-augmented language models

with adaptive adversarial training. *arXiv preprint arXiv:2405.20978*.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Tevatron: An efficient and flexible toolkit for dense retrieval. *arXiv preprint arXiv:2203.05765*.

Google. [Google translate](#).

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith. 2020. Don't stop pretraining: Adapt language models to domains and tasks. *arXiv preprint arXiv:2004.10964*.

Xiayang Hu, Xinchi Chen, Peng Qi, Deguang Kong, Kun-lun Liu, William Yang Wang, and Zhiheng Huang. 2023. Language agnostic multilingual information retrieval with contrastive learning. In *Findings of the Association for Computational Linguistics: ACL 2023*, pages 9133–9146.

Chao-Wei Huang, Chen-An Li, Tsu-Yuan Hsu, Chen-Yu Hsu, and Yun-Nung Chen. 2024a. Unsupervised multilingual dense retrieval via generative pseudo labeling. In *Findings of the Association for Computational Linguistics: EACL 2024*, pages 736–746.

Kaiyu Huang, Fengran Mo, Xinyu Zhang, Hongliang Li, You Li, Yuanchi Zhang, Weijian Yi, Yulong Mao, Jinchen Liu, Yuzhuang Xu, et al. 2024b. A survey on large language models with multilingualism: Recent advances and new frontiers. *arXiv preprint arXiv:2405.10936*.

Zhiqi Huang, Hansi Zeng, Hamed Zamani, and James Allan. 2023. Soft prompt decoding for multilingual dense retrieval. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 1208–1218.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sébastien Riedel, Piotr Bojanowski, Armand Joulin, and Edouard Grave. 2021. Unsupervised dense information retrieval with contrastive learning. *arXiv preprint arXiv:2112.09118*.

Armand Joulin. 2016. Fasttext. zip: Compressing text classification models. *arXiv preprint arXiv:1612.03651*.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. *arXiv preprint arXiv:1607.01759*.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-domain question answering. *arXiv preprint arXiv:2004.04906*.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. 2019. Natural questions: a benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:453–466.

Carlos Lassance. 2023. Extending english ir methods to multi-lingual ir. *arXiv preprint arXiv:2302.14723*.

Dawn Lawrie, Eugene Yang, Douglas W Oard, and James Mayfield. 2023. Neural approaches to multilingual information retrieval. In *European Conference on Information Retrieval*, pages 521–536. Springer.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. 2024. Nv-embed: Improved techniques for training llms as generalist embedding models. *arXiv preprint arXiv:2405.17428*.

Mingzhe Li, Xiexiong Lin, Xiuying Chen, Jinxiong Chang, Qishen Zhang, Feng Wang, Taifeng Wang, Zhongyi Liu, Wei Chu, Dongyan Zhao, et al. 2022a. Keywords and instances: A hierarchical contrastive learning framework unifying hybrid granularities for text generation. *arXiv preprint arXiv:2205.13346*.

Shiyu Li, Yang Tang, Shizhe Chen, and Xi Chen. 2024a. Conan-embedding: General text embedding with more and better negative samples. *arXiv preprint arXiv:2408.15710*.

Wing Yan Li, Julie Weeds, and David Weir. 2022b. Museclir: a multiple senses and cross-lingual information retrieval dataset. In *Proceedings of the 29th International Conference on Computational Linguistics*, pages 1128–1135.

Xiaopeng Li, Xiangyang Li, Hao Zhang, Zhaocheng Du, Pengyue Jia, Yichao Wang, Xiangyu Zhao, Huifeng Guo, and Ruiming Tang. 2024b. Syneg: Llm-driven synthetic hard-negatives for dense retrieval. *arXiv preprint arXiv:2412.17250*.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2022. *Pretrained transformers for text ranking: Bert and beyond*. Springer Nature.

Sheng-Chieh Lin, Amin Ahmad, and Jimmy Lin. 2023a. maggetriever: A simple yet effective approach to zero-shot multilingual dense retrieval. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 11688–11696.

Sheng-Chieh Lin, Amin Ahmad, and Jimmy Lin. 2023b. mAggetriever: A simple yet effective approach to zero-shot multilingual dense retrieval. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 11688–11696, Singapore. Association for Computational Linguistics.

Sean MacAvaney, Luca Soldaini, and Nazli Goharian. 2020. Teaching a new dog old tricks: Resurrecting multilingual retrieval using zero-shot learning. In *Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42*, pages 246–254. Springer.

Adyasha Maharana and Mohit Bansal. 2022. On curriculum learning for commonsense reasoning. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 983–992.

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. 2024. Arctic-embed: Scalable, efficient, and accurate text embedding models. *arXiv preprint arXiv:2405.05374*.

Fengran Mo, Yifan Gao, Chuan Meng, Xin Liu, Zhuofeng Wu, Kelong Mao, Zhengyang Wang, Pei Chen, Zheng Li, Xian Li, et al. 2025a. Uniconv: Unifying retrieval and response generation for large language models in conversations. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 6936–6949.

Fengran Mo, Kelong Mao, Ziliang Zhao, Hongjin Qian, Haonan Chen, Yiruo Cheng, Xiaoxi Li, Yutao Zhu, Zhicheng Dou, and Jian-Yun Nie. 2025b. A survey of conversational search. *ACM Transactions on Information Systems (TOIS)*.

Fengran Mo, Kelong Mao, Yutao Zhu, Yihong Wu, Kaiyu Huang, and Jian-Yun Nie. 2023a. Convqqr: Generative query reformulation for conversational search. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 4998–5012.

Fengran Mo, Jian-Yun Nie, Kaiyu Huang, Kelong Mao, Yutao Zhu, Peng Li, and Yang Liu. 2023b. Learning to relate to previous turns in conversational search. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 1722–1732.

Fengran Mo, Chen Qu, Kelong Mao, Tianyu Zhu, Zhan Su, Kaiyu Huang, and Jian-Yun Nie. 2024. History-aware conversational dense retrieval. *arXiv preprint arXiv:2401.16659*.

Fengran Mo, Jinghan Zhang, Yuchen Hui, Jia Ao Sun, Zhichao Xu, Zhan Su, and Jian-Yun Nie. 2025c. Convmix: A mixed-criteria data augmentation framework for conversational dense retrieval. *arXiv preprint arXiv:2508.04001*.

Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer, and Even Oldridge. 2024. Nv-retriever: Improving text embedding models with effective hard-negative mining. *arXiv preprint arXiv:2407.15831*.

Multi-Linguality Multi-Functionality Multi-Granularity. M3-embedding: Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge distillation.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016. Ms marco: A human-generated machine reading comprehension dataset.

Jian-Yun Nie. 2010. *Cross-language information retrieval*. Morgan & Claypool Publishers.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage document ranking with bert. *arXiv preprint arXiv:1910.14424*.

Douglas W Oard and Bonnie Jean Dorr. 1998. *A survey of multilingual text retrieval*. Citeseer.

A Paszke. 2019. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint arXiv:1912.01703*.

Carol Peters, Martin Braschler, and Paul Clough. 2012. *Multilingual information retrieval: From research to practice*. Springer.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. 2020. Mad-x: An adapter-based framework for multi-task cross-lingual transfer. *arXiv preprint arXiv:2005.00052*.

Zile Qiao, Wei Ye, Dingyao Yu, Tong Mo, Weiping Li, and Shikun Zhang. 2023. Improving knowledge graph completion with generative hard negative mining. In *Findings of the Association for Computational Linguistics: ACL 2023*, pages 5866–5878.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance framework: Bm25 and beyond. *Foundations and Trends® in Information Retrieval*, 3(4):333–389.

Xinqi Su, Dan Song, Wenhui Li, Tongwei Ren, and An-An Liu. 2025. Generating counterfactual negative samples for image-text matching. *Information Processing & Management*, 62(3):103990.

Zeqi Tan, Yongliang Shen, Xiaoxia Cheng, Chang Zong, Wenqi Zhang, Jian Shao, Weiming Lu, and Yueteng Zhuang. 2024. Learning global controller in latent space for parameter-efficient fine-tuning. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 4044–4055.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Stanford alpaca: An instruction-following llama model.

Nandan Thakur, Jianmo Ni, Gustavo Hernández Ábrego, John Wieting, Jimmy Lin, and Daniel Cer. 2023. Leveraging llms for synthesizing training data across many languages in multilingual dense retrieval. *arXiv preprint arXiv:2311.05800*.

Nandan Thakur, Jianmo Ni, Gustavo Hernandez Abrego, John Wieting, Jimmy Lin, and Daniel Cer. 2024. Leveraging llms for synthesizing training data across many languages in multilingual dense retrieval. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 7692–7717.

Jiayin Wang, Fengran Mo, Weizhi Ma, Peijie Sun, Min Zhang, and Jian-Yun Nie. 2024. A user-centric multi-intent benchmark for evaluating large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 3588–3612.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder, and Furu Wei. 2022. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint arXiv:2212.03533*.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrette Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers: State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*.

Shitao Xiao, Zheng Liu, Peitian Zhang, and N Muenighof. 2023. C-pack: packaged resources to advance general chinese embedding. 2023. *arXiv preprint arXiv:2309.07597*.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor negative contrastive learning for dense text retrieval. *arXiv preprint arXiv:2007.00808*.

Haotian Xu, Yuhua Wang, and Jiahui Fan. 2024. Self-knowledge distillation for knowledge graph embedding. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 14595–14605.

Jinxi Xu and W. Bruce Croft. 1996. *Query expansion using local and global document analysis*. In *Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*.

Zhichao Xu, Fengran Mo, Zhiqi Huang, Crystina Zhang, Puxuan Yu, Bei Wang, Jimmy Lin, and Vivek Sriku-
mar. 2025. A survey of model architectures in information retrieval. *arXiv preprint arXiv:2502.14822*.

Eugene Yang, Dawn Lawrie, and James Mayfield. 2024. Distillation for multilingual information retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 2368–2373.

Jingtao Zhan, Qingyao Ai, Yiqun Liu, Jiaxin Mao, Xiaohui Xie, Min Zhang, and Shaoping Ma. 2022. Disentangled modeling of domain and relevance for adaptable dense retrieval. *arXiv preprint arXiv:2208.05753*.

Xinyu Zhang, Kelechi Ogueji, Xueguang Ma, and Jimmy Lin. 2023a. Toward best practices for training multilingual dense retrieval models. *ACM Transactions on Information Systems*, 42(2):1–33.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xiaoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. 2023b. Miracl: A multilingual retrieval dataset covering 18 diverse languages. *Transactions of the Association for Computational Linguistics*, 11:1114–1131.

Yu Zhao and Qiaoyuan Shu. 2025. Debiased hybrid contrastive learning with hard negative mining for unsupervised person re-identification. *Digital Signal Processing*, 156:104826.

Zhijun Zhou, Qing Xie, Yuhua Wang, Lin Li, Yongjian Liu, and Mengzi Tang. 2024. Debiased contrastive learning for graph collaborative filtering. In *2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD)*, pages 48–54. IEEE.

Appendix

A Dataset Statistic

The statistic of the MIRACL dataset (Zhang et al., 2023b) is shown in Table 10. MIRACL is a multilingual retrieval benchmark dataset covering 18 languages, with 726k manual relevance judgments and a collection size of over 100 million documents. Each query is provided with an average of 10 manually verified relevance labels. We use 16 languages from MIRACL, except for German (de) and Yoruba (yo), due to the lack of training data. For LLM multilingual instruction fine-tuning for negative generation, we use the Alpaca dataset (Taori et al., 2023).

B Implementation Details

B.1 Hyperparameter Setting

We implement all models by Pytorch (Paszke, 2019) and Huggingface’s Transformers library (Wolf et al., 2019). All experiments are conducted on an Nvidia A100 80G GPU. For multilingual dense retriever training, we use the Adam optimizer with maximum query and paragraph lengths set to 64 and 256, respectively, and set the batch size as 24. The learning rate is set to 3e-6 and the number of epochs to 16 for mBERT and mDPR. For mE5 and BGE, the learning rate is 2e-6 and the number of epochs is 20. Additionally, for each query, we randomly sample one positive sample and 7 hard negative samples.

B.2 Hard Negatives Set Construction

False Hard Negatives Selection. For each hard negative sample in the candidate set, we prompt GPT-4o (2024-11-20) to select the true hard negatives as shown in Table 17. The size of the hard negatives candidate set is set to 40. Besides, we use the positive sample as a reference to score each hard negative candidate from two aspects, information completeness and accuracy with three granularities – (0,1,2). The final scores will be their combination. The candidate with a final score of 2 is considered a false hard negative sample.

LLM-aided Hard Negative Generation. We set the sampling size of hard negatives to 30 during the training phase for each query. Therefore, after the filtering of false negative samples, if the number of hard negative samples is less than 30, we will deploy LLM-aided hard negative generation to supply the sample number to 30.

B.3 Configuration of Compared Hard Negative Mining Methods

The configurations for the compared hard negative mining methods are selected according to hyperparameter tuning. For the Top-K shifted by N method, the configuration range for N is [0, 100], with an interval of 10. For the TopK-Abs, TopK-MarginPos, and TopK-PercPos methods, the threshold/margin values range from [0, 1], with increments of 0.1 for TopK-Abs and 0.05 for TopK-MarginPos and TopK-PercPos, respectively. We observe that the Top-K shifted by N method performs best when N is set to 10, i.e., when the top-10 ranked negative samples are discarded. For TopK-Abs, TopK-MarginPos, and TopK-PercPos approaches, we find that the model achieves the best performance when the threshold is set to 0.6, 0.15, and 90%, respectively. We use their optimal configuration to conduct comparison experiments.

B.4 Topic Classification

About topic classification for adjusting semantic feature within mini-batch construction, we use the fastText model (Joulin et al., 2016; Joulin, 2016). Specifically, we use the models trained on the DBpedia Ontology and Yahoo Answers datasets and then apply to the MIRACL training set for topic classification. DBpedia Ontology is a dataset for text classification with 14 fine-grained entity categories, while Yahoo Answers provides 10 coarse-grained general categories. However, these categorizations might not be directly applicable to the MIRACL training set. Thus, we combine both label categorizations to restructure the topic classification scheme that can better cover the MIRACL training set. The categorization details are shown in Table 11. The final distribution of topic classification on the MIRACL is shown in Table 13.

C Human Validation

To ensure the quality of the identified false negatives from LLMs, we conduct a validation study on a subset including high, medium, and low resources. For each language, we randomly sample 100 false negatives for human validation with three annotators (Wang et al., 2024). The evaluation criteria are based on a three-level rating scheme (0/1/2), which denotes the relevance between the potential false negative and the given query. The results are shown in Table 12. We can see that most of the false negatives identified by LLMs are con-

Lang	All	Arabic	Bengali	English	Spanish	Persian	Finnish	French	Hindi	
ISO		ar	bn	en	es	fa	fi	fr	hi	
Train	#Q	40,203	3,495	1,631	2,863	2,162	2,107	2,897	1,143	1,169
	#J	343,177	25,382	16,754	29,416	21,531	21,844	20,350	11,426	11,668
Test	#Q	13,071	2,896	411	799	648	632	1,271	343	350
	#J	126,076	29,197	4,206	8,350	6,443	6,571	12,008	3,429	3,494
Passages	90,416,887	2,061,414	297,265	32,893,221	10,373,953	2,207,172	1,883,509	14,636,953	506,264	
Lang	All	Indonesian	Japanese	Korean	Russian	Swahili	Telugu	Thai	Chinese	
ISO		id	ja	ko	ru	sw	te	th	zh	
Train	#Q	40,203	4,071	3,477	868	4,683	1,901	3,452	2,972	1,312
	#J	343,177	41,358	34,387	12,767	33,921	9,359	18,608	21,293	13,113
Test	#Q	13,071	960	860	213	1,252	482	828	733	393
	#J	126,076	9,668	8,354	3,057	13,100	5,092	1,606	7,573	13,113
Passages	90,416,887	1,446,315	6,953,614	1,486,752	9,543,918	131,924	518,079	542,166	4,934,368	

Table 10: Statistics of MIRACL. The #Q and #J denote to number of queries and relevance judgments, respectively.

Yahoo Answers	DBpedia Ontology	MIRACL
Society & Culture	Company	Books & Literature (BL)
Science & Mathematics	Educational Institution	Science & Mathematics (SM)
Health	Artist	Life & Health (LH)
Education & Reference	Athlete	Jobs & Education (JE)
Computers & Internet	Office Holder	Computers & Internet (CI)
Sports	Mean Of Transportation	Sports (SP)
Business & Finance	Building	Business & Finance (BF)
Entertainment & Music	Natural Place	Politics & Government (PG)
Family & Relationships	Village	Traffic & Transportation (TT)
Politics & Government	Animal	Arts & Entertainment (AE)
	Plant	Geography (GE)
	Album	Others (OT)
	Film	
	Written Work	

Table 11: Topic labels categorization for Yahoo Answers, DBpedia Ontology, and MIRACL datasets.

Subset	Agreement with Human Judgment		
	0	1	2
en	94%	3%	3%
es	91%	5%	4%
zh	92%	5%	3%
hi	87%	6%	7%
bn	90%	6%	4%

Table 12: The agreement between human validation and identification from LLMs on the false negative.

sidered irrelevant (annotated as 0) in the validation subset, with an agreement rate of 82.5% measured by Fleiss' Kappa among three annotators, demonstrating the correctness of LLMs' identification to some degree.

D Additional Experimental Results

We present additional experimental results in this section. For the main comparison with existing multilingual retrieval methods, the results with the Recall@100 score are reported in Table 14, where we can see our method still shows strong performance by outperforming most of the baselines. For the results comparison among hard negative mining methods, results with NDCG@10 and Recall@100 metrics are shown in Table 15 and Table 16 with different backbone models. We observe a consistently better performance of our method compared with the others, which demonstrates the superior generalizability across different backbone models of our approach.

Lang	BL	SM	LH	JE	CI	SP	BF	PG	TT	AE	GE	OT	Total
ar	139	315	358	49	62	111	61	158	98	273	1519	352	3,497
bn	94	109	82	46	67	84	23	75	22	126	795	108	1,631
en	88	229	261	55	88	180	62	108	80	524	929	259	2,863
es	72	168	141	36	73	85	61	74	63	341	781	267	2,162
fa	101	204	180	55	99	87	65	59	65	304	688	200	2,107
fi	111	217	176	35	80	195	77	90	132	443	1011	330	2,997
fr	27	103	58	27	31	75	15	42	35	174	462	94	1,143
hi	31	155	91	14	29	55	45	52	30	93	457	117	1,169
id	122	378	160	59	223	89	153	152	113	502	1822	293	4,066
ja	146	184	150	74	96	286	107	127	145	626	1243	292	3,476
ko	12	112	39	6	26	16	21	50	20	59	437	70	868
ru	270	242	192	77	66	183	90	188	217	728	1862	568	4,683
sw	12	164	215	32	25	113	21	119	59	221	789	131	1,901
te	90	177	130	208	28	63	40	77	100	378	1935	226	3,452
th	111	192	180	159	91	113	50	114	61	521	1151	229	3,002
zh	50	130	44	50	45	60	43	62	40	183	534	71	1,312
Total	1,476	3,079	2,457	982	1,129	1,795	934	1,547	1,280	5,496	16,415	3,607	40,197

Table 13: Topic distribution results of MIRACL training set for each language.

Model	Avg.	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh
BM25	78.7	88.9	90.9	81.9	70.2	73.1	89.1	65.3	86.8	90.4	80.5	78.3	66.1	70.1	83.1	88.7	56.0
mBERT	77.8	82.6	81.2	75.7	84.8	88.4	77.6	90.7	78.2	58.4	83.7	72.4	78.8	60.6	75.6	65.4	91.3
mDPR	78.8	84.1	81.9	76.8	86.4	89.8	78.8	91.5	77.6	57.3	82.5	73.7	79.7	61.6	76.2	67.8	94.4
mContriever	85.5	92.5	92.1	79.7	84.1	65.4	95.3	82.4	64.6	80.2	87.8	87.5	85.0	91.1	96.1	93.6	90.3
mE5 _{large}	94.4	97.3	98.2	87.6	89.1	92.9	98.1	90.6	93.9	87.9	97.1	93.4	95.5	96.7	99.2	98.9	93.3
BGE	<u>95.6</u>	<u>97.6</u>	<u>98.7</u>	90.7	91.1	<u>94.0</u>	97.9	93.8	94.4	90.5	<u>97.5</u>	<u>95.5</u>	<u>95.9</u>	97.2	99.4	99.1	96.9
Ours _{mBERT}	87.8 [†]	91.2 [†]	92.1 [†]	83.4 [†]	83.2	87.8	90.8 [†]	90.9 [†]	81.6 [†]	77.6 [†]	91.1 [†]	84.3 [†]	86.2 [†]	90.6 [†]	94.9 [†]	89.2 [†]	90.8
Ours _{mDPR}	94.4 [†]	96.8 [†]	96.3 [†]	<u>90.1[†]</u>	<u>90.8[†]</u>	93.9 [†]	96.6 [†]	96.2[†]	90.2 [†]	86.8 [†]	96.6 [†]	94.8 [†]	94.5 [†]	94.8 [†]	97.4 [†]	96.6 [†]	<u>97.6</u>
Ours _{mE5}	94.8 [†]	97.4 [†]	98.4 [†]	86.9	88.6	93.4 [†]	<u>97.9</u>	92.2 [†]	93.4	88.4 [†]	97.3 [†]	94.4 [†]	95.4	96.2	99.3 [†]	99.2[†]	98.6[†]
Ours _{BGE}	95.9[†]	97.9[†]	98.9[†]	89.9	90.6	94.9[†]	98.1 [†]	<u>95.4[†]</u>	<u>94.3</u>	<u>90.4</u>	98.1[†]	96.1[†]	96.3[†]	<u>97.0</u>	<u>99.3</u>	<u>99.1</u>	97.3 [†]

Table 14: Multilingual retrieval performance with Recall@100 score on the MIRACL dataset across 16 languages. [†] denotes significant improvements with t-test at $p < 0.05$ between our methods with the same corresponding backbone model. **Bold** and underline indicate the best and the second best result, respectively.

Model	Method	Avg	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh
mBERT	Naive Top-K	53.6	63.8	62.9	45.4	44.7	49.7	60.3	50.4	41.2	39.9	56.5	49.5	48.3	59.2	72.1	63.4	50.4
	Top-K shifted by N	53.9	64.1	63.1	45.7	44.8	50.1	60.5	50.7	41.5	40.4	56.8	49.6	48.8	59.6	72.4	63.6	50.6
	TopK-Abs	54.1	64.3	63.4	46.1	44.6	50.5	59.9	51.2	42.3	40.5	56.9	49.4	49.2	60.1	72.6	63.9	51.2
	TopK-MarginPos	54.5	63.7	63.8	46.5	45.2	50.4	61.2	52.1	43.1	41.2	57.1	50.1	49.6	60.6	71.9	62.8	52.6
	TopK-PercPos	54.6	64.2	63.6	46.2	45.4	50.3	61.1	52.3	43.3	41.4	57.0	50.3	49.1	60.6	72.3	63.9	52.8
	Ours	57.9	66.2	65.5	48.8	48.5	52.7	64.8	53.4	45.4	44.9	61.9	56.2	55.5	64.3	76.3	67.4	54.8
mDPR	Naive Top-K	61.0	72.9	70.4	47.2	50.8	55.2	70.9	54.3	46.4	44.3	65.3	59.4	59.3	67.7	80.6	68.2	62.9
	Top-K shifted by N	61.8	73.1	71.3	48.4	51.4	56.8	70.6	56.3	47.8	45.2	64.2	61.3	60.2	68.6	81.4	68.2	63.2
	TopK-Abs	62.1	73.3	70.9	47.9	50.6	57.5	70.7	57.8	49.0	45.9	64.5	60.9	61.0	69.7	81.5	68.0	64.1
	TopK-MarginPos	62.4	72.7	71.6	48.8	51.8	57.3	71.1	57.2	48.4	45.9	65.4	62.1	60.8	69.4	81.8	69.2	63.8
	TopK-PercPos	62.2	73.4	70.6	49.2	51.6	57.1	71.3	57.5	47.8	45.5	66.2	61.4	61.3	69.2	82.2	68.8	62.8
	Ours	66.8	75.7	74.1	55.9	55.8	61.6	75.8	60.7	53.8	52.1	71.2	67.8	65.1	73.9	84.2	74.8	65.9
mE5	Naive Top-K	63.5	72.9	73.2	48.9	48.6	56.4	74.5	52.2	58.1	49.4	68.1	63.1	63.3	71.6	80.2	76.5	58.3
	Top-K shifted by N	63.8	73.1	73.4	49.3	49.2	56.6	74.8	52.5	57.9	49.6	68.5	64.4	63.5	71.9	80.4	76.8	58.5
	TopK-Abs	64.0	73.3	73.6	49.7	49.6	56.8	74.4	53.1	58.2	49.8	69.1	64.6	63.9	72.3	80.8	77.2	57.8
	TopK-MarginPos	64.2	73.4	73.9	49.9	49.7	57.1	74.1	53.4	58.6	50.2	69.2	64.3	64.1	72.6	81.2	77.6	58.4
	TopK-PercPos	64.4	73.6	74.1	50.1	49.6	57.3	74.6	53.6	58.8	50.1	69.4	64.4	64.3	72.8	81.3	77.1	58.8
	Ours	67.4	77.2	76.7	52.1	52.4	59.8	77.6	56.2	61.7	53.4	71.5	68.3	67.2	75.4	84.8	80.9	62.9

Table 15: Comparison of different hard negative construction methods based on different backbone models for multilingual retrieval evaluated on the MIRACL dataset with nDCG@10 scores. **Bold** indicates the best result based on the corresponding backbone model.

Model	Method	Avg.	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh
mBERT	Naive Top-K	83.6	87.6	88.1	78.8	80.5	85.1	86.5	85.7	77.4	71.8	86.5	79.3	81.4	86.4	90.2	85.1	87.2
	Top-K shifted by N	83.8	87.9	88.3	79.2	80.1	85.4	86.7	85.2	77.6	72.6	86.8	79.7	81.8	86.7	90.6	85.4	87.4
	TopK-Abs	83.9	88.1	88.5	79.4	79.8	85.7	85.4	86.1	78.4	72.8	86.4	79.4	81.9	86.8	90.8	85.7	87.8
	TopK-MarginPos	84.0	87.5	88.9	78.7	80.5	84.5	87.4	86.6	79.1	73.2	87.4	80.2	81.4	87.1	89.6	84.2	88.1
	TopK-PercPos	84.4	88.4	88.4	79.7	80.7	84.9	87.2	86.8	79.3	73.6	87.2	80.5	81.6	87.2	89.9	85.9	88.3
	Ours	87.9	91.2	92.1	83.4	83.2	87.8	90.8	90.9	81.6	77.6	91.1	84.3	86.2	90.6	94.9	89.2	90.8
mDPR	Naive Top-K	89.0	94.5	93.4	81.9	86.1	90.7	91.7	92.5	82.0	74.7	90.3	90.7	87.7	90.9	92.8	89.0	95.4
	Top-K shifted by N	89.8	95.1	94.2	83.2	86.8	91.2	91.2	93.2	84.2	75.6	91.4	90.1	89.6	91.8	93.8	90.8	94.6
	TopK-Abs	90.1	94.8	93.9	82.4	85.2	92.0	91.5	94.6	86.7	76.2	92.0	88.8	91.0	92.7	93.6	90.4	95.9
	TopK-MarginPos	90.3	94.4	94.4	83.8	87.2	91.8	92.0	94.2	86.1	75.5	92.4	89.4	90.8	92.4	94.2	91.0	95.4
	TopK-PercPos	90.0	94.8	93.8	84.3	86.8	91.8	92.0	94.4	82.6	74.6	92.7	89.8	91.4	92.2	94.4	90.8	94.2
	Ours	94.4	96.8	96.3	90.1	90.8	93.9	96.6	96.2	90.2	86.8	96.6	94.8	94.5	94.8	97.4	96.6	97.6
mE5	Naive Top-K	91.9	94.9	95.3	83.4	82.9	90.8	95.8	90.5	91.2	86.4	95.2	91.3	92.4	93.9	96.2	95.8	94.9
	Top-K shifted by N	92.1	95.1	95.5	83.6	83.4	90.6	95.6	90.7	90.7	86.6	95.4	91.7	92.6	94.1	96.3	95.9	95.1
	TopK-Abs	92.1	95.3	95.2	83.8	83.6	90.4	95.2	90.8	91.3	87.1	95.8	91.8	92.3	94.3	96.6	96.2	94.6
	TopK-MarginPos	92.2	95.4	95.1	84.1	83.8	90.9	94.9	90.4	91.6	86.8	95.7	91.4	92.5	94.6	96.4	96.4	94.8
	TopK-PercPos	92.2	95.6	94.7	84.4	83.4	90.6	95.4	89.8	91.7	86.6	95.6	91.3	92.8	94.5	96.8	96.2	95.2
	Ours	94.8	97.4	98.4	86.9	88.6	93.4	97.9	92.2	93.4	88.4	97.3	94.4	95.4	96.2	99.3	99.2	98.6
BGE	Naive Top-K	92.9	97.5	98.2	85.2	84.2	90.9	96.5	91.7	90.7	79.3	94.7	94.1	94.6	96.0	98.8	98.4	95.2
	Top-K shifted by N	93.2	97.2	98.5	85.8	85.8	91.6	96.3	92.6	91.0	82.2	94.4	94.2	94.2	95.6	98.6	98.2	95.4
	TopK-Abs	93.2	97.5	98.2	84.8	86.0	91.2	96.5	93.0	90.8	82.6	94.2	94.6	94.4	96.2	98.2	98.0	95.3
	TopK-MarginPos	93.4	96.9	98.0	86.2	87.2	91.7	96.8	93.2	91.6	83.4	93.8	94.2	93.8	96.4	98.5	98.6	94.6
	TopK-PercPos	93.6	97.7	98.4	85.8	87.6	91.4	96.1	93.1	91.8	83.6	94.9	94.7	94.1	96.1	98.8	97.8	95.6
	Ours	95.9	97.9	98.9	89.9	90.6	94.9	98.1	95.4	94.3	90.4	98.1	96.1	96.3	97.0	99.3	99.1	97.3

Table 16: Comparison of different hard negative construction methods based on different backbone models for multilingual retrieval evaluated on the MIRACL dataset with Recall@100 scores. **Bold** indicates the best result based on the corresponding backbone model.

Prompt for selecting false negatives

Task Review:

Your task is to evaluate a Candidate Answer based on a given Question and Standard Answer. Use the following two evaluation criteria to guide your assessment:

Evaluation Criteria

Information Accuracy

(1) **Definition:** Assess whether the Candidate Answer contains factual inaccuracies or misleading information. If a Standard Answer is provided, base your judgment on both the Question and the Standard Answer. If the Standard Answer is empty, evaluate based solely on the Question.

(2) **Scoring Guidelines:**

- **0:** The Candidate Answer contains clear factual errors or significantly misrepresents the meaning.
- **1:** The Candidate Answer has minor inaccuracies, but the overall meaning is still mostly correct.
- **2:** The Candidate Answer is entirely accurate with no factual errors.

Information Completeness

(1) **Definition:** Evaluate how well the Candidate Answer addresses the key aspects of the Question.

(2) **Scoring Guidelines:**

- **0:** Major aspects of the question are not addressed or key points are missing.
- **1:** Most key points are addressed, but some minor details are omitted.
- **2:** All major and minor points are fully addressed.

Input:

Question: {Input Question}

Candidate Answer: {Input Candidate Answer}

Standard Answer: {Input Standard Answer}

Output:

{"Information Accuracy": {0/1/2}, "Information Completeness": {0/1/2}}

Table 17: Prompt for LLMs to judge false negatives.